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A
s an amateur student of both theo-
retical physics and languages, I have
had many occasions to contemplate
the problems of transmission of math-
ematical information between people

in different disciplines. What follows is a loosely
connected series of observations based on my
experience—and a few other things.

It is a truth universally acknowledged that al-
most all mathematicians are Platonists, at least
when they are actually doing mathematics rather
than philosophizing about it. As Hardy [8, §22]
said, “I believe that mathematical reality lies out-
side us, that our function is to discover or observe
it, and that the theorems which we prove, and
which we describe grandiloquently as our ‘cre-
ations’, are simply the notes of our observations.”
One might maintain that mathematicians can cre-
ate new structures within mathematical reality
just as engineers can create new structures within
the physical world, but most of us have no trouble
with the idea that there is such a reality and that
our job consists of studying it. Moreover, we are
all trained to believe that the universe that encom-
passes this reality consists of sets, and that every
respectable mathematical object should possess a

precise definition as a set.1

It can therefore take the working mathematician
by surprise to discover that most nonmathemati-
cians who use mathematics are not Platonists.
Nor are they intuitionists or constructivists, eager
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though people of the latter persuasions might be
to claim their allegiance. They are formalists. For
them mathematics is the discipline of manipu-
lating symbols according to certain sophisticated
rules, and the external reality to which those sym-
bols refer lies not in an abstract universe of sets
but in the real-world phenomena that they are
studying. As Dirac put it in the first edition of
his classic book on the principles of quantum
mechanics [5, §7], discussing the symbols that
represent the states of a quantum system: “One
does not anywhere specify the exact nature of the
symbols employed, nor is such specification at all
necessary. They are used all the time in an abstract
way, the algebraic axioms that they satisfy and the
connexion between equations involving them and

physical conditions being all that is required.”2

This point of view has consequences that can
cause some perplexity when mathematicians and
scientists try to talk to one another. The alge-
braic axioms to which Dirac refers, for example,
amount to the condition that the symbols repre-
senting states are the names of vectors in a Hilbert
space H and that other symbols representing ob-
servables are the names of self-adjoint operators
on H. Mathematicians would usually prefer to
have the state space for a specific quantum sys-
tem identified as a specific concrete Hilbert space,
with the important observables described by ex-
plicit formulas, and they are disconcerted when
these ingredients are missing from the recipe.
Physicists, on the other hand, would maintain that
committing oneself to such a specific choice at the

2In later editions of [5] Dirac did not make the point

quite so baldly. I imagine he had been softened up by

conversations with mathematicians, but his basic attitude

remained unchanged.
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outset is a tactical error, like committing oneself
to a specific coordinate system for describing phe-
nomena on a manifold. If one is studying specific
phenomena, one may wish to represent H (that
is, to set up an isomorphism between H and a
concrete Hilbert space) in a way that makes the
analysis more transparent, but H itself is just
what it is: the state space. (Even introducing the
notation H for the set of state vectors reflects
my bias toward the language of set theory; most
physics books don’t give it a name.)

In a similar vein, when asked to describe a Lie
algebra, physicists will usually say something like
“a set of generators X1, . . . , Xn that satisfy the Lie

algebra [Xi, Xj] =
∑
k c

k
ijXk”. This seems decidedly

off-key: the “generators” are what we would call
basis elements, and the “Lie algebra” is what we
would call the structure equations for the Lie
algebra. But it makes sense when one realizes that
it is meant as a description not of a set with some
additional structure, as mathematicians would
expect, but of an algebraic structure unattached
to any particular set. Again, one can represent
it by particular sets (of matrices, for example) if
one wishes, but the essence of the structure is
independent of such a representation.

There is also a sociological aspect to such
dialectal differences. The phrase quoted in the
preceding paragraph may prejudice a mathemati-
cal reader against the writer in the same way that
the statement “I ain’t workin’ there no more” may
lower the speaker in the estimation of one whose
normal dialect is standard American English. I
believe it works the other way, too: a definition
such as “a set equipped with the structure of a vec-
tor space together with a bilinear product that is
skew-symmetric and satisfies the Jacobi identity”
might induce a sentiment in some readers that
is the scientific equivalent of “Upper-class twit!”
Needless to say, such instinctive responses are an
impediment to effective communication.

It must be admitted that there are many situa-
tions in which the mathematicians’ insistence that
mathematical objects should be precisely defined
as sets becomes a mere dogma rather than an aid
to understanding what is going on. When we are
working with the real numbers—solving calculus
problems, say—it is rarely helpful to think of a
number such as π as a subset of the rationals (the
appropriate Dedekind cut) or an equivalence class
of Cauchy sequences. Everything that we really
need to know in order to use the real numbers is
contained in the axioms for a complete ordered
field, and the intuitive picture of numbers as points
on a line suffices as a concrete model. In a similar
vein, if we are thinking about points in the Carte-
sian plane, most of us would dismiss the assertion
that (1,3) ∩ (3,1) = {1,3} as nonsense, although
it is quite correct according to the standard def-
inition of an ordered pair: (a, b) = {{a},{a,b}}.

People from other disciplines are right to dismiss
the invocation of formal set-theoretic definitions
in such situations as an exotic tribal ritual with
which they need not concern themselves.

On the other hand, scientists’ willingness to
mathematize on the formal level can sometimes
lead them into very murky waters. Perhaps the
most egregious examples at present come from
quantum field theory. Sixty years after the de-
velopment of quantum electrodynamics as a
successful physical theory, a satisfactory math-
ematical model for the field operators on which
it is based is still lacking, and the non-Abelian
gauge field theories that complete the current
“standard model” of the elementary particles
are no better off. One can treat the much sim-
pler theory of free (noninteracting) fields in a
mathematically respectable way, although that is
harder than one might expect—the fields are lin-
ear maps from the Schwartz space of rapidly
decreasing smooth functions on R

4 to the set
of unbounded operators on a Hilbert space—but
interacting fields in four-dimensional space-time
remain in the realm of mathematical fiction. This
does not stop the physicists from writing down
symbols for them and performing formal calcula-
tions at great length to investigate their properties.
There is also another approach to quantum field
theory through certain “functional integrals” (inte-
grals over infinite-dimensional spaces of classical
fields), which also lack a mathematically re-
spectable definition (so far), although they bear
some kinship to genuine integrals that are famil-
iar to probabilists. One of the Millennium Prize
Problems is, in essence, to rectify this situation;
see [10]. But, meanwhile, the mathematician who
wants to learn more about elementary particle
physics has a problem. My attempts in this direc-
tion were frustrated for many years by my getting
stuck in the morass of ill-defined concepts, al-
though eventually I found a way to pick out a path
around the edges of the swamp. An account of the
route can be found in [7].

Other forms of nonrigorousness may cause
annoyance and frustration, but they are usually
not so unnerving. The most common sort involves
the use of informal reasoning that can be made
airtight by any competent mathematician who
wishes to take the trouble. Arguments involving
infinitesimals in calculus are generally of this
type, and the opprobrium with which they are
regarded in some circles may fairly be regarded as
a sort of mathematical prudery. More serious is the
use of approximation procedures without proper
mathematical justification—that is, without the
derivation of error estimates that would guarantee
that the claimed approximation is really good
enough. But here the appliers of mathematics
have a different criterion for success: they ask
whether their approximated quantities are close
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not to some “true” mathematical quantity but to
the real-world quantities that they are studying. If
so, they are happy, and the approximation must
be regarded simply as part of the model. In this
connection one must keep reminding oneself that,
in applied analysis, even on the fundamental level,
approximations and simplifications are always
part of the picture. Newton’s laws of motion,
for example, are valid only in inertial frames of
reference, and the latter are mythical beasts if one
insists on arbitrarily high precision. (A laboratory
on the surface of the earth does not qualify because
of the nonuniform motion of the planet on which
it sits.)

Even pure mathematicians’ standards of rigor
are not as strict as popular belief would have it;
logicians find our claims about insisting on formal
proofs quite amusing. (The word “formal,” by the
way, is slippery. A “formal proof” is supposed
to be logically sound, but a “formal calculation”
may not be.) In particular, the language in which
we couch our arguments has its share of idioms
and peculiarities like any other language. Learning
these idioms is part of becoming a mathematician,
and an unfamiliarity with them is part of the reason
why people in other disciplines have trouble.
To introduce an example, let me give a quote
from V. I. Arnold [1, p. 14]: “An author, claiming
that A implies B, must say whether the inverse
holds, otherwise the reader who is not spoiled by
mathematical slang would understand the claim
as ‘A is equivalent to B.’ If mathematicians do not
follow this rule, they are wrong.” Arnold may be
overstating the case; perhaps the Russian word
for “implies” has a slightly different flavor. (He
is speaking, in English, about having a paper
rejected by a Russian physics journal.) But the fact
is that there is a situation in which mathematicians
routinely say “if” when they mean “if and only if”:
in definitions. “A number is called perfect if it is
the sum of its proper divisors,” we say, and we
expect the reader to understand that a number is
not called perfect otherwise.

Another situation in which we commonly sup-
press part of an assertion is in implications
involving variables. When we say

(*) If x > 2 then x2 > 4,

we are not talking about a particular number x; the
statement implicitly contains a universal quantifier
“for all real numbersx”. Such unspoken quantifiers
generally remain in the background without giving
any trouble, but they can cause confusion in
interpreting statements like (*), and their ubiquity
has even led some people who should know better
[4, p. 29] to suggest that the words “if … then”
are a way of expressing universal quantification.
The way to force the universal quantifiers out
of the shadows is to consider negations, for the
resulting existential quantifiers cannot be elided:

the negation of (*) is “There is an x such that x > 2

and x2 ≤ 4.” (I could go on for pages about the

perils of expressing quantifications, implications,

and negations in ordinary language, but that is

another essay.)

Every technical discipline has its own spe-

cialized vocabulary, but mathematical jargon is

distinguished by its propensity for adopting com-
mon words as technical terms. Many people have

observed that the discrepancies between common

and technical usages of words such as “limit”,

“group”, and “series” present an obstacle (not the

only one) to students’ mastery of mathematical

terminology; see, for example, Boas [2], Edwards

and Ward [6], and Hersh [9]. But they can also

have unintended consequences for the perception

of mathematics by the general public. On April 9,
1975, Congressman Robert Michel addressed the

House of Representatives on the possible misuse

of taxpayers’ money by the National Science Foun-

dation, and he cited several recently approved

grants whose significance he found dubious. One

of them was a grant for US$27,400 entitled “Stud-

ies in complex analysis”.3 To the mathematical

reader this title seems innocuous enough, but

Michel’s reaction [3] was, “Well, for that amount

of money I certainly hope it is complex. ‘Simple

analysis’ would, hopefully, be cheaper.”

Michel also cited a grant entitled “Measurement

of the stratospheric distribution of the fluoro-
carbons and other constituents of interest in the

effect of chlorine pollutants in the ozone layer”. He

said, “At least in that title there was one word I un-

derstood: constituents. And so the thought occurs

to me, if one of my constituents should ask me

my feelings about [this] project—which I implicitly

approve when I vote the NSF appropriation—what

in the world could I possibly say?”
Well, what can I possibly say? One might have

hoped that Michel would have read about holes

in the ozone layer in the newspaper. I suppose

we should just be grateful that none of the NSF

grants that year had to do with perverse sheaves.

As far as I know, that unfortunate bit of whimsical

nomenclature has not caused us any serious em-

barrassment yet, but if it does, I suggest that its

perpetrators be sentenced to a year of hard labor
teaching remedial algebra.

Goethe once quipped that “mathematicians are

a sort of Frenchmen; they translate whatever you

say into their own language, and forthwith it is

something entirely different.” At times we may

have the same feeling about what others do with

the things we say. The problems of communication

can produce annoyance and frustration, but to an
inquisitive mind they offer entertainment and

illumination, too.

3I was one of the junior investigators on it.
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