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Liggett (1985) Interacting Particle Systems book.

Chapters on voter model, contact process, exclusion process, Glauber
dynamics for the Ising model, . . . . . . all on the infinite d-dimensional
lattice, and emphasizing ideas such as phase transitions (formalized as
non-uniqueness of stationary distributions) coming from statistical
physics.

MathSciNet 60K35 (includes percolation) shows 6197 papers in math
literature. Google Scholar shows 3233 citations to Liggett’s book.

Similar mathematical models have been independently introduced and
studied in many other academic disciplines. In many cases the natural
abstraction of what is under study is “information flow through social
networks” rather than physical particles.

Impossible to give overview of whole field. In these lectures I take a
“blank slate” approach – if no-one had previously studied such things
then how should we start? I will give pointers to literature, but my real
goal is to give conceptual background for thinking critically about what
you read in the literature.



What (mathematically) is a social network?

Usually formalized as a graph, whose vertices are individual people and
where an edge indicates presence of a specified kind of relationship.



Take a finite graph with edge-weights νij = νji > 0.

Details: proper, undirected, connected, set νij = 0 if (i , j) not an edge. So

N := (νij) is a symmetric non-negative matrix.

Commentary: Vertex = individual person = agent; νij = “strength of
relationship” between person i and person j . The usual math
formalization of “social network” is as the unweighted version, but in
most contexts relationships are not 0/1.

We diverge from mainstream social network literature by interpreting
“strength of relationship” in a specific way, as “frequency of meeting”.
Being a probabilist, I mean

Each pair i , j of agents with νij > 0 meets at the times of a rate-νij
Poisson process.

Details: independent for each pair.

Call this the meeting model for the given weighted graph. Not very
exciting, so far . . . . . . .



What is a FMIE process?

1. A given set of “states” for an agent (usually finite; sometimes Z or R).

2. Take a meeting model as above, specified by the weighted
graph/symmetric matrix N = (νij).

3. Each agent i is in some state Xi (t) at time t. When two agents i , j
meet at time t, they update their information according to some rule
(deterministic or random). That is, the updated information
Xi (t+),Xj(t+) depends only on the pre-meeting information
Xi (t−),Xj(t−) and (perhaps) added randomness.

We distinguish between the“geometric substructure” of the meeting
process and the “informational superstructure” of the update rule.
Different FMIE models correspond to different update rules for the
informational superstructure.



FMIE = IPS? Yes, but . . . . . .

(i) A precise definition of the class of FMIE processes.
(ii) Insisting on finite set Agents gives a somewhat different perspective.
For instance time-asymptotics are rarely an issue (more on this later).

Our viewpoint is by analogy with the “Markov chains and mixing times”
literature (e.g. Levin-Peres-Wilmer and Aldous-Fill); study how the
behavior of a model depends on the underlying geometry, where
“behavior” means quantitative aspects of finite-time behavior. Roughly
speaking, there was sporadic work on the finite-agent setting before
2000, and a huge literature since 2000, mostly outside mathematical
probability journals, emphasizing calculations/simulations for 150 variant
models over the same 4 geometries:



complete graph (= mean-field)

d-dimensional torus

small worlds (= torus + random long edges)

random graph with specified degree distribution (e.g. configuration
model)

There is a huge “complex networks” literature devoted to inventing and
studying network models, and I will not write out a long list here. Let me
instead mention three other mathematically natural geometries which
have not been studied as much as one might have expected.



Long range geometric interaction. Start with the torus Zd
m and add

rates νij = cd,m,γ ||i − j ||−γ2 for non-adjacent i , j . This is a way to
interpolate between the torus and the complete graph. Note the
distinction between this and the “small worlds” model, in which the rate
is non-vanishing for a few random edges.

Proximity graphs. Given a model whose behavior is understood on the
two-dimensional lattice, one could investigate the effect of “disorder” by
taking instead a proximity graph over a Poisson process of points in the
plane.

The Hamming cube {0, 1}d . This is a standard example in Markov
chain theory.

Keep in mind these are all “made up” geometries – be very skeptical
about claimed real-world applicability.

For instance . . . . . .



http://scnarc.rpi.edu/content/minority-rules-scientists-discover-tipping-
point-spread-ideas



The mathematical results in this field involve both “made up” geometries
and “made up” update rules – be very skeptical about claimed real-world
applicability.

As one small step toward realism, we emphasize trying to say something
(crude) about the behavior of a model over general geometries, rather
than sharp analysis on the lattice or random graph geometries where
calculations are feasible. (As a practical matter, first need to understand
model on complete graph).

One conceptual goal is to make a list of “representative” models
(overlapping Liggett’s) from the “agents and information” story.
Representative in the sense that other models are recognizably
variants/combinations of above.

First we discuss two FMIE processes that are “basic” in two senses. They
fit the definition of FMIE process but are much simpler than (and
therefore unrepresentative of) a typical FMIE process; yet many other
FMIE processes can be regarded as being built over one of these base
processes, with extra structure added.



Background meeting model with rates νij .

Model: Hot Potato.

There is one token. When the agent i holding the token

meets another agent j, the token is passed to j.

The natural aspect to study is Z (t) = the agent holding the token at
time t. This Z (t) is the (continuous-time) Markov chain with transition
rates (νij).

So we have available

general theory of finite-state MCs

calculations in specific geometries

In lecture 2 we’ll see other FMIE models having close connection
with this MC, and for which parts of “standard modern theory” of
finite MCs can be used.

Digress to mention a nuance, as follows.



Analogy: A Google Scholar (advanced) search on
exact phrase: Galton-Watson
year 1965-1969

gets you a bunch of papers studying Zt = population size in generation t.

For years 2005-2009, half the papers talk about the Galton-Watson tree.

Relationship above analogous to relation between the MC and Hot
Potato; for the latter one can ask questions like

What is the expected time until agent i meets someone who has
previously held the token?



Background meeting model with rates νij .

Model: Pandemic
Initially one agent is infected. Whenever an infected

agent meets another agent, the other agent becomes

infected.

In other words, the SI epidemic with exponentially distributed
infection times. Or first-passage percolation (with exponential
times).

This model is “basic” in the specific sense of fastest possible spread
of information in any FMIE model.

Like MCs, many papers doing calculations in specific geometries; see
some in Lecture 3

Unlike MCs, no “general theory”. See a conjecture in Lecture 3.

Also see some other FMIEs (Fashionista, Precedence) built over
Pandemic.



Some details/conventions
The associated MC always has uniform stationary distribution, as a
consequence of νij = νji . We often have

∑
j 6=i νij (the rate at which

agent i meets other agents; loosely, i ’s number of friends) is constant in
i , in which case w.l.o.g.∑

j 6=i

νij = 1 ∀i (standardized rates)

but this is a separate regularity condition.

This condition is not realistic as “social network” – different people have
different number of friends – but general inequalities under this condition

will extend to cases with a bound on
maxi

∑
j νij

mini
∑

j νij
.

Most related literature deals with unweighted graphs. In particular, a
r -regular graph fits our setting via the default convention of setting rates
to be νij = 1/r for each edge.



Digress to mention technical result where “weighted graphs” is
(mathematically) right setting.

In the exclusion (interchange) process there are n distinguishable tokens,
one at each agent. When two agents meet they exchange tokens. The
motion of an individual token is as the associated MC, so has some
spectral gap λRW (G ) > 0. The whole interchange process is itself a
reversible MC, so has a spectral gap which satisfies (easy)
λIP(G ) ≤ λRW (G ). Longstanding conjecture “always equal”, proved by
Caputo - Liggett - Rochthammer (2009).



FMIE encompasses many meeting models and many update rules, so we
can’t expect any remarkable general results. But there are 5 “general
principles” – all rather obvious once you say them – which seem worth
saying.

One we’ve seen already – “time-asymptotics are not the issue”. What
does this mean?



General principle 1

Write n = number of agents. If there are k <∞ states for an agent,
then the number of configurations of the process is kn <∞ and the
FMIE process is some finite-state (continuous-time) Markov chain. So
(undergrad MC theory) qualitative time-asymptotics are determined by
the strongly connected components (SCCs) of the transition graph of the
whole process, the extreme possibilities being

Convergence to a unique stationary distribution

Absorption in some (random) absorbing configuration.

In most models it’s easy to see which holds . . . . . .

. . . . . . so time-asymptotics are not the issue.

Here is a bit more detail and an Open Problem. Informally, there are 4
possible t →∞ limit behaviors in the finite-agent finite-state case, as
follows.



Absorption in a random one (of a small number of) “ordered”
configurations. [Pandemic, Averaging, Voter, Deference].

Absorption in a random one (of a large number of) “disordered”
configurations. [Compulsive Gambler].

. . . . . . . . .

Convergence to the unique stationary distribution (perhaps on a
subset of configurations). [Hot Potato, Interchange, Fashionista].

The third item is the most general possibility for a finite MC; there are a
few or many different SCCs; the limit distribution is a mixture over the
stationary distributions on each. While it’s easy to invent artificial FMIE
models with this behavior, I don’t know any “natural” one (= Open
Problem?).

To say a more substantial Open Problem let me clarify the update rule.



(repeat of previous slide)
What is a FMIE process?

1. A given set of “states” for an agent (usually finite; sometimes Z or R).

2. Take a meeting model as above, specified by the weighted
graph/symmetric matrix N = (νij).

3. Each agent i is in some state Xi (t) at time t. When two agents i , j
meet at time t, they update their information according to some rule
(deterministic or random). That is, the updated information
Xi (t+),Xj(t+) depends only on the pre-meeting information
Xi (t−),Xj(t−) and (perhaps) added randomness.

We distinguish between the“geometric substructure” of the meeting
process and the “informational superstructure” of the update rule.
Different FMIE models correspond to different update rules for the
informational superstructure.



A deterministic update rule is an arbitrary function

F : States× States→ States

and the effect of a meeting is to uodate states as

(a, b)→ (F (a, b),F (b, a)).

Fix F and finite States, and consider the FMIE process over the
complete graph on n agents, for large n.

Open Problem

What are the SCCs of the FMIE process?

To think about this for a minute . . . . . .



Suppose a subset S ⊂ States is a trap, in the sense

if a, b ∈ S then F (a, b) ∈ S

and suppose there is a function Φ : S → (G ,+) (an Abelian group)
which is conserved

if a, b ∈ S then Φ(F (a, b)) + Φ(F (b, a)) = Φ(a) + Φ(b).

Then the subset of configurations x such that

xi ∈ S ∀i∑
i

Φ(xi ) = a specified constant

is closed.

The conjecture “the SCCs are the minimal sets of the form above” seems
plausible . . .

. . . but is false.



General principle 2

The FMIE setup encourages you to think about coupling different
processes.

Discussion. The modern prevalence of coupling techniques in studying
Markovian processes actually dates from the 1970s introduction of IPS.
Typically we think of “clever” couplings of two copies of the same
process from different starts.

Of course it’s “obvious” that we can and do also couple different
processes. But consider our two basic models – MC and epidemics. Does
any paper actually consider coupling them?

In Hot Potato can define
S1(t) = agents who have held token before time t
S2(t) = agents who, before time t, met agent who had previously held
token
Sk(t) = “k ’th hand process” = agents who, at some T < t, meet agent
in Sk−1(T )
Now ∪kSk(t) is the “infected” set in Pandemic.



There are several nuances arising from the underlying meeting process
being based on a weighted graph rather than an unweighted graph. What
are analogs of (in CS-algorithms settings)
1. worst-case over connected n-vertex graphs?
2. Distributed algorithms, which envisages a processor at each vertex
which knows identity of neighbors. For a meeting model analog what do
we want to assume each agent i knows? All values νij for all other agents
j , or just observed data on meetings over [0, t0]?

Interesting issues for future work . . . . . . . Here’s a specific, more
mathematical question.



Central to theory of reversible Markov chains is spectral gap λ.
Analytically, typically easy to lower-bound 1/λ but difficult to upper
bound 1/λ.

Suppose n is not too large, so that if we knew N for the meeting model
then we could numerically compute λ. But suppose we can only observe
the meeting process for time t0; for each edge (i , j) we see a realization
of Poisson(νij t0). Use to compute natural estimate λ̂t0 . How accurate?

[A few minutes thought . . . ] shows essentially

1/λ ≤ 1/λ̂t0 .

We get an automatic bound in the “hard” direction.



Digression: diversity statistics for categorical data.
Consider assigning a population into categories,:
fi = relative frequency of category i .

Many possible diversity statistics to quantify position on spectrum from
“100% in one category” to “1 million categories with fi = 10−6”.
The two most popular are

1− s; s :=
∑
i

f 2i

−
∑
i

fi log fi (entropy).

Will show 2 data-sets unrelated to this course!
Often most helpful to show “effective number of categories” defined as
the M such that
(observed value of statistic) = value for uniform dist. on M categories.



In a typical FMIE process with (more than 2) discrete states, we can
consider

Fs(t) := proportion of agents in state s at time t.

The “diversity” processes

Q(t) :=
∑
s

F 2
s (t)

E(t) := −
∑
s

Fi (s) log Fi (s)

are natural objects of study.



Digression: what do graph theorists know about weighted graphs
that might be useful?

Most familar to some of us is
• Electric networks and reversible MCs and spanning trees
but there are classical topics such as
• max-flow = min-cut.
What else?

Just for fun: An inequality says (unweighted case) “your friends have
more friends than you do (on average)”. The “weighted” version says
“your friends party more often than you do (on average)”.

Write f (i) :=
∑

j νij
Pick (I,J) via:

I uniform on agents, P(J = j |I = i) = νij/f (i).

Then Ef (J) ≥ Ef (I ).

[graph-structured size-biasing]



Digression: finite weighted graphs ↔ finite metric spaces.

A weighted graph is specified by a matrix νij
A metric space is specified by a matrix d(i , j).

There are many general ways to use one structure to define the other
structure, with the intuition: large νij implies small d(i , j). Some are
related to our FMIE world. I’ll give a few examples – is there a survey?



Given a metric d(i , j):

1. (boring!) Define νij := f (d(i , j)) for decreasing f . Get weighted
version of complete graph.
2. First define some unweighted graph, then define weights as traffic
flow:

νij = P(edge (i , j) in shortest route between uniform random start and end)

where edge-lengths given by the metric.
Two ways to get the unweighted graph.
(a) Proximity graphs. Simplest version: create edge (i , j) if 6 ∃k s.t.
max(d(j , k), d(k, j)) < d(i , j).
(b) First create random graph P((i , j) is edge) = f (d(i , j)) for decreasing
f . Then use traffic flow, then take E.
3. . . . . . . Exercise.



Given a weighted graph νij :

1. (boring!) Assign length 1/νij to edge (i , j), then define d(k, `) =
length of shortest route from k to `. (Graph distance).
2. (a) (well-known “interesting”). Regard as electrical network with
νij = 1/(resistance of edge (i , j)), define

d(i , j) = effective resistance between i and j .

With standardized rates, this is equivalent (up to scaling) to mean
commute time between i and j for the associated MC.
(b) But many other ways to use the associated MC, for instance as
integrated variation distance

d(i , j) :=

∫ ∞
0

||Pi (Xt ∈ ·)− Pj(Xt ∈ ·)||VD dt

or its L2 analog.
3. Use the Pandemic (FPP) times T epi

ij to define d(i , j) := ET epi
ij .

4. . . . . . . or use other FMIE processes.


