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I don’t do constants. Rick Durrett.

I will describe a topic with the paradoxical features

Constants matter – it’s all about the constants.

Factors of eN don’t matter – we can just ignore them.



Each of the three words entropy, complexity, information has many
different meanings; any statement involving two of these words is (at
best) true in only some very restricted context.

I will use the word entropy only with its most elementary meaning: for
any probability distribution p = (ps) on any finite set S , its entropy is the
number

ent(p) = −
∑
s

ps log ps . (1)

Shannon et al had the brilliant idea of combining a simple math lemma
and a wild leap of faith.

Lemma

Write B for the set of binary strings b = b1b2 . . . bm and len(b) = m for
the length of a string. Given p as above, there exists a coding (a 1-1
function) fp : S → B such that for X with distribution p

ent2(p) ≤ E len(fp(X )) ≤ ent2(p) + 1

and no coding can improve on the lower bound.



Wild Leap of Faith

Assume that English text can be modeled as a “random” process –
random in the specific sense of a stationary random process.

Where does this get us? Skipping over a lot of interesting stuff (will
return later) . . . . . .



Data compression
Take English text, length N letters.
Code into binary in most naive way (letter-by-letter, ASCII).
Length of coded text = c1N bits.

Code into binary in most sophisticated way (Lempel-Ziv and sequels).
Length of coded text = c2N bits.

uncompressed compressed
first half of Don Quixote 1109963 444456

second half of Don Quixote 1109901 451336

1. This is one area of “applied probability” that actually works (makes
verifiable predictions) even though it a priori has nothing to do with
probability.
2. Loosely, entropy rate of English is (at most) c2 bits per letter. If you
could find an algorithm to compress to less than 40% then . . . . . .
3. (Relevant to this talk) it’s all about the constants.



4. (Somewhat relevant to this talk). One can seek to compress any data
(not just sequences). For photos/videos/audio one typically uses lossy
compression (.jpg etc). My topic is lossless compression for certain
mathematical objects more interesting (to me) than sequences.

Here are some examples to get into the spirit. The uniform distribution
on any M-element set has entropy log2 M, so we should be able to code
elements of the set in about log2 M bits.

So . . . . . . how do we code

a permutation of {1, 2, . . . ,N}
a tree on vertices {1, 2, . . . ,N} (there are NN−2 of these)



How many bits are required to store one uniform random pick of

a permutation of {1, 2, . . . ,N} (there are N! of these)

a tree on vertices {1, 2, . . . ,N} (there are NN−2 of these)

Asymptotically
log NN−2 ∼ 1× N log N

log N! ∼ log(N/e)N ∼ 1× N log N.

So (relevant to this talk) . . .

constants matter

both constants = 1

the factor eN doesn’t matter

. . . welcome to the N log N entropy world! I will talk about settings where
entropy ∼ cN log N. This “entropy rate” c is robust to model details,
and indeed doesn’t depend on the base of logarithms.





Just for fun . . . two examples of (non-uniform) random permutations of a
N-card deck. Here “7” is fixed and N →∞.

Model A: 7 random riffle shuffles.
Model B: Separate into 7 piles, randomize each pile, replace in original
order of piles.

Intuition may be hard but calculation is easy:
ent(B) ∼ 1 · N log N
ent(A) ≈ 7N ∼ 0 · N log N.

In Model B, to reduce entropy to (1− ε)N log N we need Nε piles.
In Model A, to increase entropy to εN log N we need c(ε) log N shuffles.



What is a network?

A graph is a well-defined mathematical object – vertices and edges
etc

A network is a graph with context-dependent extra structure. David
Aldous

I want to consider some simple-but-interesting notion of “extra
structure”.



Consider a graph with

N vertices

O(1) average degree

vertices have distinct “names”, strings of length O(log N) from a
fixed finite alphabet.

Envisage some association between vertex names and graph structure, as
in

phylogenetic trees on species

road networks.

I claim this is the “interesting” setting for data compression of sparse
graphs, because the “entropy” of both the graph structure and of the
names has the same order, N log N. [Will say more later].



What is in the existing literature?

A: “More mathematical”. Topic called “graph entropy” studies the
number of automorphisms of a N-vertex unlabelled graph. See the 2012
survey by Szpankowski - Choi Compression of graphical structures:
Fundamental limits, algorithms, and experiments.

B: “More applied”.
Paolo Boldi and Sebastiano Vigna (2003). The webgraph framework I:
Compression techniques. In Proc. of the Thirteenth International World
Wide Web Conference.

Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher,
Alessandro Panconesi, and Prabhakar Raghavan (2009). On compressing
social networks. In Proceedings of the 15th ACM SIGKDD international
conference on Knowledge Discovery and Data Mining.



Our formal setting.
Define a finite set S = S(N,A, β, α); an element of S is a network with

N vertices

ave degree ≤ α (at most αN/2 edges)

finite alphabet A of size A

vertices have distinct names – strings from A of length ≤ β logA N.

Here A ≥ 2, 0 < α <∞, 1 < β <∞ are fixed and we study as N →∞.

Easier than you might think to see how big S is:

log |S(N,A, β, α)| ∼ (β − 1 + α
2 )N log N.

For some given model of random network GN we expect

ent(GN) ∼ cN log N

for some model-dependent entropy rate 0 ≤ c ≤ (β − 1 + α
2 ).



In this setting there are ≥ two lines of research you might try.

Clearly do-able: Invent probability models and calculate their entropy
rate.

Clearly not do-able: Design an algorithm which, given a realization
from a probability model, compresses optimally (according to the entropy
of the probability model) without knowing what the model is
(“universal”, like Lempel-Ziv for sequences).



(Repeat previous slide).
For any probability distribution p = (ps) on any finite set S , its entropy is
the number

ent(p) = −
∑
s

ps log ps . (2)

Shannon et al had the brilliant idea of combining a simple math lemma
and a wild leap of faith.

Lemma

Write B for the set of binary strings b = b1b2 . . . bm and len(b) = m for
the length of a string. Given p as above, there exists a coding (a 1-1
function) fp : S → B such that for X with distribution p

ent2(p) ≤ E len(fp(X )) ≤ ent2(p) + 1

and no coding can improve on the lower bound.

Wild Leap of Faith

Assume that English text can be modeled as a “random” process –
random in the specific sense of a stationary random process.



The small print is:
The coding function fp depends on p
The coding function fp may be arbitrarily complex.

Example. Suppose, from a library of about one million books, you pick
one book uniformly at random and write out the entire text of that book.
What is the entropy of what you write?

Answer [according to our definition]: 20 bits.

On the other hand, we saw that the entropy of the text of Don Quixote
was about 900,000 bits.



(ignoring ergodicty issues . . . )

(Shannon). A stationary random A-valued process (X1,X2, . . .) has
entropy rate

H := lim
k→∞

k−1ent(X1, . . . ,Xk).

(Lempel-Ziv). There exists a 1− 1 function
compress : { finite strings from A} → { finite binary strings }
such that, for every stationary (X1,X2, . . .) ,

n−1E len(compress(X1, . . . ,Xn))→ H.

To appreciate this, consider a sequence of uniform random bits derived
from
(i) physical randomness
(ii) a standard random number generator.



Alas the “universality” that Lempel-Ziv brings to data compression for
sequences seems unavailable in broader contexts, and in particular there
are several reasons why universal algorithms are impossible in our context.
This is (presumably) why our setting hasn’t been studied in IEEE-IT.

A less ambitious project is to invent some heuristic compression
algorithm in our setting, and then check by theory/simulation that it
does compress optimally for samples from a collection of probability
models. So (my sales pitch to EE folks) we have some motivation for

Clearly do-able project: Invent probability models and calculate their
entropy rate.

I’ll show a few results. Write E(p) for entropy of Ber(p):

E(p) = −p log p − (1− p) log(1− p) ∼ p log(1/p) as p ↓ 0.



Sparse Erdős-Rényi, default binary names

Model. N vertices, whose names are the integers 1, . . . ,N written as
binary strings of length dlog2 Ne. Each of the

(
N
2

)
possible edges is

present independently with probability α/N, where 0 < α <∞.

Entropy rate formula. c(α) = α
2 .

Proof. The entropy equals
(
N
2

)
E(α/N); letting N →∞, this is

∼ N2

2

α

N
log

N

α
∼ α

2
N log N.



Sparse Erdős-Rényi, random A-ary names
Model. As above, N vertices, and each of the

(
N
2

)
possible edges is

present independently with probability α/N. Take LN ∼ β logA N for
1 < β <∞ and take the vertex names as a uniform random choice of N
distinct A-ary strings of length LN .

Entropy rate formula. c(α, β) = β − 1 + α
2 .

Proof. The entropy equals log
(
ALN

N

)
+
(
N
2

)
E(α/N). The first term

∼ (β − 1)N log N by (3) and the second term ∼ α
2 N log N as in the

previous model.

A useful fact, most easily remembered by considering a coding:

log

(
M

K

)
∼ K log(M/K ) over 1‘� K � M. (3)



begin repeat

Sparse Erdős-Rényi, random A-ary names
Model. As above, N vertices, and each of the

(
N
2

)
possible edges is

present independently with probability α/N. Take LN ∼ β logA N for
1 < β <∞ and take the vertex names as a uniform random choice of N
distinct A-ary strings of length LN .

Entropy rate formula. c(α, β) = β − 1 + α
2 .

Proof. The entropy equals log
(
ALN

N

)
+
(
N
2

)
E(α/N). The first term

∼ (β − 1)N log N by (3) and the second term ∼ α
2 N log N as in the

previous model.
end repeat

Remark. One might have naively guessed that the formula would involve
β instead of β − 1, on the grounds that the entropy of the sequence of
names is ∼ βN log N, but this is the rate in a third model where a vertex
name is a pair (i , a), where 1 ≤ i ≤ N and a is the random string. That
is, N! different graphs correspond to the same graph in our model above,
and this changes β to β − 1. This model distinction becomes more
substantial for the model to be studied after next digression.



There are rules for manipulating entropy, analogous to rules for
manipulating conditional expectation. In particular, writing ent(Y |X ) for
the entropy of the conditional distribution,

ent(X ,Y ) = ent(X ) + Eent(Y |X ).

This means it is often easy to calculate entropy for a random structure
which is constructed sequentially.

Nest slide is the first model I can invent whose analysis is not so
straightforward.

Bathtub problem: Think of other models – recall we want dependence
in sense that the names of adjacent vertices are more similar than
non-adjacent vertices.

This reminded me of favorite paper title: Coevolution to the edge of chaos.



In outline, the graph structure is again sparse Erdős-Rényi G(N, α/N),
but we construct it inductively over vertices, and make the vertex-names
copy parts of the names of previous vertices that the current vertex is
linked to. Here are the details.

Model. Take LN ∼ β logA N for 1 < β <∞. Vertex 1 is given a uniform
random length-LN A-ary name. For 1 ≤ n ≤ N − 1:

vertex n + 1 is given an edge to each vertex i ≤ n independently with
chance α/N. Write Qn ≥ 0 for the number of such edges, and
a1, . . . , aQn for the names of the linked vertices. Take an independent
uniform random length-LN A-ary string a0. Assign to vertex n + 1 the
name obtained by, independently for each coordinate 1 ≤ u ≤ LN ,
making a uniform random choice from the Qn + 1 letters a0u, a

1
u, . . . , a

Qn
u .

This gives a family (GN) parametrized by (A, β, α).



Entropy rate formula for (GordN ).

−1 +
α

2
+ β

∑
k≥0

αkJk(α)hA(k)

k! log A

where

Jk(α) :=

∫ 1

0

xke−αxdx

and the constants hA(k) are defined below.



We first study the “ordered” model. The unconditional distribution of
each vertex-name is uniform on length-LN words.

Suppose vertex n + 1 links to exactly two previous vertices. Conditional
on these being a particular pair 1 ≤ i < j ≤ n, with names ai , aj , the
contribution to entropy is exactly

LN

∑
(a,a′)∈A×A

g2(a, a′) µi,j(a, a′)

where

g2(a, a′) = EA(A+1
3A , A+1

3A , 1
3A ,

1
3A , . . . . . .

1
3A ) if a′ 6= a

= EA( 2A+1
3A , 1

3A ,
1
3A ,

1
3A , . . . . . .

1
3A ) if a′ = a

and where EA(p) is the entropy of a distribution p = (p1, . . . , pA) and

µi,j(a, a′) is the empirical distribution of the pairs (ai1, a
j
1), . . . , (aiA, a

j
A).

The technical issue is proving that dependence between names is
sufficiently small that the sum above behaves as if they were independent,

∼ hA(2) := A−2
∑

(a,a′)∈A×A

g2(a, a′).



Averaging over choices of i , j we might be copying from, the contribution
to entropy from the event “link to 2 previous vertices” is

∼ β logA N × α2hA(2)
(n
2)
N2 exp(−αn/N).

Now we just sum over different numbers k of linked-to vertices and sum
over vertices 1 ≤ n ≤ N − 1. We end up with

α

2
+ β

∑
k≥0

αkJk(α)hA(k)

k! log A

which is the original stated formula without the −1 term.

We want entropy rate for the “unordered” model, where we don’t see the
order n = 1, 2, . . . ,N of vertices. The issue reduces to a question about
the sparse Erdős-Rényi graph.



Take a typical realization of G (N, α/N) on vertices {1, 2, . . . ,N}. Direct
the edges j → i where i < j . Remove vertex-labels.

Question: How many of the N! possible re-labelings are consistent with
the edge-directions?

Answer:

log(number of consistent relabellings) ∼ 1 · N log N

because (informally) the probability that a random relabelling works is
only exponentially small in N.







For more about information theory, read Thomas Cover’s 1990 Shannon
Lecture.


