STAT 206: Random Graphs and Complex Networks Spring 2003

Lecture 7: Critical behavior of the Erdds-Renyi model
Lecturer: David Aldous Scribe: Andrej Bogdanov

In this lecture we investigate the size of the giant component in the Erdés-Renyi random graph model with
edge probability p & 1/n. In this model, the presence of each edge in the graph is decided by an independent
coin flip with success probability p. We show that for p slightly bigger than 1/n, the giant component has
size of order n?/3. There are several proofs of this result, and we will opt for an intuitive, back-of-envelope
heuristic argument. This argument has the advantage of showing off some sophisticated concepts from
probability like the Central Limit Theorem and Brownian motion.

At the heart of this argument is a random process that, starting from an arbitrary vertex v, exposes the
neighbors of v, their neighbors, and so on, until the whole component of v is revealed. The sizes of the
components are found by analyzing the dynamics of this process. For the Erdés-Renyi model, the relevant
statistics can be computed exactly, giving a detailed picture of the behavior of component sizes near p = 1/n.

7.1 The breadth first spanning forest of a graph

Let G be a (non-random) graph on vertex set [n]. The breadth first spanning forest of G is the spanning
forest generated by the breadth first search algorithm:

Until all vertices of G have been visited,

1. Pick a vertex v that has not been visited yet. Put v in a queue Q.

2. While @) is nonempty, pull a vertex v from the head of ), draw edges to all its neighbors that have not
been previously visited, and put these children at the tail of Q.

Here is an example:

A nice property of this construction is that all the edges of G which fail to be included in the breadth first
spanning forest connect descendants of the same generation. For the random graph G(n,p ~ 1/n) we expect
to see few such cross edges.

We will need a few more notions related to the breadth first search algorithm. Suppose we interrupt the
algorithm before it terminates. Say a vertex v has been wvisited if it was in the queue @) at some point before,
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or at the time of the interruption. Say v has been processed if v has been in ) at some point before the
interruption, but is not there at the time of the interruption. For instance, suppose we have just finished
putting vertex 4 from our example in @), and we interrupt the algorithm. At this point, the algorithm has
visited the vertices 1,2, 3,4, 5,6, but has processed only vertices 1,2 and 3.

From here on, we will assume that the vertices of G are labeled in their order of visitation in the breadth
first spanning forest F, just like in the picture. Given this labeling, we define a (deterministic) walk
w(0),w(1),...,w(n) by the formula

w(i) = w(i — 1) + (number of children of ¢ in F) — 1,
with w(0) = 0. For example, for the above graph the walk will look like this:

Notice that the size of the first component is the smallest 7 such that w(i) = —1. More generally, the last
visited vertex of the kth component is the smallest i such that w(i) = —k. This is true for any graph, and
we will use it to study the sizes of components in the random graph G(n, p).

7.2 A little bit of probability

In the graph G(n,p), the walk w(0),w(1),...,w(n) is a random process. The key parameter of the process is
the distribution of the increments w(i) — w(i — 1) conditioned on the past w(i — 1),...,w(0). Let D; denote
the number of all vertices that have been visited but not processed (excluding 7 itself) when the algorithm
reaches vertex i. At this point, the probability of an edge between i and any vertex that has not been visited
is independent of the past. Since the set of candidate neighbors for i is exactly the set of non-visited vertices,
the distribution of w(i) — w(i — 1) is binomial with n — i — D; samples and success probability p.

We are interested in the limiting behavior of the process w(0),w(1),... as n — oo. If, for the moment,
we ignore the contribution of the D;, the differences w(i) — w(i — 1) are independent random variables. If
we keep ¢ small compared to n, these are also almost identically distributed. Therefore, at least to a first
approximation, we can model w(i) as a sum of independent, identically distributed random variables. We
can now appeal to a celebrated statement of probability theory that describes the limiting behavior of such
sums:

Theorem 7.1 (The Central Limit Theorem) Let X, X»,... be independent and identically distributed

V= (X)X )/ As

m — o0, Xi ) converges in distribution to a normal mean 0, variance t random variable XE ).

random variables with mean 0 and variance 1. Fixz t > 0 and let ng

If we now let the “time” ¢ vary, we can think of YEOO) as a continuous collection of random variables. Another
celebrated theorem says that this collection is a continuous random process known as Brownian motion.

Unfortunately, we cannot apply the Central Limit Theorem to our analysis, as our random variables w(i) —
w(i — 1) are not quite independent. It would be nice if there were some form of the Theorem that allows



Lecture 7: Critical behavior of the Erdés-Renyi model 7-3

dependencies between the X;. Unlike independence, of which there is only one kind, statistical dependencies
come in many varieties. As Tolstoy might have said, “All independent variables are alike, all dependent
ones are dependent in their own way.” However, there is a version of the Central Limit Theorem that covers
exactly our form of dependence. Roughly, this version of the theorem says:

Theorem 7.2 (The CLT and Brownian motion for martingales) Let X1, X, ... be random variables
such that for all i, E[X;|X1,...,Xi-1] = 0 and Var[X;|Xy,...,X;-1] = 1. Fiz t > 0 and let ng) =
(Xi+... -I-XLmtJ)/\/ﬁ. Asm — oo, th converges in distribution to a normal mean 0, variance t random

variable YEOO). Moreover, the collection (YEOO))@O describes Brownian motion.

7.3 Dynamics of the walk on the Erdés-Renyi random graph

We now apply these observations to the random graph G(n, p). With a bit of hindsight, we set p = %+ #

It turns out that this is the appropriate scaling for which, as we vary A from —oo to 0o, we will observe the
emergence of a component of size O(n*/?) in the random graph.

In our computation, we will ignore the contribution of the D;, which can be shown negligible. We have

A i i

E[w(i) — w(i — 1)|w(0),...,w(i — 1)] ~ E[Binom(n —i,p) — 1] = Sty T

and
Var[w(i) — w(i — 1)|w(0),...,w(i —1)] = (n —i)p(l — p) ~ 1.

We now apply the Central Limit Theorem for martingales to the sequence X; = w(i) — w(i — 1) — E[w(i) —
w(i — 1)|w(0),..., w(i — 1)]. For m = n?/3, this gives

< N APV 1
th = w(mt) — Zt <m -+ E —+ m) = /\tnl/S — §t2n1/3 + o(nl/g)
i=1

so that, as n — oo,

w(tn?3) — (At —£2/2)n'? 4 —(c0)
173 — X; .
Rearranging terms, we obtain
w(tn®/?) 4 (c0)

73 —— M-t?2+X, .
n

This is Brownian motion superimposed on the parabola At —2/2. For A > 0, the evolution of w(tn*/?)/n'/?
as a function of ¢ will look like this:
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The size of the kth component is tn?/3, where ¢ is the smallest value at which the curve dips below the line
y = —kn~1/3. For A\ > 0, the curve might dip under zero a few times before it “takes off”, at which point
the giant component in G(n,p) begins to form. This component will keep growing roughly until the time at
which the limiting process intersects the ¢ axis. In expectation, this happens when ¢t = 2, so that the giant
component has size & 2\n2/3. After this point, the process follows the drop of the parabola, and we do not
expect to see any more large components. For A < 0, the function At — #? is decreasing over the whole range
of t, and no giant component will appear.



