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Motivated by the shape of transportation networks such as subways, we consider a distribution of
points in the plane and ask for the network G of given length L that is optimal in a certain sense.
In the general model, the optimality criterion is to minimize the average (over pairs of points chosen
independently from the distribution) time to travel between the points, where a travel path consists
of any line segments in the plane traversed at slow speed and any route within the subway network
traversed at a faster speed. Of major interest is how the shape of the optimal network changes as L
increases. We first study the simplest variant of this problem where the optimization criterion is to
minimize the average distance from a point to the network, and we provide some general arguments
about the optimal networks. As a second variant we consider the optimal network that minimizes
the average travel time to a central destination, and discuss both analytically and numerically
some simple shapes such as the star network, the ring or combinations of both these elements.
Finally, we discuss numerically the general model where the network minimizes the average time
between all pairs of points. For this case, we propose a scaling form for the average time that we
verify numerically. We also show that in the medium-length regime, as L increases, resources go
preferentially to radial branches and that there is a sharp transition at a value Lc where a loop
appears.
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INTRODUCTION

Transportation networks evolve in time and their
structure has been studied in many contexts from street
networks to railways and subways [1–4]. The evolution
of transportation networks is also relevant in biological
cases such as the growth of slime mould [5] or for social
insects [6–9]. The specific case of subways is particularly
interesting (for network analysis of subways, see for ex-
ample [2, 10–14]). In most very large cities, a subway
system has been built and later enlarged [2], with cur-
rent total lengths L varying from a few kilometers to
a few hundred kilometers. We observe that the length
of subway networks is distributed over a broad range
(see Fig. 1(top)). Fig. 1(bottom) also shows the total
length versus the first construction date for most subway
networks worldwide (the data is from various sources,
see [14] and references therein): the oldest networks are
mostly European and the largest and more recent ones
can be found in Asia.

Concerning the geometry of these networks, as L in-
creases we observe more complex shapes and an increase
in the number of lines (see Fig. 2 and also [15]). Usu-
ally for small subways (L of order a couple of 10 kms)
we observe a single line or a simple tree (eg. a single
line in the case of Baltimore, Haifa, Helsinki, Hiroshima,

Miami, Mumbai, Xiamen, . . . ; or many radial lines such
as in Atlanta, Bangalore, Incheon, Kyoto, Philadelphia,
Rome, Sendai, Warsaw, Boston, Budapest, Buenos Aires,
Chicago, Daegu, Kiev, Los Angeles, Sapporo, Tehran,
Vancouver, Washington DC). For larger L (of order 100
kms), we typically observe the appearance of a loop line,
either in the form of a single ring (e.g. Glasgow) or mul-
tiple lines with connection stations (Athens, Budapest,
Lisbon, Munich, Prague, São Paulo, St. Petersburg,
Cairo, Chennai, Lille, Marseille, Montreal, Nuremberg,
Qingdao, Toronto). For larger networks (L over 200
kms) we observe in general some more complex topo-
logical structure (Berlin, Chongqing, Delhi, Guangzhou,
Hong Kong, Mexico City, Milan, Nanjing, New York, Os-
aka, Paris, Shenzhen, Taipei). For the largest networks,
convergence to a structure with a well-connected central
core and branches reaching out to suburbs has been ob-
served [2].

In this paper we investigate the optimal structure of
transportation networks, as a function of length L, for
several related notions of optimal involving minimizing
travel time. Real-world subway networks have developed
under many other factors, of course, rather than resulting
from the optimization of some simple quantity, but opti-
mal structures provide interesting benchmarks for com-
parison with real-world networks.
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FIG. 1: (Top) Histogram of the total length L of subway
networks. (Bottom) Total length of the network versus first
construction date t0. We grouped the networks according to
broad regions.

Total length L

⇠ 101 kms ⇠ 102 kms & 102 kms

FIG. 2: Typical observed shapes when the length L increases.
For small L we observe a line or a simple tree. For larger L
we observe the appearance of a loop and for much larger L
more complex shapes including a lattice like network or a
superimposition of a ring and radial lines.

There has been extensive study of optimal networks
over a given set of nodes (such as the minimum span-
ning tree [16], or other optimal trees [17]). Some such
problems allow extra chosen nodes, for example the
Steiner tree problem [18], or geometric location prob-
lems in which n given demand points are to be matched

with p chosen supply points [19]. At another extreme is
the much-studied Monge-Kantorovich mass transporta-
tion problem [20], involving matching points from one
distribution with points from another distribution. Our
setting is fundamentally different, in that what we are
given is just the density of start/end points on the plane.
A network is intrinsically one-dimensional, in the sense
of being a collection of (maybe curved) lines embedded
in the plane. In a sense we are studying a coupling be-
tween a given distribution over points in the continuum
and a network of our choice constrained only by length
and connectedness. Some simpler problems of this type
have been addressed previously. For instance, the prob-
lem of the quickest access between an area and a given
point was discussed in [21, 22]. More recently, the im-
pact of the shape of the city and a single subway line was
discussed in [23]. Algorithmic aspects of network design
questions similar to ours have been studied within com-
putational geometry (e.g. [24] chapter 9) and “location
science” (e.g. [25] and references therein). But our spe-
cific question – optimal network topologies as a function
of population distribution and network length – has ap-
parently not been explicitly addressed.

THE MODEL AND THE MAIN QUESTION

Here we define precisely the general model we have in
mind, and the three different variants that we will in fact
study. Our model makes sense for an arbitrary “popula-
tion density” ρ( ) on the plane, but we will study mostly
the isotropic (rotation-invariant around the origin) case,
in particular the (standard) Gaussian density

ρ(x, y) = (2π)−1 exp(−r2/2), r2 = x2 + y2

and the uniform distribution on a disc. The population
density is of individuals who wish to reach as quickly as
possible other points in the system (for simplicity we do
not distinguish densities of residences and workplaces, for
instance). Continuing with the subway interpretation,
we assume that one can move anywhere in the plane at
speed 1, and one can move within the network at speed
S > 1 (this quantity can therefore be seen as the ra-
tio S = vs/vw between subway and walking velocities,
see Fig. 3). Note that we envisage each position on the
network as a “station” where the subway is accessible
– the relative efficiency of two networks would be little
affected by the incorporation of discrete stations into a
model. The problem that we consider is the following
one. For any pair of points (such as i and j in Fig. 3), we
look for the quickest path connecting them. This path
either connects directly the points (at walking speed vw)
or uses the graph. More generally, for any pair of points
(z1, z2) in the plane, there is a minimum (over all possi-
ble routes) time τ(z1, z2) to journey from z1 to z2, and
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FIG. 3: Definition of the model. Residences or workplaces are
represented by points. The graph G represents the subway
and we look for the quickest path that connects any pair of
nodes. We have to compare the direct path (dotted line) with
the ‘multimodal’ path (red line) that combines both walking
and using the subway.

so the average journey time is

τ =

∫ ∫
τ(z1, z2)ρ(z1)ρ(z2) dz1dz2.

This depends on the network and we consider here graphs
of total length L defined as the sum of the length of all
edges (note that for the gaussian disorder, the length is
counted in unit of its variance σ). For a given L there
is some optimal network which will also depend on the
speed ratio S and on the density ρ. We study the shapes
and average journey times for such optimal networks.

This “general model” is very simplistic – as a next
step, a companion paper [27] studies an extended model
including a waiting time W whenever we take the subway
or connect from one line to another – but nevertheless
seems analytically intractable. So in fact we will consider
three simpler variants.

First, we will consider the problem of minimizing the
average (over starting points from the given distribution)
distance to the network, that is to the closest point in the
network. Note here that we don’t compute the average
time between all pairs of points but just consider the
access time to the network from each point. The second
variant that we consider is the problem of minimizing
the journey time from the points to a single destination,
which we may take to be the origin O. In the third
variant, we engage the general issue of routes between
arbitrary points which typically (but not always) involve
entering and exiting the subway network, but now require
these entrances and exits to be the closest positions to
the starting and ending points, rather than the time-
minimizing positions.

Except in asymptotic results (e.g. equation (4)) we
do not have exact formulas involving optimal networks.
Instead we consider a range of simple network shapes,
allowing us to investigate the possible shape of optimal
networks.

A FIRST SIMPLIFICATION: OPTIMAL
PLACEMENT

Here we consider the simplest variant, in which we seek
the network (of given length L) that minimizes the aver-
age distance from a point to the network. This is almost
the same as the S =∞ case of the general model, because
the journey time between two points would be the sum
of the two distances to the network, except that in the
general model the shortest route might not use the sub-
way network at all. Intuitively an optimal network must
come close to most points of the distribution. Although
superficially similar to the notion of space-filling curves
[26], the latter are fractal curves whereas our networks
(having finite length) cannot have fractal curves.

Some rigorous results

Here we outline some rigorous results for this variant
model, with details to be given in the companion paper
[27] .

Observe that given a straight line segment, the area
within a small distance ε from the line is 2ε per unit
length. So in a network of length L, the total area within
that distance from the network is at most 2ε×L, and is
reduced from that value by the presence of curved lines
and intersections. By extending that argument one can
prove [27] that the optimal network is always a tree (or a
single curve, which is a special case of a tree). For a non-
isotropic density ρ( ) the optimal network may not be a
single line, but we conjecture that for isotropic densities
decreasing in r the optimal network is always a single
curve.

Although L → ∞ asymptotics are hardly realistic
in the context of subway networks, the same questions
might arise in some quite different context, so it seems
worth recording the explicit result for asymptotics. In
the L → ∞ limit, the optimal network density (i.e. the
edge length per unit area of the network) near point z
should be of the form Lφ(ρ(z)) for some increasing func-
tion φ. By scaling, the average distance from a typical
point near z to the network should be c0/(Lφ(ρ(z))) for
some constant c0. So the overall average distance to the
network is

d(L) =
c0
L

∫
1

φ(ρ(z))
ρ(z)dz. (1)

The total length constraint implies that∫
φ(ρ(z)) dz = 1. (2)

A standard Lagrange multiplier argument shows that the
integral in (1) is minimized, over functions φ under con-
straint (2), by a function of the form φ(ρ) = aρ1/2, and
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then (2) and (1) combine to show

d(L)opt =
c0
L

(∫
ρ1/2(z) dz

)2

. (3)

Finally, the constant c0 can be re-interpreted as the min-
imum average-distance-to-network in the context of net-
works on the infinite plane with network density = 1.
From our initial “area within a small distance ε” observa-
tion, the optimal network in the infinite context consists
simply of parallel lines spaced one unit apart, for which
c0 = 1/4. So this analytic argument shows

d(L)opt ∼
1

4L

(∫
ρ1/2(z) dz

)2

as L→∞. (4)

This result makes no assumption about the underlying
density ρ. In the Gaussian case, the integral in (4) equals√

8πσ and so d(L)opt ∼ 2πσ2

L .

As explained in [27], what this argument actually
shows is that a sequence of networks is asymptotically
optimal as L→∞ if and only if the rescaled local pattern
around a typical position z consists of asymptotically par-
allel lines with spacing proportional to 1/φ ∼ ρ−1/2(z),
but the orientations can depend arbitrarily on z. Visual-
ize a fingerprint. For an isotropic density we can arrange
such a network to be a spiral. This enables us to check
the Gaussian prediction numerically. Consider a spiral
of length L starting at some point (aL, 0) and with rings
at radius r separated by bL exp(r2/4), and then optimize
over (aL, bL). Numerically we find slow convergence to-
ward this limit behavior, shown in Fig. 4.

FIG. 4: Rescaled average distance Ld(L)opt versus L for the
spiral and the star network (for the Gaussian disorder with
σ = 1). For the spiral, we observe a slow convergence to-
wards the theoretical limit 2π for gaussian disorder. The con-
vergence is even slower for the star network which converges
to 21/2π3/2. For L ≈ 110 (dashed vertical line) the spiral
outperforms the star network.

Numerical study: different shapes

Unfortunately the asymptotics above say nothing
about the actual shapes of the optimal networks for more
realistic smaller values of L. Intuitively, we expect that
for very small L the optimal network is just a line seg-
ment centered on the origin. As L increases we expect
a smooth transition from the line segment to a slightly-
curved path, a “C-shaped” curve. But then how the op-
timal shapes transition to a tight spiral path (presumed
optimal for very large L) is not a priori easy to guess.

We tested 8 shapes numerically for the standard Gaus-
sian distribution, but we have to keep in mind that other
shapes are in principle possible. For each shape the
length is L, and we optimized over any free parameters
(such as s in the 2× 2 grid). The shapes considered here
are the following ones:

• The line segment [−L/2, L/2].

• The “cross” (two length L/2 lines crossing at the
origin).

• The “hashtag” or “2× 2 grid” (Fig. 5(a)).

• The “ring” (circle centered on the origin).

• The “C-shape” (off-centered partial circle, with arc
length 2θ removed, see Fig. 5(b)).

• The “S-shape”: two arcs of circle of radius R and
of angle 2θ, connected by a straight line of length
2R (see Fig. 5(c)).

• The “star” with nb branches of length r∗ (so r∗nb =
L, see Fig. 5(d)).

• The (Archimedean) “spiral”, r = aθ + b.

Recall that the optimal (over all shapes) shape is al-
ways a path or tree, so the 2×2 grid or ring can never be
overall optimal. Note also that (for any isotropic distri-
bution) the optimal ring has radius equal to the median
of the radial component of the underlying distribution,
in our Gaussian case

√
2 log 2 ≈ 1.18.

We simulated these different shapes in the Gaussian
disorder case, and for each value of L we optimize over the
parameters defining the different shapes. We note that
for most shapes the variation interval of their parameters
is small enough and we can scan it completely. There are
therefore no problem of convergence, and the precision of
the solution found depends only on the number of points
used to scan this interval. We show the results for these
various shapes in Fig. 6.

The following general picture emerges (see also the ta-
ble :

• For small L . 3.2 the optimal shape is the C-shape.
We note that for this shape the optimal θ decreases
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FIG. 5: Main shapes studied here (in addition to the line and
the spiral). (a) The “hashtag” of 2 × 2 grid with parameter
s. (b) The “C-shape” with paramerers s and θ. (c) The
“S-shape” with parameter θ. (d) The star network with nb

branches of size r∗.

FIG. 6: Average distance to the network versus L for various
shapes.

with L: for L ≈ 6 we have s = 0 and for L ≈ 8.0
the optimal θ = 0. When θ = 0 and s = 0 we then
recover the ring result (see Fig. 7).

• For 3.2 . L . 5.8, the cross (star network with 4
branches) is optimal.

• For 5.8 . L . 8.7, the S-shape is optimal. We
note that for this shape, as L increases, the optimal
angle θ increases from 0 to π/2, but with a jump
at L ≈ 5 (see Fig. 8).

• For L & 8.7 the star network with nb branches
is the optimal shape. The number of branches is
roughly increasing with L: nb ∼ pL + q with p ≈
0.4.

FIG. 7: Study of the C-shape with parameter s and θ.

FIG. 8: Study of the S-shape: evolution of the optimal angle
θ versus L.

• The simple Archimedean spiral was slightly less ef-
ficient than the star network over the range of L
considered above: For L = 20, the average time
is dopt ≈ 0.215 for the star network, while for the
spiral we have dopt ≈ 0.233.

Qualitative discussion

In the examples above, the shapes were not adapted
specifically to the Gaussian model (although the nu-
merical parameters were optimized) and so are shapes
one might consider for other isotropic distributions. Re-
call that our previous analysis of the L → ∞ behav-
ior found optimal networks to be spiral-like in a specific

Total length L < 3.2 [3.2, 5.8] [5.8, 8.7] & 8.7

Optimal shape C-Shape Cross S-Shape Star network

TABLE I: Numerical results for different total length L for the
optimal shapes in the case of the optimal placement problem
discussed in the main text.
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distribution-dependent way (near a point z, the rings are
separated by distance proportional to (ρ(z))−1/2). For
comparison, it is straightforward to show that the asymp-
totic behavior of the optimal star shape is d(L)opt ∼
21/2π3/2/L, and numerical results are shown in the Fig. 4.
By comparing with the spiral, we estimate that the value
at which such spiral networks out-perform star networks
in the Gaussian model is around L = 110.

Our numerics thus suggest there are 4 sharp transi-
tions of shape: C-shape to cross near L = 3.2, cross to
S-shape near L = 5.8, S-shape to star near L = 8.7 and fi-
nally a transition from the star network to the spiral near
L = 110. But the star only slightly out-performs these
curves, so it is possible that in fact there is a smooth
evolution of curves as optimal networks. An alterna-
tive numerical approach is to seek the overall optimal
network, via simulated annealing for example. This is
computationally difficult, but some preliminary results
for optimal curves are shown in Fig. 9, and are roughly
consistent with our qualitative summary.
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FIG. 9: Best configurations obtained with simulated anneal-
ing for different values of L = 5, 10, 20, 50. The simulations
are obtained with a lattice polymer and using the pivot algo-
rithm [28].

THE MINIMUM DISTANCE TO THE CENTER

For our second variant, closer to the general problem,
we seek the network of length L that minimizes the av-
erage time to reach a designated “center” location. This
was for example discussed in [21, 22] where the case of
street networks was considered and where the optimal
tree was found. This problem in the context of a sin-
gle line bus was also considered in [24] (and references
therein). With respect to transportation systems such
as subways or trains, this is obviously a crude simplifi-
cation as we are in general interested in reaching many
other stations and not a single location. As we will see

in the rest of the paper, our results suggest that this
simplified problem perhaps captures the essence of the
general problem and might constitute a useful toy model
where analytical calculations are feasible. As in our other
variants we envisage each position on the network as a
“station” where the subway is accessible.

Taking as before an isotropic density ρ( ) and the origin
as “center”, we seek the optimal network that minimizes

τ =

∫
τ(z, 0)ρ(z)dz (5)

where τ(z, 0) is the minimum time to go from the point
z to the origin 0. The optimal network will depend on
the ratio S = vs/vw > 1, where we recall that vs is the
speed within the network, and vw the speed outside.

In order to simplify analytical calculations we assume
in this variant that the paths from the points to the net-
work can be made only along circular (r = const.) or
radial (θ = const.) lines. It remains true that the overall
optimal network must be a path or tree. Indeed, if there
is a cycle in the network, there is at least one point such
that starting in either direction takes the same time to
get to the center. One can then remove a small interval
from that point, and re-attach elsewhere to get a better
network.

However we will consider only simple shapes for the
network, starting from the star network and then adding
a ring to it. As we will see below, for these structures we
can develop simple analytical calculations and observe
important phenomena such as a topological transition.

Star network

We first consider the star network, having nb branches
of lengths r∗, outward from the origin, evenly spaced with
angle 2π/nb spacing (see Fig. 5(d)). So L = nbr

∗ and (for
given L) nb is a free parameter to be optimized over. By
isotropy we can write

ρ(x, y) = ρ(r) for r2 = x2 + y2.

Again by isotropy, the average time τ to the center is
such that

1

2nb
τ =

∫ π/nb

0

dθ
[ ∫ r∗

0

drrρ(r)(
θr

vw
+

r

vs
)

+

∫ R

r∗
drrρ(r)(

r − r∗
vw

+
θr∗

vw
+
r∗

vs
)
]
. (6)

In the following we will consider the uniform density on
a disc, and an exponentially decreasing density.
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Uniform density

Here we take the uniform density ρ(r) = ρ0 = 1/(πR2)
on a disk of radius R. Without the network the aver-
age time to reach the center is τ0 = 2R/(3vw). Write
η = 1/S = vw/vs, and assume that taking the subway is
always better than walking directly to the center, which
is the condition that η ≤ 1 − π/nb. Write u∗ = r∗/R
(the branch length relative to city radius) and u0 = L/R
(network length relative to city radius) and χ = π/nb.
Evaluating the integrals in (6), the average time τ to
reach the center via subway satisfies

τ

τ0
=
u∗3

2
[−χ

2
− η + 1]

− 3

2
u∗[−χ

2
− η + 1] + 1. (7)

For given L we want to optimize over the free parameter
r∗, that is over u∗. From L = nbr

∗ we obtain χ = πu∗/u0
and then the average time as a function of u∗ reads

τ

τ0
=

1

2
(u∗3 − 3u∗)[−η + 1− πu

∗

u0
] + 1. (8)

Minimizing this quantity over u∗ leads to a polynomial
of degree 3, and the behavior of the solution is shown
numerically in Fig. 10. As is intuitively obvious, for large

FIG. 10: We show here the result of the minimization of the
average time for the star network with parameters nb and
r∗ with the constraint L = nbr

∗. On the left we show the
length of branches r∗ versus u0 = L/R and on the right the
number of branches nb versus u0 (here η = 1/8). The top row
corresponds to the uniform density case and the bottom one
to the exponential density.

u0 = L/R it is optimal to use roughly u0 branches of
length almost R; more precisely for u0 � 1 we obtain{

u∗ = 1− π
3(1−η)u0

+O( 1
u2
0
)

nb = u0 +O(1).
(9)

Perhaps less obvious is the initial behavior over 0 ≤ u0 ≤
10, where the length of branches is increasing faster than
their number. In other words we first observe a radial
growth and then an increase of the number of branches.

Exponential density

In this case, we take the density of the radial compo-
nent to be ρ0rexp(−r/r0) on the infinite plane. With-
out the network the average time to reach the center is
τ0 = 2r0/vw. Evaluating the integrals in (6), the average
time τ to reach the center via subway satisfies

τ

τ0
=
πu∗

2u0
+ η

− e−u
∗
(
πu∗

u0
+ η − 1

)(
u∗

2
+ 1

)
(10)

where u∗ = r∗/r0 and u0 = L/r0. We can plot this
function and look numerically for the minimum. The
results are shown in Fig. 10 (bottom).

We observe here that for large resources (u0 � 1) the
number of branches scales as nb ∼ au0 with a ≈ 0.1 and
the solution u∗ seems to converge slowly to some value
that depends on η. Here also, the number of branches
increases only after the radial growth.

Loop and branches

We now consider a more interesting case where we
have nb branches of length r∗ and a ring of radius ` (see
Fig. 11). This case is essentially motivated by subway
networks that seem to display this type of structure when
they are large enough [2]. We have 3 parameters: nb, `

r⇤`

2⇡/nb

FIG. 11: Schematic of the star network combined with a ring.
We have now three parameters: the number of branches nb,
the length r∗ of the branches, and the radius ` of the ring.

and r∗, where ` ≤ r∗ for connectivity. The total length
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of the network is

L = 2π`+ nbr
∗. (11)

This network enables us to study the relative contribu-
tions of loop and branches to our goal of minimizing the
average time to go to the center. This case is analytically
difficult, so we study it numerically with a simulation.

We first consider the uniform distribution on a disc of
radius r0, and again choose η = 1/8 (which corresponds
to the reasonable values vw ≈ 5km/h and vs ≈ 40km/h).
We first study the case where nb is fixed and where we
optimize the network over r∗ and `. In Fig. 12, we show
the results for the optimal value of r∗ and ` versus u0 =
L/r0 normalized by nb. We observe that when resources

FIG. 12: Uniform density: results for the star+loop network
for different values of nb. (Top) Normalized radius of the ring.
(Bottom) Normalized length of branches. We normalized u0

by nb in order to get the same “transition” point at u0/nb = 1.
These results are obtained for η = 1/8.

are growing from 0, we have only a radial network (` =
0). At u0/nb = 1 we have a “transition” point where
a loop appears. This means that until u0 = nb all the
available resource is converted into the radial structure.
When the radial structure is at its maximum (r∗ = r0)
we observe the appearance of a loop whose diameter is
then increasing with u0.

We note that even if both the number of branches and

the size of the loop undergo a discontinuous transition,
the average minimum time displays a smooth behavior.
Also, if we increase further the total length L, it will
result in a larger number of branches nb.

In the uniform density case, the domain is finite (a disk
of radius R) and at fixed value of nb, there is therefore a
maximum value of Lmax = nbR+ 2πR. For larger values
of L, the optimal network will increase its number of
branches nb. It is different in the Gaussian disorder case:
the domain is infinite and there is no obstacle to have
a fixed value of nb with size r∗ growing indefinitely with
L. We can thus expect some differences with the uniform
density case. We repeated the calculations above for 100
configurations and the average together with the results
for each configuration are shown in Fig. 13 (here u0 =
L/σ). We still observe the different regimes separated by

FIG. 13: Gaussian density (σ = 1): results for the star+loop
network for nb = 8. (Top) Size r∗ of the branches. (Bottom)
Radius of the ring. These results are averaged over 100 con-
figurations and are obtained for η = 1/8. The grey curves
represent the results for each configuration.

an abrupt transition: the first regime where the size of
branches grows with L and the second regime where there
is a ring whose size grows very slowly with L. In contrast
with the uniform density case, the transition takes place
for a value u0/nb that fluctuates in the range [2.5, 3.0].
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THE GENERAL MODEL

As discussed in the introduction, we will now consider
the “general” setting of routes between arbitrary points
z1 and z2. The route can either go straight (speed vw)
from z1 to z2 without using the network, or go z1 →
A1 → A2 → z2, where A1 and A2 are “stations” (any
points on the network) and where travel from A1 to A2

is within the network at speed vs, and the other journey
segments are straight at speed vw. In a companion paper
[27] we study the more realistic model where the route
is optimized over choice of A1 and A2, but here we take
each Ai as the closest station to zi. Unlike previous cases,
the overall optimal network is not necessarily a tree.

Various shapes

We present results for various simple shapes, for the
standard Gaussian density. We start with the line seg-
ment and the ring and the results for different values of
S are shown on Fig. 14. For these two shapes, we observe

FIG. 14: Average journey time in the Gaussian case for dif-
ferent values of S and for (Top) a line and (Bottom) a ring.

the same behavior as in the time to center problem: for
the line there is a quick saturation to a constant, and for
the ring there is a minimum at L ≈ 2πσ.

Total length L < 1.15 [1.15, 6.6] & 6.6

Optimal shape Line Cross (nb = 4) Star (nb = 6)

TABLE II: Numerical results for the optimal shapes for the
general model for different total length L.

We also consider the case of the star network with nb
branches and the result is shown on Fig. 15. We observe

FIG. 15: Average journey time (in the Gaussian case) for star
networks with different number of branches (nb = 2, 4, 6).

(see also the Table that for 0 < L . 1.15 the line is
optimal. For 1.15 . L . 6.6, the cross nb = 4 is the
optimal choice, while for L & 6.6, the solution nb = 6 is
better. Very likely we will have (as in the previous case
of the average time to the center) an optimal network
with nb ∝ L.

Loop and branches: Scaling of the average time

We focus here on the case where the network is made
of nb branches of length r∗ and a loop of radius `. So L =
nbr

∗+2π`. We take nb and ` as the 2 free parameters over
which we will minimize the average time. The optimized
average time τmin for different values of S is shown in
Fig. 16. Naively one expects that this quantity behaves
as

τmin =
a√
L

+
b

S
(12)

where the first term of the r.h.s. corresponds to the aver-
age distance to the network and which we expect to scale
as 1/

√
L. The second term corresponds to the shortest

path distance within the network. In principle a and b
could depend on L. If we assume this form to be correct
then Sτmin versus X = S/

√
L should be a straight line.

We tested this assumption on the data from Fig. 16 and
the result is shown in Fig. 17. This good collapse (except
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FIG. 16: Average time (Gaussian density) for nb branches
plus a loop for values of S from 14 to 100.

FIG. 17: Rescaled average time Sτmin versus the rescaled
variable S/

√
L.

for deviations observed for large values of S/
√
L supports

the assumption (12).

Loop and branches: A topological transition

Still in the branches and loop model, we observe
(Fig. 18) a transition: r∗ grows almost steadily with
` = 0, until a transition value at Lc ≈ 20 where the
ring appears. Although the structure changes abruptly
it is interesting to note that there is no discontinuity in
the average minimum time. The size of the ring stays
stable with ` ≈ σ (the Gaussian s.d.). Naively, we can
say that the ring appears when the branches can have a
length r∗ ≈ 2σ and a loop of size ` ≈ σ which gives the
condition Lc ≈ nbσ+ 2πσ. At the transition, we observe
that we have nb ≈ 8 which then gives Lc ≈ 22, not too
far from the value Lc = 20 observed here.

The quantity Lc is independent from S which is ex-

FIG. 18: Optimal length of branches and optimal size of the
loop versus the total length L (for gaussian disorder): typical
shape for r∗ and `. As in the case of the quickest path to
the origin, we observe a sharp transition for L ≈ 20σ where a
loop of radius ` ≈ σ appears (here η = 1/2).

pected, as it is essentially controlled by the topology of
the network. We note that this transition was already
observed in the previous case “minimum distance to the
center”. As L increases the optimal number of branches
grows roughly from 2 to 10. The picture that emerges
here is consistent with the empirical study [2]: we observe
a ring around the “core” of the city and then branches
radiating from it. More generally, these results suggest
that the distance to center problem is a reasonably good
proxy for the more general problem.

DISCUSSION

Algorithmic aspects of network design questions sim-
ilar to ours have been studied within computational ge-
ometry (e.g. [24] chapter 9) and “location science” (e.g.
[25]). But our specific question – optimal network topolo-
gies as a function of population distribution and network
length – has apparently not been explicitly addressed.
Although real-world networks are probably not opti-
mal and result from the superimposition of many differ-
ent factors, understanding theoretically optimal networks
could give some information about the actual structure
observed in many cases. For example, it could help us to
understand the seemingly universal structure displayed
by very large subway networks [2].

Even for simple models, optimizing over all possible
topologies is difficult, so we investigated only various sim-
ple shapes. We provided general arguments and analyti-
cal calculations in simple cases and most of our analysis
is numerical. In general we expect an evolution of the
shape of optimal networks when L increases, with the
possible existence of sharp transitions between different
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shapes. Although we weren’t able to prove this in gen-
eral, we observed such transitions in simple cases such
as branches and a loop: in the case of Gaussian (vari-
ance σ2) population density, starting from a small value
of L the branches first grow smoothly, then suddenly for
a value Lc we observe the appearance of a loop of size
` ∼ σ. This transition also exists in the case of uniform
density.

It would be interesting to see these transitions of
overall optimal networks obtained numerically, and this
might be feasible in some cases with a simulated an-
nealing type of algorithm. In any case these problems
suggest theoretical questions and practical applications
which certainly deserve further studies.
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