
STAT 206: Random Graphs and Complex Networks Spring 2003Le
ture 7: Criti
al behavior of the Erd}os-Renyi modelLe
turer: David Aldous S
ribe: Andrej BogdanovIn this le
ture we investigate the size of the giant 
omponent in the Erd}os-Renyi random graph model withedge probability p � 1=n. In this model, the presen
e of ea
h edge in the graph is de
ided by an independent
oin 
ip with su

ess probability p. We show that for p slightly bigger than 1=n, the giant 
omponent hassize of order n2=3. There are several proofs of this result, and we will opt for an intuitive, ba
k-of-envelopeheuristi
 argument. This argument has the advantage of showing o� some sophisti
ated 
on
epts fromprobability like the Central Limit Theorem and Brownian motion.At the heart of this argument is a random pro
ess that, starting from an arbitrary vertex v, exposes theneighbors of v, their neighbors, and so on, until the whole 
omponent of v is revealed. The sizes of the
omponents are found by analyzing the dynami
s of this pro
ess. For the Erd}os-Renyi model, the relevantstatisti
s 
an be 
omputed exa
tly, giving a detailed pi
ture of the behavior of 
omponent sizes near p = 1=n.7.1 The breadth �rst spanning forest of a graphLet G be a (non-random) graph on vertex set [n℄. The breadth �rst spanning forest of G is the spanningforest generated by the breadth �rst sear
h algorithm:Until all verti
es of G have been visited,1. Pi
k a vertex v that has not been visited yet. Put v in a queue Q.2. While Q is nonempty, pull a vertex v from the head of Q, draw edges to all its neighbors that have notbeen previously visited, and put these 
hildren at the tail of Q.Here is an example:
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A ni
e property of this 
onstru
tion is that all the edges of G whi
h fail to be in
luded in the breadth �rstspanning forest 
onne
t des
endants of the same generation. For the random graph G(n; p � 1=n) we expe
tto see few su
h 
ross edges.We will need a few more notions related to the breadth �rst sear
h algorithm. Suppose we interrupt thealgorithm before it terminates. Say a vertex v has been visited if it was in the queue Q at some point before,7-1
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or at the time of the interruption. Say v has been pro
essed if v has been in Q at some point before theinterruption, but is not there at the time of the interruption. For instan
e, suppose we have just �nishedputting vertex 4 from our example in Q, and we interrupt the algorithm. At this point, the algorithm hasvisited the verti
es 1; 2; 3; 4; 5; 6, but has pro
essed only verti
es 1; 2 and 3.From here on, we will assume that the verti
es of G are labeled in their order of visitation in the breadth�rst spanning forest F , just like in the pi
ture. Given this labeling, we de�ne a (deterministi
) walkw(0); w(1); : : : ; w(n) by the formulaw(i) = w(i� 1) + (number of 
hildren of i in F )� 1;with w(0) = 0. For example, for the above graph the walk will look like this:
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Noti
e that the size of the �rst 
omponent is the smallest i su
h that w(i) = �1. More generally, the lastvisited vertex of the kth 
omponent is the smallest i su
h that w(i) = �k. This is true for any graph, andwe will use it to study the sizes of 
omponents in the random graph G(n; p).7.2 A little bit of probabilityIn the graph G(n; p), the walk w(0); w(1); : : : ; w(n) is a random pro
ess. The key parameter of the pro
ess isthe distribution of the in
rements w(i)�w(i� 1) 
onditioned on the past w(i� 1); : : : ; w(0). Let Di denotethe number of all verti
es that have been visited but not pro
essed (ex
luding i itself) when the algorithmrea
hes vertex i. At this point, the probability of an edge between i and any vertex that has not been visitedis independent of the past. Sin
e the set of 
andidate neighbors for i is exa
tly the set of non-visited verti
es,the distribution of w(i) � w(i� 1) is binomial with n� i�Di samples and su

ess probability p.We are interested in the limiting behavior of the pro
ess w(0); w(1); : : : as n ! 1. If, for the moment,we ignore the 
ontribution of the Di, the di�eren
es w(i) � w(i � 1) are independent random variables. Ifwe keep i small 
ompared to n, these are also almost identi
ally distributed. Therefore, at least to a �rstapproximation, we 
an model w(i) as a sum of independent, identi
ally distributed random variables. We
an now appeal to a 
elebrated statement of probability theory that des
ribes the limiting behavior of su
hsums:Theorem 7.1 (The Central Limit Theorem) Let X1; X2; : : : be independent and identi
ally distributedrandom variables with mean 0 and varian
e 1. Fix t > 0 and let X(m)t = (X1 + : : : + Xbmt
)=pm. Asm!1, X(m)t 
onverges in distribution to a normal mean 0, varian
e t random variable X(1)t .If we now let the \time" t vary, we 
an think of X(1)t as a 
ontinuous 
olle
tion of random variables. Another
elebrated theorem says that this 
olle
tion is a 
ontinuous random pro
ess known as Brownian motion.Unfortunately, we 
annot apply the Central Limit Theorem to our analysis, as our random variables w(i)�w(i � 1) are not quite independent. It would be ni
e if there were some form of the Theorem that allows
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dependen
ies between the Xi. Unlike independen
e, of whi
h there is only one kind, statisti
al dependen
ies
ome in many varieties. As Tolstoy might have said, \All independent variables are alike, all dependentones are dependent in their own way." However, there is a version of the Central Limit Theorem that 
oversexa
tly our form of dependen
e. Roughly, this version of the theorem says:Theorem 7.2 (The CLT and Brownian motion for martingales) Let X1; X2; : : : be random variablessu
h that for all i, E[XijX1; : : : ; Xi�1℄ � 0 and Var[XijX1; : : : ; Xi�1℄ � 1. Fix t > 0 and let X(m)t =(X1+ : : :+Xbmt
)=pm. As m!1, X(m)t 
onverges in distribution to a normal mean 0, varian
e t randomvariable X(1)t . Moreover, the 
olle
tion (X(1)t )t�0 des
ribes Brownian motion.7.3 Dynami
s of the walk on the Erd}os-Renyi random graphWe now apply these observations to the random graph G(n; p). With a bit of hindsight, we set p = 1n + �n4=3 .It turns out that this is the appropriate s
aling for whi
h, as we vary � from �1 to 1, we will observe theemergen
e of a 
omponent of size O(n2=3) in the random graph.In our 
omputation, we will ignore the 
ontribution of the Di, whi
h 
an be shown negligible. We haveE[w(i)� w(i� 1)jw(0); : : : ; w(i� 1)℄ � E[Binom(n� i; p)� 1℄ = �n1=3 + in + �in4=3and Var[w(i) � w(i� 1)jw(0); : : : ; w(i� 1)℄ � (n� i)p(1� p) � 1:We now apply the Central Limit Theorem for martingales to the sequen
e Xi = w(i)� w(i� 1)�E[w(i)�w(i� 1)jw(0); : : : ; w(i� 1)℄. For m = n2=3, this givesXmt = w(mt) � mXi=1 t� �n1=3 + in + �in4=3� = �tn1=3 � 12 t2n1=3 + o(n1=3)so that, as n!1, w(tn2=3)� (�t� t2=2)n1=3n1=3 d�! X(1)t :Rearranging terms, we obtain w(tn2=3)n1=3 d�! �t� t2=2 +X(1)t :This is Brownian motion superimposed on the parabola �t� t2=2. For � > 0, the evolution of w(tn2=3)=n1=3as a fun
tion of t will look like this:
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The size of the kth 
omponent is tn2=3, where t is the smallest value at whi
h the 
urve dips below the liney = �kn�1=3. For � > 0, the 
urve might dip under zero a few times before it \takes o�", at whi
h pointthe giant 
omponent in G(n; p) begins to form. This 
omponent will keep growing roughly until the time atwhi
h the limiting pro
ess interse
ts the t axis. In expe
tation, this happens when t = 2�, so that the giant
omponent has size � 2�n2=3. After this point, the pro
ess follows the drop of the parabola, and we do notexpe
t to see any more large 
omponents. For � < 0, the fun
tion �t� t2 is de
reasing over the whole rangeof t, and no giant 
omponent will appear.


