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An Interpretation of Identification Entropy

Rudolf Ahlswede and Ning Cai, Senior Member, IEEE

Abstract—After Ahlswede introduced identification for source coding he
discovered identification entropy and demonstrated that it plays a role anal-
ogously to classical entropy in Shannon’s noiseless source coding. We give
now even more insight into this functional interpreting its two factors.

Index Terms—Identification entropy, operational justification, source
coding for identification.

I. INTRODUCTION

A. Terminology

Identification in source coding started in [3]. Then identification
entropy was discovered and its operational significance in noiseless
source coding was demonstrated in [4].

Familiarity with that paper is helpful, but not necessary here. As far
as possible we use its notation.

Differences come from the fact that we use now a -ary coding al-
phabet , whereas earlier only the case
was considered and it was remarked only that all results generalize
to arbitrary . In particular the identification entropy, abbreviated as
ID-entropy, for the source has the form

(1.1)

Shannon (in 1948) has shown that a source with output
satisfying , can be encoded in a prefix code

such that for the -ary entropy

where is the length of .
We use a prefix code, abbreviated as PC, for another pur-

pose, namely, noiseless identification, that is, every user who
wants to know whether a of his interest is the actual
source output or cannot consider the random variable (RV) with

if and check whether
coincides with in the first, second, etc., letter

and stop when the first different letter occurs or when . Let
be the expected number of checkings, if code is used.

Related quantities are

(1.2)

that is, the expected number of checkings for a person in the worst case,
if code is used

(1.3)
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the expected number of checkings in the worst case for a best code, and
finally, if ’s are chosen by an RV independent of and defined by

for , we consider

(1.4)

the average number of expected checkings, if code is used, and also

(1.5)

the average number of expected checkings for a best code.
A natural special case is the mean number of expected checkings

if (1.6)

which equals for , and

(1.7)

Another special case of some “intuitive appeal” is the case .
Here we write

(1.8)

It is known that Huffman codes minimize the expected code length for
PC.

This is not always the case for and the other quantities in
identification.

In this correspondence an important incentive comes from The-
orem 4 of [1].

For , that is with -powers as probabilities
. Here the assumption means that there is a

complete prefix code (i.e., equality holds in Kraft’s equality).

B. A Terminology Involving Proper Common Prefices

The quantity is defined below also for the case of not nec-
essarily independent and . It is conveniently described in a termi-
nology involving proper common prefices. For an encoding

, we define for two words as the number of
proper common prefices including the empty word, which equals the
length of the maximal proper common prefix plus .

For example, and
(since the proper common prefices are ).

Now with encoding for PC and RVs and , mea-
sures the time steps it takes to decide whether and are equal, that
is, the checking time or waiting time, which we denote by

(1.9)

Clearly, we can write the expected waiting time as

(1.10)

It is readily verified that for independent , that is,

(1.11)

We give now another description for . For a word
and a code define as subset of

has proper prefix (1.12)

0018-9448/$20.00 © 2006 IEEE



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 9, SEPTEMBER 2006 4199

and its indicator function . Now

and by (1.11)

(1.13)

C. Matrix Notation

Next we look at the double infinite matrix

(1.14)

and its minor labeled by sequences in .
Henceforth we assume that and are independent and have dis-

tributions and . We can then use (1.11) For a prefix code
induces, the distribution and induces the distribution , when
for

(1.15)

and

for (1.16)

Viewing both and as row vectors, for the corresponding column
vector (1.11) can be written in the form

(1.17)

It is clear from (1.10) that a noncomplete prefix code, that is one for
which the Kraft sum is smaller than , can be improved for identifica-
tion by shortening a suitable codeword. Hence, an optimal ID source
code is necessarily complete. In such a code

(1.19)

and one can replace by its submatrix for . This
implies

(1.20)

where and are row vectors obtained by deleting the compo-
nents .

Sometimes, the expressions (1.17) or (1.19) are more convenient
for the investigation of . For example, it is easy to see that

and, therefore, also are positive semidefinite. Indeed, let
(resp., ) be a matrix whose rows are labeled by sequences in
(resp., ) and whose columns are labeled by sequences in
(resp., empty sequence ) such that its -entry is

if y is a proper prefix of
otherwise.

Then

(1.21)

and hence and are positive semidefinite. Therefore, by (1.19),
is -convex in .

Furthermore, for sources with and the block code
, the uniform distribution on achieves .1

Another interesting observation on (1.20) is that as the th component
of (resp., ) is (resp., ),
application of the Cauchy–Schwarz inequality to (1.20) yields

(1.22)

and equality holds iff for all

We state this in equivalent form as follows.

Lemma 1:

(1.23)

and equality holds iff for all

which implies .

This suggests to introduce

as a measure of similarity of sources and with respect to the
code .

Intuitively, we feel that for a good code for source and as user
distribution and should be very dissimilar, because then the user
waits less time until he knows that the output of is not what he wants.

This idea will be used later for code construction. Actually, it is
clear even in the general case where and are not necessarily
independent.

To simplify the discussion, we assume here that the alphabet is
binary, i.e., .

Then the first bit of a codeword partitions the source into two
parts ; where . By
(1.13), to minimize one has to choose a partition such that

’s are small simultaneously for .
To construct a good code one can continue this line: partition to

’s such that

's

are as small as possible for , and so on.
When and are independent the requirement for a good code is

that the difference between and is
large.

We call this the LOCAL UNBALANCE PRINCIPLE in contrast to
the GLOBAL BALANCE PRINCIPLE below.

Another extremal case is that and are equal with probability
one and in this case one may never use the unbalance principle. How-
ever, in this case the identification for the source makes no sense: The
user knows that his output definitely comes! But still we can inves-
tigate the problem by assuming that with high probability .
More specifically, we consider the limit of for a se-
quence of random variables such that converges to

1A proof is given in the forthcoming Ph.D. dissertation “L-identification for
sources” written by C. Heup at the Department of Mathematics of the University
of Bielefeld., Bielefeld, Germany.
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in probability. Then it follows from Proposition 1 that
converges to the average length of codewords, the classical object in
source coding! In this sense, identification for sources is a generaliza-
tion of source coding (data compression).

One of the discoveries of [4] is that ID-entropy is a lower bound to
. In Section II we repeat the original proof and we give in

Section III another proof of this fact via two basic tools, Lemmas 3
and 4 for , where is the distribution of a memoryless
source. It provides a clear information-theoretical meaning of the two
factors and of ID-entropy. Next we consider in
Section IV sufficient and necessary conditions for a prefix code to
achieve the ID-entropy lower bound for . Quite surprisingly,
it turns out that the ID-entropy bound for ID-time is achieved by a
variable-length code iff the Shannon entropy bound for the average
length of codewords is achieved by the same code (Theorem 2).

Finally, we end the correspondence in Section V with a global bal-
ance principle to find good codes (Theorem 3).

II. AN OPERATIONAL JUSTIFICATION OF ID-ENTROPY AS LOWER

BOUND FOR

Recall from the Introduction that for

for

We repeat the first main result for from [4].
Central in our derivation is a proof by induction based on a decom-

position formula for trees.
Starting from the root a binary tree goes via to the subtree

and via to the subtree with sets of leaves and , respectively.
A code for can be viewed as a tree , where corresponds
to the set of codewords , .

The leaves are labeled so that and
. Using probabilities

we can give the decomposition in the following.

Lemma 2: [4] For a code for

This readily yields the following result.

Theorem 1: [4] For every source

Proof: We proceed by induction on . The base case
can be established as follows. For and any

, but

For the induction step, for any code use the decomposition formula
in Lemma 2 and, of course, the desired inequality for and as
induction hypothesis

where and the
grouping identity is used for the equality. This holds for every and
therefore also for .

The approach readily extends also to the -ary case.

III. AN ALTERNATIVE PROOF OF THE ID-ENTROPY LOWER BOUND

FOR

First, we establish Lemma 3 below, which holds for the more gen-
eral case . Let be a discrete memoryless
correlated source with a generic pair of variables . Again,
serves as (random) source and serves as random user. For a given
code for let be the code obtained by encoding the compo-
nents of sequence iteratively. That is, for all

(3.1)

Lemma 3:

(3.2)

and therefore,

(3.3)

Proof: Since

(3.3) follows from (3.2) immediately by the summation formula for
geometric series.

To show (3.2), we define first for all random variables

if
otherwise

(3.4)

and for we let be a constant for convenience of notation.
Further, we let be the waiting time for the random user in the
th block.

Conditional on it is defined like in (1.9) and
conditional on obviously , because
the random user has made his decision before the ’s step. Moreover,
by the definition of

(3.5)

and, consequently,

for
for

(3.6)
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where (3.6) holds in case , because the random user has to wait
for the first outcome. Therefore it follows that

as we wanted to show.
Next we consider the case where and are independent and iden-

tically distributed with distribution so that

(3.7)

More specifically, we are looking for a lower bound on
for all prefix codes over .

Lemma 4: For all there exists an such that for suffi-
ciently large and all positive integers

(3.8)

for all prefix codes over

(3.9)

Proof: For given we choose such that for a
and sufficiently large for familiar sets of typical sequences

and for all

Since for a prefix code

(3.10)

(3.11)

However, (3.8) implies that

This together with (3.11) yields

(3.12)

for .
Next, for the distribution and the code over we construct a

related source and a code over as follows.
The new set contains and for its

elements and the new -coding is .
Now we define the additional elements in with its and .
We partition into subsets
according to the th prefix and use letter to represent and

put the set into so that

Then we define and let be the common
th prefix of the ’s for the ’s in . That is, we consider all

sharing the same th prefix in as a single element. Obviously

(3.13)

Finally, let and be random variables for the new source and new
random user with distribution and let be a random variable such
that

if both and are larger than
otherwise.

Then

(3.14)

where is the random waiting time, is the common conditional

distribution of given , and given , i.e.,

for

and is the restriction of to .
Notice that is a block code of length . In order to bound

we extend to a set of cardinality in the case of
necessity and assign zero probabilities and a codeword of length

not in . This little modification obviously does not change the value

of . Thus, if we denote the uniform distribution over the

extended set by , we have

(3.15)

where is a bijective block code .
It is clear that iff the length of is smaller than

and

if

Then it follows from (1.13) that

(3.16)

Finally, we combine (3.12), (3.13), (3.14), (3.15) and (3.16) and
Lemma 4 follows.

An immediate consequence is the followig corollary.

Corollary 1:

(3.17)

Furthermore, for independent and identically distributed random vari-
ables with distribution we have

and from (3.3) and (3.17) follows the ID-entropy bound.
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Corollary 2: (See [4, Theorem 2])

(3.18)

This derivation provides a clear information-theoretical meaning to
the two factors in ID-entropy: is a universal lower bound on the
ID-waiting time for a discrete memoryless source with an independent
user having the same distribution . is the cost paid for

coding the source componentwise and leaving time for the random user
in the following sense.

Let us imagine the following procedure.
At a unit of time, the random source outputs a symbol and

the random user , who wants to know whether , checks
whether coincides with his own symbol . He will end if not. Then
the waiting time for him is with probability

for

Letting we obtain a geometric distribution.
The expected waiting time is

(3.19)

which equals in the case of independent and identically dis-

tributed random variables.
(Actually (3.2) holds for all stationary sources and we choose a mem-

oryless source for simplicity.) In general. (3.3) has the form

(3.20)

By monotonicity, the limit at the right-hand side and therefore also at
the left-hand side exists and equals a positive finite or infinite value.

When it is finite, one may replace
and in the first lines of (3.19) by

and , respectively, and
obtain

(3.21)

the expectation of random leaving time for a stationary source.
Thus (3.20) is rewritten as

(3.22)

Now the information-theoretical meaning of (3.22) is quite clear. One
encodes a source with alphabet component by com-
ponent by a variable length code . The first term at the right-hand side
of (3.22) is the expected waiting time in a block and the second term is
the expected waiting time for different and .

IV. SUFFICIENT AND NECESSARY CONDITIONS FOR A PREFIX CODE

TO ACHIEVE THE ID-ENTROPY LOWER BOUND OF

Quite surprisingly, the ID-entropy bound to ID-waiting time is
achieved by a variable-length code iff the Shannon entropy bound to
the average lengths of codewords is achieved by the same code.

For the proof, we use a simple consequence of the Cauchy–Schwarz
inequality, which states for two sequences of real numbers

and that

(4.1)

with equality iff for some constant, say for all or
for all .

Choosing for all one has

(4.2)

with equality iff .

Theorem 2: Let be a prefix code. Then the following statements
are equivalent.

i) .
ii) For all with

(4.3)

and for all such that and such that
and share the same prefix of length implies

(4.4)

iii)

(4.5)

Proof: It is well known that i) is equivalent to

i ) For all

(4.6)

Notice that for i) the code is necessarily complete. We shall
show that

i') ii) iii) i )

Ad : For all with , the code obtained by
deleting the common prefix from all the codewords ,
is a complete code on , because is a complete code. That is,

and, consequently, by (4.6)
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Ad : Suppose (4.3) holds for all and we prove iii) by
induction on .

In case , both sides of (4.5) are one. Assume iii) holds
for all codes with and let . Let
and be as in the proof of (1.11) and let be the prefix code
for the source with alphabet and distribution such that
for all and

Then (4.3) and (4.4) imply that ii) holds for all , and
for all

(4.7)

Next, we apply (4.3) to all with and and obtain

(4.8)

which with (4.7) yields for all

(4.9)

Moreover, by the induction hypothesis for all and

(4.10)

as by (4.3)

(4.11)

for all (say).
Finally, like in the proof of (1.11), we have

that is (4.5)

where the second equality holds by (4.10), the third equality holds,
because is a partition of , and the fourth
equality follows from (4.9) and the definition of .

Ad Again we proceed by induction on the maximum
length of codewords.

Suppose first that for a code . Then
and . Applying (4.2) to the ID-entropy we get

with equality iff is the uniform distribution. On the other hand, since
, , and the equality holds

iff . Then (4.5) holds iff is uniform and , i.e., (4.6).

Assume now that the implication iii) i ) holds for all codes with
maximum lengths and that is a prefix code of maximum
length .

Without loss of generality, we can assume that is complete, be-
cause otherwise we can add “dummy” symbols with probability to
and assign to them suitable codewords so that the Kraft sum equals ,
but this does not change equality (4.5).

Having completeness, we can assume that for there are
symbols in with

and such that share a prefix of length
for .

Let be “new symbols” not in the original and
consider

and the probability distribution defined by

if
if for some

(4.12)

Next we define a prefix code for the source by using as
follows:

if
if for some

(4.13)

Then for , and
.

Therefore, by induction hypothesis

(4.14)

and equality holds iff for and

for

Furthermore, it follows from (4.2) and the definition of and
that

(4.15)

By (4.13), the first inequality holds iff for
and for ; it follows from (4.2)
that the last inequality holds and with equality iff

for

In order to have
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the two inequalities in (4.15) must be equalities. However, this is equiv-
alent with (4.6), i.e., i ).

V. A GLOBAL BALANCE PRINCIPLE TO FIND GOOD CODES

In case and are independent and identically distributed, there is
no gain in using the local unbalance principle (LUP). But in this case,
Corollary 1 and (4.2) provide a way to find a good code. We first rewrite
Corollary 1 as

By the assumptions on and with their distribution

(5.1)

Notice that in case

is a constant is minimized by choosing the
’s uniformly. This gives us a global balance principle

(GBT) for finding good codes.
We shall see the roles of both, the LUP and the GBP in the proof of

the following coding theorem for discrete memoryless sources (DMSs).

Theorem 3: For a DMS with generic distribution
, i.e., the generic random variables and are indepen-

dent and

if
if (5.2)

Proof: Trivially, and by Corollary 2, is a
lower bound to . Hence, we only have to construct
codes to achieve asymptotically the bounds in (5.2).

Case We choose a so that for sufficiently large

(5.3)

and for a

and (5.4)

Partition into two parts and such that and
.

To simplify matters, we assume . This does not loose generality
since enlarging the alphabet cannot make things worse.

Let and for . Then we define
a code by if and show that
is arbitrarily close to one if is sufficiently large. Actually, it immedi-
ately follows from Proposition 1

and therefore,

as (5.5)

where the second inequality holds because

for

and the last inequality follows from (5.4).
Case : Now we let . For let

be the set of -types ( -empirical distributions) on with
. Then there is a positive such that the empirical distribution of

the output (resp., ) is in with probability larger than
. Next we choose an integer such that for

(5.6)

Label sequences in for by and
let be a mapping from to , where
as follows.

If has type in and has an index with -ary
representation , i.e.,
for , then let

(5.7)

If the type of is not in , we arbitrarily choose a sequence
in as .

For any fixed , and , let be
the set of sequences in such that is a prefix of . Then it
is not hard to see that for all with

More specifically, for all and

or

if with for
.

Let (here it does not matter whether
or not).

Thus, we partition into parts as for
.

By the the asymptotic equipartition property (AEP), the difference
of the conditional probability of the event that the output of is in
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given that the type of is in and is not larger
than

Recalling that with probability has type in and
the assumption that has the same distribution as , we obtain that

and for all

which implies that for all

(5.8)

when .
Recall that is a function from to and that the definition

of is actually the inverse image of under , i.e.
.

Let furthermore and let be a
function on such that its restriction on is an injection into

for all . Then our decoding function is defined as

(5.9)

To estimate , we introduce an auxiliary source with al-
phabet and probability distribution such that for all

We divide the waiting time for identification with code into two parts
according to the two components and in (5.9), and we let
and be the random waiting times of the two parts, respectively.
Now let be a binary random variable such that

if
otherwise.

Then

(5.10)

Let be the code for the auxiliary source with encoding function
. Then we have that

(5.11)

and with the notation in Corollary 1 and
for with . For all

, we denote

Then we have for all and by (5.8)
.

Now we apply Corollary 1 to estimate

(5.12)

Moreover, by definition of and

and in (5.12) we have shown that

Consequently

(5.13)

Finally, by combining (5.10), (5.11), (5.12), and (5.13) with the choice
of in (5.6) we have that

the desired inequality.
It is interesting that the limits of the waiting time of ID-codes on the

left-hand side of (5.2) are independent of the generic distributions
and and only depend on whether they are equal.

In the case that they are not equal, it is even independent of the al-
phabet size. In particular, in the case , we have seen in the proof
that the key step is how to distribute the first symbol and the LUP is
applied in the second step. Moreover, for a good code the random user
with exponentially vanishing probability needs to wait for the second
symbol. So the remaining parts of codewords are not so important.
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Similarly, in the case , where we use instead of the LUP the
GBP, the key parts of codewords is a relatively small prefix (in the proof
it is the th prefix) and after that the user with exponentially small
probability has to wait. Thus, again the remaining part of codewords is
less important.

APPENDIX I
COMMENTS ON GENERALIZED ENTROPIES

After the discovery of ID-entropies in [4] work of Tsallis [13] and
also [14] was brought to our attention. The equalities (1) and (2) in
[14] are here (A1) and (A2). The letter used there corresponds to our
letter , because for us gives the alphabet size. The generalization of
Boltzmann’s entropy

is

(A1)

for any real . Notice that , which can be
named .

One readily verifies that for product distributions for inde-
pendent random variables

(A2)

Since in all cases and , respectively,
correspond to superadditivity, additivity, and subadditivity (also called
for the purposes in statistical physics superextensitivity, extensitivity,
and subextensitivity).

We recall the grouping identity of [4].
For a partition of

and for

(A3)

where . This implies

and since

we get

(A4)

which is (A2) for and .

We have been told by several experts in physics that the operational
significance of the quantities (for ) in statistical physics is
not undisputed.

In contrast, the significance of identification entropy was demon-
strated in [4] (see Section II), which is formally close to, but essen-
tially different from for two reasons: always and
is uniquely determined and depends on the alphabet size !

We also have discussed the coding theoretical meanings of the fac-
tors and .

More recently, we learned from referees that already in 1967 Havrda
and Charvát [7] introduced the entropies of type

(A5)

the Boltzmann/Shannon entropy. So, it is reasonable to define

This is a generalization of the BGS-entropy different from the Rényi
entropies of order (which according to [2] were introduced by
Schützenberger [9]) given by

.
Comparison shows that

and

.
So, while the entropies of order and the entropies of type are

different for , we see that the bijection

connects them. Therefore, we may ask what the advantage is in dealing
with entropies of type . We meanwhile also learned that the book
[1] gives a comprehensive discussion. Also Daróczy’s contribution [6],
where “type ” is named “degree ,” gives an enlightening analysis.

Note that Rényi entropies are additive, but not subadditive
(except for ) and not recursive, and they have not the branching
property nor the sum property, that is, there exists a measurable func-
tion on such that

Entropies of type , on the other hand, are not additive but do have
the subadditivity property and the sum property and furthermore are
additive of degree :
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.
strong additive of degree :

.
recursive of degree :

with .
(In consequence, entropies of type also have the branching

property.)
It is clear now that for binary alphabet the ID-entropy is exactly the

entropy of type .
However, prior to [13] there are hardly any applications or opera-

tional justifications of the entropy of type .
Moreover, the -ary case did not exist at all and therefore the name

ID-entropy is well justified.
We feel that it must be said that in many papers (with several coau-

thors) Tsallis at least developed ideas to promote non-standard-equilib-
rium theory in Statistical Physics using generalized entropies and
generalized concepts of inner energy.

Our attention has been drawn also to the papers [5], [11], [12] with
possibilities of connections to our work.

Recently, clear-cut progress was made by C. Heup in his forth-
coming thesis with a generalization of ID-entropy motivated by
L-identification.
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Coding for the Feedback Gel’fand–Pinsker Channel and
the Feedforward Wyner–Ziv Source

Neri Merhav, Fellow, IEEE, and Tsachy Weissman, Member, IEEE

Abstract—We consider both channel coding and source coding, with
perfect past feedback/feedforward, in the presence of side information.
It is first observed that feedback does not increase the capacity of the
Gel’fand–Pinsker channel, nor does feedforward improve the achievable
rate–distortion performance in the Wyner–Ziv problem. We then focus
on the Gaussian case showing that, as in the absence of side information,
feedback/feedforward allows to efficiently attain the respective perfor-
mance limits. In particular, we derive schemes via variations on that of
Schalkwijk and Kailath. These variants, which are as simple as their
origin and require no binning, are shown to achieve, respectively, the
capacity of Costa’s channel, and the Wyner–Ziv rate distortion function.
Finally, we consider the finite-alphabet setting and derive schemes for both
the channel and the source coding problems that attain the fundamental
limits, using variations on schemes of Ahlswede and Ooi and Wornell, and
of Martinian and Wornell, respectively.

Index Terms—Dirty paper, feedback, feedforward, Schalkwijk–Kailath
scheme, side information, source–channel duality.

I. INTRODUCTION

That feedback does not increase the capacity of a memoryless
channel, yet can dramatically simplify the schemes for achieving it,
is a well known fact (cf. [6] and the literature survey therein). More
recently, an analogous phenomenon was shown to hold for the dual
problem of lossy source coding with perfect past feedback, also known
as “feedforward,” at the decoder [12], [7], [5], a problem arising in
contexts as diverse as prediction theory, remote sensing, and control.

In this work, we revisit these problems to accommodate the presence
of side information. As is the case for problems without feedback/feed-
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