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a b s t r a c t

Give random capacities C to the edges of the complete n-vertex graph. Consider the maximum flow
Φn that can be simultaneously routed between each source–destination pair. We prove that Φn → φ
in probability where the limit constant φ depends on the distribution of C in a simple way, and that
asymptotically one need use only 1- and 2-step routes. The proof uses a reduction to a random graph
problem.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

This paper is part of a project studying optimal flows through
randomnetworks, where a network has both a graph structure and
extra structure such as capacities and costs on edges, and where
we are in the ‘‘multicommodity flow’’ setting with simultaneous
flows between each source–destination pair. Possible models
span a broad spectrum from realistic to mathematically tractable,
and at the latter end are models based on the complete graph.
Including study of such models within a project is natural both for
mathematical completeness and for comparison purposes.

Consider first the setting of an arbitrary finite connected
undirected graph G. Let φ > 0. A flow of volume φ/2 between
vertex v and vertex w has net out-flow = φ/2 at v, net out-flow =
−φ/2 at w, and zero net out-flow at other vertices. For such a flow
write fv,w(e) ≥ 0 for the absolute value of the flow volume across
an undirected edge e. Supposewe have such a flow simultaneously
for each ordered pair (v, w) with w %= v; call this collection a
uniform flow of volume φ and write f (e) := ∑

(v,w) fv,w(e) for the
combined volume of flow across the undirected edge e. Suppose
now we are given capacities C(e) for edges e. Then the maximum
uniform flow volume (MUFV) is defined to be the largest φ such that
there exists a uniform flowof volumeφ which satisfies the capacity
constraints

f (e) ≤ C(e) ∀e. (1)
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One modeling paradigm, seeking to combine the spatial inhomo-
geneity of real networks with mathematical tractability, is to con-
sider some standard family Gn of n-vertex graphs, and to assume
that the edge-capacities C(e) are random (specifically, are i.i.d.
copies of a reference r.v. C). Now the MUFV is a r.v. Φn, and one
can seek to study its n → ∞ behaviour.

Apparently, and somewhat surprisingly, such questions have
not been studied before. There is literature [1–4] on flows with
a single source–destination pair and on flows from the top to the
bottomof a square, but these fall into the one-commodity setting of
the max-flow min-cut theorem, rather than our multicommodity
setting.

In this paperwe consider the complete graph; a similar problem
on the m × m square grid was studied by very different methods
in [5]. An interesting observation is that in both these models the
limit constants for Φn depend on the distribution of C (not just
on its expectation EC), but for rather different reasons in the two
models. An intermediate model is the cube {0, 1}d, and here we
conjecture that the limit constant does depend only on EC when C
is bounded away from zero. See Section 4 for further related work
and open problems.

1.1. Statement of results

Consider the complete n-vertex graph whose edges e have
independent random capacities C(e) whose common distribution
satisfies
0 < EC < ∞. (2)
Note that the function
φ → 2E max(φ − C, 0) − E max(C − φ, 0)
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Fig. 1. A worked example.

in continuous and strictly increasing from−EC to∞ asφ increases
from 0 to ∞, and so we can define a constant 0 < φ∗ < ∞ as the
unique solution of

E max(C − φ∗, 0) = 2E max(φ∗ − C, 0). (3)

For example, if C is uniform on {0, 1} then φ∗ = 1/3, and if C is
uniform on [0, 1] then φ∗ =

√
2 − 1.

Theorem 1. Under assumption (2) the MUFV Φn satisfies Φn → φ∗
in probability as n → ∞.

In order to gain an intuitive understanding of the problem, let us
consider a small example. Fig. 1 shows (top) a particular instance of
integer edge-capacities with n = 6: three edges have zero capacity
and are not shown. How might we try to route a flow of volume 2
between each vertex pair? First try to route along the direct edge
e; if capacity C(e) ≥ 2 then we can do so, leaving surplus capacity
C(e) − 2, and the center left diagram shows the graph of surplus
capacity edges. If instead C(e) < 2 then the edge has ‘‘deficit’’
2 − C(e) and the center right diagram shows the graph of deficit
capacity edges. Regard each of those graphs as amultigraphwhose
edges have surplus/deficit 1. To complete the routing it is enough
to associate each deficit edgewith a pair of surplus edges forming a
triangle (with each surplus edge being used at most once), because
then the flow required between endpoints of the deficit edge can
be routed through the two surplus edges. The deficit multigraph
corresponding to Fig. 1 has 9 edges. The bottom row diagrams
illustrate oneway of producing the required 9 triangles (the deficit
edges are drawn thicker).

How does this construction idea lead intuitively to the formula
(3) and Theorem 1? Suppose we wish to route a uniform flow of
volume φ. As in the example, first route as much flow as possible
across the direct edge, that is route volumemin(φ, C(e)) across an
edge e. This leaves a deficit volume max(φ − C(e), 0) for edge e.
Now the mean surplus capacity per edge is E max(C − φ, 0). We
try to route the unsatisfied demand via 2-step paths with surplus
capacity; for this to work it is plausibly necessary that

E max(C − φ, 0) ≥ 2E max(φ − C, 0).

Conversely, this should be sufficient because the set of edges with
surplus capacity forms a dense random graph which should be
sufficiently well-connected to permit construction of the desired
2-step paths.

The ‘‘necessary’’ part is indeed easy to formalize (Lemma 2),
and we do this in Section 2. We prove the converse (Lemma 5) in
Section 3.1; the proof uses a reduction to a result (Proposition 3)
on random coloured graphs which we prove in Section 3.2.

Finally, we mention a possible connection between our setting
and the more elaborate setting of dynamic routing (of e.g. phone
calls) on a complete network. Section 2.1 of [6] analyzes the
throughput of a model in which it is assumed that calls use either
a one-link or two-link route, having previously commented

We shall occasionally mention the possibility that a call might
be connected along a path of more than two links, but . . . this
possibility is rarely of interest and we shall exclude it from our
formal development.

Our results suggest the possibility of proving that asymptotically
one cannot improve throughput by using such longer paths.

2. The upper bound

The upper bound in Theorem 1 is provided by

Lemma 2. Fix φ > φ∗. Then limn P(Φn ≥ φ) = 0.
Proof. Fix a realization of the edge-capacities. Suppose a uniform
flow of volume ρ exists. For an edge (v, w)
∑

e
(fv,w(e) + fw,v(e)) ≥ ρ if C(vw) ≥ ρ

≥ C(vw) + 2(ρ − C(vw)) if C(vw) ≤ ρ

because in the latter case volume of at least ρ − C(vw) must use
at least a 2-step route. Combining the two cases,
∑

e
(fv,w(e) + fw,v(e)) ≥ min(ρ, C(vw)) + 2max(ρ − C(vw), 0).

Summing over edges e′ = (v, w) and using the capacity constraint
(1),
∑

e
C(e) ≥

∑

e′

(
min(ρ, C(e′)) + 2max(ρ − C(e′), 0)

)
.

Dividing by
( n
2

)
and recalling we supposed that the uniform flow

exists, we have shown that

Qn := 1( n
2

)
∑

e′
C(e′) − 1( n

2

)
∑

e′
(min(ρ, C(e′))

+ 2max(ρ − C(e′), 0)) ≥ 0 on {Φn ≥ ρ}.
But as n → ∞ the quantity Qn converges in probability to

q := EC − (E min(ρ, C) + 2E max(ρ − C, 0))
= E max(C − ρ, 0) − 2E max(ρ − C, 0).

If ρ > φ∗ then q < 0 and hence we must have limn P(Φn ≥ φ)
= 0. !

3. The reduction argument

3.1. The reduction

Wewill use a reduction to the following ‘‘random graph’’ result.
To motivate this reduction, consider the case where the edge-
capacity C takes only values {0, 1, 2} and where we seek to route
a uniform flow of volume 1. Then traffic across capacity-0 edges
(coloured scarlet, say) needs to be routed through two capacity-2
edges (coloured blue, say). Colours are mnemonics for smaller and
bigger capacities.
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Proposition 3. Fix 0 < ps < pb/2 with ps + pb ≤ 1. Randomly
colour the edges of the complete n-vertex graph as blue (probability
pb) or scarlet (probability ps) or neither (probability 1−pb−ps). Then
whp there exists a collection of edge-disjoint triangles, each triangle
having one scarlet edge and two blue edges, such that every scarlet
edge is in some triangle.

We defer the proof of this proposition to the next subsection,
and show here how to deduce the lower bound in Theorem 1,
stated as Lemma 5. Note that the condition ρ < φ∗ is equivalent to

r := E max(ρ − C, 0)
E max(C − ρ, 0)

<
1
2
. (4)

We first prove a version of the result for integer capacities
and demands, and then use this to deal with the general case in
Lemma 5.

Lemma 4. Suppose C is integer-valued and bounded, and suppose
ρ is an integer satisfying (4). Then, with high probability, we can
construct flows of volume ρ between every pair of vertices such that
the capacity constraint (1) holds.

Proof. Let M be an upper bound for C . We construct M separate
flow problems P1, . . . , PM of the following type. Each problem
Pi will be encoded by an n-vertex graph with scarlet and blue
edges. A scarlet edge vw indicates a demand of 1 and capacity of
0 between v and w, while blue edges have capacity 1 and demand
0. The absence of an edge indicates that demand and capacity are
both 0.

We construct the problems as follows. For each edge vw with
C(vw) ≥ ρ we choose (uniformly at random) a subset I ⊂
{1, . . . ,M} of size C(vw)−ρ and insert a blue edge between v and
w inPi for each i ∈ I . For each edge vw with C(vw) < ρ we choose
(uniformly at random) a subset I ⊂ {1, . . . ,M} of size ρ − C(vw)
and insert a scarlet edge between v and w in Pi for each i ∈ I .
Note that the instances Pi and Pj may be dependent, but the edges
inside any instance Pi are present (and coloured) independently.

By (4) the hypothesis of Proposition 3 is satisfied, so with
high probability, we can find for each instance Pi a collection of
edge-disjoint triangles with two scarlet edges and one blue edge
covering all scarlet edges. For each scarlet edge in one of the
triangles, route unit flowbetween its end-vertices by using the two
blue edges in the triangle. Taking the sum of these flows over allM
instances, we establish the lemma. !

Lemma 5. Assume (2) and let φ < φ∗. Then limn P(Φn ≥ φ) = 1.

Proof. Let p0 = P(C > 0) and choose c0 > 0 such that P(C ≥
c0) ≥ p0/2. Define

Ck = max{min(2−k.C2k − 1/, k), 0}
for k sufficiently large that 2−k < c0. So 0 ≤ Ck ≤ max{C −2−k, 0}.
Define ρk as the largest multiple of 2−k for which

E max(Ck − ρk, 0) > 2E max(ρk − Ck, 0).

It is easy to check that ρk ↑ φ∗ as k → ∞. Thus it is sufficient to
show that, for each fixed large k,

P(uniform flow of volume ρk exists) → 1 as n → ∞. (5)

But by applying Lemma4 to the bounded integer-valued quantities
2kCk and 2kρk, then rescaling by a factor 2−k, we find that (with
high probability) we can construct flows of volume ρk between
every pair such that the total flowvolume f (e) satisfies the capacity
constraints f (e) ≤ Ck(e) ∀e. !

3.2. Proof of Proposition 3

Given nonnegative reals p1, . . . , pk with
∑k

i=1 pi ≤ 1, we
write G(n; p1, . . . , pk) for the probability space of edge-coloured
graphs on n vertices, obtained as follows: for each pair of vertices
independently we have an edge of colour i with probability pi,
and no edge with probability 1 − ∑k

i=1 pi. Proposition 3 follows
immediately from the following result (give scarlet edges colour 1,
and blue edges colour 2 or colour 3 with probability 1/2 each).

Lemma 6. Fix δ > 0, and suppose that p1, p2, p3 ≥ 0 with sum at
most one satisfy p1 + δ ≤ min{p2, p3}. Then for G ∈ G(n; p1, p2, p3)
there is whp a collection T of edge-disjoint triangles such that every
triangle in T contains one edge of each colour and every edge of colour
1 is contained in some triangle in T .

Proof. The proof will go in two steps: we begin by setting aside
a subset of the edges of colours 2 and 3, and use the remainder to
covermost of the edges of colour 1.We then use the edgeswe have
set aside to cover the remaining edges of colour 1.

Let G ∈ G(n; p1, p2, p3). We define edge-disjoint subgraphs G1
and G2 of G with V (G1) = V (G2) = V (G) as follows: G1 contains
all edges of colour 1; each edge of colour i > 1 is placed in G1 with
probability p1/pi and in G2 with probability δ/pi (and is discarded
with the remaining probability (pi − p1 − δ)/pi ≥ 0). Then G1 has
distribution G(n; p1, p1, p1) and G2 has distribution G(n; 0, δ, δ).

We begin with G1, and try to cover edges of colour 1 with
multicoloured triangles. We shall first partition V = V (G1) into
a number of sets of size Θ(

√
n): we ignore the edges inside vertex

sets, and break up the remainder into edge-disjoint tripartite
graphs that we handle separately.

Recall that a Steiner triple system on a set U is a collection S of
triples in U such that every pair of elements of U is contained in
exactly one triple from S. Steiner triple systems exist whenever
|U| ≡ 1 or 3 mod 6. So let t ∼ √

n be of form 6k + 1 and let
V1, . . . , Vt be a partition of V into t sets of size .n/t/ or 3n/t4. Let
S be a Steiner triple system on [t] = {1, . . . , t}, so S contains( t
2

)
/3 triples. For each element S = {i, j, k} of S, we consider

the corresponding tripartite subgraph GS of G1 with vertex classes
(Vi, Vj, Vk) that contains all edges from G1 joining these vertex
classes. The graphs {GS : S ∈ S} are independent (disjoint)
tripartite random graphs, and every edge of G1 is contained either
in some vertex class Vi or in exactly one of the GS .

Consider a fixed S = {α1, α2, α3} ∈ S. The corresponding
subgraph GS has vertex classes Vα1 , Vα2 and Vα3 . We decompose
GS into subgraphs G1

S ,G
2
S and G3

S where, for each i = 1, 2, 3, Gi
S

has all edges from GS with colour j that join Vαi+j and Vαi+j+1 for
j = 1, 2, 3 (all subscripts taken modulo 3). Thus each Gi

S has edges
of different colours between different pairs of vertex classes, and in
particular all triangles in Gi

S have edges of three different colours.
Furthermore, if we ignore colours, then Gi

S is a random tripartite
graph with vertex classes Vα1 , Vα2 , Vα3 and edge probability p1.

Now fix i, and consider Gi
S . Given vertices x, y in different

classes, the number X of x–y paths of length 2 inGi
S has distribution

B(r, p21), where r ∼ n/t ∼ √
n is the size of the third vertex

class. By Chernoff’s inequality, the probability that |X − rp21| ≥
n

1
2 / ln n is atmost exp(−Ω(n

1
2 / ln2 n)). It follows that, with failure

probability O(exp(−n1/3)), every edge of Gi
S is contained in (1 +

o(1))p21n/t triangles. Thus, giving each triangle in Gi
S weight (1 −

o(1))t/np21, we obtain a fractional triangle-packing of size (1 −
o(1))e(Gi

S)/3.We nowuse Theorem 1 of Haxell and Rödl [7], which
implies that the maximum size of a triangle-packing in a graph on
m vertices differs from the maximum size of a fractional triangle-
packing by o(m2) (we could also use arguments of Frankl and
Rödl [8]). Applying this result with m ∼ 3n/t ∼ 3

√
n, we see
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that, with failure probability as above, there is a (proper) triangle-
packing in Gi

S of size (1 + o(1))e(Gi
S)/3 − o(n), which thus covers

all but o(n) edges from Gi
S ; and by symmetry we may require that

at each vertex of Gi
S the expected number of uncovered edges is

o(n/t) = o(
√
n).

We therefore have, with probability 1 − o(1), for every S and
i, a triangle-packing such that at each vertex v of Gi

S the expected
number of uncovered edges is o(

√
n), and this happens uniformly

over all S, i and v. Let T1 be the union of these triangle-packings,
and let H be the subgraph of G1 that remains after removing all the
triangles in T1.

We claim that,with probability 1−o(1),H hasmaximumdegree
o(n). Consider a vertex v, say v ∈ Vi. The edges inside Vi only
contribute O(

√
n) to the degree of v, so it is enough to consider

edges between vertex classes. Since i belongs to (t −1)/2 ∼ √
n/2

triples from S, v belongs to (1 + o(1))
√
n/2 subgraphs GS . These

subgraphs and their packings are independent: each subgraph
contains at most 23n/t4 ∼ 2

√
n edges that remain incident with v

in H , and an expected o(
√
n) such edges. Thus EdH(v) = o(n) and

dH(v)−EdH(v) is the sumofO(
√
n) independent randomvariables,

eachwith absolute value atmostO(
√
n). It follows by (for instance)

the Azuma–Hoeffding inequality that with probability 1 − o(1/n),
we have∆(H) = o(n). Let us choose n large enough so that we can
assume ∆(H) < δ2n/10.

Finally, we use the edges from G2 to cover the remaining edges
of colour 1 in H . Let us orient the edges of G2 at random. Then
(easily, by Chernoff’s inequality)with probability 1−o(1), for every
ordered pair (x, y) of vertices there are at least δ2n/5 oriented
paths xzy in G2 such that xz has colour 2 and zy has colour 3. We
now choose triangles greedily: for each edge xy of colour 1 (taking
edges in arbitrary order andwith arbitrary orientation), we pick an
oriented path xzy inG2 (with xz of colour 2 and zy of colour 3). Since
we have previously used at most ∆(H) − 1 edges out of x and at
most ∆(H) − 1 edges into y, and there are at least 2∆(H) directed
paths to choose from, there is at least one path edge-disjoint from
all previous choices. This enables us to cover all colour 1 edges of
H; adding the resulting triangles to T1 gives our desired collection
T of triangles. !

4. Related work and open problems

As mentioned in the Introduction, the problem studied here
for the complete graph could be posed for any family of n-vertex
graphs, and the cube graph {0, 1}d seems particularly interesting.
For a large class of related problems, suppose there exist feasible
flows of given volume but that our objective is to minimize
(over such flows) some ‘‘cost’’ of the flow. Such problems have
been intensively studied as finite algorithmic problems [9] but

only sporadically studied in our ‘‘probabilistic model of network
and n → ∞’’ setting. For instance, consider the complete n-
vertex graph with independent exponentially distributed edge-
lengths, and for each pair of distinct vertices send unit flow along
the shortest path between them, without capacity constraints. A
typical route uses about ln n short edges (and is much shorter
than the one direct edge). The explicit limit distribution of suitably
scaled flows across different edges is obtained in [10]. But it
seems a challenging problem to understand what happens when
edge capacities are imposed, in which case we can no longer use
shortest-path routing but instead seek to minimize overall mean
route length: how does optimal mean route length vary with
capacity constraint?

Another variant is to replace the ‘‘hard constraint’’ of edge-
capacities by a ‘‘soft constraint’’ of congestion costs — the cost
to the system of a volume of flow across an edge grows super-
linearly with volume. This variant was studied in the lattice setting
in [5] and in a locally tree-like directed network in [11]; but
analytic understanding of the behavior of anymore realistic model
of e.g. road networks seems far out of reach, as does understanding
of the optimal design of such networks.
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