Stat206: Random Graphs and Complex Networks
Lecture 19: The Giant Component in the Just-Supercritical Regime

Lecturer: David Aldous Scribe: Raul Etkin

19.1 Section 5.4 of [1]

19.2 Excess of a component

Consider a graph on m vertices. This graph has > m — 1 edges, with exactly m — 1 edges iff the graph is a
tree. For a component C define:

excess(C) = (# of edges) — (# of vertices — 1) > 0

For G(n,p = 1/n) there are many large components all with size ~ n?/3 with similar coefficients that may
change from realization to realization (see Figure 1).
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Figure 1: Large components in G(n,p = 1/n).

In order to see something quantitatively different, consider G(n,p = 1/n + 100/n*/3). In this case many
large components merge together giving rise to a very large component with huge excess (see Figure 2).
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Figure 2: Large components in G(n,p = 1/n + 100/n*/3).

This behavior can be analyzed using the Brownian motion picture that we derived previously.



19.3 Core and Kernel of a component
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Figure 3: Core and kernel of a connected graph C.

Consider a connected component C' of a graph. Define:
core(C') = maximal subgraph with all vertex-degrees > 2

which can be obtained from the original component by repeatedly deleting degree-1 vertices.

We also define kernel(C) as the subgraph obtained from core(C') by collapsing every path of degree-2 vertices
to a single edge (See Figure 4). Note that kernel(C) may have loops and multiple edges.
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Figure 4: Collapsing a path of degree-2 vertices to a single edge.

19.4 Study of the giant component in the just-supercritical regime

Recall that for a GWBP with Poisson(1 + §) offspring
P(non-extinction) = solution of equation = 24

for § small.

We'll study an Erdds-Renyi random graph G(n, Medges) with M = (})p, which corresponds to G(n,p)
with p = 2M/n?. We will focus on the regime M = n/2 + s with n?/3 « s <« n, which corresponds to

Define V;,(s) = # of vertices in giant component. Then we have:
E[V,(s)] = nP(vin giant component) = nP(non-extinction in GWBP, offspring Poisson(np = 1 + 2s/n))
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Therefore E[V,,(s)] = 4s and V,,(s) = 4s in probability (by a Chebyshev’s type argument).

Write &£,(s) = excess in giant component. Adding an edge increases £,(s) by 1 when both ends are in
the giant component (otherwise the excess does not change). At the edge n/2 + i, chance £,(-) increases
= (4i/n)? = 16i?/n?. Then
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and again &,(s) &

Given that the giant component (GC) has k = 4s vertices and k + [ ~ k + 1657 edges, the giant component
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is the random graph C(k,!) uniform on all ¢(k,!) connected graphs with k vertices and k + [ edges.

Study core of GC = core of C(k,1). A formula for ! and &/l both large:

e \!/2 _
C(k,l) ~ (E) kk+(3l 1)/2

One can argue (omit) that # of edges in core C(k,l) = # of edges of C(k,!) whose removal won’t disconnect
C(k,1). This gives a trick to calculate the size (# of vertices) of the core. Consider k vertices, k + | edges,
one edge marked * whose removal will not disconnect the core. Then,

c(k,1) x (size of core C(k,1)) = c¢(k,l — 1) x (# of ways to add an edge to a C(k,l — 1))

where the last factor equals (’;) — (k+1—-1) = k?/2. It follows that
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One can check that only a small fraction of the total number of vertices are in the core.
Adding 1 excess edge to GC adds 1 edge to kernel and increases sum of core-degrees by 2.
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We expect most of the sum to come from degree-3 vertices.

How is a degree-4 vertex of the core created ?

When an edge arrives between some vertex in a tree component of GC rooted at v (degree-3 vertex in core)
and some other vertex in GC,
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chance edge g + i creates a degree-4 vertex of core = (# deg-3 core vertices)
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Figure 5: Creation of a degree-4 vertex in core.

It follows that
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so they first appear at s &~ n3/4.
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