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RANDOM PARTITIONS OF THE PLANE VIA POISSONIAN
COLORING AND A SELF-SIMILAR PROCESS OF

COALESCING PLANAR PARTITIONS

BY DAVID ALDOUS1

University of California, Berkeley

Plant differently colored points in the plane; then let random points
(“Poisson rain”) fall, and give each new point the color of the nearest ex-
isting point. Previous investigation and simulations strongly suggest that the
colored regions converge (in some sense) to a random partition of the plane.
We prove a weak version of this, showing that normalized empirical measures
converge to Lebesgue measures on a random partition into measurable sets.
Topological properties remain an open problem. In the course of the proof,
which heavily exploits time-reversals, we encounter a novel self-similar pro-
cess of coalescing planar partitions. In this process, sets A(z) in the partition
are associated with Poisson random points z, and the dynamics are as fol-
lows. Points are deleted randomly at rate 1; when z is deleted, its set A(z) is
adjoined to the set A(z′) of the nearest other point z′.

1. Introduction. The work in this paper has several motivations. We focus
below on the most concrete motivation; more broadly, as indicated in Sections 1.2
and 5.2, we will encounter a kind of spatial analog of well-studied nonspatial mod-
els of stochastic fragmentation (in forward time) or stochastic coalescence (in re-
versed time). A minor variant of the process below has been considered indepen-
dently by several researchers (see Section 1.2), but without any published results.

As the “elementary” variant,2 choose k ≥ 2 distinct points z1, . . . , zk in the unit
square, and assign to point zi the color i from a palette of k colors. Take i.i.d.
uniform random points Uk+1,Uk+2, . . . in the unit square, and inductively, for j ≥
k + 1,

give point Uj the color of the closest point to Uj among U1, . . . ,Uj−1

where we interpret Ui = zi,1 ≤ i ≤ k (there is a unique closest point a.s.; through-
out the paper we omit the “a.s.” qualifier where no subtlety is involved). This de-
fines a process Sn = (Sn(i),1 ≤ i ≤ k), where Sn(i) is the set of color-i points
among (Uj ,1 ≤ j ≤ n). Simulations (see Figure 1) and intuition strongly sug-
gest that there is (in some sense) an n → ∞ limit, which is a random partition
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FIG. 1. A realization within part of the unit square. Line segments indicate parent-child relation.

of the square into k colored regions. Simulations (see Figure 2) also suggest that
the boundaries between these (presumed) limit regions should be fractal, in some
sense, though intuition is less clear here (see Section 5.3).

What can we actually prove? For rigorous study, it is more convenient to con-
sider a slightly more sophisticated model. On the infinite plane R

2 and the infinite
time interval −∞ < t < ∞, there is a space–time Poisson point process (PPP),
which we will envisage as the times and positions of arriving particles, such that
the set of particles which arrive before time t forms a spatial PPP on R

2 with in-

FIG. 2. A close-up of the boundary between partition components suggests the boundary is fractal.
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tensity et per unit area. Within this process (more details and notation for what
follows in this section will be given next in Section 1.1), imagine assigning a dif-
ferent color to each particle present at time t1, and then as t increases suppose we
color each newly arriving particle by the previous rule, that is, by copying the color
of the nearest existing particle. Intuitively, what we see in the unit square within
this model, at large times t , must be similar (up to boundary effects) as in the ele-
mentary model with a Poisson(et1 ) number of initial particles and with n ≈ et total
particles.

The advantage of this more sophisticated model is that we can exploit the exact
self-similarity property of the underlying space–time PPP. In particular, by revers-
ing time the “line of descent” by which a particle acquires its color from previous
particles can be studied. Moreover, suppose the first intuitive suggestion is true.
That is, after assigning different colors to particles at positions z at time t1, sup-
pose there is a t → ∞ limit random partition A(t1) of R

2 into regions A(t1, z)

occupied by particles with the color of the particle at z at time t1. This (supposed)
partition valued process (A(t1),∞ > t1 > −∞) has a simple intuitive descrip-
tion in reversed time. Given A(t1) and the time-t1 particle positions z, we obtain
A(t1 − dt) by the rule

delete each particle with probability dt ; for each deleted particle, at position z say, let
z′ be the nearest other particle position, and replace A(t1, z′) by A(t1, z′) ∪ A(t1, z).

The purpose of this paper is to prove two intertwined results; that the random
partition A(t1) does exist as a certain type of limit of the coloring process (Theo-
rem 2); and that the resulting reversed-time process (A(t1) : ∞ > t1 > −∞) is a
self-similar version of the process defined by the rule above (Theorem 1).

1.1. Notation and more detailed outline. Write R × R
2 for the set with ele-

ments (t, z), interpreted as “time” t ∈ R and “position” z ∈ R
2. Write � for the

Poisson point process on R × R
2 with mean measure et dt dz. All the random

objects considered in this paper will be constructed from �. We write a typical
“point” of � as ξ = (tξ , zξ ) or ζ = (tζ , zζ ). We consider ξ as the label for an
immortal particle with arrival or “birth” time tξ at position zξ , and so

�≤t := {ξ ∈ � : tξ ≤ t}
denotes the set of particles which are alive at time t . Define �<t analogously. Write

Z≤t = {zξ : ξ ∈ �≤t }
for the positions of the particles at time t . Of course, Z≤t and Z<t are Pois-
son point processes on R

2 with rate et , that is mean measure et dz, because∫ t
−∞ es ds = et . The self-similarity properties of the PPP—that Z≤t1 is distributed

as a spatial rescaling of Z≤t2—will extend to self-similarity for the process
(A(t1) : ∞ > t1 > −∞) outlined in the previous section.
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To each particle ξ , let us assign a parent particle ζ = parent(ξ), defined as the
particle in �tξ− for which the Euclidean distance ‖zζ − zξ‖ is minimized. This
defines a (genealogical) tree process. So for each particle ξ there is an ancestral
sequence of particles, written (parent[i, ξ ], i ≥ 0), defined by parent[0, ξ ] = ξ and
then recursively by

parent[i + 1, ξ ] = parent
(
parent[i, ξ ]), i ≥ 0.

The associated line of descent indicates the ancestor of ξ at each time t < tξ , that is,

ancestor(t, ξ) = parent[i, ξ ]
(1)

for i ≥ 1 such that tparent[i,ξ ] ≤ t < tparent[i−1,ξ ],

where for completeness we define

ancestor(t, ξ) = ξ for t ≥ tξ .

The first part of the proof (Proposition 4 in Section 2) shows that for a typical parti-
cle ξ present at time 0, the distance to ancestor(−t, ξ), the ancestor at time −t , is of
order et/2, which is the same order as the distance to the nearest particle present at
time −t . In the second part of the proof (Section 3) we first consider two particles
present at time 0 and distance r apart. Their lines of descent merge at some ran-
dom past time −Tr , and we need an upper bound (Proposition 13) on the tail of the
distribution of Tr . The methods in these sections are very concrete—calculations
and bounds involving Euclidean geometry and spatial Poisson processes—though
rather intricate in detail.

The limit result we seek involves descendants (rather than ancestors) of typical
particles, and we set up notation as follows.3 For t1 ≤ t2 and ζ ∈ �≤t1, define

(2) Descend(t1, t2, ζ ) := {
ξ ∈ �≤t2 : ancestor(t1, ξ) = ζ

}
.

This is the set of particles born before t2 whose time-t1 ancestor in the line of
descent was ζ . In the coloring story, this is “the set of particles at time t2 which
have inherited the same color as ζ , if we gave all the particles at t1 different colors.”
Then, still for t1 ≤ t2 and ζ ∈ �≤t1 , define

μt1,t2,ζ is the measure μ putting weight e−t2

(3)
on the position of each particle in Descend(t1, t2, ζ ).

So μt1,t2,ζ is a random element of the space M(R2) of finite measures on R
2,

equipped with the usual topology of weak convergence. To obtain the limit theo-
rem, we first show (Proposition 24 in Section 4.2) that there exist t2 → ∞ limits

3For ancestor-descendant pairs, we systematically write ζ for the ancestor and ξ for the descendant.
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in probability [as M(R2)-valued random variables]; that is, there exist random
measures {μt1,∞,ζ : ζ ∈ �≤t1} such that

(4) μt1,t2,ζ → μt1,∞,ζ in probability as t2 → ∞ (∀ζ ∈ �≤t1).

The proof essentially relies on Proposition 4 and self-similarity. We then use
Proposition 13 to show that a limit μt1,∞,ζ is in fact Lebesgue measure restricted
to some random set A(t1, ζ ), implying that the collection {A(t1, ζ ) : ζ ∈ �≤t1} is
necessarily a partition of R2.

For fixed t , we can regard

Z(t) = {(
zξ ,A(t, ξ)

) : ξ ∈ �≤t

}
as a marked point process. As t increases, the process (Z(t),−∞ < t < ∞) evolves
in a way one can describe qualitatively:

new points arrive randomly at rate et per unit area per unit time; when a point ξ arrives
at time t , the region A(t, ζ ) associated with the closest existing point ζ is split into two
regions A(t + dt, ζ ) and A(t + dt, ξ).

But the probability distribution over possible splits depends on Z(t) in some com-
plicated way which we are unable to describe explicitly.

However, the key feature of this process is that as t decreases the regions merge
according to the simple rule stated earlier. To summarize (see discussion below for
the formalization of random measurable set), we have the following.

THEOREM 1. The space–time PPP {(tξ , zξ ) : ξ ∈ �} can be extended to a
process {(tξ , zξ ,A(t, ξ), t ≥ tξ ) : ξ ∈ �} with the following properties:

(a) For each −∞ < t < ∞, the collection {A(t, ξ) : ξ ∈ �≤t } is a random par-
tition of R2 into measurable sets.

(b) The distribution of the entire time-varying process {(tξ , zξ ,A(t, ξ), t ≥ tξ ) :
ξ ∈ �} is invariant under the action of the Euclidean group on R

2.
(c) The process whose state at time t is {(zξ ,A(t, ξ)) : ξ ∈ �≤t } evolves in

reversed time according to the rule:

during [t, t − dt], for each ξ ∈ �≤t delete ξ (i.e., remove the entry (zξ ,A(t, ξ))] with
probability dt ; for each deleted particle ξ , let ζ be the nearest other particle, and set
A(t − dt, ζ ) = A(t, ζ ) ∪ A(t, ξ).

(d) The action of the scaling map z → e−t/2z on R
2 that takes the distribution

of Z≤0 to the distribution of Z≤t also takes the distribution of {(zξ ,A(0, ξ)) : ξ ∈
�≤0} to the distribution of {(zξ ,A(t, ξ)) : ξ ∈ �≤t }.

The earlier statement (4) can now be rephrased as follows, where we define
μt,t2,ξ as at (3) and consider it as an M(R2)-valued random variable. Write �A

for Lebesgue measure restricted to A ⊂ R
2.
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THEOREM 2. For each ξ ∈ �≤t , we have

μt,t2,ξ → �A(t,ξ) in probability as t2 → ∞,

where the limit random sets {A(t, ξ) : ξ ∈ �≤t } comprise a process with the prop-
erties stated in Theorem 1.

Note this implies that the limit random sets here and in Theorem 1 are
σ(�)-measurable.

Theorem 2 is a formalization of the “limit colored regions exist” result described
in the opening section, but this particular formalization is mathematically weak in
two senses. Our formalization via weak convergence of empirical measures means,
in the original “elementary” version, that we are ignoring positions of o(n) size
subsets of the n particles. Second, our proof gives no information about topolog-
ical properties of the regions A(t, ξ), only that they are measurable. In fact, as
mentioned below (4) a random region A(t, ξ) is formalized as a random measure
for which the density function (with respect to Lebesgue measure on the plane) is
a.e. 0 or 1, and so A(t, ξ) is well defined only up to Lebesgue-null sets of R2. So,
for instance, the natural question “is ξ an element of A(t, ξ)” is not well-posed.
But it is natural to guess that the following is true.

CONJECTURE 3. For each t , one can identify the regions {A(t, ξ) : ξ ∈ �≤t }
so that the topological boundary of each region has Lebesgue measure zero.

If true, we could rephrase the question above as the well-posed question “is
each ξ in the interior of A(t, ξ),” and we conjecture the answer is “yes.” More
interestingly, assuming Conjecture 3 is true, it is natural to conjecture that the
boundaries have some (suitably defined) nonrandom fractal dimension 1 ≤ d < 2,
and Section 5.3 contains heuristic discussion. Further related remarks are in the
next section. One might expect the regions to be connected sets, but this seems
incorrect; see Section 5.3.2. Finally, as a referee noted, our results do not even
imply that the number of regions intersecting the unit square is a.s. finite, so this
constitutes another conjecture.

1.2. Background and analogous models. To quote the unpublished notes [11]:

The [elementary] model is described in ([13], Section 7.6.8, pages 270–271), although
we are not sure of its origins: [we] probably first learned of the problem from Mathew
Penrose in about 2003, while Ben Hambly [personal communication] recalls that the
same problem arose elsewhere at about the same time.

The context of that line of work was on-line algorithms in computational and
stochastic geometry. Separately, the present author learned [personal communi-
cation] that the elementary model has been considered by Ohad Feldheim as a
spatial analog of the Pólya urn process.
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The approach in [11] to the elementary model is to identify colored regions in
the unit square as Voronoi regions, that is, the set of points for which the near-
est particle has a given color. Then via the Hausdorff metric on closed sets, it
makes sense to ask whether our notion of convergence of empirical measures can
be strengthened to include convergence of Voronoi regions. In our language and
model, this could only be true if Conjecture 3 is true. Arguments in [11] focus
on the length �n of the boundary between the two regions (for two colors and n

particles in the unit square). Using arguments with a more geometric flavor than
ours, they raise and discuss the question of whether �n = O(nd/2) for some d < 2.
This mirrors our “fractal dimension” question, and indeed would imply that Con-
jecture 3 is true. The arguments in this paper make surprisingly little use of the
“local geometry” of the PPP, so one can hope that our results might be combined
with more geometric arguments to make further progress.

Note also that, intuitively, the area of the Voronoi region of a given color should
behave almost as a martingale, because a new particle near the boundary seems
equally likely to make the area larger or smaller. If one could bound the martingale
approximation well enough to establish a.s. convergence of such areas, the results
of this paper would follow rather trivially. But doing so seems to require detailed
knowledge of the geometry of the boundary.

The author’s own interest in the model arose in the context of a scale-invariant
random spatial network (SIRSN) [1, 2], studied as abstractions of road networks.
A general conjecture is that any network built dynamically from randomly-arriving
Poisson points by means of edges (now line segments in the plane) being created
to attach an arriving point to the existing network by a “scale-invariant rule” (i.e., a
rule which uses only relative distances, not absolute distances) should in the limit
define a SIRSN. Of course, the rule in our model “creates an edge from the newly-
arrived point to the closest existing point” is about the simplest scale-invariant rule
one can imagine.4 The fact that this “simplest case” is hard to analyze suggests
that the general conjecture is very challenging.

There is extensive literature on stochastic fragmentation and coalescence mod-
els in the nongeometric “mean-field” setting [3, 6]. There is also substantial lit-
erature (see, e.g., [7] Chapter 9) concerning random partitions of the plane (tes-
sellations, tilings, etc.). But the combination of these themes, that is, Markovian
processes of refining or coarsening partitions in the plane, have been considered
only in special refining models [8] and in variants of the STIT model [9, 15].
The coalescing partitions process in Theorem 1 is perhaps the only known self-
similar Markovian process of pairwise merging partitions of R2 with explicit rates.
Obversely, the topic of Markovian models of coarsening partitions seems little
investigated—see Section 5.2 for further brief comments.

4Unfortunately, the tree-like structure of this model implies it does not satisfy the requirement of
a SIRSN that mean route lengths be finite.



COALESCING PLANAR PARTITIONS 2007

2. A bound on ancestor displacement.

2.1. Compactness for the marked point process. Our first objective is to ob-
tain a concrete bound, Proposition 4, on the distance between the position zξ of
a particle ξ (present at time 0) and the position zancestor(−t,ξ) of its ancestor at
time −t .

Some notation:

• 0 is the origin in R
2.

• ‖x − y‖ denotes Euclidean distance in R
2.

• disc(z, r) is the closed disc with center z and radius r .
• For measurable B ⊂ R

2, write area(B) for its area (2-dimensional Lebesgue
measure) and diam(B) = supx,y∈B ‖x − y‖ for its diameter.

PROPOSITION 4. There exists a function G(r) ↓ 0 as r ↑ ∞ such that, for
all z ∈ R

2 and all t > 0, conditional on �≤0 having a particle ξ with zξ = z and
tξ > −t , we have

Gt(r) := P
(‖zancestor(−t,ξ) − zξ‖ > ret/2) ≤ G(r), 0 < r < ∞.

Moreover,
∫ ∞

0 rG(r) dr < ∞.

The rest of Section 2 is devoted to the proof of Proposition 4 and a variant (Propo-
sition 9). As mentioned earlier, the conceptual point of Proposition 4 is that the
distance to the time t (in the past) ancestor is the same order of magnitude as the
distance to the closest particle at that time, that is, order et/2. An expression for
G(r) is given at (17).

The elementary “thinning” property of Poisson processes leads to a correspond-
ing property of our space–time Poisson point process �. As t runs backwards over
∞ > t > −∞, the processes �≤t evolve according to the rule:

each particle is deleted at stochastic rate 1.

This Poisson thinning process representation is the foundation for much of our
analysis, as are the related self-similarity properties of our derived processes, dis-
cussed in Section 4.1.

To be pedantic, in forward time, we work with the filtration F t = σ(�≤t ). In
reversed time, we work with the filtration

(5)
←
F t= σ

((
max(tξ , t), zξ

) : ξ ∈ �
)
.

So
←
F t tells us the positions of all particles, and the arrival times of particles born

after time t , and the following “thinning process” property holds.

LEMMA 5. Conditional on
←
F t , the previous lifetimes {t − tξ : zξ ∈ Z≤t } of the

particles alive at time t are i.i.d. with Exponential(1) distribution.
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2.2. Derivation of an EA process. We study lines of descent in the genealog-
ical tree process. Consider a particle ξ present at time 0 at position z0. From
the thinning process representation, its arrival time T0 < 0 is such that −T0 has
Exponential(1) distribution. For i ≥ 1, write (Ti,Zi) for the arrival time and posi-
tion of its ith generation ancestor, that is, parent[i, ξ ]. We will show how to rep-
resent this process in terms of a certain Markov process we will call the excluded
area (EA) process.

Conditional on {T0 = t0} the particles present at t0 are distributed as the PPP
�<t0 , and so parent[1, ξ ] is the closest such point to z0, at position Z1 say. Con-
ditional also on {Z1 = z1}, we know there are no points of �<t0 in the interior of
C1 := disc(z0,‖z1 − z0‖). The arrival time T1 of Z1 has density function ∝ et on
−∞ < t < t0, implying that t0 − T1 has Exponential(1) distribution.

Now given T0 = t0 and (T1,Z1) = (t1, z1), the information we have about �<t1

is precisely the fact that it has no points in C1. So Z2 is the closest point to z1 in a
PPP of rate et1 on R

2 \ C1. And as before, t1 − T2 has Exponential(1) distribution.
Now given T0 = t0 and (T1,Z1) = (t1, z1) and (T2,Z2) = (t2, z2), we have built

an “excluded region” C2 := C1 ∪ disc(z1,‖z2 − z1‖). The information we have
about �<t2 is precisely that it is a PPP of rate et2 with no points in C2, and we can
continue inductively to describe the entire process ((Ti,Zi), i ≥ 0).

2.3. Definition of the EA process. Here, we re-specify the process above in
intrinsic terms. Working with time ↓ −∞ is rather counter-intuitive, so in the def-
inition below it seems helpful to reverse the direction of time.

Consider the space C of triples c = (C, z, τ ) such that

C is a compact set in R
2; z ∈ C; 0 ≤ τ < ∞.

Given an element c = (C, z, τ ) ∈ C, we can define a probability distribution μc on
C as follows. Take a PPP �̃ of rate e−τ on R

2 \ C. Let ξ be the point of �̃ closest
to z. Set

z′ = ξ ; C′ = C ∪ disc
(
z,‖ξ − z‖); τ ′ = τ + θ,

where θ has Exponential(1) distribution independent of �̃. Then let μc be the
distribution of (C′, z′, τ ′).

Define the EA process to be the C-valued Markov chain (Ci = (Ci,Zi, τi),0 ≤
i < ∞) where, for each step i, the conditional distribution of Ci+1 given Ci =
c is the distribution μc specified above. Figure 3 provides an illustration. It is
straightforward to formalize the argument in Section 2.2 to show the following.

LEMMA 6. Condition on � containing a particle ξ with tξ ≤ 0 and zξ = z0.
The process ((tparent[i,ξ ], zparent[i,ξ ]),0 ≤ i < ∞) of arrival times and positions of
the ancestors of this ξ is distributed as the random process ((−τi,Zi),0 ≤ i < ∞)

within the EA process ((Ci,Zi, τi),0 ≤ i < ∞) with initial state ({z0}, z0, τ0),
where τ0 has Exponential(1) distribution.
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0

z1

z2

z3

z4

C4C3

FIG. 3. Illustration of the standard EA process. Ci is the union of the discs centered at
0, z1, . . . , zi−1 and zi is on the boundary of Ci .

Terminology. In what follows, we write step for the steps i of the EA chain,
and time for the τ ’s.

2.4. Geometric analysis of the EA process. It is enough to study the standard
EA process with initial state

(C0, z0, τ0) = ({0},0, τ0
)
,

where τ0 has Exponential(1) distribution.5 So in the context of Lemma 6 we will
study ancestors of a particle present at position 0 at time 0. The starting observa-
tion, Lemma 7 below, is an expression for the growth of the area of Ci at each step.
After that, we use geometric arguments to bound the diameter of Ci in terms of its
area. Because Zi is on the boundary of Ci this will be enough to prove Proposi-
tion 4.

LEMMA 7. Conditional on Ci = (Ci, zi, τi), the increment area(Ci+1) −
area(Ci) has Exponential(e−τi ) distribution, independent of τi+1 − τi .

PROOF. Writing ar for the area of disc(zi, r) \ Ci ,

P
(
area(Ci+1) − area(Ci) > ar

)
= P

(
no point of a rate e−τi Poisson process in disc(zi, r) \ Ci

)
= exp

(−e−τi ar

)
.

5This is notationally more convenient than taking τ0 = 0, because of our convention that particles
are labeled by position and arrival time.
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The independence holds by construction. �

We can lower bound the diameter in terms of the area via the classical fact
(called Bieberbach’s inequality or the isodiametric inequality—see [12] for a short
proof) that the disc is extremal:

(6) area(C) ≤ π

4

(
diam(C)

)2
, all compact C ⊂R

2.

We want a corresponding upper bound, to verify that Cj does not become long
and thin. The bound will rely upon the following geometry lemma.

LEMMA 8. Let C be a compact set in R
2 and let D be a closed disc whose

center is in C. Then

diam(C ∪ D)

≤ max
(

diam(C) +
√

2(area(C ∪ D) − area(C))

π
,

√
4 area(C ∪ D)

π

)
.

PROOF. The right-hand side clearly bounds the distance between two points
in C, and also between two points in D because

sup
z,z′∈D

∥∥z − z′∥∥ = diam(D) =
√

4

π
area(D) ≤

√
4

π
area(C ∪ D).

So it will suffice to prove the bound for one point in C and the other in D, that is
to prove

(7) sup
z∈C,z′∈D

∥∥z − z′∥∥ − diam(C) ≤
√

2(area(C ∪ D) − area(C))

π
.

Figure 4 illustrates the argument.
First, assume C is convex. If D ⊆ C, the result is trivial, so suppose not. Let y

be a point on the boundary of D at maximal distance (= r0, say) from C, and let
w be a point in C with ‖y − w‖ = r0. Then

(8) sup
{∥∥z − z′∥∥ : z ∈ C,z′ ∈ D

} ≤ diam(C) + r0

by applying the triangle inequality to the point in C closest to z′. Now consider the
half-spaces defined by the line � through w that is orthogonal to the line segment
wy. The convex set C must lie in the half-space not containing y, else by convexity
some point in C would be closer to y. And the tangent line to the disc at y must be
parallel to �, otherwise some other point on the boundary would be farther from C

than is y. But this implies that the line segment wy is part of the line segment vy,
where v is the center of the disc D. So r0 ≤ r := radius of D, and

area(C ∪ D) − area(C) ≥ area(D ∩ H),
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H

FIG. 4. Illustration of proof of Lemma 8.

where H is the half-space containing y. Now area(D ∩ H) is a certain function of
r0 and r ≥ r0, and clearly this function is, for fixed r0, minimized at r = r0, and
there its value is 1

2πr2
0 . So

area(C ∪ D) − area(C) ≥ 1

2
πr2

0

and combining with (8) gives (7).
In proving (7), we assumed C was convex. For general C, we can apply (7) to

its convex hull C∗ and then, noting

diam
(
C∗) = diam(C), area

(
C∗ ∪ D

) − area
(
C∗) ≤ area(C ∪ D) − area(C)

we see that (7) remains true for nonconvex C. �

2.5. Completing the proof of Proposition 4. Returning to the standard EA pro-
cess Ci = (Ci,Zi, τi), we now have sufficient tools to study τi and

Ai := area(Ci), Di := diam(Ci).

From Lemma 7, we obtain a constructive representation of the distribution of
((Ai, τi),0 ≤ i < ∞), as follows:

The process (τi, i ≥ 0) is a Poisson process of rate 1 on (0,∞).(9)

Ai =
i−1∑
j=0

eτj θj where (θj , j ≥ 0) are i.i.d. Exponential(1),

(10)
independent of (τi, i ≥ 0).
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Then from Lemma 8 we get the inequality

(11) Di+1 ≤ max
(
Di +

√
2(Ai+1 − Ai)

π
,

√
4Ai+1

π

)
.

In this section, we use only the weaker inequality

(12) Di+1 ≤ Di +
√

4Ai+1

π
.

Because D0 = 0 this implies

(13) Dk ≤ 2π−1/2
k∑

i=1

A
1/2
i .

Because

A
1/2
i =

(
i−1∑
j=0

eτj θj

)1/2

≤
i−1∑
j=0

(
eτj θj

)1/2

we find that

(14) Dk ≤ Dk := 2π−1/2
k−1∑
j=0

(k − j)eτj /2θ
1/2
j .

In Proposition 4, we seek to bound the probability of the event {‖zancestor(−t,ξ) −
0‖ > ret/2} for a particle ξ at time 0 with position zξ = 0 (the case of general
zξ = z is the same, by translation-invariance). Fix t . Identifying the EA process
with the “line of descent” process as in Lemma 6, the position zancestor(−t,ξ) is by
construction on the boundary of the region CN(t)+1 for

N(t) = max{i : τi < t}.
Therefore, using (14),

(15) ‖zancestor(−t,ξ) − 0‖ ≤ DN(t)+1 ≤ 2π−1/2
N(t)∑
j=0

(
N(t) + 1 − j

)
eτj /2θ

1/2
j .

From properties of the rate-1 Poisson process (τj , j ≥ 0) on (0,∞), the time-
points (t − τN(t), t − τN(t)−1, t − τN(t)−1, . . . , t − τ0) are distributed as an initial
segment of a rate-1 Poisson process (σj , j ≥ 1) on (0,∞). So rewriting (15) in
terms of the (σj ) and u = N(t) + 1 − j gives

e−t/2‖zancestor(−t,ξ) − 0‖
(16)

is stochastically dominated by χ := 2π−1/2
∞∑

u=1

ue−σu/2η1/2
u ,
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where (ηu, u ≥ 1) are i.i.d. Exponential(1), independent of the Poisson process
(σu,u ≥ 1). So Proposition 4 holds for

(17) G(r) := P(χ > r), 0 < r < ∞
and it is easy to check that

∫ ∞
0 rG(r) dr < ∞.

2.6. A large deviation bound for occupation times. The following technical
bound will enable us to bound the distance required for two lines of descent to
merge (Proposition 13 later).

PROPOSITION 9. For the standard EA process, write

B = ⋃
{i:e−τi /2 diam(Ci)>b}

[τi−1, τi).

Then for sufficiently large b, there exist A < ∞ and ρ > 0 such that

(18) P
(
Leb

(
B ∩ [0, T ]) > T/3

) ≤ A exp(−ρT ), 0 < T < ∞,

where Leb denotes Lebesgue measure.

We previously used inequality (12) to bound Di := diam(Ci) in terms of the
areas Ai = area(Ci). Here, we will use a slightly different bound.

LEMMA 10. Di ≤
√

4Ai

π
+ ∑i−1

j=0

√
2(Aj+1−Aj )

π
.

PROOF. Setting D̃i := Di −
√

4Ai

π
, inequality (11) becomes

D̃i+1 ≤ max
(
D̃i +

√
2(Ai+1 − Ai)

π
+

(√
4Ai

π
−

√
4Ai+1

π

)
,0

)
.

But the term (
√

4Ai

π
−

√
4Ai+1

π
) is negative, and D̃0 = 0, so we find

D̃i ≤
i−1∑
j=0

√
2(Aj+1 − Aj)

π

establishing the asserted bound. �

Recall the notation from (9,10): (τj , j ≥ 0) denotes a Poisson process of rate 1
on (0,∞), and (θj , j ≥ 0) denotes i.i.d. Exponential(1) random variables inde-
pendent of (τi, i ≥ 0). From (10) and Lemma 10,

(19) Di ≤
√

4Ai

π
+

√
2

π
D∗

i ,
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where

Ai =
i−1∑
j=0

eτj θj ; D∗
i =

i−1∑
j=0

eτj /2θ
1/2
j .

To prove Proposition 9, we will rephrase inequalities from Section 2.5 in terms of
continuous-time processes. These are processes of Ornstein–Uhlenbeck-type, in
the terminology of [14]. Set V0 = 0 and define (Vt ,0 ≤ t < ∞) to be the process
which increments by θj at time τj , and otherwise decreases at exponential rate 1.

In symbols, writing N
j
t = 1{t≥τj },

dVt = −Vt dt + ∑
j≥0

θj dN
j
t .

At time τi− (just before the jump at τi ), we have

Vτi− =
i−1∑
j=0

θj e
τj−τi = e−τiAi.

Because Vt is decreasing on [τi−1, τi), we have

(20) if e−τiAi > bA then Vt > bA on [τi−1, τi).

Similarly, define (Wt ,0 ≤ t < ∞) to be the process which increments by θ
1/2
j at

time τj , and otherwise decreases at exponential rate 1/2. Take W0 = 0. In symbols,

dWt = −1

2
Wt dt + ∑

j

θ
1/2
j dN

j
t .

At time τi−, we have

Wτi− =
i−1∑
j=0

θ
1/2
j e(τj−τi )/2 = e−τi/2D∗

i .

So as at (20)

(21) if e−τi/2D∗
i > bD then Wt > bD on [τi−1, τi).

Combining (19) with (20), (21) for appropriate bA, bD defined in terms of b, we
now see that the proof of Proposition 9 reduces to proofs of large deviation bounds
for occupation measures of the processes (Vt ) and (Wt). That is, it suffices to prove
the following.

PROPOSITION 11. For sufficiently large b, there exist A < ∞ and ρ > 0 such
that

P

(∫ T

0
1{Vt>b} dt > T/6

)
≤ A exp(−ρT ), 0 < T < ∞,(22)

P

(∫ T

0
1{Wt>b} dt > T/6

)
≤ A exp(−ρT ), 0 < T < ∞.(23)
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We will give the proof for (Vt ), and then note that essentially the same proof
works for (Wt).

Fix a high level b. The process regenerates at each downcrossing of b. So start-
ing from the first downcrossing, there is an i.i.d. sequence ((Lb(i),Kb(i)), i ≥ 1)

where Lb is the duration and Kb is the “occupation time above b” between succes-
sive downcrossings. We can decompose Lb as L′

b + Kb where L′
b is the time until

first upcrossing of b and Kb is the subsequent time until the next downcrossing
of b. It is easy to see

(24) L′
b →p ∞ as b → ∞.

It is also easy to see that Kb →p 0 as b → ∞, though we need the stronger result

(25) lim
b→∞E exp(θKb) = 1, 0 < θ < ∞.

To prove this, note that during an excursion above b the process (Vt ) is upper
bounded by the process (V ∗

t ) in which the drift term is −b dt instead of −Vt dt .
But the process (V ∗

t ) describes the workload in a M/M/1 queue with arrival rate
1 and service rate b. So the distribution of Kb is stochastically smaller than the
server’s busy period in that queue, and from classical exact formulas for that busy
period distribution (e.g., [5]) one can deduce (25).

Writing τn for the time of the nth regeneration, (25) and the classical large
deviation theorem for i.i.d. sums imply that for b sufficiently large

P

(∫ τn

0
1{Vt>b} dt > n/6

)
= P

(
n∑

i=1

Kb(i) > n/6

)
decreases exponentially

as n → ∞. Next, by (24) we can choose b so that P(L′
b ≥ 2) ≥ 3/4. Then

P(τn < n) ≤ P

(
n∑

i=1

L′
b < n

)
≤ P

(
n∑

i=1

1(L′
b≥2) ≤ n/2

)
.

By the lower-tail Binomial large deviation bound, it follows that the probabilities
P(τn < n) decrease exponentially as n → ∞, and this establishes (22).

The argument for (23) is essentially the same, and this completes the proof of
Proposition 9.

3. Coalescence of lines of descent. In this section, we continue the style of
analysis in Section 2 by studying the lines of descent of two particles present at
time 0. This involves a coupled EA process, whose dynamics are described in
Section 3.1. Note that Proposition 4 implies that, for particles at distance r � 1
apart, the “coalesce” time (time backwards to their most recent common ancestor)
must be at least (2−o(1)) log r . Our goal is to give an upper bound, Proposition 13,
on the coalesce time distribution. The central idea is to use Proposition 9 to show
that, if not coalesced already, the lines of descent at time −t are typically only
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order et/2 apart (the same order as the distance to the nearest time −t particle): this
is Proposition 16. A geometric argument then shows (Lemma 15) that there is a
nonvanishing chance to merge in the next generation backwards. These ingredients
are combined in Section 3.4 to prove Proposition 13.

3.1. The coupled EA process. Fix t0 ≥ 0. For the rest of Section 3 we condition
on the time-t0 configuration Z≤t0 containing a particle at position z1

0 and the time-0
configuration Z≤0 containing a particle at position z2

0. The distribution of the line
of descent for each particle is just a translated and scaled version of the distribution
of the EA process in Lemma 6. So we anticipate that the joint distribution of the
two lines of descent can be described in terms of some suitably coupled versions
of the EA process.

Precisely, we will specify the coupled EA process((
C1

i ;C2
i

)
, i = 0,1,2, . . .

) = ((
C1

i , z1
i , τ

1
i

); (
C2

i , z2
i , τ

2
i

))
, i = 0,1,2, . . .

)
with initial states ({z1

0}, z1
0, τ

1
0 ) and ({z2

0}, z2
0, τ

2
0 ) where τ 2

0 and τ 1
0 + t0 are inde-

pendent Exponential(1). At each step (before the coalescence step Icoal below),
only one of the components (C1

i or C2
i ) changes. There are notational issues in

describing this coupled processes. We write (C1
i ;C2

i ) for the configuration after
the ith step of the coupled process. Because only one component changes in each
step before coalescence, we need different notation for the configuration of a given
component after j changes of that particular component, and we write (C1

(j)) and

(C2
(j)) for these “jump processes” of each component. And it is these jump pro-

cesses which individually are evolving as the ordinary EA process.
The evolution rule for the coupled process, which will be derived from the dy-

namics of the underlying tree process as was done in Lemma 6, is as follows:

Write the configuration after i steps as (C1
i ;C2

i ). Before step Icoal, we must have τ1
i �=

τ2
i ; suppose τ1

i < τ2
i (the other case is symmetric). Take a PPP of rate e−τ1

i on R
2 \

(C1
i ∪ C2

i ), but augmented with an extra point planted at z2
i . Let ξ be the point of

the augmented PPP closest to z1
i . If ξ = z2

i , then we say that the process coalesces

at position z2
i and time τ2

i ; write Icoal = i + 1 for the coalesce step, Zcoal = z2
i for

the coalesce position, Tcoal = τ2
i for the coalesce time. Otherwise, set C1

i+1 = C1
i ∪

disc(z1
i ,‖ξ − z1

i ‖), set z1
i+1 = ξ and take τ1

i+1 = τ1
i + θ where θ has Exponential(1)

distribution independent of all previously constructed random variables. Set C2
i+1 =

C2
i .

Note in particular that the configuration after i steps determines the value

(26) τi := min
(
τ 1
i , τ 2

i

);
the arg min determines which component will change on the next step and τi de-
termines the rate e−τi of the PPP used to construct the next step.
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REMARK. For completeness, let us give the behavior of the coupled pro-
cess after coalescence, though this is not directly relevant to our arguments. If
the coalesce step is i + 1 as above, then z1

i+1 = z2
i+1 and τ 1

i+1 = τ 2
i+1 but maybe

C1
i+1 �= C2

i+1. In subsequent steps k, we use the same PPP outside C1
k ∪ C2

k for
each component and, therefore, we have (τ 1

k , z1
k) = (τ 2

k , z2
k) for all k ≥ i + 1. Each

of the two component jump processes does evolve as the EA process, except that
for the first component process there is the extra planted point at z2

0. But this extra
point only comes into play if it is the exact point of coalescence, and so does not
affect our arguments for upper bounding the coalesce time.

A realization of six initial steps of the coupled process is illustrated in Figure 5.
On the left are the successive positions z1

0, z
1
(1), z

1
(2), z

1
(3), z

1
(4) in the first component

process, and on the right are the positions in the second component process. The
associated times for the first process are −t0 < τ 1

0 = τ 1
(0) < τ 1

(1) < τ 1
(2) < τ 1

(3) < τ 1
(4)

and for the second process are 0 < τ 2
0 = τ 2

(0) < τ 2
(1) < τ 2

(2). Suppose that the times
associated with these steps are ordered as

−t0 < τ 1
(0) < τ 1

(1) < τ 1
(2) < τ 2

(0) < τ 1
(3) < τ 2

(1).

In terms of steps i of the coupled process (indicated in the figure as a, b, c, d, e, f ),
we have

z1
(0)

z1
(1)

z1
(2)

z1
(3)

z1
(4) z2

(0)

z2
(1)

z2
(2)

f

d
e

cb

a

FIG. 5. Initial steps of the coupled EA process.
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i 0 a1 b2 c3 d4 e5 f 6
z1
i = z1

0 z1
(1) z1

(2) z1
(3) z1

(3) z1
(4) z1

(4)

z2
i = z2

0 z2
0 z2

0 z2
0 z2

(1) z2
(1) z2

(2)

τ 1
i = τ 1

0 τ 1
(1) τ 1

(2) τ 1
(3) τ 1

(3) τ 1
(4) τ 1

(4)

τ 2
i = τ 2

0 τ 2
0 τ 2

0 τ 2
0 τ 2

(1) τ 2
(1) τ 2

(2)

τi = τ 1
0 τ 1

(1) τ 1
(2) τ 1

0 τ 1
(3) τ 1

(1) ??

We will now relate how this description of the coupled EA process arises as the
description of the two lines of descent within the tree process for the two given
points of Z≤t0 and Z≤0 at positions z1

0 and z2
0. Consider Figure 5. Inductively, we

have traced back the two lines of descent to (−τ 1
(4), z

1
(4)) and (−τ 2

(2), z
2
(2)), using 6

steps of the coupled process. What happens next depends on which of τ 1
(4) or τ 2

(2)

(that is, which of τ 1
6 or τ 2

6 ) is smaller. Taking the case τ 1
(4) < τ 2

(2) (the other case is

symmetric) then, to find the parent of (−τ 1
(4), z

1
(4)) in the tree process, we need to

search the region where vertices may have arrived before −τ 1
(4); this excludes both

C1
(4) and the interior of C2

(2), because the latter contains no particles arriving before

−τ 2
(1), and we must have τ 2

(1) < τ 1
(4) because of the rule that the component with

smaller τ -value expanded first. However, the particle at z2
(2) arrived at time −τ 2

(2),

which was before time −τ 1
(4), and so is eligible to be the parent of (−τ 1

(4), z
1
(4)).

So the parent of (−τ 1
(4), z

1
(4)) is the closest particle to z1

(4) in the Poisson process

Z≤−τ 1
(4)

, which has rate e
−τ 1

(4) , on the complement of C1
(4) ∪ C2

(2), or is z2
(2) if that

particle is closer. In the latter case, the two lines of descent coalesce at (−τ 2
(2), z

2
(2)).

In terms of steps i of the coupled process, τ 1
(4) = τ 1

6 and C1
(4) ∪ C2

(2) = C1
6 ∪ C2

6

and (−τ 2
(2), z

2
(2)) = (−τ 2

6 , z2
6). This completes the derivation of the evolution rule

stated in Section 3.1.
To summarize, we have the following.

LEMMA 12. Condition on � containing particles ξ1 and ξ2 with tξ1 ≤
t0, tξ2 ≤ 0 and (zξ1, zξ2) = (z1

0, z
2
0). The joint process(

(tparent[i,ξ1], zparent[i,ξ1], tparent[i,ξ2], zparent[i,ξ2]),0 ≤ i < ∞)
of arrival times and positions of the ancestors of these particles is distributed as
the random process ((−τ 1

(i),Z
1
(i),−τ 2

(i),Z
2
(i)),0 ≤ i < ∞) within the coupled EA

process ((C1
i ,Z1

i , τ
1
i ); (C2

i ,Z2
i , τ

2
i ),0 ≤ i < ∞) with initial states ({z1

0}, z1
0, τ

1
(0))

and ({z2
0}, z2

0, τ
2
(0)) where τ 1

(0) + t0 and τ 2
(0) are independent with Exponential(1)

distribution.
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As mentioned before, we write Icoal for the first step I such that z1
I = z2

I (and
call that point Zcoal), or equivalently for the first step I such that τ 1

I = τ 2
I (and call

that time Tcoal). We can now state the main result of Section 3.

PROPOSITION 13. There exist constants K,β < ∞ and ρ > 0 such that, in
the coupled EA process above, for any (z1

0, z
2
0) and any t0 ≥ 0,

(27) P(Tcoal > t) ≤ K exp(−ρt) for all t > β log+∥∥z1
0 − z2

0
∥∥.

Heuristically, we expect ‖Zcoal − z1
0‖ � exp(Tcoal/2) in the tails, and so the

tail behavior of the form P(Tcoal > t) � exp(−γ t/2) would be equivalent to the
tail behavior of the form P(‖Zcoal‖ > r) � r−γ . We conjecture the latter is true;
precisely, that the exponent

(28) γ := − lim
r→∞

logP(‖Zcoal‖ > r)

log r

exists and does not depend on ‖z1
0 − z2

0‖ or t0. This is closely related to the “are
boundaries fractal” issue, as will be discussed in Section 5.3.

For ease of exposition, we will present the proof of Proposition 13 in the case
t0 = 0. The general case requires only minor modifications, noted below.

3.2. The coalescence step. Here, we will give conditions to ensure a non-
vanishing probability of coalescing at the next step. This requires only a simple
geometric lemma.

LEMMA 14. Let z1, z2 ∈ R
2, and let r, λ > 0. Let Zλ be a Poisson point pro-

cess of rate λ on R
2. Then the event the nearest point z ∈ Zλ to z1 is also the

nearest point to z2, and min(‖z − z1‖,‖z − z2‖) > r has probability at least

(29) exp
(−λπ

(
r + ‖z2 − z1‖)2) − 2c0λ

1/2‖z2 − z1‖
for a certain absolute constant c0.

PROOF. Write d = ‖z2 − z1‖. Consider the events:

(A): the distance from z1 to the nearest point of Zλ is at least r + d;
(B): the distances D

(λ)
1 and D

(λ)
2 from z2 to the nearest two points of Zλ are

such that D
(λ)
2 − D

(λ)
1 ≤ 2d .

We assert that, in order that the event in Lemma 14 occurs, it is sufficient that the
event (A) occurs and the event (B) does not occur. To prove this assertion, let z′

1 be
the closest point of Zλ to z1, and let z′

2 be the closest point of Zλ to z2. Suppose
z′

2 �= z′
1. By the triangle inequality,∥∥z1 − z′

2
∥∥ ≤ d + ∥∥z2 − z′

2
∥∥ and

∥∥z2 − z′
1
∥∥ ≤ d + ∥∥z1 − z′

1
∥∥.
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Because z′
1 is the closest point to z1∥∥z1 − z′

1
∥∥ <

∥∥z1 − z′
2
∥∥.

Combining these three inequalities leads to∥∥z2 − z′
1
∥∥ − ∥∥z2 − z′

2
∥∥ < 2d.

So if (B) fails, then then z′
1 = z′

2 = z say. And so if (A) holds then, by the triangle
inequality, min(‖z − z1‖,‖z − z2‖) > r .

The probability P(A) equals the first term in (29). It is easy to check that D
(1)
2 −

D
(1)
1 has a density bounded by some c0, so (by scaling) the density of D

(λ)
2 − D

(λ)
1

is bounded by c0λ
1/2. So P(B) is at most 2c0λ

1/2d . �

We now apply this to the coalescence step.

LEMMA 15. Consider a state (c1, c2) = ((C1, z1, τ 1), (C2, z2, τ 2)) of the
coupled EA process started at z1

0 and z2
0. Suppose τ 1 < τ 2. Write �̄ =

max(diam(C1),diam(C2). Then the probability that the process coalesces at the
next step is at least

(30) exp
(−4πe−τ 1(∥∥z1

0 − z2
0
∥∥ + 2�̄

)2) − 2c0
∥∥z1

0 − z2
0
∥∥e−τ 1/2.

PROOF. Because z1
0 ∈ C1 and z2

0 ∈ C2, we have∥∥z1 − z2∥∥ ≤ ∥∥z1
0 − z2

0
∥∥ + 2�̄ := r

and moreover, each disc(zi, r) contains C1 ∪ C2. We can now apply Lemma 14
with λ = e−τ 1

; if the event in Lemma 14 occurs then the process coalesces at the
next step. �

3.3. Diameters in the coupled process. The key ingredient in proving Propo-
sition 13 is the following extension of Proposition 9 to the coupled EA process,
which will enable us to apply Lemma 15. This extension looks “obvious” but the
proof is rather fussy.

Fix large b, and regard a step i of the coupled EA process as “good” if

(31) e−τi/2 max
(
diam

(
C1

i

)
,diam

(
C2

i

)) ≤ b.

Let Nb(T ) be the number of “good” steps before6 time T .

PROPOSITION 16. In the coupled EA process, for sufficiently large b there
exist constants a,ρ > 0 and K < ∞ such that

P
(
Tcoal > T,Nb(T ) ≤ aT

) ≤ K exp(−ρT ), 0 < T < ∞.

6In the general case t0 > 0, we only count the number of steps with τ1
i > 0.
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The bound does not depend on the distance ‖z1
0 − z2

0‖ between the particles.
In this Section 3.3, for an event indexed by T we say the event “has vanishing

probability” if the probabilities are O(exp(−ρT )) as T → ∞, for some ρ > 0. As
in Proposition 9, for j = 1,2 write

Bj = ⋃
{i:e−τ

j
i

/2 diam(C
j
i )>b}

[
τ

j
i−1, τ

j
i

)
.

Note this is the same if use the indices τ
j
(i) of the jump processes.

Write

Ñb(T ) := Leb
((

B1 ∪ B2)c ∩ [0, T ]).
In words, this is the duration of time for which a “good” event similar to (31) is
occurring. Applying Proposition 9 to both components of the coupled process, for
sufficiently large b:

(32) the event
{
Tcoal > T, Ñb(T ) < T/3

}
has vanishing probability.

This is almost what we are trying to prove as Proposition 16, except that we need
to switch from “duration of time” Ñb(T ) to “number of steps” Nb(T ).

In the construction of the coupled EA process, we can start with two indepen-
dent rate-1 PPPs on (0,∞) and use these as the values of τ 1

(i) and τ 2
(i) until the

coalescence step. So on the event {Tcoal > T } these times, within [0, T ], coincide
with the times of two independent rate-1 PPPs. Here, is a helpful way to record a
consequence of this fact.7

LEMMA 17. Let BT be an event defined in terms of two independent rate-1
PPPs on [0, T ]. Let B∗

T be the corresponding event defined in terms of the times
τ 1
(0) < τ 1

(1) < τ 1
(2) < · · · < T and τ 2

(0) < τ 2
(1) < τ 2

(2) < · · · < T in the coupled EA
process. Then

P
(
Tcoal > T,B∗

T

) ≤ P(BT ).

We will apply this to events BT which have vanishing probability, in which set-
ting Lemma 17 says we can ignore such events for the purpose of proving Propo-
sition 16. We state the following straightforward large deviation bounds for quan-
tities associated with the PPP.

LEMMA 18. Let (τi) be a rate-2 PPP on (0,∞), let a > 0 and let HT (a) be
the sum of the lengths of the �aT � longest intervals (τi, τi+1) with τi < T . Then,
for sufficiently small a,

(33) the event
{
HT (a) ≥ T/4

}
has vanishing probability.

7The fact is slightly subtle, in that the previous assertion is not true conditional on the event
{Tcoal > T }.
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LEMMA 19. Let (τi) be a rate-2 PPP on (0,∞), represented as the super-
position of two independent rate-1 PPPs. Define τ+

k as the minimum value of τ�

for � ≥ k + 2 such that the events at τk+1.τk+2, . . . , τ� include events from both
component processes. Define

GT

(
a′) = ∑{

τ+
k − τk : τk ≤ T , τ+

k − τk > a′}.
Then, for sufficiently large a′,
(34) the event

{
GT

(
a′) ≥ T/12

}
has vanishing probability.

Now choose a sufficiently small and a′ sufficiently large that inequalities (33)
and (34) hold. Write H ∗

T (a) and G∗
T (a′) for the random variables corresponding

(as in Lemma 17) to HT (a) and GT (a′) defined in terms of the times in the coupled
EA process. Consider the event

(35)
{
Tcoal > T,H ∗

T (a) < T/4,G∗
T

(
a′) < T/12, Ñb(T ) ≥ T/3

}
.

On this event, take the “good” intervals comprising Ñb(T ) (with total length ≥
T/3) and delete the intervals comprising G∗

T (a′) (with total length < T/12). There
remain “good” intervals with total length > T/4, so there are at least �aT � such
intervals. In other words, on event (35) there are at least �aT � steps i of the coupled
process such that

(36) [τi, τi+1) is disjoint from B1 ∪ B2 and τ+
i ≤ τi + a′.

For each such step i we have (see argument below)

(37) e−τi/2 max
(
diam

(
C1

i

)
,diam

(
C2

i

)) ≤ bea′/2 := β, say.

In other words, on the event (35) we have Nβ(T ) ≥ �aT �. So now,

P
(
Tcoal > T,Nβ(T ) ≤ aT

)
≤ P

(
Tcoal > T,H ∗

T (a) > T/4
)

+ P
(
Tcoal > T,G∗

T

(
a′) > T/12

) + P
(
Tcoal > T, Ñb(T ) < T/3

)
≤ P

(
HT (a) > T/4

) + P
(
G∗

T

(
a′) > T/12

) + P
(
Tcoal > T, Ñb(T ) < T/3

)
using Lemma 17. Each term on the right has vanishing probability, by (32) and
(33) and (34), and this establishes Proposition 16 (with β in place of b).

The argument that (36) implies (37) is illustrated by the case in Figure 6. Con-
sider τk = min(τ 1

k , τ 2
k ) = min(τ 1

(j), τ
2
(k−j)) for some j , and suppose that (as in the

figure) τ 1
(j) > τ 2

(k−j). Saying that

[τk, τk+1) is disjoint from B1 ∪ B2

is saying that[
τ 1
(j−1), τ

1
(j)

)
is not in B1, and

[
τ 2
(k−j), τ

2
(k−j+1)

)
is not in B2
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τi

τ 1
i

τ 2
i

τk τk+1

τ 1
(j−1) τ 1

(j)

τ 2
(k−j) τ 2

(k−j+1)

FIG. 6. The times τi of steps of the coupled process are shown on the axis. The arrows point to the
times τ1

(j)
and τ2

(i−j)
associated with the completed steps of the component processes.

which is saying that

e
−τ 1

(j)/2 diam
(
C1

k

) ≤ b and e
−τ 2

(k−j+1)/2 diam
(
C2

k+1
) ≤ b.

Now consider the first time after τk that both components have expanded, that is,

τ+
k := min

{
τj : τ 1

j > τ 1
k and τ 2

j > τ 2
k

}
.

Then the inequality above implies

e−τ+
k /2 max

(
diam

(
C1

k

)
,diam

(
C2

k

)) ≤ b.

So when τ+
k ≤ τk + a′, we have (37).

3.4. Proof of Proposition 13. We need the following standard martingale-type
bound.

LEMMA 20. Let S ≥ 1 be a stopping time for a filtration (Fn). For any 0 <

p0 < 1 and m ≥ 1,

P(S > n) ≤ (1 − p0)
m + P

(
L(n,p0) < m,S > n

)
,

where

L(n,p0) = ∣∣{i : 1 ≤ i ≤ n,P(S = i|F i−1) ≥ p0
}∣∣.

PROOF. The process (Mn) with M0 = 1 and, for n ≥ 1,

Mn = 0 on {S ≤ n}
= 1∏

1≤i≤n P(S > i|F i−1)
on {S > n}

is a martingale. On the event {L(n,p0) ≥ m,S > n}, we have Mn ≥ (1 − p0)
−m

and so

1 = EMn ≥ EMn1(L(n,p0)≥m,S>n) ≥ (1 − p0)
−m

P
(
L(n,p0) ≥ m,S > n

)
.
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Because

P(S > n) = P
(
L(n,p0) ≥ m,S > n

) + P
(
L(n,p0) < m,S > n

)
the result follows. �

We can now combine previous ingredients to prove Proposition 13. Suppose i

is such that Icoal > i and the configuration (C1
i ;C2

i ) satisfies (31). Then by (30) the
probability of coalescing on the next step is at least

exp
(−4π

(∥∥z1
0 − z2

0
∥∥e−τi/2 + 2b

)2) − 2c0
∥∥z1

0 − z2
0
∥∥e−τi/2.

So there exist constants α > 0 and p0 > 0 (determined by b and c0) such that, for
the natural filtration (F i ) of the coupled EA process,

P(Icoal = i + 1|F i ) ≥ p0
(38)

on
{
Icoal > i,

∥∥z1
0 − z2

0

∥∥e−τi/2 ≤ α,
(
C1

i ;C2
i

)
satisfies (31)

}
.

Appealing to Lemma 20,

(39) P(Icoal > n) ≤ (1 − p0)
m + P(Ln < m, Icoal > n),

where

Ln = ∣∣{i : 0 ≤ i ≤ n − 1,P(Icoal = i + 1|F i ) ≥ p0
}∣∣.

Recall the definition of Nb(t) in Proposition 16. Take a > 0 (to be specified later)
and consider some m < an. If

(40)
∥∥z1

0 − z2
0
∥∥e−τj /2 ≤ α for j = �an� − m

then, on the event {Icoal > n,Nb(t) > an}, the events in (38) hold for at least m

values of i ≤ n, which implies Ln ≥ m. So if (40) holds, then

P(Ln < m, Icoal > n) ≤ P
(
Icoal > n,Nb(n) ≤ an

)
and then using (39) we have

P(Icoal > n)

≤ (1 − p0)
m + P

(
Icoal > n,Nb(n) ≤ an

) + P
(
Icoal > n, event (40) fails

)
.

Proposition 16 implies that for sufficiently large b there exist constants a,ρ > 0
and K < ∞ such that

P
(
Tcoal > n/3,Nb(n) ≤ an

) ≤ K exp(−ρn), n = 1,2,3, . . . .

Using this choice of a above,

P(Icoal > n) ≤ (1 − p0)
m + Oexp(n)

+ P(Icoal > n,Tcoal ≤ n/3) + P
(
Icoal > n, event (40) fails

)
,
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where Oexp(n) denotes a “vanishing probability” sequence which is O(ρn) as n →
∞ for some ρ < 1. Now note that elementary large deviation bounds for the rate-2
PPP (τi) show that

P(Icoal > n,Tcoal ≤ n/3), P(Icoal ≤ n,Tcoal > n), P(τn ≤ n/3)
(41)

are all Oexp(n).

Choosing m = �an/2�, we find

P(Icoal > n) ≤ Oexp(n) + P
(
event (40) fails

)
, n = 1,2,3, . . . ,

where the Oexp(n) term does not depend on ‖z1
0 −z2

0‖. From the definition of event
(40) and the choice of m,

(42) P
(
event (40) fails

) ≤ P

(
τj ≤ 2 log

‖z1
0 − z2

0‖
α

)
for j = �an/2� − 1.

From the final term in (41), there exists a constant β such that

P
(
event (40) fails

) = Oexp(n) for n > β log+∥∥z1
0 − z2

0
∥∥.

So now,

P(Icoal > n) ≤ Oexp(n) for n > β log+∥∥z1
0 − z2

0
∥∥.

Because P(Tcoal > n) ≤ P(Icoal > n)+P(Icoal ≤ n,Tcoal > n), we have established
Proposition 13.

4. Proof of the main theorems.

4.1. Notation. In this section, we use the preceding bounds to prove Theorems
1 and 2. Recall some definitions from Section 1.1. M(R2) denotes the space of
finite measures on R

2, equipped with the usual topology of weak convergence. For
a particle ξ , the time-t ancestor is denoted ancestor(t, ξ), and Descend(t1, t2, ζ )

denotes the set of particles born before t2 whose time-t1 ancestor is ζ . And for
t1 ≤ t2 and ζ ∈ �≤t1

μt1,t2,ζ is the measure μ putting weight e−t2

(43)
on the position of each particle in Descend(t1, t2, ζ ).

Note that given �≤t1 , the “marks” (μt1,t2,ζ , ζ ∈ �≤t ) are still random elements of
the space M(R2), whose distributions depend on all �≤t1 and are dependent as ζ

varies.
If we use �≤t to define a translation-invariant marked PPP of the form

{(ξ,m+(ξ)), ξ ∈ �≤t } with nonnegative real marks m+(ξ), then there is a spatial
average rate of mark values, which we will write as

ave
(
m+(ξ) : ξ ∈ �≤t

)
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defined as the value of a such that

E
∑

ξ∈�≤t ,zξ∈B

m+(ξ) = a × area(B), B ⊂R
2.

For instance, we have, for t1 < t2,

(44) ave
(|μt1,t2,ξ | : ξ ∈ �≤t1

) = 1,

where |μ| denotes the total mass of μ.
The self-similarity property of the underlying space–time PPP � allows us to

write down exact self-similarity properties for our marked point processes. In par-
ticular, the action of the scaling map z → e−t/2z on R

2, applied to the distribution
of {(zξ ,μt1,t2,ξ ), ξ ∈ �≤t1}, gives a distribution which coincides with the distri-
bution obtained from {(zξ ,μt1+t,t2+t,ξ ), ξ ∈ �≤t1+t } under the action of rescaling
weights μ → e−tμ. These self-similarity properties allow us to take previous re-
sults, which were stated in the context of time decreasing from 0 to −t , and rewrite
them in the context of time decreasing from t to 0 and in the notation above. These
rewritten results and simple consequences are recorded as Corollaries 21–23 be-
low.

As a first example, Proposition 4 shows that for t > 0,

ave
(‖zancestor(−t,ξ) − zξ‖ : ξ ∈ �≤0

) ≤ Ket/2,

where K = ∫ ∞
0 G(r)dr < ∞. Using self-similarity, this implies the following.

COROLLARY 21. For 0 ≤ t0 ≤ t ,

ave
(‖zancestor(t0,ξ) − zξ‖ : ξ ∈ �≤t

) ≤ Kete−t0/2.

Next, the fact that a set of cardinality k contains k(k − 1) distinct ordered pairs
gives the first identity below, and the second follows from self-similarity. For t > 0,

ave
(|μ0,t,ζ |(|μ0,t,ζ | − e−t ) : ζ ∈ �≤0

)
= e−2t ave

( ∑
ξ2∈�≤t

1{ancestor(0,ξ2)=ancestor(0,ξ1)} : ξ1 ∈ �≤t

)
(45)

= e−t ave
( ∑

ξ2∈�≤0

1{ancestor(−t,ξ2)=ancestor(−t,ξ1)} : ξ1 ∈ �≤0

)

= e−t
∫
�

∫
R2

q(t; z1, z2) dz2 dz1 = e−t
∫
R2

q(t;0, z) dz,

where � denotes the unit square and q(t; z1, z2) is the probability, given that
�≤0 has particles at z1 and z2, that they have the same ancestor at time −t . In
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the notation of Proposition 4, we have (using the triangle inequality) q(t;0, z) ≤
2Gt(e

−t/2‖z‖/2). So from the conclusion of Proposition 4, we have

e−t
∫
R2

q(t;0, z) dz ≤ 2e−t
∫
R2

G
(
e−t/2‖z‖/2

)
dz = 2

∫
R2

G
(‖z‖/2

)
dz < ∞.

Using (44) for the −et term in (45), we have established the following.

COROLLARY 22. supt>0 ave(|μ0,t,ζ |2 : ζ ∈ �≤0) < ∞.

Finally, self-similarity allows us to rewrite Proposition 13 as follows.

COROLLARY 23. Let s0 ≤ s̄ ≤ s1 ≤ s2. Let p(s0, s1, s2; z1, z2) be the prob-
ability, given that �≤s1 contains a particle at position z1 and �≤s2 contains a
particle at position z2, that these particles have different time-s0 ancestors. Then

p(s0, s1, s2; z1, z2) ≤ K exp
(−ρ(s̄ − s0)

)
provided ‖z1 − z2‖ ≤ √

2e−s̄/2

for the constants K,ρ in Proposition 13.

4.2. Convergence of mark measures. Here, we will prove the following.

PROPOSITION 24. There exist M(R2)-valued marks (μ0,∞,ζ , ζ ∈ �≤0) such
that ave(|μ0,∞,ζ |, ζ ∈ �≤0) = 1 and for all ζ ∈ �≤0,

μ0,t,ζ → μ0,∞,ζ in probability as t → ∞.

The argument is slightly subtle. For large t1 < t2, a time-t1 descendant ξ of ζ

contributes mass e−t1 to μ0,t1,ζ , whereas it contributes a random (mean e−t1 ) mass
to μ0,t2,ζ because the number of time-t2 descendants of ξ is random. Even though
these descendants are spatially close to ξ , this randomness means we can only
deduce immediately that the induced non-uniform measure on time-t2 descendants
of ζ is close to μ0,t1,ζ ; this is not the uniform measure μ0,t2,ζ . To handle this issue,
we first prove convergence of total masses.

PROPOSITION 25. There exist real-valued marks (m0,ζ , ζ ∈ �≤0) such that
ave(m0,ζ : ζ ∈ �≤0) = 1 and for all ζ ∈ �≤0,

|μ0,t,ζ | → m0,ζ in probability as t → ∞.

PROOF. Write � for the unit square and �(t) for the scaled square of area
e−t . For 0 < t0 < t1 < t2 and ε > 0, write A(t0, t1, t2, ε) for the event:

there exist at least (1 − ε)et1−t0 particles of �≤t1 in �(t0), and at least (1 − ε)et2−t0

particles of �≤t2 in �(t0), all with the same time-0 ancestor.
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Define

(46) ρ(t0, ε) = lim inf
t1→∞ lim inf

t2→∞ P
(
A(t0, t1, t2, ε)

)
.

We will show the following.

LEMMA 26. limt0→∞ ρ(t0, ε) = 1 for each ε > 0.

Granted that, consider

a(t1, t2) := ave
(
min

(|μ0,t1,ζ |, |μ0,t2,ζ |
)
, ζ ∈ �≤0

) ≤ 1.

By averaging over area-t0 squares in R
2,

a(t1, t2) ≥ (1 − ε)P
(
A(t0, t1, t2, ε)

)
.

So Lemma 26 implies

(47) lim inf
t1→∞ lim inf

t2→∞ a(t1, t2) = 1.

By the triangle inequality and (44),

ave
(∣∣|μ0,t1,ζ | − |μ0,t2,ζ |

∣∣ : ζ ∈ �≤0
) ≤ 2

(
1 − a(t1, t2)

)
.

Then (47) and the Cauchy criterion imply there exist limits m0,ζ for which

lim
t→∞ ave

(∣∣|μ0,t,ζ | − m0,ζ

∣∣ : ζ ∈ �≤0
) = 0.

Finally, Corollary 22 provides the “uniform integrability” condition needed to pass
(44) to the limit to obtain ave(m0,ζ : ζ ∈ �≤0) = 1. This establishes Proposition 25.

�

PROOF OF LEMMA 26. Write �
�(t0)≤t for the restriction of �≤t to particles

within �(t0). We can upper bound the mean number of pairs (ξ1, ξ2) in �(t0) with
ξi ∈ �≤ti and with different time-0 ancestors, as follows. Write

M(t0, t1, t2) := ∑
ξ1∈�

�(t0)
≤t1

∑
ξ2∈�

�(t0)
≤t2

1{ancestor(0,ξ1) �=ancestor(0,ξ2)}.

Then

EM(t0, t1, t2) = et1et2

∫
�(t0)

∫
�(t0)

p(0, t1, t2, z1, z2) dz1 dz2,

where p(0, t1, t2, z1, z2) is the probability, given that �≤t1 has a particle at z1
and �≤t2 has a particle at z2, that these two particles have different time-0 an-
cestors. But Corollary 23 shows that when z1 and z2 are in �(t0) we have
p(0, t1, t2, z1, z2) ≤ K exp(−ρt0). So

(48) EM(t0, t1, t2) ≤ et1+t2−2t0K exp(−ρt0).

We now quote an elementary lemma.
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LEMMA 27. Let I ⊂ J be finite sets, let ∼ be an equivalence relation on J

and let B be a maximal-cardinality set in the corresponding partition of J . Let

ρ = |{(i, j) ∈ I × (J \ I ) : i � j}|
|I | · |J \ I | .

Then |B ∩ I | ≥ (1 − ρ)|I | and |B ∩ (J \ I )| ≥ (1 − ρ)|J \ I |.

We will apply the lemma with I and J being �
�(t0)≤t1

and �
�(t0)≤t2

, so that |I | and
|J | have Poisson distributions with means et1−t0 and et2−t0 , and to the equivalence
relation “same time-0 ancestor.” Choose δ > 0 such that (1− δ)(1− δ(1− δ)−2) <

ε. On the event

|I | ≥ (1 − δ)et1−t0 and |J | ≥ (1 − δ)et2−t0 and
(49)

M(t0, t1, t2) ≤ δet1+t2−2t0,

Lemma 27 implies that event A(t0, t1, t2, ε) holds. The first two events in (49) have
probabilities → 1 as t1, t2 → ∞, and so by (48) and Markov’s inequality the limit
ρ(t0, ε) at (46) satisfies

ρ(t0, ε) ≥ 1 − δ−1K exp(−ρt0),

establishing Lemma 26. �

Proof of Proposition 24. Take 0 < t0 < t . By self-similarity, Proposition 25
remains true if time 0 is replaced by an arbitrary time t0: there exist real-valued
marks (mt0,ξ , ξ ∈ �≤t0) such that for all ξ ∈ �≤t0

(50) |μt0,t,ξ | → mt0,ξ in probability as t → ∞.

For ζ ∈ �≤0, define ν0,t0,ζ to be the measure that puts weight mt0,ξ on the position
zξ of each particle ξ ∈ Descend(0, t0, ζ ). And define ν0,t0,t,ζ to be the measure that
puts weight |μt0,t,ξ | on the position zξ of each particle ξ ∈ Descend(0, t0, ζ ). We
will need to show that, for large t0, the measures ν0,t0,t,ζ and μ0,t,ζ are close.

We exploit the dual bounded Lipschitz metric on M(R2):

d
(
ν, ν′) = sup

{∣∣∣∣∫ f dν −
∫

f dν′
∣∣∣∣ : ‖f ‖BL ≤ 1

}
,

‖f ‖BL := max
(

sup
z

∣∣f (z)
∣∣, sup

z1 �=z2

|f (z2) − f (z1)|
‖z1 − z2‖

)
.

This metric has the property

(51) d

(
c

∑
i

δzi
, c

∑
i

δz′
i

)
≤ c

∑
i

∥∥zi − z′
i

∥∥.
Consider 0 < t1 < t2 < t . The relationship between ν0,t2,t,ζ and ν0,t1,t,ζ is
that for each ξ ∈ Descend(0, t, ζ ) the weight e−t moved from the position of
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ancestor(t2, ξ) to the position of ancestor(t1, ξ). Taking spatial averages and us-
ing (51), we find

ave
(
d(ν0,t1,t,ζ , ν0,t2,t,ζ ), ζ ∈ �≤0

)
≤ e−t ave

(‖zancestor(t1,ξ) − zancestor(t2,ξ)‖, ξ ∈ �≤t

)
≤ 2Ke−t1/2 by Corollary 21.

This and (50) are sufficient to imply that the ν’s have a limit: for all ζ ∈ �≤0

(52) ν0,t,ζ → μ0,∞,ζ (say), in probability as t → ∞.

Now by (50), we can write the definition of ν0,t0,ζ as

ν0,t0,ζ = ∑{(
lim

u→∞|μt0,u,ξ |
)
δzξ : ξ ∈ Descend(0, t0, ζ )

}
,

whereas (by definition) for t > t0

μ0,t,ζ = ∑{
μt0,t,ξ : ξ ∈ Descend(0, t0, ζ )

}
.

So now we have

d(μ0,t,ζ ,μ0,∞,ζ )

≤ d(ν0,t0,ζ ,μ0,∞,ζ ) + d(μ0,t,ζ , ν0,t0,ζ )

≤ d(ν0,t0,ζ ,μ0,∞,ζ )

+ ∑{
d
(

lim
u→∞|μt0,u,ξ |δzξ ,μt0,t,ξ

)
: ξ ∈ Descend(0, t0, ζ )

}
≤ d(ν0,t0,ζ ,μ0,∞,ζ )

+ ∑{∣∣∣ lim
u→∞|μt0,u,ξ | − |μt0,t,ξ |

∣∣∣ : ξ ∈ Descend(0, t0, ζ )
}

+ ∑{
d
(
μt0,t,ξ , |μt0,t,ξ |δzξ

) : ξ ∈ Descend(0, t0, ζ )
}
.

Taking the spatial average over ζ ∈ �≤0 of sums over all time-t0 descendants of
ζ is the same as taking the spatial average over all time-t0 particles. So taking
averages in the inequality above gives

(53) ave
(
d(μ0,t,ζ ,μ0,∞,ζ ) : ζ ∈ �≤0

) ≤ b1(t0) + b2(t0, t) + b3(t0, t),

where

b1(t0) = ave
(
d(ν0,t0,ζ ,μ0,∞,ζ ) : ζ ∈ �≤0

)
,

b2(t0, t) = ave
(∣∣∣ lim

u→∞|μt0,u,ξ | − |μt0,t,ξ |
∣∣∣ : ξ ∈ �≤t0

)
,

b3(t0, t) = ave
(
d
(
μt0,t,ξ , |μt0,t,ξ |δzξ

) : ξ ∈ �≤t0

)
.

To prove Proposition 24, it is enough to prove

(54) ave
(
d(μ0,t,ζ ,μ0,∞,ζ ) : ζ ∈ �≤0

) → 0 as t → ∞.
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We know b1(t0) → 0 as t0 → ∞ by (52). And b2(0, t) → 0 as t → ∞ by Proposi-
tion 25, and then by self-similarity b2(t0, t) → 0 as t → ∞ for all t0. Finally,

d
(
μt0,t,ξ , |μt0,t,ξ |δzξ

) ≤
∫

‖zξ − z‖μt0,t,ξ (dz)

= e−t
∑{‖zancestor(−t0,χ) − zχ‖ : χ ∈ Descend(t0, t, ξ)

}
and so

b3(t0, t) ≤ e−t ave
(‖zancestor(−t0,χ) − zχ‖ : χ ∈ �≤t

)
≤ Ke−t0/2 by Corollary 21.

Now taking limits in the inequality (53) establishes (54) and then Proposition 24.

4.3. The random partition. We will now show that a limit random measure
μ0,∞,ξ in Proposition 24 is in fact Lebesgue measure � restricted to some ran-
dom set. The fact that the t → ∞ limit normalized empirical measure on Z t is �

implies that ∑{μ0,∞,ζ : ζ ∈ �≤0} = � a.s.

So the random measures μ0,∞,ζ have random densities fζ (z), z ∈ R
2 such that∑{

fζ (z) : ζ ∈ �≤0
} = 1 ∀z a.s.

As t → ∞, we have

E

{ ∑
zξ1∈�

∑
zξ2∈�

e−2t1{‖zξ1−zξ2‖≤δ} : ξ1 ∈ �≤t , ξ2 ∈ �≤t

}

→
∫
�

∫
�

1{‖z1−z2‖≤δ} dz1 dz2.

Now consider whether a pair (ξ1, ξ2) have different time-0 ancestors; precisely,
consider

lim
t→∞E

{ ∑
zξ1∈�

∑
zξ2∈�

e−2t1{‖zξ1−zξ2‖≤δ}1{ancestor(0,ξ1) �=ancestor(0,ξ2)} :
(55)

ξ1 ∈ �≤t , ξ2 ∈ �≤t

}
.

From the fact μ0,t,ζ → μ0,∞,ζ, the limit in (55) equals

(56) E

∫
�

∫
�

1{‖z1−z2‖≤δ}
(

1 − ∑
ζ∈�≤0

fζ (z1)fζ (z2)

)
dz1 dz2.
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But consider the probability p(0, t, t, z1, z2), given that �≤t has particles at z1 and
z2, that they have different time-0 ancestors. By Corollary 23 with s̄ defined by
δ/

√
2 = exp(−s̄/2),

if ‖z2 − z1‖ ≤ δ then p(0, t, t, z1, z2) ≤ Kδ2ρ for t ≥ s̄.

So the limit in (55) also equals∫
�

∫
�

1{‖z1−z2‖≤δ} lim
t

p(0, t, t, z1, z2) dz1 dz2

(57)
≤ Kδ2ρ

∫
�

∫
�

1{‖z1−z2‖≤δ} dz1 dz2.

For probability distributions (ai) and (bi), we have 1 − ∑
i aibi ≥ 1 − maxi ai .

Applying this to (56) and using inequality (57),

E
∫
�

∫
� 1{‖z1−z2‖≤δ}(1 − maxζ∈�≤0 fζ (z1)) dz1 dz2∫

�
∫
� 1{‖z1−z2‖≤δ} dz1 dz2

≤ Kδ2ρ.

Letting δ ↓ 0 we deduce that a.s.

max
ζ∈�≤0

fζ (z) = 1 a.e.

So defining

A(0, ζ ) = {
z : fζ (z) = 1

}
and modifying on null sets, the random sets {A(0, ζ ) : ζ ∈ �≤0} form a partition
of R2, and μ0,∞,ζ is Lebesgue measure restricted to A(0, ζ ). So writing �A for
Lebesgue measure restricted to A, we can rewrite Proposition 24 as follows, using
self-similarity to extend from the time-0 case to the general time t case.

PROPOSITION 28. For each −∞ < t < ∞, there exists a random partition
{A(t, ζ ) : ζ ∈ �≤t } of R2 into measurable sets such that for all ζ ∈ �≤t

μt,u,ζ → �A(t,ζ ) in probability as u → ∞.

4.4. Completing the proofs. Proposition 28 is essentially enough to prove The-
orems 2 and 1. As noted in the Introduction, for fixed t we can regard

Z(t) = {(
zξ ,A(t, ξ)

) : ξ ∈ �≤t

}
as a marked point process. The fact that the evolution of the coloring process after
time t , given Z t , does not depend on the arrival times of the particles in �≤t ,

means that Z(t) is measurable with respect to the time-reversed filtration
←
F t at (5).

The statement in Theorem 1 was that the process Z(t) evolves in reversed time
according to the rule:
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during [t, t − dt], for each ξ ∈ �≤t with probability dt delete ξ [that is, remove the
entry (zξ ,A(t, ξ))]; for each deleted particle ξ , let ζ be the nearest other particle, and
set A(t − dt, ζ ) = A(t, ζ ) ∪ A(t, ξ).

To see how this arises, fix large T and for −∞ < t ≤ T consider {(zξ ,μt,T ,ξ ) :
ξ ∈ �≤t } as a marked point process. From Lemma 5 (the thinning property of the
PPP), in reversed time t this evolves precisely as a “coalescing measures process”:

during [t, t − dt], for each ξ ∈ �≤t delete ξ [i.e., remove the entry (zξ ,μt,T ,ξ )] with
probability dt ; for each deleted particle ξ , let ζ be the nearest other particle, and set
μt−dt,T ,ζ = μt,T ,ζ + μt,T ,ξ .

Taking the T → ∞ limit given in Proposition 28, we obtain the former rule for the
dynamics of Z(t).

The other assertions of Theorem 1 hold by translation-invariance and self-
similarity of the underlying space–time PPP �.

5. Discussion.

5.1. In what sense is this a tree process? We have used the language of an-
cestors and descendants, but otherwise have not really exploited the implicit tree
structure of the colored point process construction. If we draw the process as a
random tree in the plane, with edges drawn as line segments, it is clear from Fig-
ure 1 that edges sometimes cross, so we do not get a “tree” in the usual sense.
This suggests that, in the opening “k colors in the unit square” model, in the limit
partition into k colored regions, these regions are not necessarily connected. Fig-
ure 7 illustrates how this could happen. Simulations strongly indicate that in fact a
typical region is not connected but that only a very small proportion of its area is
outside its largest connected component.

2
4

5
7

9
10

11

16

3 8

FIG. 7. A possible realization of the tree in the unit square on the first n = 11 arriving points. The
edge from 1 to 2 is omitted, to show the k = 2 subtrees associated with the first two vertices. At this
stage, the unit square is Voronoi-partitioned into 2 components according to whether the nearest
vertex is ◦ or •, and the ◦ component is not connected. We expect this disconnection to persist in the
n → ∞ limit.
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5.2. Other models of coalescing partitions. There has been very little study
of partition-valued processes in the plane which evolve by merging of adjacent
components. One such process can be obtained by thinning a Poisson line process,
but we are thinking of pairwise mergers. A well-studied implicit example is pro-
vided by bond percolation. As illustrated in Figure 8, to a percolation cluster of
“open” edges (A) one can associate (this is planar duality) the region consisting
of the union of the unit squares centered at the the vertices in the cluster (B), and
then delete the open edges (C) and vertices to obtain a partition of the plane (D).
The length of the boundary between two adjacent regions in this partition equals
the number of “closed” edges between the original percolation clusters. So in the
bond percolation model where edges become open at Exponential(1) times, the
associated partition-valued process is such that the merger rate of adjacent regions
equals the length of their common boundary. For this model, classical percola-
tion theory [10] implies that infinite regions appear after time log 2. More general
models in which two adjacent components merge into one at some stochastic rate

FIG. 8. Bond percolation clusters as a partition of R2.
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determined by their geometry are discussed in [4], where it is conjectured that if
large components do not grow too quickly (relative to small components), then
there should be some self-similar asymptotics, but no such result is proved. The
coalescing partitions process in this paper is perhaps the only known self-similar
Markovian process of pairwise merging partitions of R

2. In one dimension, the
thinning process of Poisson points defines a self-similar process of merging adja-
cent intervals, which has an interpretation as intermediate-size asymptotics in the
Kingman coalescent ([3] Section 3.1).

5.3. Heuristic arguments. Arguments in this Section 5.3 are heuristics, only
parts of which seem easily formalized. We conjectured at (28) that the tail behavior
of the “meeting distance” random variable ‖Zcoal‖ is of the form

(58) P
(‖Zcoal‖ > r

) � r−γ as r → ∞
for some exponent γ . This is heuristically related to the issue of fractal dimen-
sion of the boundaries of the regions (A(0, ξ), ξ ∈ �≤0), as follows. Consider the
boundaries within the unit square. Saying this has fractal dimension d is saying
that for small x > 0 we need order x−d radius-x discs to cover these boundaries.
Consider a uniform random point z1 in the square and another random point z2
uniform on disc(z1, x). The chance that z1 and z2 are in different components is
the same order as the chance they are in the same covering disc, which chance is
order x2−d . But the former chance is the same order as the chance that the meeting
distance Mx between their lines of descent is at least 1, that is, P(Mx > 1). So
we expect P(Mx > 1) � x2−d as x ↓ 0. Now by self-similarity Mx =d xM1. So
setting r = 1/x,

(59) P(M1 > r) � r−(2−d)

and we heuristically identify the fractal dimension as

d = 2 − γ.

5.3.1. Heuristic 1: The boundary has fractal dimension 1. For large t0,
consider the Voronoi regions associated with the different sets of particles
Descend(0, t0, ζ ) as ζ varies. The particles in �≤t0 are separated by distance
of order e−t0/2. Consider three points (z1, z2, z3) on the boundary at time t0
at distances of (say) 5e−t0/2 apart. As t increases, particles arriving nearby
move the boundary near these three points. The first such move is over a dis-
tance of order e−t0/2 and subsequent moves decrease geometrically. So in the
t → ∞ limit, the positions of the boundaries near (z1, z2, z3) should become
(z1 + D1e

−t0/2, z2 + D2e
−t0/2, z3 + D3e

−t0/2) for some (D1,D2,D3) with a
nonvanishing limit as t0 → ∞. But this is saying that in the limit partition
(A(0, ζ ), ζ ∈ �≤0), on every scale σ = ‖y1 − y3‖, for y1 and y3 on the bound-
ary, the distance from the midpoint (y1 + y3)/2 to the boundary is of the form Dσ

for some random D > 0. This is a hallmark of “fractal dimension = 1.”
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5.3.2. Heuristic 2: The boundary has fractal dimension 1. The genealogical
tree defines a “line of descent” for each particle in �; these particle positions are
dense in R

2, so let us suppose that in the continuum limit there is such a “line of
descent” from almost all points z of R2 to infinity. Draw the tree via line segments
in R

2. Consider a point (x,0) on the x-axis. The route from there to infinity first
crosses the y = 1 line at some random point (c(x),1). Consider the random set C
of all such values c(x) as x varies. This is stationary (translation-invariant) and so
has some intensity γ , which cannot be zero; moreover, we expect γ < ∞ because
the intensity of line segments of length > a is finite for each a > 0. Then suppose
that for each c ∈ C , the sets of originating points {x : c(x) = c} form some8 interval
(x−(c), x+(c)).

Next consider, for z > 0, the random quantity defined as

the infimum of y > 0 such that the routes from (x1,0) to infinity and from (x1 + z,0)

to infinity first hit the line {(x, y) : −∞ < x < ∞} at the same point.

This has a distribution, say Dz, which does not depend on x1. By considering
endpoints of the intervals (x−(c), x+(c)), we have

γ = lim
δ↓0

P(Dδ > 1)/δ.

But by scale-invariance, we have Dδ =d δD1, and so

P(D1 > d) ∼ γ /d as d → ∞.

But D1 should have the same tail behavior as M1 at (59). This suggests the scaling
exponent is γ = 1, and hence the fractal dimension of the boundaries = 1.

5.3.3. Heuristic 3: The boundary has fractal dimension �= 1. The heuristics at
(58), (59) are essentially saying that the fractal dimension d is determined via the
limit

lim
r→∞

P(‖Zcoal‖ > 2r)

P(‖Zcoal‖ > r)
= 2d−2.

But the limit is determined by the asymptotics of the coupled EA process, condi-
tioned on not coalescing for a long time. As we saw in in Section 3.1, the dynamics
of the coupled EA process involve the complicated geometry of excluded regions,
and there seems no reason why that limit should turn out to be exactly 1/2.

5.3.4. Regarding Conjecture 3. One might imagine that Conjecture 3 would
follow easily from Proposition 13 via some general result of the form

If {A,Ac} is a partition of the unit square such that ρ(r) → 1 as r → 0, where ρ(r)

is the probability that two random points at distance r apart are in the same subset,
then (after modifying A on a set of measure zero) the topological boundary of A has
measure zero.

8The argument is unchanged if instead it is a union of a finite-mean number of intervals.
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But this assertion is not true in general, by considering an example of the form
A = ⋃

i disc(zi, ri) for dense (zi) and ri ↓ 0 very fast. Proving Conjecture 3 seems
to require some new argument.

Acknowledgments. I thank Weijian Han for Figures 1 and 2, Andrew Wade
for sharing his results and a referee for helpful suggestions. A dynamic simula-
tion by Shirley Danlei Zhu can be seen at https://www.stat.berkeley.edu/~aldous/
Research/Ugrad/40to2_Coloring_fast.gif.
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