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Abstract

Card shuffling models have provided motivating examples for the
mathematical theory of mixing times for Markov chains. As a com-
plement we introduce a more intricate realistic model of a certain ob-
servable real-world scheme for mixing human players onto teams. We
quantify numerically the effectiveness of this mixing scheme over the 7
or 8 steps performed in practice. We give a combinatorial proof of the
non-trivial fact that the chain is indeed irreducible.
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1 Introduction

In introducing Markov chains at some elementary level, the first author al-
ways found it difficult to give a motivating example with a real-world story, a
plausible probability model, and a fairly rich mathematical structure. Then
he realized that he was a regular participant in one such story. A first
thought was to write out the model for possible use as an instructional ex-
ample in an introductory lecture. As often happens, things turned out to be
more complicated than first imagined, so it was re-purposed as a basis for
a challenging undergraduate project to study further aspects of the model.
The second author took up the challenge.

∗Department of Statistics, 367 Evans Hall # 3860, U.C. Berkeley CA 94720; al-
dous@stat.berkeley.edu; www.stat.berkeley.edu/users/aldous.
†University of the Philippines; xxx address; yumadelynesther@gmail.com
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2 The model

The story concerns recreational volleyball, in a “drop-in” setting without
fixed teams, and where one wants the team compositions to change from
game to game, both as socialization and to avoid persistent large differences
in team skill levels. Specifically there are 24 people, and at each stage there
are two ongoing games on two courts, each game between two teams, each
team with 6 players on a half-court. Over the 2 hour period there will be 7
or 8 successive such stages, everyone always playing. The rule1 for changing
team composition is very simple, exploiting a particular incidental feature
of volleyball:

At the end of one stage, the players in the back row of each team stay
in these positions for the start of the next game, while the front row players
move (clockwise in the gym) to the same positions in the next half-court.

See Figure 1. The key point is that in volleyball, there are 6 “posi-
tions”2, and players rotate one position each time their team regains the
serve, and this happens a random number of times during a game. So, rela-
tive to initial positions, the 3 players who finish in the front row will be (to
a good approximation) a uniform random choice over the 6 possibilities of
3 adjacent players.

To complete a mathematical model, note that the number of one-position
rotations of two opposing teams can differ (because they alternate rotations)
by at most one. So we model the final positions of players in opposing teams
in a game as rotations by (C1, C2) where C1 is uniform on {0, 1, . . . , 5} and
C2 = C1 − 1 + Binomial(2, 1/2) modulo 6, the Binomial term reflecting
randomness of initial serving team and of final serving team, independently
for the two courts.

This specifies a “big” Markov chain on the 24! states (assignment of
players to positions). One step of the chain is from the starting positions
in one game to the starting positions in the next game, as illustrated in
Figure 1. This model is conceptually loosely related to some card shuffling
models3 such as [3, 7] in that a “rotation” of team players corresponds to a
cut-shuffle of a 6-card deck. But unlike playing cards, the volleyball players
care about their positions relative to other players for various reasons4 and

1Actually used in the gym where the first author plays; I don’t know how common it
is.

2By convention numbered 1 to 6, starting in serving position (back right, as facing
the net) and ordered counter-clockwise. Because players rotate clockwise, this indicates
serving order.

3See further discussion in section 7.
4Friendly rivalry between spikers/blockers; more talented setters enable sophisticated
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Figure 1: One step of the big chain

this suggests actual observables for study in the model.

3 Results

The central, albeit vague, question is

how effective is this scheme at mixing up the teams?

In a lecture course, this provides a real-world example for later discussion of
the mixing times topic. It seems intuitively obvious that this scheme would
mix perfectly in the long run. Basic finite Markov chain theory5 identifies
“mix perfectly in the long run” with irreducible and aperiodic, which implies
convergence of time-t distributions to a unique stationary distribution, which

fast plays; attractive members of opposite sex; . . .
5In many textbooks such as [5, 8].
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in our model is clearly the uniform distribution on all 24! states. Theory
also tells us that irreducible is equivalent to the property

the directed graph of all possible transitions on the 24! states is
strongly connected.

This property is purely combinatorial – the numerical values of the non-zero
transition probabilities do not matter – and we give a constructive proof in
section 4.

Our second set of results concern numerical calculation or simulation of
statistics relating to the realistic short term in this story – 7 or 8 steps. Some
basic observables involve the friend chain indicating the relative positions
of two players. A variety of numerical results are shown in section 5. For
instance, if your friend does not start on your team, then the probability that
you are never on the same team over 8 games varies between 0.251 and 0.403
depending on initial relative positions (Table 5). A pedagogic point is that,
for numerical calculations, we don’t want to work with 24! × 24! transition
matrices, but instead exploit symmetry to reduce to question-specific small-
state chains. For instance the way a given player moves between games is
simple: with chance 1/2 they stay, with chance 1/2 they move to the next
half-court. In jargon, the lazy cyclic walk [7].

The bottom line is that, as regards simple observables, this scheme does
a reasonable job of mixing up the teams over 8 games. However the central
point of sophisticated mixing time theory [7] is to go beyond the unquantified
“eventually” implied by irreducibility, and instead to quantify when the
step-t distribution is close to (in our case) the uniform distribution. The
usual quantification involves variation distance between distributions on the
24! states, and this is the context of the famous Bayer-Diaconis “7 shuffles
suffice” result [2] for riffle shuffles. Studying variation distance for our big
chain, either numerically of via analytic bounds, remains a challenging open
problem. We give some preliminary observations in section 6.

xxx We need to say something about aperiodic.
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4 The big chain is irreducible

4.1 Notation

To prove that the “big” chain is irreducible, we will show that it is possible
to move from any one given state to any other given state via some sequence
of allowable transitions of the chain.

Label the four half-courts A,B,C,D as shown in Figure 2. The change
in configuration, from the start of a game to the end of that game, can be
represented symbolically in the form

Ax1Cx2Bx3Dx4 ,

where 0 ≤ xi ≤ 5 indicates the number of positions (modulo 6) rotated by
the team in the relevant half-court. Figure 3 gives an illustration.

5
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Figure 2: (Left) Labelling of the 4 half-courts. (Right) Rotations involved
in step A5C4BE.
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Figure 3: The effect of step A5C4BE.

So the allowable values are x1− x2 ∈ {−1, 0, 1} and x3− x4 ∈ {−1, 0, 1}
modulo 6. We then append a symbol E to indicate the final movement (the
front row players in each half-court move to the same positions in the next
half-court). This provides a coding of a step of the chain. For brevity we
omit any xi = 0 term and write B instead of B1. So a typical step is coded
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in a format like A5C4BE. The reader may check that the Figure 1 example
is A5C4B3D2E.

Then a sequence of steps can be specified by concatenation: soA5C4BEEDE
represents 3 steps of the chain, the second (EE) step indicating a game with
zero (modulo 6) rotations of each team before the front row switch. We will
name certain sequences later as X,F,G,H in describing the construction.
The number of steps in a sequence is just the number of E’s, when expanded
fully. In writing the sequences (such as the definition of X below) we of-
ten include spaces for visual clarity but the spaces have no mathematical
significance.

One aspect of this notation may be confusing. The sequence EEEE
would code the identity move. That means that BE EEEE has the same
effect as BE. But note that BEEEE is different, and in fact will be a
useful device because it has the effect of rotating the players in half-court
B while fixing all other players – see Figure 4. Note also that B5EEEE is
the analogous back-rotation. This syntax issue explains why we sometimes
(e.g. in the definition of F below) need to include an initial EEEE in the
definition.

18 19 20

12 13 14

6 7 8

0 1 2

21 22 23

15 16 17

9 10 11

3 4 5

18 19 20

12 13 14

6 7 8

0 1 2

21 22 23

15 16 17

10 11 5

9 3 4

Figure 4: The effect of sequance BEEEE.

4.2 High level description 1

It is an elementary fact that any permutation of a card deck can be obtained
by a sequence of transpositions of two adjacent cards. Indeed the “random
adjacent transposition” shuffling scheme is one of the original and most
deeply studied examples in the modern theory of mixing times [1, 6, 9]. By
analogy, we start by showing that any transposition of two players on the
same half-court can be obtained by some sequence of steps. There are 3
cases, depending on the initial distance between the two players, illustrated
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in Figure 5, and we will exhibit sequences F,G,H for each case. We will
show the first case (adjacent players) in detail.
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(a) Transpose two adjacent players in the same quadrant (F)
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(b) Transpose two players in the same quadrant with one space in between (G)
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(c) Transpose two players in the same quadrant with two spaces in between (H)

Figure 5: Transpositions achieved by specific sequences F,G,H.
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4.3 Sequences that transpose two players

We start by introducing a 16 step sequence X defined as

(X :=) AE B2D3EEE A2C3E B3D3EEE A5E B5EEE AE B5EEE A.

The step-by-step trajectory of sequence X is shown in Figure YYY below,
which demonstrates that the effect of X is as shown in Figure 6. The
introduction of this X is somewhat magical and hard to explain, but note
that for some players it is like a reverse step of the chain.

18 19 20

12 13 14

6 7 8

0 1 2

21 22 23

15 16 17

9 10 11

3 4 5

14 13 12

20 19 18

5 3 6

1 0 2

21 22 23

15 16 17

9 10 11

4 7 8

Figure 6: The effect of sequence X.

(xxx somehow I cannot put Figures YYY and ZZZ into the figure

environment).
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1. AE (separate 2)

6 0 1 3 4 5
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2-4. B2D3EEE (move 2
to the upper left/bottom
left corner of I)
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5. A2C3E (separate 0 and
1 from 2

5 2 6 8 7 3
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15 16 17 23 22 21

14 13 12 9 10 11

6-8. B3D3EEE (move 0
to the left of 2)

5 2 6 0 1 4
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20 19 18 15 16 17

14 13 12 21 22 23

9. A5E

2 6 8 0 1 4

18 19 20 5 3 7

15 16 17 11 10 9

14 13 12 21 22 23

10-12. B5EEE

2 6 8 1 4 7

0 5 3 9 10 11

20 19 18 15 16 17

14 13 12 21 22 23

13. AE
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18 19 20 5 3 8

15 16 17 11 10 9

14 13 12 21 22 23

14-16. B5EEE (move 1
to the left of 02)

0 2 6 4 7 8

1 5 3 9 10 11

20 19 18 15 16 17

14 13 12 21 22 23

A

1 0 2 4 7 8

5 3 6 9 10 11

20 19 18 15 16 17

14 13 12 21 22 23

Figure YYY: Step-by-step trajectory of sequence X.
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We can now define the sequence F that transposes the two adjacent
players at the left corner of the back row of half-court A, as shown in Figure
5a. Essentially it is just 3 applications of X. Precisely

(F :=) EEEEX X XEEEE.

So F involves 56 steps of the chain. Figure ZZZ shows the step-by-step
trajectory of sequence F .

1. EEEEX

1 0 2 4 7 8

5 3 6 9 10 11

20 19 18 15 16 17

14 13 12 21 22 23

2. X

0 1 2 7 3 6

8 4 5 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

3. XEEEE

1 0 2 3 4 5

6 7 8 9 10 11

20 19 18 15 16 17

14 13 12 21 22 23

Figure ZZZ: Step-by-step trajectory of sequence F .

The other transposition sequences. To transpose the two players at
the back row of half-court A with one space in between, as shown in Figure
5b, we use the sequence G defined as

(G :=) EEEE A5FA F A5FA EEEE.

This works because the effect of these sequences is to alter the back row as

012→ 021→ 201→ 210.

Finally, to transpose the players at the upper left corner and at the lower
right corner in half-court A, as shown in Figure 5c, we use the sequence H
defined as

(H :=) FA5 FA5 FAFAF.
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The reader may check that this works, and is one place where the initial
EEEE in the definition of F is needed.

4.4 High level description 2

By symmetry, to prove irreducibility it is enough to prove that, from any ini-
tial state, one can reach (by some sequence of allowable steps) the reference
state shown in Figure 7, where each player i is in position i. Because any
permutation of the 6 players in half-court A can be derived from a sequence
of transpositions, from the existence of transposition sequences (section 4.3)
it suffices to show that we can move, by some sequence of steps, player i
to position i, for every player in all the other half-courts B,C,D. We will
move players to positions row by row, in the following order

• back row of D: (21, 22, 23)

• back row of C: (18, 19, 20)

• front row of D: (15, 16, 17)

• front row of C: (12, 13, 14)

• back row of B: (3, 4, 5)

• front row of B: (9, 10, 11)

Each row in turn is fixed, in that it remains in place after each subsequent
row has been moved to its position.

18 19 20

12 13 14

6 7 8

0 1 2

21 22 23

15 16 17

9 10 11

3 4 5
A B

C D

Figure 7: Reference State

In the next section we will describe the algorithm in words. A key point
is that we will use half-court A as a kind of temporary stopover for players
in transit.
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4.5 The algorithm

As noted in Figure 4 a sequence like BEEE has the effect of rotating a
given half-court by one position, and one can repeat such a sequence. So
we can use phrases such as “rotate player i to position j” (in the same half-
court). We will call E the migration step, so by repeating step E we can
use “migrate player i to position j” (where player i has the same relative
position (e.g. front, right) as j, in the front row. (But remember that all 12
front-row players migrate.) In both cases we of course only do the move if
necessary, that is if the player is not already in the desired position.

The algorithm is based on variations of the following “Procedure P”,
where P is one of the half-courts B,C,D, and where the procedure acts to
move the required 3 players to the back row of P .

Procedure P.

(1) Label the back row positions of P as a, b, c, left-to-right.
(So for P = D we have (a, b, c) = (21, 22, 23)).

(2) Rotate (if in back row) player a to front row. Migrate player a to half-
court A and rotate to front right position. Migrate player a to the front
right position in P .

(3) Rotate player a to back right position in P .

(4a) If player b is not in P , repeat actions (2) for player b. This moves
player b to the front right position in P .

(4b) Else: rotate P so that player b is in front row while player a is in back
row. Migrate player b to half-court A. Rotate A to move player b to front
right. Rotate P so that player a is returned to back right position in P .
Migrate player b to the front right position in P .

(5) Now players (a, b) are in (back right, front right) positions in P : rotate
one space to (back center, back right) positions.

(Next we move player c in essentially the same way as player b, Here are
the details.)

(6a) If player c is not in P , repeat actions (2) for player c. This moves
player c to the front right position in P .

(6b) Else: rotate P so that player c is in front row while players a, b are
in back row. Migrate player c to half-court A. Rotate A to move player c
to front right. Rotate P so that players (a, b) are returned to (back center,
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back right) positions in P . Migrate player c to the front right position in P .

(7) Rotate players (a, b, c) to (back left, back center, back right) positions
in P .

end Procedure P.

Procedure P moves the required 3 players to the back row of P . In the
algorithm below, once a back row is placed, it is “fixed” and those players
are never moved subsequently. This is because that would require a rotation
of P at some subsequent use of (2), which cannot happen because of the if
in back row condition in (2): these players are already in place.

The algorithm.

(8) Apply Procedure D, then Procedure C.
(This fixes the back rows of C and D. For the third row (the front row

in D) we will use a little trick, to first arrange them on a back row.)

(9) Here we consider players (15,16,17) who need to be moved to the front
row of D. But we label them as (a, b, c) = (3, 4, 5) and use Procedure B to
move them to the back row of B. Then revert to labels (15, 16, 17).

(10) Rotate players (15,16,17) three positions so they become the front row
of B.

(11) Migrate one step, so players (15,16,17) become the front row in D.
(The previous back rows remain fixed. Next we consider the fourth row,

the front row of C. Here another small complication arises; any migration
will move the front row of D (fixed above), so we need to ensure it is migrated
back into place before finishing.)

(12) Here we are considering players (12,13,14). As in (9), label them as
(a, b, c) = (3, 4, 5) and use Procedure B to move them to the back row of B.
Then revert to labels (12,13,14). This involves a certain number of migrates,
but players (15, 16, 17) remain the front row in some half-court and the fixed
back court players (18-23) are not moved.

(13) Migrate players (15, 16, 17) to make them the front row in half-court
A. Rotate players (12,13,14) in B three positions so they become the front
row in B. Migrate two turns.

(Now all players 12-23 in half-courts C and D have been moved to their
reference positions.)
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(14) Apply Procedure B. This moves players (3,4,5) to the back row of B,
as required. It involves some number of migrates, but the players (12-17)
assigned to front rows of C and D will remain as front rows of adjacent
half-courts, so can be migrated back to their required positions.

(Now we have fixed all rows of B,C,D except the front row of B. For
the front row of B we do a quite different scheme, using the transposition
sequences from section 4.3.)

(15) Here we are considering players (9,10,11). Our first goal is to move
them to target positions (2,1,0) in the back row of A. Any of those players
(9,10,11) in A can be moved to target position via transpositions. Remaining
players amongst (9,10,11) must be in the front row of B. Migrate the front
row of B to the front row of A, transpose relevant players to target positions,
and migrate back.

(16) Players (9,10,11) are at positions (2,1,0) in the back row of A. Rotate
to front row of A, and migrate to front row of B.

(Now all rows of B,C,D are fixed, as required.)

End Algorithm

This completes the proof of irreducibility.

5 The friend chain

Perhaps the most natural observable to study concerns the positions of two
players, say ego and friend. Naively this would require a 24×23 state chain,
but we can exploit some symmetries to make a 26 state chain indicating
relative positions of the two players. Doing so requires some care; the states
are indicated in Figure 8, as explained next.

First note that our process is not invariant under a quarter-turn of the
4 half-courts6, but is invariant under a half-turn, so as in Figure 8, we can
assume ego is in the left court.

6A friend on the same team in the first half court might be an opponent in the next
game; this cannot happen on the second half-court.
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1T5 1T6 •

1T4 1T3 1T2

1O2 1O3 1O4

1O1 1O6 1O5

ego • in first half-court

all 1-

all 1+

2O3 2O4 2O5

2O2 2O1 2O6

2T6 • 2T2

2T5 2T4 2T3

ego • in second half-court

all 2-

all 2+

Figure 8: Positions of friend relative to ego •.
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The states of what we will call the friend chain indicate relative positions
at the start of a game. To describe the state, first record which half-court
ego is in (denoted as initial 1 or 2) and then whether friend is in the same
team (denoted T) or the current opposing team (denoted O), or on the other
court. If on the other court, we need only note which half-court (because
the position will be randomized during the game), so denote by one of (1+,
1-, 2+, 2-) as illustrated. Finally, writing temporarily ego* for the opponent
in the same position as ego, we indicate a friend’s position as 1, 2, 3, 4, 5,
or 6, counter-clockwise from ego or ego*.

This adds up to 26 states, and one can check that the “big” chain rules
define a Markov chain on these states, with transition matrix P as shown in
Figures 9 and 10. Its stationary distribution π is induced from the uniform
stationary distribution of the “big” chain: probability 6

46 for each of the
states 1+, 1−, 2+, 2− and probability 1

46 for each of the 22 remaining states.

5.1 Numerics for the friend chain

Let us investigate the mixing properties of the friend chain. Standard theory
quantifies “closeness to stationarity after n steps” via variation distance
d∗(n) or separation distance s∗(n) from worst-case start, that is via

d∗(n) := max
i

1
2

∑
j

|pnij − πj |

s∗(n) := max
i,j

(1− pnij/πj)

for the n-step transition matrix Pn. Another measure of distance to sta-
tionarity is the L2 or the χ2 distance. The L2 distance between Pi and the
stationary distribution π after n steps is

‖Pn(i, ·)− π‖2 =

√√√√∑
j

(pnij − πj)2

πj

and
‖Pn − π‖2 = max

i
‖Pn(i, ·)− π‖2.

Shown in Table 1 are the numerical values for these distances.
But these are not “observable” quantities. More relevant to players is

the mean number of games is which friend is on the same team, or on the
opposing team, as ego. This is a simple calculation involving only matrix
powers, and shown in Tables 2 and 3 are the mean number of games in which
friend is on the opponent team and when friend is on the same team.
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1+ 1− 1T2 1T3 1T4 1T5 1T6 1O1 1O2 1O3 1O4 1O5 1O6

1+ 1/4 1/4
1− 1/4 1/36 2/36 3/36 2/36 1/36
1T2 1/3 1/6
1T3 1/6 1/3
1T4 1/2
1T5 1/6 1/3
1T6 1/3 1/6
1O1 1/12 1/4 1/12 1/12
1O2 1/6 3/24 1/6 1/24
1O3 1/3 1/12 1/12
1O4 5/12 1/24 1/24
1O5 1/3 1/12 1/12
1O6 1/6 3/24 1/24 1/6
2T2 1/6 1/3
2T3 1/3 1/6
2T4 1/2
2T5 1/3 1/6
2T6 1/6 1/3
2O1 1/12 5/12
2O2 1/6 1/3
2O3 1/3 1/6
2O4 5/12 1/12
2O5 1/3 1/6
2O6 1/6 1/3
2+ 1/36 2/36 3/36 2/36 1/36 3/36 2/36 1/36 1/36 2/36
2− 1/4 1/36 2/36 3/36 2/36 1/36

Figure 9: Transition matrix of the friend chain (first part).
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2T2 2T3 2T4 2T5 2T6 2O1 2O2 2O3 2O4 2O5 2O6 2+ 2−
1+ 1/4 1/4
1− 3/36 2/36 1/36 1/36 2/36 1/4
1T2 1/3 1/6
1T3 1/6 1/3
1T4 1/2
1T5 1/6 1/3
1T6 1/3 1/6
1O1 1/24 1/24 10/24
1O2 1/12 1/12 1/3
1O3 1/24 1/6 1/8 1/6
1O4 1/12 3/12 1/12 1/12
1O5 3/24 1/6 1/24 1/6
1O6 1/12 1/12 1/3
2T2 1/3 1/6
2T3 1/6 1/3
2T4 1/2
2T5 1/6 1/3
2T6 1/3 1/6
2O1 1/24 1/24 1/4 1/12 1/12
2O2 1/12 1/12 3/24 1/6 1/24
2O3 1/24 1/6 3/24 1/12 1/12
2O4 1/12 3/12 1/12 1/24 1/24
2O5 3/24 1/6 1/24 1/12 1/12
2O6 1/12 1/12 3/24 1/24 1/6
2+ 1/4 1/4
2− 1/36 2/36 3/36 2/36 1/36 1/4

Figure 10: Transition matrix of the friend chain (second part).
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n 1 2 3 4 5 6 7 8 9

d∗(n) 0.957 0.638 0.375 0.263 0.180 0.122 0.083 0.058 0.040
s∗(n) 1 1 1 0.933 0.508 0.374 0.297 0.223 0.160
L2(n) 4.690 2.254 1.544 1.05 0.71 0.492 0.339 0.233 0.159

Table 1: Measures of distance to stationarity for the friend chain, after n
games.

Start 1+ 1- 1T2 1T3 1T4 1T5 1T6 1O1 1O2 1O3 1O4 1O5 1O6

OT 1.607 1.962 1.803 2.107 2.222 2.107 1.803 3.059 2.894 2.606 2.482 2.606 2.894
ST 1.093 1.515 3.773 2.725 2.314 2.725 3.773 1.421 1.499 1.550 1.523 1.550 1.499

Table 2: Mean number of games (out of 8) in which friend is on the opposite
team OT (and the same team ST) as ego, who starts in the first half-court.

Start 2T2 2T3 2T4 2T5 2T6 2O1 2O2 2O3 2O4 2O5 2O6 2+ 2-

OT 1.493 1.678 1.700 1.678 1.493 3.059 2.894 2.606 2.482 2.606 2.894 1.962 1.940
ST 3.778 2.698 2.297 2.698 3.778 1.421 1.499 1.550 1.523 1.550 1.499 1.515 1.103

Table 3: Mean number of games (out of 8) in which friend is on the opposite
team OT (and the same team ST) as ego, who starts in the second half-court.

Notice that there is a symmetry property visible in Tables 2 and 3, i.e.
the values under 1T2 to 1T6, 1O2 to 1O6, 2T2 to 2T6, and 2O2 to 2O6 are
exactly invariant under reversal. Moreover, the values under 1− and 2+ are
the same. This shows that if friend is playing with or against ego, the mean
number of games in which friend is on the opposite team (or the same team)
can be computed depending on the distance from friend’s initial position to
ego or temporary ego’s initial position. In other words, we can reduce the
number of states, and the states will depend on friend’s shortest distance
(counterclockwise or clockwise) from ego.

A related question is the chance that you never play as an opponent (or as
teammate) to your friend. Shown in Tables 4 and 5 are the numerical values
for “opponent” and “teammate”, respectively, omitting the cases where this
is zero (initial opponent, or 1T4).

Comparison with random teams. There are several ways one could
compare the effect of the “mixing” scheme we study with the alternate
scheme of randomly assigning players to team for every game. For instance,
under random mixing, if friend starts somewhere which is not the opposite
team as ego, the probability that friend will never be on the opposite team
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Start 1+ 1- 1T2 1T3 1T5 1T6

Probability 0.098 0.057 0.141 0.026 0.026 0.141

Start 2T2 2T3 2T4 2T5 2T6 2+ 2-

Probability 0.168 0.081 0.082 0.081 0.168 0.057 0.057

Table 4: Probability that friend is never an opponent of ego over 8 games.

Start 1+ 1- 1O1 1O2 1O3 1O4 1O5 1O6

Probability 0.403 0.292 0.344 0.317 0.271 0.251 0.271 0.317

Start 2O1 2O2 2O3 2O4 2O5 2O6 2+ 2-

Probability 0.344 0.317 0.271 0.251 0.271 0.317 0.292 0.393

Table 5: Probability that friend is never a teammate of ego over 8 games.

as ego over eight games is (by calculation) 0.121. We see from Table 4 that
this is less than the values under our scheme, if the starting position is only
one position away from ego or the corresponding position of ego on the other
half court. In the remaining cases, it is much greater. Similarly, if friend
starts somewhere which is not the same team as ego, then (under random
mixing) the probability that friend will never be on the same team as ego
for eight games is 0.180. From Table 5 this is always less than the values
under our scheme.

5.2 Monte Carlo Simulations

More complicated “observables” can most easily be addressed via Monte
Carlo simulation of the process. For instance

What is the probability that ego will encounter (as either team-
mate or opponent all of the other 23 players during an 8-game
sequence?

By Monte Carlo, the probability ≈ 0.595 if ego starts at the 1st half court,
or ≈ 0.675 if ego starts in the 2nd half court. (Intuitively, these figures differ
because in the former case one has more overlap between opponents in the
first and second games.) Over 10 games, these probabilities increase to 0.814
and 0.857.
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6 Mixing time for the big chain

At a research level there has been extensive study of mixing times for many
different card-shuffling models, usually in the asymptotic setting (as the size
n of card deck → ∞). Our model is rather specific to the n = 24 case, so
we have not sought to embed it into some family allowing large n.

One can get lower bounds on mixing time by considering specific func-
tions of the chain, and the variation distances in Table 1 for the friend chain
are a lower bound for the distances in the big chain. A first step [1] in study-
ing some “local moves” shuffles such as random adjacent transpositions was
to obtain lower bounds by studying motion of initially adjacent cards. In our
model the “friends” maximal-start variation distance in Table 1 is indeed7

from the case of initial adjacent players.
Recall that the progress of ego around the 4 half-courts is just the lazy

cyclic walk, for which variation distance to stationarity in recorded in Table
6.

n 1 2 3 4 5 6 7 8 9

d(n) 0.5 0.25 0.125 0.125 0.0625 0.0625 0.083 0.0313 0.0313

Table 6: Variation distance for the lazy cyclic walk.

These values are slightly less than the values in Table 1 for the friend
chain – both are a priori lower bounds for variation distance for the big
chain.

To find a better lower bound for the mixing time for the “big” chain,
we can combine the two aforementioned ideas and form a 52- state (“big
friend”) chain, where ego can be in any of the 4 half-courts. In this new
chain, we label the positions with respect to ego similar to the friend chain
(see Figures 8 and 11). We first record which half-court ego is in (denoted as
1, 2, 3 or 4) and then whether friend is in the same team (denoted T) or the
current opposing team (denoted O), or on the other court. If on the other
court, we only note which half-court, so denote by one of + or -. Finally,
writing temporarily ego* for the opponent in the same position as ego, we
indicate a friend’s position as 1, 2, 3, 4, 5, or 6, counter-clockwise from ego
or ego*. Its stationary distribution π is induced from the uniform stationary
distribution of the “big friend” chain: probability 6

92 for each of the states
1+, 1−, 2+, 2−, 3+, 3−, 4+, and 4−, and probability 1

92 for each of the 44
remaining states.

7except for opening games
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The transition matrix for this “big friend” chain is easy to obtain from
the transition matrix of the “friend” chain. Consider the transition matrix of
the “friend” chain in Figures 9 and 10. We can view it as a matrix composed
of smaller matrices as in Table 7, where T11, T12, T21, and T22 are 13 × 13
matrices. The states used in the transition matrix for the “big friend” chain
are arranged as follows: 1+, 1−, 1T2 to 1T6, 1O1 to 1O6, 2T2 to 2T6, 2O1
to 2O6, 2+, 2−, 3+, 3−, 3T2 to 3T6, 3O1 to 3O6, 4T2 to 4T6, 4O1 to 4O6,
4+, and 4−, and we can view the transition matrix for the “big friend” chain
as Table 8.

1 2

1 T11 T12
2 T21 T22

Table 7: Transition matrix for the friend chain

1 2 3 4

1 T11 T12 0 0

2 0 T22 T21 0

3 0 0 T11 T12
4 T21 0 0 T22

Table 8: Transition matrix for the big friend chain

We can now investigate the mixing properties of the big friend chain.
Shown in Table 9 are the distances from stationarity for the big chain.

n 1 2 3 4 5 6 7 8 9

d∗(n) 0.978 0.713 0.520 0.340 0.242 0.168 0.125 0.085 0.058
s∗(n) 1 1 1 1 0.827 0.681 0.461 0.391 0.272
L2(n) 6.708 2.977 1.868 1.228 0.827 0.563 0.387 0.266 0.183

Table 9: Measures of distance to stationarity for the “big friend” chain, after
n games

Notice that the values we got for d∗(n) in the “big friend” chain are
larger than that of the “friend” chain, improving the lower bound of the
“big friend” chain.
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7 Final remarks

We have mentioned analogies with card shuffling several times, because “ro-
tations” of team players correspond to a cut-shuffle of a 6-card deck. Our
model is equivalent to a certain (not very easily implemented physically)
random shuffle of a 24-card deck via first breaking into 4 sub-decks. Persi
Diaconis (personal communication) remarks that casinos and some fantasy
games involve shuffling decks much larger than the usual 52-card deck, and
this is often done via some scheme involving breaking into sub-decks, shuf-
fling each in some way, and recombining in some way. Such schemes (thereby
loosely analogous to our model) have generally not been studied in mathe-
matical probability, an exception being the “casino shelf shuffling machines”
studied by Diaconis-Fulman-Holmes [4].

We have interpreted the underlying question

how effective is this scheme at mixing up the teams?

in terms of mixing times, that is implicitly by comparison with the alter-
native of randomly assigning players to teams for each game. An oppo-
site alternative would be some analog of “design of statistical experiments”
schemes, deterministically assigning players to teams for all games in such
a way that relative positions of two players were as uniformly spread as
possible. At a practical level, our scheme is much easier and faster to im-
plement than either alternative. Moreover its implementation is robust to
small variation in number of players, which is common in informal settings:
an extra player will rotate off court, or a 5-player team always has 3 players
deemed front row.
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Figure 11: Positions of friend relative to ego •.
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