
A Simple Model of Global Cascades on Random Networks
Author(s): Duncan J. Watts
Source: Proceedings of the National Academy of Sciences of the United States of America,
Vol. 99, No. 9 (Apr. 30, 2002), pp. 5766-5771
Published by: National Academy of Sciences
Stable URL: http://www.jstor.org/stable/3058573 .
Accessed: 16/03/2011 19:39

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at .
http://www.jstor.org/action/showPublisher?publisherCode=nas. .

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

National Academy of Sciences is collaborating with JSTOR to digitize, preserve and extend access to
Proceedings of the National Academy of Sciences of the United States of America.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=nas
http://www.jstor.org/stable/3058573?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=nas


A simple model of global cas 
random networks 
Duncan J. Watts* 

Department of Sociology, Columbia University New York, NY 10027 

Communicated by Murray Gell-Mann, Santa Fe Institute, Santa Fe, NM, February 14 

The origin of large but rare cascades that are triggered by small initial an 
shocks is a phenomenon that manifests itself as diversely as cultural ap 
fads, collective action, the diffusion of norms and innovations, and 
cascading failures in infrastructure and organizational networks. This sib 
paper presents a possible explanation of this phenomenon in terms wi 
of a sparse, random network of interacting agents whose decisions sai 
are determined by the actions of their neighbors according to a simple of 
threshold rule. Two regimes are identified in which the network is ne 
susceptible to very large cascades-herein called global cascades- Sp 
that occur very rarely. When cascade propagation is limited by the th; 
connectivity of the network, a power law distribution of cascade sizes exi 
is observed, analogous to the cluster size distribution in standard siz 
percolation theory and avalanches in self-organized criticality. But sh( 
when the network is highly connected, cascade propagation is limited are 
instead by the local stability of the nodes themselves, and the size 
distribution of cascades is bimodal, implying a more extreme kind of M4 
instability that is correspondingly harder to anticipate. In the first Th 
regime, where the distribution of network neighbors is highly ea 
skewed, it is found that the most connected nodes are far more wh 
likely than average nodes to trigger cascades, but not in the second of 
regime. Finally, it is shown that heterogeneity plays an ambiguous oft 
role in determining a system's stability: increasingly heteroge- inf 
neous thresholds make the system more vulnerable to global eve 
cascades; but an increasingly heterogeneous degree distribution me 
makes it less vulnerable. tio 

th( 

H ow is it that small initial shocks can cascade to affect or disrupt res 
large systems that have proven stable with respect to similar aC' 

disturbances in the past? Why do some books, movies, and albums tec 

emerge out of obscurity, and with small marketing budgets, to th( 
become popular hits (1), when many a priori indistinguishable of 
efforts fail to rise above the noise? Why does the stock market SCe 
exhibit occasional large fluctuations that cannot be traced to the dil 
arrival of any correspondingly significant piece of information (2)? 

act 

How do large, grassroots social movements start in the absence of 
centralized control or public communication (3)? un 

These phenomena are all examples of what economists call un 
information cascades (ref. 4; but which are herein called simply reE 
cascades), during which individuals in a population exhibit tiv 
herd-like behavior because they are making decisions based on 
the actions of other individuals rather than relying on their own ge] 
information about the problem. Although they are generated by t 
quite different mechanisms, cascades in social and economic co] 

systems (3-6) are similar to cascading failures in physical infra- P? 
structure networks (7, 8) and complex organizations (9) in that co] 

initial failures increase the likelihood of subsequent failures, on 
of 

leading to eventual outcomes that, like the August 10, 1996 
cascading failure in the western United States power transmis- ap ual sion grid (8), are extremely difficult to predict, even when the in 
properties of the individual components are well understood. 
Not as newsworthy, but just as important as the cascades reI 
themselves, is that the very same systems routinely display great len 
stability in the presence of continual small failures and shocks 
that are at least as large as the shocks that ultimately generate 
a cascade. Cascades can therefore be regarded as a specific 
manifestation of the robust yet fragile nature of many complex 
systems (10): a system may appear stable for long periods of time *E-r 

5766-5771 | PNAS | April 30, 2002 | vol. 99 I no. 9 

cades on 

2002 (received for review May 29, 2001) 

d withstand many external shocks (robust), then suddenly and 
parently inexplicably exhibit a large cascade (fragile). 
Although the social, economic, and physical mechanisms respon- 
le for the occurrence of cascades are complex and may vary 
dely across systems and even between particular cascades in the 
ne system, it is proposed in this paper that some generic features 
cascades can be explained in terms of the connectivity of the 
twork by which influence is transmitted between individuals. 
ecifically, this paper addresses the set of qualitative observations 
it (i) global (i.e., very large) cascades can be triggered by 
)genous events (shocks) that are very small relative to the system 
e, and (ii) global cascades occur rarely relative to the number of 
)cks that the system receives, and may be triggered by shocks that 
' a priori indistinguishable from shocks that do not. 

Wdel Motivation: Binary Decisions with Externalities 
is model is motivated by considering a population of individuals 
:h of whom must decide between two alternative actions, and 
ose decisions depend explicitly on the actions of other members 
the population. In social and economic systems, decision makers 
en pay attention to each other either because they have limited 
ormation about the problem itself or limited ability to process 
-n the information that is available (6). When deciding which 
,vie (11) or restaurant (12) to visit, we often have little informa- 
n with which to evaluate the alternatives, so frequently we rely on 

recommendation of friends, or simply pick the movie or 
taurant to which most people are going. Even when we have 
:ess to plentiful information, such as when we evaluate new 
hnologies, risky financial assets, or job candidates, we often lack 
ability to make sense of it; hence, again we rely on the advice 

trusted friends, colleagues, or advisors. In other decision making 
narios, such as in collective action problems (3) or social 
:mmas (13), an individual's payoff is an explicit function of the 
ions of others. And in other problems still, involving say the 
fusion of a new technology (14), the utility of a single additional 
it-a fax machine for example-may depend on the number of 
its that have already been sold. In all these problems, therefore, 
:ardless of the details, individual decision makers have an incen- 
I to pay attention to the decisions of others. 
In economic terms, this entire class of problems is known 
lerically as binary decisions with externalities (6). As simplistic as 
.ppears, a binary decision framework is relevant to surprisingly 
nplex problems. To take an extreme example, the creation of a 
itical coalition or an international treaty is unquestionably a 
nplex, multifaceted process with many potential outcomes. But 
:e the coalition exists or the treaty has been drafted, the decision 
xhether or not to join is essential a binary one. Similar reasoning 
)lies to a firm's choice between two technologies, or an individ- 
's choice between two neighborhood restaurants-the factors 
olved in the decision may be many, but the decision itself can be 
arded as binary. 
3oth the detailed mechanisms involved in binary decision prob- 
is, and also the origins of the externalities can vary widely across 
:cific problems. Nevertheless, in many applications that have 
mn examined in the economics and sociology literature-for 
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example, fads (1, 4, 5), riots (15), crime (16), competing technol- dif 

ogies (14), and the spread of innovations (17, 18), conventions (6), dei 
and cooperation (13)-the decision itself can be considered a dy: 
function solely of the relative number of other agents who are rel 
observed to choose one alternative over the other (6). Because thi 

many decisions are inherently costly, requiring commitment of time ne 
or resources, the relevant decision function frequently exhibits a 

strong threshold nature: agents display inertia in switching states, E 
but once their personal threshold has been reached, the action of Th 
even a single neighbor can tip them from one state to another. ab 

thi 
Model Specification tic 
A particularly simple binary decision rule with externalities that de 

captures the essential features outlined above is the following: mf 
An individual agent observes the current states (either 0 or 1) of ne 
k other agents, which we call its neighbors, and adopts state 1 if ap 
at least a threshold fraction & of its k neighbors are in state 1, co 
else it adopts state 0. ab 

To account for variations in knowledge, preferences, and obser- ch 
vational capabilities across the population of decision-making grn 

agents, both individual thresholds and also the number of neighbors Al 
k are allowed to be heterogeneous. First, each agent is assigned a m( 
threshold 4 drawn at random from a distribution,fl) that is defined fir 
on the unit interval and normalized such that off(4)d = 1, but tal 
which is otherwise arbitrary. Next, we construct a network of n co 

agents, in which each agent is connected to k neighbors with ca, 

probability pk and the average number of neighbors is (k) = z. no 

Although we shall continue to speak of an agent's neighbors, we oc 
should think of them simply as the set of incoming signals that are ex 
relevant to the problem at hand. More formally, we say that agents de 
are represented by vertices (or nodes) in a graph; neighboring ev 
vertices are joined by edges;pk is the degree distribution of the graph; ca 
and z is the average degree (in physics, z is usually called the mi 
coordination number). To model the dynamics of cascades, the 

population is initially all-off (state 0) and is perturbed at time t = is: 
O by a small fraction Io << 1 of vertices that are switched on (state ini 

1). The population then evolves at successive time steps with all se( 
vertices updating their states in random, asynchronous order ac- thl 
cording to the threshold rule above. Once a vertex has switched on, ap 
it remains on (active) for the duration of the dynamics. wi 

In the social science literature, decision rules of this kind are co 

usually derived either from the payoff structure of noncooperative of 

games such as the prisoner's dilemma (3, 6), or from stochastic eq 
sampling procedures (18). But when regarded more generally as a un 

change of state-not just a decision-the model belongs to a larger st6 
class of contagion problems that includes models of failures in qu 

engineered systems such as power transmission networks (8) or the thi 
internet (19, 20), epidemiological (21) and percolation (22, 23) sn 
models of disease spreading, and a multiplicity of cellular-automata 
models including random-field Ising models (24), bootstrap perco- cr 
lation (25, 26), majority voting (27, 28), spreading activation (29), in 
and self-organized criticality (8, 29). vu 

The model, however, differs from these other contagion models va 
in some important respects. (i) Unlike epidemiological models, is 
where contagion events between pairs of individuals are indepen- in 
dent, the threshold rule effectively introduces local dependencies; th 
that is, the effect that a single infected neighbor will have on a given of 
node depends critically on the states of the node's other neighbors. ne 

(ii) Unlike bootstrap percolation, and self-organized criticality ex 
models (which also exhibit local dependencies), the threshold is not a 

expressed in terms of the absolute number of a node's neighbors hc 

choosing a given alternative, but the corresponding fraction of the co 
neighborhood. This is a natural condition to impose for decision to 

making problems, because the more signals a decision maker in 
receives, the less significant any one signal becomes. (iii) Unlike mi 

random-field Ising and majority vote models, which are typically ca 
modeled on regular lattices, here we are concerned with hetero- (2 
geneous networks; that is, networks in which individuals have la: 

Watts 

ferent numbers of neighbors. All these features-local depen- 
tcies,fractional thresholds, and heterogeneity-are essential to the 
lamics of cascades. Furthermore, although they are clearly 
ated by the threshold condition, network heterogeneity and 
eshold heterogeneity turn out not to be equivalent, and therefore 
Id to be considered separately. 

act Solution on an Arbitrary Random Graph 
e main objective of this paper is to explore how the vulner- 

ility of interconnected systems to global cascades depends on 
I network of interpersonal influences governing the informa- 
n that individuals have about the world, and therefore their 
cisions. Because building relationships and gathering infor- 
ition are both costly exercises, interaction and influence 
tworks tend to be very sparse (17)-a characteristic that 

pears to be true of real networks in general (30)-so we 
nsider only the properties of networks with z << n. In the 
sence of any known geometry for the problem, a natural first 
oice for a sparse interaction network is an undirected random 

iph (31), with n vertices and specified degree distribution pk. 
though random graphs are not considered to be highly realistic 
)dels of most real-world networks (30), they are often used as 
st approximations (19, 20, 32) because of their relative trac- 

)ility, and this tradition is followed here. Our approach 
ncentrates on two quantities: (i) the probability that a global 
;cade will be triggered by a single node (or small seed of 

des), where we define a global cascade formally as cascade that 

cupies a finite fraction of an infinite network; and (ii) the 

pected size of a global cascade once it is triggered. When 

scribing our results, the term cascade therefore refers to an 
ent of any size triggered by an initial seed, whereas global 
;cade is reserved for sufficiently large cascades (in practice, this 
lans more than a fixed fraction of large, but finite network). 
In any sufficiently large random graph with z < c In n (where c 
;ome constant) and Io << 1 (i.e., sparsely connected with a small 
tial seed), we can assume that the local neighborhood of a small 
Id will not contain any short cycles; hence, no vertex neighboring 
I initial seed will be adjacent to more than one seed member. This 

proximation becomes exact in the case of an infinite network, 
th finite z, or a seed consisting of a single vertex. Under this 
ndition, the only way in which the seed can grow is if at least one 
its immediate neighbors has a threshold such that (4 - l/k, or 

uivalently has degree k - K = L1/4J. We call vertices that are 
stable in this one-step sense, vulnerable, and those that are not, 
ble, noting that the distinction only applies when the seed in 
estion is small (numerical simulations suggest that seeds that are 
ree orders of magnitude less than the system size are sufficiently 
tall). The case of large seeds will be discussed later. 
Although the vulnerability condition is quite general, for con- 
:teness we use the language of the diffusion of innovations (17), 
which the initial seed plays the role of the innovators, and 
Inerable vertices correspond to early adopters. Unless the inno- 
tors are connected to a community of early adopters, no cascade 

possible. In fact, as we show below, the success or failure of an 
lovation may depend less on the number and characteristics of 
I innovators themselves than on the structure of the community 
early adopters. Clearly, the more early adopters exist in the 

twork, the more likely it is that an innovation will spread. But the 
tent of its growth-and hence the susceptibility of the network as 

vhole-depends not only on the number of early adopters, but on 
w connected they are to one another, and also to the much larger 
mmunity consisting of the early and late majority, who do not tend 

respond to the innovators directly, but who can be influenced 

lirectly if exposed to multiple early adopters. In the context of this 
)del, we conjecture that the required condition for a global 
scade is that the subnetwork of vulnerable vertices mustpercolate 
2) throughout the network as a whole, which is to say that the 
'gest, connected vulnerable cluster must occupy a finite fraction 
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of an infinite network. Regardless of how connected the network as se 
a whole might be, the claim here is that only if the largest vulnerable cl 
cluster percolates are global cascades possible. th 

This condition, which we call the cascade condition (see Eq. 5 cli 
below), has the considerable advantage of reducing a complex pu 
dynamics problem to a static, percolation problem that can be th 
solved using a generating function approach. A similar technique ex 
has been used elsewhere (20, 32) to study the connectivity prop- 
erties of random graphs; here the basic approach is modified 
(described in detail in ref. 32) to focus on vulnerable vertices. By 
construction, every vertex has degree k with probabilitypk, and by 
the vulnerability condition above, a vertex with degree k is vulner- 
able with probability pk = P[ c il/k]. Hence, the probability of a 
vertex u having degree k and being vulnerable is pkPk, and the 
corresponding generating function of vulnerable vertex degree is: 

Go(x) = EkpkPkXk, [la] t 

1 k =O to 
where Pk= F(k) k>0 [lb] gl 

is i 
and F(4) = fof(qp)dp. By incorporating all of the information in 
contained in the degree distribution and the threshold distribution, Wi 
Go(x) generates all of the moments of the degree distribution solely thl 
of vulnerable vertices, where the relevant moments can be extracted di 
by evaluating the derivatives of Go(x) at x = 1. For the purposes of tra 
this paper, the two most important quantities are (i) the vulnerable ca 
fraction of the population Pv = Go(l), and (ii) the average degree an 
of vulnerable vertices Zv = Go(l). Because we are interested in the k(i 
propagation of cascades from one vertex to another, we also require m' 
the degree distribution of a vulnerable vertex v that is a random ha 
neighbor of our initially chosen vertex u. The larger the degree of no 
v, the more likely it is to be a neighbor of u; hence, the probability ex 
of choosing v is proportional to kpk, and the correctly normalized oc 
generating function Gi(x) corresponding to a neighbor of u is: so. 

ca; 

EkkPkpkXk Go(x) 
Gj(X)= - - - [2] Re 

ZLkkpk z 
Al 

To calculate the properties of clusters of vulnerable vertices (the wi 
community structure of the early adopters), we introduce the f( 
analogous generating functions its 

wh 
Ho(x) = Enq, and H,(x) = nrnxn, an 

a(, 
where qn is the probability that a randomly chosen vertex will e 
belong to a vulnerable cluster of size n, and rn is the correspond- zQ 
ing probability for a neighbor of an initially chosen vertex. Any ga 
finite cluster of size n that we arrive at by following a random as 
edge can be regarded as composed of smaller such clusters, co 
whose cumulative sizes must sum to n. Because a sufficiently ca, 
large random graph below percolation can be regarded as a pure re; 
branching structure, we can therefore ignore the possibility that ve: 
the subclusters will be connected in cycles, so each subcluster can the 
be treated independently of the others. (The presence of an of 
infinite cluster above percolation will be dealt with below.) sin 
Hence, the probability of a finite cluster of size n is simply the an 
product of the probabilities of its (also finite) subclusters. It the 
follows from the properties of generating functions (20, 32) that 
Hi(x) satisfies the following self-consistency equation: bo 

tio 
H,(x) = [1 - Gl(l)] + xG,(H,(x)), [3a] B 

from which Ho(x) can be computed according to vu 
vul 

Ho(x) = [1 - G0o()] + xGo(H,(x)). [3b] E 
spe 

where the first term in both Eqs. 3a and 3b corresponds to the sol 
probability that the vertex chosen is not vulnerable, and the ev; 
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cond term accounts for the size distribution of vulnerable 
isters attached to a vertex that is, itself, vulnerable. Ho(x) 
erefore generates all moments of the distribution of vulnerable 
ister sizes, the most important of which, for our current 
rpose, is the average vulnerable cluster size (n) = Ho(1), because 
is is the quantity that diverges at percolation. Substituting the 
pressions for Ho(x) and Hl(x) above, we find that 

(n) = Go(1) + (Go(1))2/(z - G (1)) = P + Z2/(z - G (1)), 
[4] 

ich diverges when 

G'(1) = Ekk(k - 1)PkPk = . [5] 

Eq. 5-the cascade condition-is interpreted as follows: When 
,(1) < z, all vulnerable clusters in the network are small; hence, 
I early adopters are isolated from each other and will be unable 
generate the momentum necessary for a cascade to become 
)bal. But when Go(1) > z, the typical size of vulnerable clusters 
nfinite, implying the presence of a percolating vulnerable cluster, 
which case random initial shocks should trigger global cascades 
th finite probability. Because Eq. 5 marks the transition between 
Ise two regimes, or phases, at which the average cluster size 
erges and global cascades first commence, it is called a phase 
nsition (31-33). The conditions necessary to generate global 
;cades can, in other words, be determined by locating the position 
d nature of the relevant phase transition. Note, however, that the 
: - 1) term in Eq. 5 is monotonically increasing in k, but pk is 
notonically decreasing. Thus we would expect that Eq. 5 will 
ve either two solutions (resulting in two phase transitions), or 
ne at all, in contrast with the usual percolation model, which 
libits a single phase transition in z for all finite values of the 
cupation probability. Furthermore, in the case where we have two 
utions, we should observe a continuous interval in z, inside which 
;cades occur. 

suits and Discussion 
though the cascade condition (Eq. 5) applies to random graphs 
:h arbitrary degree distributions pk and threshold distributions 
i) (expressed through the weighting function pk), we can illustrate 
main features for the special case of a uniform random graph (in 
ich any pair of vertices is connected with probability p = zn), 
i where all vertices have the same threshold 4; that is, f()) = 
b - 4,). A characteristic of uniform random graphs is thatpk = 
zk/k! (the Poisson distribution), in which case Eq. 5 reduces to 
(K, - 1,z) = 1, where K, = L1/4, and Q(a,x) is the incomplete 
nma function. Fig. 1 expresses the cascade condition graphically 
a boundary in the (0,, z) phase diagram (dashed line) and 
npares it to the region (outlined by solid circles) in which 
cades are observed over 1,000 realizations of the dynamics (each 
lization consists of a randomly constructed network of 10,000 
'tices, in which a single vertex is switched on at t = 0). Because 
; simulated system is finite, the predicted and actual boundaries 
the cascade window do not agree perfectly, but they are very 
lilar. In particular, as predicted above, both display a lower and 
upper boundary as a function of the average degree z, at which 
characteristic time scale of the dynamics diverges (see Fig. 2a). 

Fo understand the nature of the phase transitions that define the 
undaries of the cascade window, we solve exactly for the frac- 
nal size S, of the vulnerable cluster inside the cascade window. 
cause the generation function approach requires the largest 
nerable cluster to be a pure branching structure, and because the 
nerable cluster will, in general, contain cycles above percolation, 
. 4 only applies below percolation, which is why Eq. 5 can only 
,cify the boundary of the cascade window. However, we can still 
ve for Sv above the phase transition, as well as below it, by 
iluating Ho(l) exclusively over the set of finite clusters; that is, by 
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Fig. 1. Cascade windows for the threshold model. The dashed line encloses 
the region of the (,*, z) plane in which the cascade condition (Eq. 5) is satisfied 
for a uniform random graph with a homogenous threshold distribution f(G) = 

6(o - r). The solid circles outlinethe region in which global cascades occur for 
the same parameter settings in the full dynamical model for n = 10,000 
(averaged over 100 random single-node perturbations). 

explicitly excluding the percolating cluster (when it exists) from the 
sum ,nqn. Using Eq. 3b, it follows that Sv = 1 - Ho(l) = P - 

Go(Hi(l)), where HJ(l) satisfies Eq. 3a. Outside the cascade 

window, the only solution to Eq. 3a is Hi(1) = 1, which yields Sv = 
O (and therefore no cascades) as expected. But inside the cascade 

window, where the percolating vulnerable cluster exists, Eq. 3a has 
an additional solution that corresponds to a non-zero value of Sv. 
In the special case of a uniform random graph with homogeneous 
thresholds, we obtain Sv = Q(K, + 1, z) - eZ(H-')Q(K, + 1, zH1), 
in which H1 satisfies H1 = 1 - Q(K,, z) + ez(H1-')Q(K,, zH1). We 
contrast this expression with that for the size of the entire connected 

component of the graph, S = 1 - e-ZS (32), which is equivalent to Fig 
allowing K, -> o (or 0, -> 0). In Fig. 2b we show the exact solutions ave 
for both Sv (long-dashed line) and S (solid line) for the case of 0, upl 
= 0.18, and compare these quantities with the frequency and size Co 

of global cascades observed in the full dynamical simulation of of 

10,000 nodes averaged over 1,000 random realizations of the (oF abi 
network and the initial condition. (The corresponding numerical als 
values for Sv and S are indistinguishable from the analytical curves, av 

except near the upper boundary of the window.) nu, 
The frequency of global cascades (open circles)-that is, cascades wh 

that are "successful"-is obviously related to the size of the Fin 
vulnerable component: the larger is Sv, the more likely a randomly wil 
chosen initial site is to be a part of it. In particular, if Sv does not 
percolate, then global cascades are impossible. Fig. 2b clearly 
supports this intuition, but it is equally clear that, within the cascade 
window, Sv seriously underestimates the likelihood of a global g? 
cascade. The reason is that, according to our original decision rule, by 
an individual's choice of state depends only on the states of its re' 
neighbors; hence, even stable vertices, although they do not par- ex 

ticipate in the initial stages of a global cascade, can still trigger them in] 
as long as they are directly adjacent to the vulnerable cluster. The gu 
true likelihood of a global cascade is therefore determined by the fin 
size of what we call the extended vulnerable cluster Se, consisting of sn 
the vulnerable cluster itself, and any stable vertices immediately th' 

adjacent to it. We have not solved for Se exactly (although this may th' 
be possible), but it is relatively simple to determine numerically, and as 
as the corresponding (dotted) curve in Fig. 2b demonstrates, the th 
average value of Se is an excellent approximation to the observed all 
frequency of global cascades. co 
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2. Cross section of the cascade window from Fig. 1, at 4. = 0.18. (a) The 

rage time required for a cascade to terminate diverges at both the lower and 
)er boundaries of the cascade window, indicating two phase transitions. (b) 
nparison between connected components of the network and the properties 
global cascades. The frequency of global cascades in the numerical model 
en circles) is well approximated by the fractional size of the extended vulner- 
e cluster (short dashes). For comparison, the size of the vulnerable cluster is 

shown, both the exact solution derived in the text (long dashes) and the 

rage over 1,000 realizations of a random graph (crosses). The exact and 
nerical solutions agree everywhere except at the upper phase transition, 
ere the finite size of the network (n = 10,000) affects the numerical results. 

ally, the average size of global cascades is shown (solid circles) and compared 
h the exact solution for the largest connected component (solid line). 

The average size of global cascades (solid circles) is clearly not 

erned either by the size of the vulnerable cluster Sv, or by Se, but 

S, the connectivity of the network as a whole. This is a surprising 
ult, the reason for which is not entirely clear, but a plausible 
planation is as follows. If a global cascade is triggered by an 

tially small seed striking the extended vulnerable cluster, it is 
aranteed to occupy the entire vulnerable cluster, and therefore a 
ite fraction of even an infinite network. At this stage, the 
all-seed condition no longer holds, and so nodes that are still in 

, off state can now have multiple (early-adopting) neighbors in 
I on state. Hence, even individuals that were originally classified 
stable (the early and late majority) can now be toppled, allowing 
? cascade to occupy not just the vulnerable component that 
owed the cascade to spread initially, but the entire connected 
mponent of the graph. That the activation of a percolating 
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Fig. 3. Cumulative distributions of cascade sizes at the lower and upper 
critical points, for n = 1,000 and z = 1.05 (open squares) and z = 6.14 (solid 
circles), respectively. The straight line on the double logarithmic scale indi- 
cates that cascades at the lower critical point are power-law distributed, with 
slope 3/2 (the cumulative distribution has slope 1/2). By contrast, the distri- 
bution at the upper critical point is bimodal, with an exponential tail at small 
cascade size, and a second peak at the size of the entire system corresponding 
to a single global cascade. Above the upper boundary, the global cascade 
disappears and large cascades are always exponentially unlikely. 

vulnerable cluster should always be sufficient to activate the entire 
connected component, even when the former is a very small 
fraction of the latter, is not an obvious result, but it appears to hold 
consistently, at least within the class of random graphs. Whether or 
not it turns out to hold for networks more general than random 
graphs is a matter of current investigation. 

As Figs. 1 and 2 suggest, the onset of global cascades can occur 
in two distinct regimes-a low connectivity regime and a high 
connectivity regime-corresponding to the lower and upper phase Fig 
transitions respectively. The nature of the phase transitions at the sol 
two boundaries is different, and this has important consequences fo 
for the apparent stability of the systems involved. As Fig. 3 (open rer 
squares) demonstrates, the cumulative distribution of cascades at the 
the lower boundary of the cascade window follows a power law, fix 
analogous to the distribution of avalanches in models of self- 
organized criticality (29) or the cluster size distribution at criticality 
for standard percolation (22). In fact, the slope of the cascade size la] 
distribution is indistinguishable from the known critical exponent im 
a = 3/2 for the cluster size distribution of random graphs at siz 
percolation (32). This result is expected because, when z = 1, most co 
vertices satisfy the vulnerability condition, so the propagation of th 
cascades is constrained principally by the connectivity of the ra 
network, which for random graphs is known to undergo a second- ra 
order phase transition at z = 1 (31). frn 

The upper boundary, however, is different. Here, the propa- m; 
gation of cascades is limited not by the connectivity of the in 
network, but by the local stability of the vertices. Most vertices ot: 
in this regime have so many neighbors that they cannot be 
toppled by a single neighbor perturbation; hence, most initial ra] 
shocks immediately encounter stable vertices. Most cascades ol 
therefore die out before spreading very far, giving the appear- ca 
ance that large cascades are exponentially unlikely. A percolat- ab 
ing vulnerable cluster, however, still exists, so very rarely a an 
cascade will be triggered in which case the high connectivity of th: 
the network ensures that it will be extremely large, typically by 
much larger than cascades at the lower phase transition. The th: 
result is a distribution of cascade sizes that is bimodal rather than . 
a power law (see Fig. 3, solid circles). As the upper phase shl 
transition is approached from below, global cascades become inc 
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.4. Analytically derived cascade windows for heterogeneous networks. The 
d lines are the same as Fig. 1. (a) The dashed lines represent cascade windows 
uniform random graphs, but where the threshold distributions (4) are nor- 
lly distributed with mean p and SD o- = 0.05 and o- = 0.1. (b) The dashed line 
-resents the cascade window for a random graph with a degree distribution 
t is a power law with exponent T and exponential cut-off Ko, where T has been 
td at T = 2.5 and Ko has been adjusted to generate graphs with variable z. 

ger, but increasingly rare, until they disappear altogether, 
plying a discontinuous (i.e., first-order) phase transition in the 
e of successful cascades (see Fig. 2b, solid circles). The main 
nsequence of the first-order phase transition is that just inside 
I boundary of the window, where global cascades occur very 
rely (Fig. 3 shows only a single cascade occurring in 1,000 
idom trials), the system will in general be indistinguishable 
im one that is highly stable, exhibiting only tiny cascades for 
tny initial shocks before generating a massive, global cascade 
response to a shock that is a priori indistinguishable from any 
her. 
These qualitative results are quite general within the class of 
idom networks, applying to arbitrary distributions both of thresh- 
s f()) and degree Pk. Variations in either distribution, however, 
i affect the quantitative results-and thus the effective vulner- 
ility of the system-considerably, as is demonstrated in Fig. 4 a 
d b. Fig. 4a shows the original cascade window for homogeneous 
resholds (solid line) and also two windows (dashed lines) derived 
the same generating function method, but corresponding to 

'eshold distributionsf() that are normally distributed with mean 
and increasing standard deviation o(. Numerical results (not 

)wn) correspond to the analytically derived windows. Clearly, 
reased heterogeneity of thresholds causes the system to be less 

Watts 



stable, yielding cascades over a greater range of both 4, and z. Fig. un 
4b, however, presents a different view of heterogeneity. Now the Hi 
threshold distribution is held fixed, with all vertices exhibiting the no 
same threshold, but the distribution of degree pk is given by pk = th{ 
Ck-Te-klK (k > 0), where C, T, and K are constants that can be sy, 
adjusted such that we retain (k) = z. This class of power-law random 
graphs has attracted much recent interest (19, 20, 32) as a model of C 
many real networks, including the internet. Unlike the Poisson GI 
distribution of a uniform random graph, which is sharply peaked fai 
around a well defined mean, power law distributions are highly fe; 
skewed with long tails, corresponding to increased network heter- Tt 
ogeneity. Fig. 4b implies that random graphs with power law degree B( 
distributions tend to be much less vulnerable to random shocks than thl 
uniform random graphs with the same z, a point observed else- ot] 
where (19, 20) with respect to network connectivity. Although this na 
distinction between threshold and network heterogeneity is slightly Si2 
surprising (because both kinds of heterogeneity are related by the (if 
fractional threshold condition), it is understandable. Nodes that are va 
vulnerable because of a low threshold can still be well connected to dil 
the network, making them ideal early adopters. But nodes that are UI 
vulnerable to small perturbations because they have very few th 
neighbors are therefore also poorly connected; hence, they have pr 
difficulty propagating any influence. ne 

Network heterogeneity has an additional, complicating effect. 
Although networks with highly skewed degree distributions are ca 
more stable overall, within the cascade window they display in- cr 

tri creased susceptibility with respect to initial shocks that explicitly tn 
target high-degree nodes (19), even though such nodes are unlikely ls 
to be vulnerable themselves. If instead of choosing an initial node gr 
at random, we deliberately target a node with degree k, then the a 
probability of at least one of its neighbors being a part of the largest ye 
vulnerable cluster, and therefore the probability of triggering a 
cascade, is Pk = 1 - (1 - Sv)k, where Sv is the strength of the ca 
vulnerable cluster-a prediction that is well fit by numerical data 
(not shown) for uniform random graphs. Near the boundaries of the or 
cascade window, where Sv is small, Pk - kSv, implying that the ratio 
between the probability of a global cascade being triggered by the da 
most connected node in the network (with k = kmax) and an average sir 
node (with k = z) is approximately kmax/Z, which is a rough measure 
of the skewness of the degree distributionpk. Networks with highly tu 
skewedpk (such as uniform random graphs near the lower cascade 
boundary in Fig. 1, or those with power-law degree distributions) q 
should therefore exhibit the property that their most connected 
nodes are disproportionately likely to trigger global cascades when Ti 
chosen as initial sites. By contrast, networks in which pk is sharply Ne 
peaked, with rapidly decaying tails (such as near the upper bound- du 
ary of Fig. 1) will not display this property. Numerical results for M 
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iform random graphs (not shown) support this conclusion. 
Mnce, the value of deliberately targeting highly connected initial 
des depends significantly on the global degree distribution, and 
:refore, in the case of uniform random graphs, whether the 
tem is in its high-connectivity or low-connectivity regime. 

nclusions 
obal cascades in social and economic systems, as well as cascading 
lures in engineered networks, display two striking qualitative 
itures: they occur rarely, but by definition are large when they do. 
is general observation, however, presents an empirical mystery. 
,th power-law and bimodal distributions of cascades would satisfy 
I claim of infrequent, large events, but these distributions are 
lerwise quite different, and might require quite different expla- 
tions. Unfortunately a lack of empirical data detailing cascade 
e distributions prevents us from determining which distribution 
either) correctly describes which systems. Here we have moti- 
:ed and analyzed a simple, binary-decision model that, under 
ferent conditions, exhibits both kinds of behaviors and thus sets 
some testable predictions about cascades in real systems. When 
I network of interpersonal influences is sufficiently sparse, the 
)pagation of cascades is limited by the global connectivity of the 
twork; and when it is sufficiently dense, cascade propagation is 
lited by the stability of the individual nodes. In the first case, 
scades exhibit a power-law distribution at the corresponding 
tical point, and the most highly connected nodes are critical in 
ggering cascades. In the second case, the distribution of cascades 
bimodal, and nodes with average connectivity, by virtue of their 
later frequency, are much more likely to serve as triggers. In the 
ter regime, the system displays a more dramatic kind of robust- 
t-fragile quality than in the former, remaining almost completely 
ible throughout many shocks before exhibiting a sudden and giant 
scade-a feature that would make global cascades exceptionally 
rd to anticipate. Finally, systemic heterogeneity has mixed effects 
systemic stability. On the one hand, increased heterogeneity of 

lividual thresholds appears to increase the likelihood of global 
scades; but on the other hand, increased heterogeneity of vertex 
gree appears to reduce it. It is hoped that the introduction of this 
nple framework will stimulate theoretical and empirical efforts to 
alyze more realistic network models (incorporating social struc- 
'e, for example) and obtain comprehensive data on the fre- 
ency, size, and time scales of global cascades in real networked 
;tems. 

is paper benefited from conversations with D. Callaway, A. Lo, M. 
wman, and especially S. Strogatz. The research reported was con- 
cted at the Massachusetts Institute of Technology Sloan School of 
anagement under the sponsorship of A. Lo. 

Arthur, W. B. & Lane, D. A. (1993) Structural Change and Economic Dynamics 
4, 81-103. 
Albert, R., Jeong, H. & Barabasi, A. L. (2000) Nature (London) 406, 378-382. 

Callaway, D. S., Newman, M. E. J., Strogatz, S. H. & Watts, D. J. (2000) Phys. Rev. 
Lett. 85, 5468-5471. 

Keeling, M. J. (1999) Proc. R. Soc. London B 266, 859-867. 
Stauffer, D. & Aharony, A. (1991) Introduction to Percolation Theory (Taylor and 
Francis, London). 
Newman, M. E. J. & Watts, D. J. (1999) Phys. Rev. E 60, 7332-7342. 
Sethna, J. P., Dahmen, K., Kartha, S., Krumhansl, J. A., Roberts, B. W. & Shore, 
J. D. (1993) Phys. Rev. Lett. 70, 3347-3350. 
Adler, J. (1991) Physics A 171, 453-470. 
Solomon, S., Weisbuch, G., de Arcangelis, L., Jan, N. & Stauffer, D. (2000) Physica 
A 277, 239-247. 
Watts, D. J. (1999) Small Worlds: The Dynamics of Networks Between Order and 
Randomness (Princeton Univ. Press, Princeton). 
Shrager, J., Hogg, T. & Huberman, B. A. (1987) Science 236, 1092-1094. 
Bak, P., Tang, C. & Wiesenfeld, K. (1987) Phys. Rev. Lett. 59, 381-384. 

Strogatz, S. H. (2001) Nature (London) 410, 268-276. 
Bollobas, B. (1985) Random Graphs (Academic, London). 
Newman, M. E. J., Strogatz, S. H. & Watts, D. J. (2001) Phys. Rev. E 64, 02611.8. 
Stanley, H. E. (1971) Introduction to Phase Transitions and Critical Phenomena 
(Oxford Univ. Press, Oxford). 

PNAS I April 30, 2002 I vol. 99 I no. 9 I 5771 


	Article Contents
	p.5766
	p.5767
	p.5768
	p.5769
	p.5770
	p.5771

	Issue Table of Contents
	Proceedings of the National Academy of Sciences of the United States of America, Vol. 99, No. 9 (Apr. 30, 2002), pp. i-viii+5751-6450+ix-xix
	Front Matter [pp.i-5751]
	Commentaries
	Antibiotics in Agriculture: When Is It Time to Close the Barn Door? [pp.5752-5754]
	Unraveling the Genetics and Mechanisms of Cardiac Arrhythmia [pp.5755-5756]
	Disentangling the MYC Web [pp.5757-5759]
	Brain-Directed Gene Therapy for Lysosomal Storage Disease: Going Well beyond the Blood-Brain Barrier [pp.5760-5762]
	Finding the Crosswalks on DNA [pp.5763-5765]

	Physical Sciences
	A Simple Model of Global Cascades on Random Networks [pp.5766-5771]
	A Model of a Turbulent Boundary Layer with a Nonzero Pressure Gradient [pp.5772-5776]
	Simulating Materials Failure by Using up to One Billion Atoms and the World's Fastest Computer: Brittle Fracture [pp.5777-5782]
	Simulating Materials Failure by Using up to one Billion Atoms and the World's Fastest Computer: Work-Hardening [pp.5783-5787]
	Adaptive Aberration Correction in a Confocal Microscope [pp.5788-5792]
	The Concerted Mechanism of Photo-Induced Biprotonic Transfer in 7-Azaindole Dimers: Structure, Quantum-Theoretical Analysis, and Simultaneity Principles [pp.5793-5798]
	The Concerted Mechanism of Photo-Induced Biprotonic Transfer in 7-Azaindole Dimers: A Model for the Secondary Evolution of the Classic C Dimer and Comparison of Four Mechanisms [pp.5799-5803]
	Organic Semiconductors: A Theoretical Characterization of the Basic Parameters Governing Charge Transport [pp.5804-5809]
	Chiral Protein Scissors: High Enantiomeric Selectivity for Binding and Its Effect on Protein Photocleavage Efficiency and Specificity [pp.5810-5815]
	Determination of Causal Connectivities of Species in Reaction Networks [pp.5816-5821]
	Allometric Scaling and Maximum Efficiency in Physiological Eigen Time [pp.5822-5824]
	Curvature of Co-Links Uncovers Hidden Thematic Layers in the World Wide Web [pp.5825-5829]

	Biological Sciences
	Loss of the Membrane Anchor of the Target Receptor Is a Mechanism of Bioinsecticide Resistance [pp.5830-5835]
	Genetic Analysis of Traditional and Evolved Basmati and Non-Basmati Rice Varieties by Using Fluorescence-Based ISSR-PCR and SSR Markers [pp.5836-5841]
	Interactions That Determine the Assembly of a Retinoid X Receptor/Corepressor Complex [pp.5842-5847]
	Human XPA and RPA DNA Repair Proteins Participate in Specific Recognition of Triplex-Induced Helical Distortions [pp.5848-5853]
	Genetic Dissection of Polyunsaturated Fatty Acid Synthesis in Caenorhabditis elegans [pp.5854-5859]
	Precision and Functional Specificity in mRNA Decay [pp.5860-5865]
	A Family of RRM-Type RNA-Binding Proteins Specific to Plant Mitochondria [pp.5866-5871]
	The Crystal Structure of Rabbit Phosphoglucose Isomerase Complexed with 5-Phospho-D-Arabinonohydroxamic Acid [pp.5872-5877]
	Solution Structures of the Cytoplasmic Tail Complex from Platelet Integrin αIIb- and β3-Subunits [pp.5878-5883]
	Galactose Metabolism Is Essential for the African Sleeping Sickness Parasite Trypanosoma brucei [pp.5884-5889]
	The Identification of Functional Modules from the Genomic Association of Genes [pp.5890-5895]
	Interrogating Protein Interaction Networks through Structural Biology [pp.5896-5901]
	Truncated Hemoglobin HbN Protects Mycobacterium bovis from Nitric Oxide [pp.5902-5907]
	The Crystal Structure of Exonuclease RecJ Bound to Mn Ion Suggests How Its Characteristic Motifs Are Involved in Exonuclease Activity [pp.5908-5912]
	Catalysis of S-Nitrosothiols Formation by Serum Albumin: The Mechanism and Implication in Vascular Control [pp.5913-5918]
	Isoform-Specific Interaction of HP1 with Human TAF130 [pp.5919-5924]
	A Chloroplast-Resident DNA Methyltransferase Is Responsible for Hypermethylation of Chloroplast Genes in Chlamydomonas Maternal Gametes [pp.5925-5930]
	Calreticulin Recognizes Misfolded HLA-A2 Heavy Chains [pp.5931-5936]
	Antioxidant-Induced Changes in Oxidized DNA [pp.5937-5941]
	Direct Mass Spectrometric Analysis of Intact Proteins of the Yeast Large Ribosomal Subunit Using Capillary LC/FTICR [pp.5942-5947]
	Cys-328 of IscS and Cys-63 of IscU Are the Sites of Disulfide Bridge Formation in a Covalently Bound IscS/IscU Complex: Implications for the Mechanism of Iron-Sulfur Cluster Assembly [pp.5948-5952]
	Kinetics and Mechanism of the DNA Double Helix Invasion by Pseudocomplementary Peptide Nucleic Acids [pp.5953-5958]
	Association and Regulation of Casein Kinase 2 Activity by Adenomatous Polyposis Coli Protein [pp.5959-5964]
	Modulation of tRNA Identity by Inorganic Pyrophosphatase [pp.5965-5970]
	Requirement of Ca and CaMKII for Stat1 Ser-727 Phosphorylation in Response to IFN-γ [pp.5971-5976]
	Kinesin-Microtubule Binding Depends on Both Nucleotide State and Loading Direction [pp.5977-5981]
	Functional Role of Internal Water Molecules in Rhodopsin Revealed by X-Ray Crystallography [pp.5982-5987]
	Mechanisms of Noise-Resistance in Genetic Oscillators [pp.5988-5992]
	Ab initio Protein Structure Prediction on a Genomic Scale: Application to the Mycoplasma genitalium Genome [pp.5993-5998]
	Conformational Pathways in the Gating of Escherichia coli Mechanosensitive Channel [pp.5999-6004]
	Observation by Fluorescence Microscopy of Transcription on Single Combed DNA [pp.6005-6010]
	Holding Two Heads Together: Stability of the Myosin II Rod Measured by Resonance Energy Transfer between the Heads [pp.6011-6016]
	An Alternative Carotenoid-to-Bacteriochlorophyll Energy Transfer Pathway in Photosynthetic Light Harvesting [pp.6017-6022]
	A Dynamic Shift of VEGF Isoforms with a Transient and Selective Progesterone-Induced Expression of VEGF Regulates Angiogenesis and Vascular Permeability in Human Uterus [pp.6023-6028]
	Heparin-Binding EGF-like Growth Factor Mediates the Biological Effects of P450 Arachidonate Epoxygenase Metabolites in Epithelial Cells [pp.6029-6034]
	Estimates of Lateral and Longitudinal Bond Energies within the Microtubule Lattice [pp.6035-6040]
	The Bimodal Regulation of Epidermal Growth Factor Signaling by Human Sprouty Proteins [pp.6041-6046]
	RNA Interference by Expression of Short-Interfering RNAs and Hairpin RNAs in Mammalian Cells [pp.6047-6052]
	Arsenite Transport by Mammalian Aquaglyceroporins AQP7 and AQP9 [pp.6053-6058]
	From Intestine to Muscle: Nuclear Reprogramming through Defective Cloned Embryos [pp.6059-6063]
	The LEF1/β-Catenin Complex Activates movo1, A Mouse Homolog of Drosophila ovo Required for Epidermal Appendage Differentiation [pp.6064-6069]
	Climate Change Hastens Population Extinctions [pp.6070-6074]
	Evolution of Supercolonies: The Argentine Ants of Southern Europe [pp.6075-6079]
	A Single Domestication for Maize Shown by Multilocus Microsatellite Genotyping [pp.6080-6084]
	Evolutionary Recruitment of a Flavin-Dependent Monooxygenase for the Detoxification of Host Plant-Acquired Pyrrolizidine Alkaloids in the Alkaloid-Defended Arctiid Moth Tyria jacobaeae [pp.6085-6090]
	Evolution of the RNA Polymerase II C-Terminal Domain [pp.6091-6096]
	The Global Phylogeny of Glycolytic Enzymes [pp.6097-6102]
	Mutator Clones of Neisseria meningitidis in Epidemic Serogroup A Disease [pp.6103-6107]
	Genetic Basis for Queen-Worker Dimorphism in a Social Insect [pp.6108-6111]
	Reconciling Paleodistribution Models and Comparative Phylogeography in the Wet Tropics Rainforest Land Snail Gnarosophia bellendenkerensis (Brazier 1875) [pp.6112-6117]
	Intron Evolution as a Population-Genetic Process [pp.6118-6123]
	Dental Microstructure and Life History in Subfossil Malagasy Lemurs [pp.6124-6129]
	A Mutation That Prevents Paramutation in Maize also Reverses Mutator Transposon Methylation and Silencing [pp.6130-6135]
	Evolutionary Conservation of Zebrafish Linkage Group 14 with Frequently Deleted Regions of Human Chromosome 5 in Myeloid Malignancies [pp.6136-6141]
	Regulation of Transcription by H1 Phosphorylation in Tetrahymena Is Position Independent and Requires Clustered Sites [pp.6142-6146]
	Utility and Distribution of Conserved Noncoding Sequences in the Grasses [pp.6147-6151]
	Oligo(dT) Primer Generates a High Frequency of Truncated cDNAs through Internal Poly(A) Priming during Reverse Transcription [pp.6152-6156]
	Molecular Characterization of Meiotic Recombination across the 140-kb Multigenic a1-sh2 Interval of Maize [pp.6157-6162]
	Reverse Engineering Gene Networks Using Singular Value Decomposition and Robust Regression [pp.6163-6168]
	Asymmetrical Flagellar Rotation in Borrelia burgdorferi Nonchemotactic Mutants [pp.6169-6174]
	Recall and Propagation of Allospecific Memory T Cells Independent of Secondary Lymphoid Organs [pp.6175-6180]
	MIP-1α, MIP-1β, RANTES, and ATAC/Lymphotactin Function Together with IFN-γ as Type 1 Cytokines [pp.6181-6186]
	Antigen Challenge Leads to in vivo Activation and Elimination of Highly Polarized TH1 Memory T Cells [pp.6187-6191]
	IL-15 Mimics T Cell Receptor Crosslinking in the Induction of Cellular Proliferation, Gene Expression, and Cytotoxicity in CD8 Memory T Cells [pp.6192-6197]
	ICOS-Ligand, Expressed on Human Endothelial Cells, Costimulates Th1 and Th2 Cytokine Secretion by Memory CD4 T Cells [pp.6198-6203]
	Generation of Functional Antigen-Specific T Cells in Defined Genetic Backgrounds by Retrovirus-Mediated Expression of TCR cDNAs in Hematopoietic Precursor Cells [pp.6204-6209]
	Slowed Conduction and Ventricular Tachycardia after Targeted Disruption of the Cardiac Sodium Channel Gene Scn5a [pp.6210-6215]
	Functional Correction of Established Central Nervous System Deficits in an Animal Model of Lysosomal Storage Disease with Feline Immunodeficiency Virus-Based Vectors [pp.6216-6221]
	Inactivation of the Murine X-Linked Juvenile Retinoschisis Gene, Rs1h, Suggests a Role of Retinoschisin in Retinal Cell Layer Organization and Synaptic Structure [pp.6222-6227]
	Neutrophils Are Indispensable for Hematopoietic Stem Cell Mobilization Induced by Interleukin-8 in Mice [pp.6228-6233]
	Dilated Cardiomyopathy in Mice Deficient for the Lysosomal Cysteine Peptidase Cathepsin L [pp.6234-6239]
	Otoancorin, An Inner Ear Protein Restricted to the Interface between the Apical Surface of Sensory Epithelia and Their Overlying Acellular Gels, Is Defective in Autosomal Recessive Deafness DFNB22 [pp.6240-6245]
	Differential Regulation of the Human and Murine CD34 Genes in Hematopoietic Stem Cells [pp.6246-6251]
	Functional Consequences of Caspase Activation in Cardiac Myocytes [pp.6252-6256]
	bcl-2 Overexpression Promotes Myocyte Proliferation [pp.6257-6262]
	Hemagglutinin Sequence Clusters and the Antigenic Evolution of Influenza A Virus [pp.6263-6268]
	Retroviral-Mediated Transmission of a Mouse VL30 RNA to Human Melanoma Cells Promotes Metastasis in an Immunodeficient Mouse Model [pp.6269-6273]
	Characterization of the c-MYC-Regulated Transcriptome by SAGE: Identification and Analysis of c-MYC Target Genes [pp.6274-6279]
	Genetic Alterations of IL-1 Receptor Antagonist in Mice Affect Plasma Cholesterol Level and Foam Cell Lesion Size [pp.6280-6285]
	Lysosomal Destabilization in p53-Induced Apoptosis [pp.6286-6291]
	Gene Expression Analysis Reveals Matrilysin as a Key Regulator of Pulmonary Fibrosis in Mice and Humans [pp.6292-6297]
	Leukocyte ABCA1 Controls Susceptibility to Atherosclerosis and Macrophage Recruitment into Tissues [pp.6298-6303]
	Genetic Complementation in Apicomplexan Parasites [pp.6304-6309]
	Pregnancy Status and Fetal Prion Genetics Determine PrP Accumulation in Placentomes of Scrapie-Infected Sheep [pp.6310-6315]
	YgbQ, A Cell Division Protein in Escherichia coli and Vibrio cholerae, Localizes in Codependent Fashion with FtsL to the Division Site [pp.6316-6321]
	IRF-3-Dependent, NFκB- and JNK-Independent Activation of the 561 and IFN-β Genes in Response to Double-Stranded RNA [pp.6322-6327]
	Naturally Occurring rhodopsin Mutation in the Dog Causes Retinal Dysfunction and Degeneration Mimicking Human Dominant Retinitis Pigmentosa [pp.6328-6333]
	Inclusion Body Myositis-like Phenotype Induced by Transgenic Overexpression of βAPP in Skeletal Muscle [pp.6334-6339]
	General and Variable Features of Varicosity Spacing along Unmyelinated Axons in the Hippocampus and Cerebellum [pp.6340-6345]
	Heparan Sulfate Proteoglycan-Dependent Induction of Axon Branching and Axon Misrouting by the Kallmann Syndrome Gene kal-1 [pp.6346-6351]
	Plasticity of Orientation Preference Maps in the Visual Cortex of Adult Cats [pp.6352-6357]
	Sustained Stimulation Shifts the Mechanism of Endocytosis from Dynamin-1-Dependent Rapid Endocytosis to Clathrin- and Dynamin-2-Mediated Slow Endocytosis in Chromaffin Cells [pp.6358-6363]
	Tau Is Essential to β-Amyloid-Induced Neurotoxicity [pp.6364-6369]
	Anxiolytic- and Antidepressant-like Effects of the Non-Peptide Vasopressin V Receptor Antagonist, SSR149415, Suggest an Innovative Approach for the Treatment of Stress-Related Disorders [pp.6370-6375]
	Altered Sexual and Social Behaviors in Trp2 Mutant Mice [pp.6376-6381]
	Decreased Expression of the Transcription Factor NURR1 in Dopamine Neurons of Cocaine Abusers [pp.6382-6385]
	Neurotrophin Secretion from Hippocampal Neurons Evoked by Long-Term-Potentiation-Inducing Electrical Stimulation Patterns [pp.6386-6391]
	cAMP Facilitates EDHF-Type Relaxations in Conduit Arteries by Enhancing Electrotonic Conduction via Gap Junctions [pp.6392-6397]
	Pituitary Adenylate Cyclase-Activating Polypeptide Protects Rat Cerebellar Granule Neurons against Ethanol-Induced Apoptotic Cell Death [pp.6398-6403]
	Visualization of Ca Entry through Single Stretch-Activated Cation Channels [pp.6404-6409]
	Ectopic D-Type Cyclin Expression Induces Not Only DNA Replication but Also Cell Division in Arabidopsis Trichomes [pp.6410-6415]
	Distinct Roles for Jasmonate Synthesis and Action in the Systemic Wound Response of Tomato [pp.6416-6421]
	Expression and Disruption of the Arabidopsis TOR (Target of Rapamycin) Gene [pp.6422-6427]
	Glycine Residues in Potassium Channel-like Selectivity Filters Determine Potassium Selectivity in Four-Loop-Per-Subunit HKT Transporters from Plants [pp.6428-6433]
	Animal Antibiotic Use Has an Early but Important Impact on the Emergence of Antibiotic Resistance in Human Commensal Bacteria [pp.6434-6439]
	Interactions between Thalamic and Cortical Rhythms during Semantic Memory Recall in Human [pp.6440-6443]

	Social Sciences
	Evidence for Interpersonal Violence in the St. Césaire Neanderthal [pp.6444-6448]

	Correction: The SNARE Protein SNAP-25 Is Linked to Fast Calcium Triggering of Exocytosis [p.6449]
	Back Matter [pp.ix-xix]



