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In this write-up, the worst case study of the stretch-length tradeoff in geometric networks is
considered. The original problem is raised by Prof. Aldous in his paper[1]. The notations and
definitions here will be consistent with the paper.

For geometric spanner networks, how well the network provides short routes is often measured
by the stretch or spanning ratio of the network, which is defined as

S := max
v 6=w

r(v, w)

d(v, w)
≥ 1

where d(v, w) denotes the Euclidean distance and r(v, w) denotes the route length.
The underlying setting is a configuration of n cities at arbitrary positions zn = (z1, · · · , zn) in

a square of area n. For a network N which connects all these cities, write S(N ) for its stretch
and write

L(N ) =
1

n
× (network length of N )

for normalised network length. Define

ψn(zn, s) := inf{L(N ) : S(N ) ≤ s}

the infimum over all networks connecting the cities zn. In the paper, the worst case and the
average case are studied. The worst-case is defined as

Ψworst(s) = lim
n→∞

sup
zn

ψn(zn, s)

As shown in the paper, such limit exists but is is very difficult to find a way to get a formula for
that. For this reason, estimation for this quantity is more practical. Prof. Aldous derived upper
bounds on Ψworst(s) for some special values from specific constructions:

Ψworst(2) ≤ 4, Ψworst(
3

2
) ≤ 4

√
2, Ψworst(

√
2) ≤ 4

√
3

In this write-up, I figure out some new ways to construct networks and these constructions
give a better upper bound for Ψworst(s). The main result is the following:

Theorem 1.

Ψworst(2) ≤ 2

√
2 +
√

2 (1)

Ψworst(
3

2
) ≤ 2

√
2 + 2

√
2 (2)

Ψworst(
√

2) ≤ 2

√
2 + 3

√
2 (3)

Proof. The proof is similar with the method in the paper. For fixed 0 < t∞ < ∞, choose
t = t(n) → t∞ such that n1/2/t(n) is an integer m = m(n). The first step for the construction
of the network is to divide the square into m2 subsquares with side-length t. The total length of
these grid roads (including the boundary of [0,

√
n]2) is

√
n× 2(m+ 1) ∼ 2n/t∞
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Next, for each subsquare, construct the two diagonal roads. Consequently, now the network
partitions the region [0,

√
n]2 into 4m2 isosceles right triangle. Then these diagonal roads have

total length
2
√

2t∞ ×m2 = 2
√

2n/t∞

Note that each city lies in at most one of the triangles. Finally, to form a connect graph that
contains all n cities, construct three roads that are perpendicular to the three edges from the city
across the edges. To estimate the length of such roads, first consider the following basic geometry
problem:

For a isosceles right triangle with base length 1, for any fixed point in the triangle, construct
three segment which are perpendicular to the three edges starting from the point. Use hi, i = 1, 2, 3
to represent the length of these three segments. Then we have that

1

2
(1 · h1 +

√
2

2
· h2 +

√
2

2
· h3) =

1

4
⇒ h1 + h2 + h3 ≤

√
2

2

Thus, for the added roads which make the network contain the cities, the total length is less than

or equal to
√
2
2 nt∞.

Figure 1: Part of the construction of network N 1
n

Now we study the network N 1
n thus constructed. For the corresponding normalised total

length, we have

n−1len(N 1
n )→

√
2

2

(
t∞ +

2
√

2 + 4

t∞

)
The key part is to consider the restriction of the stretch. As mentioned in the paper, i a right
triangle with side-lengths a, b and c =

√
a2 + b2 we have

a+ b

c
≤
√

2

To show that a city pair (i, j) has r(i, j)/d(i, j) ≤
√

2, we must first consider the shortest path
connecting these two cities. In this construction of the network, the shortest path between two
cities can be easily found in a direct way. The bound is clearly true in the following cases:

(i) the two cities are in the same square;

(ii) the two cities are in different rows and different columns;

(iii) the two cities are in adjacent squares;

Therefore, it remains to consider the final case:
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Figure 2: Illustration for these cases

(iv) the two cities are in squares in the same column (without loss of generality) separated by
some number k ≥ 1 of squares.

So for this network N 1
n , it suffices to discuss the worst situation in case (iv). In the construction

of network N 1
n , the worst situation for a city pair (v, w) that maximise the ratio r(v, w)/d(v, w)

is quite clear. Specifically, this happens when k = 1. The intervening square contains no cities,
and the two cities are arbitrarily close the the centers of the north edge and the south edge of the
intervening square. For such two cities, we have r(v, w)/d(v, w) = 2 and this is the upper bound
for case (iv). This implies that stretch(N 1

n ) ≤ 2. Therefore, we have

n−1len(N 1
n )→

√
2

2

(
t∞ +

2
√

2 + 4

t∞

)
≥ 2

√
2 +
√

2

where t∞ =
√

2
√

2 + 4 can reach the minimum. This just shows the upper bound (1).

Figure 3: Worst situation in case (iv) for different networks

Now consider N 2
n obtained from N 1

n by adding, for each square, the N-S and the E-W interior
roads across the square through the center of the square. Note that it’s not necessary to add new
diagonals for the smaller squares (otherwise we will just get the exactly same network, only with
small side-length for squares). On this occasion, the case (iv) worst situation is where the two cities
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are arbitrarily close to a quarter of the way along the north and south edges of the intervening
square. in this situation, it’s easy to see that

r(g, h)/d(g, h) = 3/2⇒ stretch(N 2
n ) ≤ 3/2

In this setting, the total extra network length is

2t∞ ×m2 = 2n/t∞

This implies that

n−1len(N 2
n )→

√
2

2

(
t∞ +

4
√

2 + 4

t∞

)
≥ 2

√
2 + 2

√
2

where t∞ =
√

4 + 4
√

2 can reach the minimum. This just shows the upper bound (2).
Finally consider the networks N 3

n obtained by adding, for each square, two N-S and two E-
W interior roads partitioning the square into nine equal subsquares. Under this circumstance,
the case (iv) worst situation is where the two cities are arbitrarily close to the half of the way
along the north and the south edges of the intervening square. In this situation, it is clear that
r(e, f)/d(e, f) = 4/3. However, this quantity is smaller than the upper bound of stretch in the
case (i), (ii) and (iii), which is

√
2. So, in this setting, we have that stretch(N 3

n ) ≤
√

2. The total
extra network length with respect to N 1

n is

4t∞ ×m2 = 4n/t∞

This implies that

n−1len(N 3
n )→

√
2

2

(
t∞ +

6
√

2 + 4

t∞

)
≥ 2

√
2 + 3

√
2

where t∞ =
√

6
√

2 + 4 can reach the minimum. This shows the upper bound (3).
As seen in the argument about the network N 3

n , we don’t need to divide the square into even
smaller subsquares. This is because that although such procedure can make the upper bound of
stretch for case (iv) become smaller, this bound will be less than

√
2. So in this kind of setting,

the upper bound of the stretch corresponds to the other cases. This cannot give us a better bound
for Ψworst(

√
2) than (3).

Although these constructions help us get better upper bounds for the estimation of the worst
case study, it is still unknown whether these results are optimal. Further works are still waiting
to be conducted in order to find the optimal bounds.
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