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Random graphs with a prescribed degree distribution

A degree distribution (d0, d1, d2, . . .) of a graph specifies for each possible degree the fraction of vertices of
that degree, that is

di =
# vertices of degree i

# vertices
.

Let the random variable D be the degree of a vertex chosen uniformly at random. Then di = Pr[D = i].

For a connected graph on n vertices, clearly D ≥ 1. The sum of the degrees over all the vertices is at least
2(n− 1), and therefore the expected value of D is

E[D] ≥ 2(n− 1)
n

,

i.e. in a connected graph, the mean degree is at least 2, asymptotically.

Theme (imprecise): Specify a degree distribution (d1, d2, . . .) with mean degree at least 2. (Note that we
assume d0 = 0.) There is a model for a random graph Gn such that the graph

• has n vertices

• is connected

• the degree Dn of a vertex chosen uniformly at random from the vertex set Vn satisfies Pr[Dn = i] → di

as n →∞

• Gn is “completely random” subject to these constraints,

and all such models are essentially equivalent.

The model also has the following properties:

• It is “locally tree-like”; in particular, the cluster coefficient Cn → 0 as n →∞.

• If di = i−(3+ε+ω(1))) as i→∞, then for the random variable L that is the distance between two vertices
chosen uniformly at random, E[L] ∼ c log n for a constant c depending on (di).

Aside: In real-life networks, the cluster coefficient is usually nonzero.

For the theoretical background about this model, there are two Molloy-Reed papers.

Construction: Given nonnegative integers ∆1,∆2, . . . ,∆n such that
∑

i ∆i is even:
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1. Draw n vertices and label them 1, . . . , n.

2. For each j, write j on ∆j cards.

3. Shuffle the cards.

4. Deal the cards 2-at-a-time.

5. When you deal (j, ĵ), put an edge between the vertices labeled j and ĵ.

(This experiment was undertaken during class.)

This process gives a random graph in which vertex i has ∆i edges. For small n, it is rare to get a proper
graph—it is easy to get self-loops or two edges between a pair of vertices. Really, this construction gives
a distribution on a larger class of graphs (multi-graphs). For large enough n, the process usually gives
something acceptable, but to make it work in general, one needs to do some fudging to get things exactly
connected or to redefine “proper” graphs.

The model Gn: Given large n, suppose we do the construction with ndi vertices of degree i. Letting D be
the degree of a vertex chosen uniformly at random, then Pr[D = i] → di as n →∞.

Fact: As n → ∞, the part of Gn within distance K (for fixed K) of a randomly chosen vertex v converges
to the tree produced in the first K generations of the GWBP with D offspring in the first generation.

Let D∗ be the number of offspring in subsequent generations. Then

Pr[D∗ = i] =
(i + 1)Pr[D = i + 1]

E[D]
.

To see this, we first pick v. It has Dv edges (Dv has the distribution of D). The neighbors of v are chosen
by random picks of cards, which we can assume are basically independent since we are focusing on the early
part of the process. Let v1 be a neighbor of v. The number of children of v1 is deg(v1)− 1. The chance that
v has an edge to a specific vertex is proportional to that vertex’s degree; we can think of the chance that v
has an edge to an i+1 vertex as the chance that v appears in i+1 picks of the total nE[D] cards. Therefore

Pr[deg(v1) = i + 1] =
ndi+1(i + 1)

nE[D]
= Pr[D∗ = i].

The analysis of GWBP has heuristic implications for Gn: We will analyze the branching process to
compute the distance between two vertices chosen uniformly at random in the graph model.

Easy Case: D ≥ 2 and E[D] > 2, which implies that D∗ ≥ 1 and E[D∗] = µ > 1. In this case, GWBP
always survives forever. Assume that E[(D∗)1+ε] < ∞ and let Zk be the number of individuals in the kth
generation of GWBP. We know that Zk ∼ Wµk for some random variable W > 0. (More formally, we know
that Zk/µk converges in distribution to some limiting distribution, which is the distribution of a random
variable W .) Then

Z̄k =
k∑

j=0

Zk ∼
Wµk

1− 1/µ
.

Consider two random vertices v and v̂. For large n, the branching processes that begin growing from v and
v̂ start off acting very independently. The question is at what stage an edge is likely to appear between the
two subtrees; this gives us an estimate of the distance between v and v̂.
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We want to know the probability of an edge occuring between a vertex in the kth generation of one subtree
and a vertex in any of the previous k − 1 generations of the other subtree. Such an edge has roughly
chance Z̄k−1/n. The number of vertices in the kth generation is Zk, and so the expected number of edges is
approximately E[ZkZ̄k−1/n] ∼ cµ2k/n for some constant c.

The generation k where an edge between subtrees first appears is approximately a solution of

µ2k

n
= 1.

Let L be the distance from v to v̂. Then L should be about 2k ±O(1) = log n/ log µ±O(1).

Now let’s back up for a minute to consider some of the assumptions made. For example, consider the assump-
tion that E[(D∗)1+ε] < ∞. This assumption corresponds to the assumption that Pr[D∗ = i] = i−(2+ε+ω(1))),
which in turn corresponds to the assumption that Pr[D = i] = i−(3+ε+ω(1))). So under these constraints on
the power law distribution, the analysis holds.

How might it happen that Gn is not connected? If nodes i and j have degree 2, then they could end up in a
2-cycle. For fixed i and j, the probability of this is approximately 1/n2. There are d2n vertices of degree 2.
The expected number of 2-cycle components tends to a constant as n → ∞ if d2 is positive. The expected
number of isolated nodes also tends to a constant. It is not necessary to worry too much about bigger size
components since the probability of getting such a component is relatively much smaller than the number
of possible such components.

Hard Case: Pr[D = 1] > 0, Pr[D∗ = 0] > 0, and E[D] > 2. Suppose we want to analyze the graph
model given these parameters. Clearly, since the branching process can die, we may have a number of small
components, but with very high probability, there will be one giant component. To estimate the number of
vertices in this component, we can use that

1
n

(# vertices in giant component) → Pr[GWBP survives forever] = 1−Ψ,

for some Ψ. In the last class, we showed that ρ∗ = Pr[GWBP(D∗) goes extinct] can be found as a solution
of an equation, and that

Ψ =
∞∑

i=0

Pr[D = i](ρ∗)i.


