
2. The averaging process

David Aldous

July 10, 2012



The two models in lecture 1 has only rather trivial interaction. In this
lecture I discuss a simple FMIE process with less trivial interaction. It is
intended as a prototype of the type of results one might seek to prove for
other FMIE processes.

A write-up has been published as “A Lecture on the Averaging Process”
(with Dan Lanoue) in recent Probability Surveys. The style of lecture
and write-up are intended as illustration of how one might teach this
subject in a graduate course.



Background meeting model with rates (νij).

Model: averaging process.
Each agent initially has some amount of money;
whenever agents meet they share their money equally.
Xi (t) is the amount of money agent i has at time t.

Formally, the states are the real numbers R; initially Xi (0) = xi , and the
update rule, when agents i and j meet at t, is

(Xi (t+),Xj(t+)) = ( 1
2 (Xi (t−) + Xj(t−)), 12 (Xi (t−) + Xj(t−))).



Your immediate reaction to this model should be (cf. General Principle
1) “obviously the individual values Xi (t) converge to the average of
initial values, so what is there to say?”.

Exercise: write a one-sentence outline proof that a post-first-year-grad
student could easily turn into a complete proof.

Curiously, while this process has been used as an ingredient in more
elaborate models, the only place it appears by itself is in some “gossip
algorithms” literature which derives a version of the “global bound” later
– see paper for citations.



We will show

If the initial configuration is a probability distribution (i.e. unit
money split unevenly between individuals) then the vector of
expectations in the averaging process evolves precisely as the
probability distribution of the associated (continuous-time) Markov
chain with that initial distribution (Lemma 1).

There is an explicit bound on the closeness of the time-t
configuration to the limit constant configuration (Proposition 1).

Complementary to this global bound there is a “universal” (i.e. not
depending on the meeting rates) bound for an appropriately defined
local roughness of the time-t configuration (Propostion 2).

There is a duality relationship with coupled Markov chains (Lemma
3).

An entropy bound (Proposition 3).

The analysis in several ways parallels analysis of the well-known Voter
model – will compare and contrast in the next lecture.



Basic properties of the averaging process

Write I = {i , j . . .} for the set of agents and n ≥ 2 for the number of
agents. Recall that the array of non-negative meeting rates ν{i,j} for
unordered pairs {i , j} is assumed to be irreducible. We can rewrite the
array as the symmetric matrix N = (νij) in which

νij = ν{i,j}, j 6= i ; νii = −
∑
j 6=i

νij . (1)

Then N is the generator of the Markov chain with transition rates νij ;
call this the associated Markov chain. The chain is reversible with
uniform stationary distribution.

Throughout, we write X(t) = (Xi (t), i ∈ I ) for the averaging process run
from some non-random initial configuration x(0). Of course the sum is
conserved:

∑
i Xi (t) =

∑
i xi (0).



Relation with the associated Markov chain

Write 1i for the initial configuration (1(j=i), j ∈ I ), that is agent i has
unit money and other agents have none, and write pij(t) for the
transition probabilities of the associated Markov chain.

Lemma

For the averaging process with initial configuration 1i we have
EXj(t) = pij(t/2). More generally, from any deterministic initial
configuration x(0), the expectations x(t) := EX(t) evolve exactly as the
dynamical system

d

dt
x(t) = 1

2x(t)N .

The time-t distribution p(t) of the associated Markov chain evolves as
d

dt
p(t) = p(t)N . So if x(0) is a probability distribution over agents, then

the expectation of the averaging process evolves as the distribution of the
associated Markov chain started with distribution x(0) and slowed down
by factor 1/2. But keep in mind that the averaging process has more
structure than this associated chain.



Proof. The key point is that we can rephrase the dynamics of the
averaging process as

when two agents meet, each gives half their money to the other.
In informal language, this implies that the motion of a random penny -
which at a meeting of its owner agent is given to the other agent with
probability 1/2 – is as the associated Markov chain at half speed, that is
with transition rates νij/2.
To say this in symbols, we augment a random partition X = (Xi ) of unit
money over agents i by also recording the position U of the “random
penny”, required to satisfy

P(U = i | X) = Xi .

Given a configuration x and an edge e, write xe for the configuration of
the averaging process after a meeting of the agents comprising edge e.
So we can define the augmented averaging process to have transitions

(x, u)→ (xe , u) rate νe , if u 6∈ e
(x, u)→ (xe , u) rate νe/2, if u ∈ e
(x, u)→ (xe , u′) rate νe/2, if u ∈ e = (u, u′).



This defines a process (X(t),U(t)) consistent with the averaging process
and (intuitively at least – see below) satisfying

P(U(t) = i | X(t)) = Xi (t). (2)

The latter implies EXi (t) = P(U(t) = i), and clearly U(t) evolves as the
associated Markov chain slowed down by factor 1/2. This establishes the
first assertion of the lemma. The case of a general initial configuration
follows via the following linearity property of the averaging process.
Writing X(y, t) for the averaging process with initial configuration y, one
can couple these processes as y varies by using the same realization of
the underlying meeting process. Then clearly

y→ X(y, t) is linear.



How one writes down a careful proof of (2) depends on one’s taste for
details. We can explicitly construct U(t) in terms of “keep or give”
events at each meeting, and pass to the embedded jump chain of the
meeting process, in which time m is the time of the m’th meeting and
Fm its natural filtration. Then on the event that the m’th meeting
involves i and j ,

P(U(m) = i | Fm) = 1
2P(U(m−1) = i | Fm−1)+ 1

2P(U(m−1) = j | Fm−1)

Xi (m) = 1
2Xi (m − 1) + 1

2Xj(m − 1)

and so inductively we have

P(U(m) = i | Fm) = Xi (m)

as required.



For a configuration x, write x for the “equalized” configuration in which
each agent has the average n−1

∑
i xi . Lemma 1, and convergence in

distribution of the associated Markov chain to its (uniform) stationary
distribution, immediately imply EX(t)→ x(0) as t →∞.

Amongst several ways one might proceed to argue that X(t) itself
converges to x(0), the next leads to a natural explicit quantitative bound.



A function f : I → R has (with respect to the uniform distribution)
average f , variance var f and L2 norm ‖f ‖2 defined by

f := n−1
∑
i

fi

‖f ‖22 := n−1
∑
i

f 2
i

var f := ‖f ‖22 − (f )2.

The L2 norm will be used in several different ways. For a possible time-t
configuration x(t) of the averaging process, the quantity ‖x(t)‖2 is a
number, and so the quantity ||X(t)||2 appearing in the proposition below
is a random variable.

Proposition (Global convergence theorem)

From an initial configuration x(0) = (xi ) with average zero, the time-t
configuration X(t) of the averaging process satisfies

E||X(t)||2 ≤ ||x(0)||2 exp(−λt/4), 0 ≤ t <∞ (3)

where λ is the spectral gap of the associated MC.



Before starting the proof let us recall some background facts about
reversible chains, here specialized to the case of uniform stationary
distribution (that is, νij = νji ) and in the continuous-time setting. See
Chapter 3 of Aldous-Fill for the theory surrounding (4) and Lemma 2.
The associated Markov chain, with generator N at (1), has Dirichlet form

E(f , f ) := 1
2n−1

∑
i

∑
j 6=i

(fi − fj)
2νij = n−1

∑
{i,j}

(fi − fj)
2νij

where
∑
{i,j} indicates summation over unordered pairs. The spectral

gap of the chain, defined as the gap between eigenvalue 0 and the second
eigenvalue of N , is characterized as

λ = inf
f

{
E(f , f )

var(f )
: var(f ) 6= 0

}
. (4)

Digression: An intuitive way to think about this. Recall the 3rd
definition of variance:

var Z = 1
2E(Z1 − Z2)2, Zi i.i.d.

d
= Z .



For a stationary discrete-time chain (Zt), the Dirichlet form is defined as

E(f , f ) = 1
2E(f (Z1)− f (Z0))2

and we can think of variance as

var f (Z0) = 1
2E(f (Z∞)− f (Z0))2.

So the ratio is comparing “local” and “global” fluctuations of f (Zt).

Here are 3 of the many things the spectral gap λ tells you about a
(general) reversible chain with stationary distribution π.
1. For the stationary chain,

max
f ,g

cor(f (Z0), g(Zt)) = exp(−λt).

2. Pi (Zt = j)− πj ∼ cij exp(−λt) as t →∞.
3. Define a “distance from stationary” d2(ρ, π) for a probability dist. ρ
to be the L2 norm of the function i → ρi−πi

πi
. Then



Lemma (L2 contraction lemma)

The time-t distributions ρ(t) of the associated Markov chain satisfy

d2(ρ(t), π) ≤ e−λtd2(ρ(0), π)

where λ is the spectral gap of the associated MC.

This is optimal, in the sense that the rate of convergence really is
Θ(e−λt) as t →∞.

We don’t actually use this lemma, but our global convergence theorem
for the averaging process is clearly analogous.



Notation for FMIE process dynamics. We will write

E(dZ (t) | F(t)) = [≤] Y (t)dt

to mean

Z (t)− Z (0)−
∫ t

0

Y (s)ds is a martingale [supermartingale],

– the former “differential” notation seems much more intuitive than the
integral notation. In the context of a FMIE process we typically want to
choose a functional Φ and study the process Φ(X(t)), and write

E(dΦ(X(t)) | X(t) = x) = φ(x)dt (5)

so that E(dΦ(X(t)) | F(t)) = φ(X(t))dt. We can immediately write
down the expression for φ in terms of Φ and the dynamics of the
particular process; for the averaging process,

φ(x) =
∑
{i,j}

νij(Φ(xij)− Φ(x)) (6)

where xij is the configuration obtained from x after agents i and j meet
and average. This is just saying that agents i , j meet during [t, t + dt]
with chance νijdt and such a meeting changes Φ(X(t)) by the amount
Φ(xij)− Φ(x).



Proof of Proposition 1. A configuration x changes when some pair
{xi , xj} is replaced by the pair { xi+xj

2 ,
xi+xj
2 }, which preserves the average

and reduces ||x||22 by exactly
(xj−xi )2

2n . So, writing Q(t) := ||X(t)||22,

E(dQ(t) | X(t) = x) = −
∑
{i,j}

νij · n−1(xj − xi )
2/2 dt

= −E(x, x)/2 dt (7)

≤ −λ||x||22/2 dt.

The first equality is by the dynamics of the averaging process, the middle
equality is just the definition of E for the associated MC, and the final
inequality is the extremal characterization

λ = inf{E(g , g)/||g ||22 : g = 0, var(g) 6= 0}.

So we have shown

E(dQ(t) | F(t)) ≤ −λQ(t) dt/2.



The rest is routine. Take expectation:

d

dt
EQ(t) ≤ −λEQ(t)/2

and then solve to get

EQ(t) ≤ EQ(0) exp(−λt/2)

in other words

E||X(t)||22 ≤ ||x(0)||22 exp(−λt/2), 0 ≤ t <∞.

Finally take the square root.



A local smoothness property

Thinking heuristically of the agents who agent i most frequently meets as
the “local” agents for i , it is natural to guess that the configuration of
the averaging process might become “locally smooth” faster than the
“global smoothness” rate implied by Proposition 1. In this context we
may regard the Dirichlet form

E(f , f ) := 1
2n−1

∑
i

∑
j 6=i

(fi − fj)
2νij = n−1

∑
{i,j}

(fi − fj)
2νij

as measuring the “local smoothness”, more accurately the local
roughness, of a function f , relative to the local structure of the particular
meeting process. The next result implicitly bounds EE(X(t),X(t)) at
finite times by giving an explicit bound for the integral over 0 ≤ t <∞.
Note that, from the fact that the spectral gap is strictly positive, we can
see directly that EE(X(t),X(t))→ 0 exponentially fast as t →∞;
Proposition 2 is a complementary non-asymptotic result.



Proposition

For the averaging process with arbitrary initial configuration x(0),

E
∫ ∞
0

E(X(t),X(t)) dt = 2 var x(0).

This looks slightly magical because the bound does not depend on the
particular rate matrix N , but of course the definition of E involves N .

Proof. By linearity we may assume x(0) = 0. As in the proof of
Proposition 1 consider Q(t) := ||X(t)||22. Using (7)

d

dt
EQ(t) = −EE(X(t),X(t))/2

and hence

E
∫ ∞
0

E(X(t),X(t)) dt = 2(Q(0)− Q(∞)) = 2||x(0)||22 (8)

because Q(∞) = 0 by Proposition 1.



General Principle 3: Duality

Notions of duality are one of the interesting and useful tools in classical
IPS, and equally so in the social dynamics models we are studying. The
duality between the voter model and coalescing chains (recalled later) is
the simplest and most striking example. The relationship we develop here
for the averaging model is less simple but perhaps more representative of
the general style of duality relationships.



The technique we use is to extend the “random penny” (augmented
process) argument used in Lemma 1. Now there are two pennies, and at
any meeting there are independent decisions to hold or pass each penny.
The positions (Z1(t),Z2(t)) of the two pennies behave as the following
MC on product space, which is a particular coupling of two copies of the
(half-speed) associated MC. Here i , j , k denote distinct agents.

(i , j)→ (i , k) : rate 1
2νjk

(i , j)→ (k , j) : rate 1
2νik

(i , j)→ (i , i) : rate 1
4νij

(i , j)→ (j , j) : rate 1
4νij

(i , j)→ (j , i) : rate 1
4νij

(i , i)→ (i , j) : rate 1
4νij

(i , i)→ (j , i) : rate 1
4νij

(i , i)→ (j , j) : rate 1
4νij .



For comparison, for two independent chains the transitions (i , j)→ (j , i)
and (i , i)→ (j , j) are impossible (because of the continuous time setting)
and in the other transitions above, all the 1/4 terms become 1/2.
Intuitively, in the coupling the pennies move independently except for
moves involving an edge between them, in which case the asynchronous
dynamics are partly replaced by synchronous ones.

Repeating the argument around (2) – an exercise for the dedicated
student – gives the following result. Write Xa(t) = (Xa

i (t)) for the
averaging process started from configuration 1a.



Lemma (The duality relation)

For each choice of a, b, i , j , not requiring distinctness, and for each t,

E(X a
i (t)X b

j (t)) = P(Z a,b
1 (t) = i ,Z a,b

2 (t) = j)

where (Z a,b
1 (t),Z a,b

2 (t)) denotes the coupled process started from (a, b).

By linearity the duality relation implies the following – apply∑
a

∑
b

xa(0)xb(0) to both sides.

Corollary (Cross-products in the averaging model)

For the averaging model X(t) started from a configuration x(0) which is
a probability distribution over agents, and for each t,

E(Xi (t)Xj(t)) = P(Z1(t) = i ,Z2(t) = j)

where (Z1(t),Z2(t)) denotes the coupled process started from random
agents (Z1(0),Z2(0)) chosen independently from x(0).



Open Problem. One can define the averaging process on the integers –
that is, νi,i+1 = 1,−∞ < i <∞ – started from the configuration with
unit total mass, all at the origin. By Lemma 1 we have

EXj(t) = pj(t)

where the right side is the time-t distribution of a continuous-time simple
symmetric random walk, which of course we understand very well.

But what can you say about the second-order behavior of this averaging
process? That is, how does var(Xj(t)) behave and what is the

distributional limit of (Xj(t)− pj(t))/
√

var(Xj(t)) ? Note that duality
gives an expression for the variance in terms of the coupled random
walks, but the issue is to find an exact formula, or to somehow analyze
asymptotics without an exact formula.



Quantifying convergence via entropy
Parallel to Lemma 2 are quantifications of reversible Markov chain
convergence in terms of the log-Sobolev constant of the chain, defined
(cf. (4)) as

α = inf
f

{
E(f , f )

L(f )
: L(f ) 6= 0

}
. (9)

where
L(f ) = n−1

∑
i

f 2
i log(f 2

i /‖f ‖22).

See Montenegro and Tetali (2006) for an overview, and Diaconis and
Saloff-Coste (1996) for more details of the theory, which we do not need
here. One problem posed in the Spring 2011 course was to seek a parallel
of Proposition 1 in which one quantifies closeness of X(t) to uniformity
via entropy, anticipating a bound in terms of the log-Sobolev constant of
the associated Markov chain in place of the spectral gap. Here is one
solution to that problem.



For a configuration x which is a probability distribution write

Ent(x) := −
∑
i

xi log xi

for the entropy of the configuration. Consider the averaging process
where the initial configuration is a probability distribution. By concavity
of the function −x log x it is clear that in the averaging process
Ent(X(t)) can only increase, and hence Ent(X(t)) ↑ log n a.s. (recall
log n is the entropy of the uniform distribution). So we want to bound
E(log n − Ent(X(t))). For this purpose note that, for a configuration x
which is a probability distribution,

nL(
√
x) = log n − Ent(x). (10)



Proposition

For the averaging process whose initial configuration is a probability
distribution x(0),

E(log n − Ent(X(t))) ≤ (log n − Ent(x(0))) exp(−αt/2)

where α is the log-Sobolev constant of the associated Markov chain.

The format closely parallels that of Proposition 1, though the proof is a
little more intricate. See the paper for proof.



Open Problem. A standard test bench for Markov chain related
problems is the Hamming cube graph with vertex-set {0, 1}d and rates
νij = 1/d for adjacent vertices. In particular its log-Sobolev constant is
known. Can you get stronger results for the averaging process on this
cube than are implied by our general results?

I have shown all that’s explicitly known about the averaging process
itself, though more elaborate variant models have been studied. Here is
one variant.



Averaging process with noise.

This variant model can be described as

dXi (t) = σdWi (t) + (dynamics of averaging model)

where the “noise” processes Wi (t) are defined as follows. First take n
independent standard Normals conditioned on their sum equalling zero –
call them (Wi (1), 1 ≤ i ≤ n). Now take W(t) to be the n-dimensional
Brownian motion associated with the time-1 distribution
W(1) = (Wi (1), 1 ≤ i ≤ n).

By copying the proof of Proposition 1, easy to show that the limit
distribution X(∞) of this process satisfies

E||X(∞)||22 ≤
2σ2(n − 1)

λn
.



Here’s an “opposite” process.

The Compulsive Gambler process.
Initially each agent has some (non-negative real-valued) amount of
money. Whenever two agents meet, they instantly play a fair game: one
agent acquires the combined money. In other words, if one has a and the
other has b then the first acquires all a + b with chance a/(a + b).

Note that on the complete graph geometry, this process is just an
augmentation of the Kingman coalescent process. On a general
geometry, a configuration in which the set of agents with non-zero money
forms an “independent set” (no two are adjacent in the weighted graph)
is obviously an absorbing configuration, and conversely.

This process has apparently not been studied. I mention it because it
provides a simple example of the “disordered” limit behavior mentioned
in lecture 1. Here are two questions you might like to investigate.



Take as geometry some r -regular n-vertex graph. Give each agent 1 unit
initially.
1. First consider the absorption time T . Clearly

T ≤ max
e

(time of first meeting across e).

This leads quickly to the upper bound

ET = O(r log n).

For the n-cycle we have ET = Ω(log n). But what is the optimal bound
for r = rn?

2. In the absorbed configuration there is some mean proportion ρ of
agents with non-zero money. In the n→∞ limit for fixed r , what are the
maximum and minimum possible proportions ρ∗(r), ρ∗(r)?
3. Conditional on being non-zero, an agent’s final fortune has
expectation = 1/ρ, but what can you say about its distribution? For large
r , an agent’s fortune seems rather like a “double-or-quits” martingale.


