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Prisoner’s Dilemma on Graphs with Large Girth

Vahideh H. Manshadi ∗ Amin Saberi††

Abstract

We study the evolution of cooperation in populations
where individuals play prisoner’s dilemma on a net-
work. Every node of the network corresponds on an
individual choosing whether to cooperate or defect in
a repeated game. The players revise their actions by
imitating those neighbors who have higher payoffs.

We show that when the interactions take place on
graphs with large girth, cooperation is more likely to
emerge. On the flip side, in graphs with many cycles
of length 3 and 4, defection spreads more rapidly.

One of the key ideas of our analysis is that
our dynamics can be seen as a perturbation of the
voter model. We write the transition kernel of the
corresponding Markov chain in terms of the pairwise
correlations in the voter model. We analyze the
pairwise correlation and show that in graphs with
relatively large girth, cooperators cluster and help
each other.

1 Introduction

Prisoner’s dilemma has become a known benchmark
for studying the emergence of cooperation in popula-
tions consisting of selfish agents. In this symmetric
2-person game, each player has two strategies, coop-
erate (C) or defect (D). A cooperator pays a cost of
c, and it provides the benefit of b to the opponent.
A defector incurs no cost and contributes no benefit.
If the game is only played once, basic analysis of the
static game shows that the unique Nash equilibrium
is the defect-defect strategy.

Despite this prediction, the evolution of coop-
eration has been observed in populations such as
genomes, multicellular organisms, and human soci-
ety. Such an abundance of cooperation in settings
similar to prisoner’s dilemma has motivated an ex-
tensive literature in game theory and evolutionary
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biology to explain the emergence of cooperation. For
example, for the two player repeated game, the folk
theorem implies that if the players are patient enough
the cooperate-cooperate outcome is an equilibrium
path of the infinite horizon game. This is also ex-
tended to multi-player games, games of incomplete
information, and noisy repeated games [3, 4, 5]. This
question is also studied in evolutionary game theory
and evolutionary biology [7, 9, 8, 12].

In this paper, we study the evolution of cooper-
ation in populations where each agent only interacts
with a small part of the population. In particular, in-
dividuals play prisoner’s dilemma on a network. Ev-
ery node of the network corresponds on an individual
choosing whether to cooperate or defect in a repeated
game. The payoff of a node increases with the number
of its cooperator neighbors. The network structure is
also crucial for the evolution of play: agents revise
their actions by imitating those neighbors who have
higher payoffs. This is similar to the class of Im-
itation of Success dynamics studied in evolutionary
game theory (see e.g. Sandholm [11]).

We give the first rigorous analysis proving that,
defined properly, locality of interactions increases
the likelihood of the emergence of cooperation. In
particular, if the underling network does not have
any short cycles, the expected number of cooperators
eventually exceeds its initial value. At the same time,
we discover graphs with many cycles of length 3 or
4, in which cooperation tends to decrease because
of a “free-riding” effect. In these graphs, the set
of cooperators is always surrounded by a set of
defectors. Since defectors pay no cost, when they are
well-connected to the set of cooperators, their payoff
will be large. Hence the probability of imitating the
defect action will increase.

On a more technical side, our key idea in analyz-
ing this dynamics is that it can be viewed as a per-
turbation of the Voter Model (VM) [1, 6]. We write
the transition kernel of the Markov chain correspond-
ing to our dynamics in terms of the pairwise corre-
lations in the voter model. We analyze the pairwise
correlations and show that in graphs with relatively
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j \ i C D
C b-c b
D -c 0

Table 1: Payoff of player i

large girth, local clustering occurs. In other words,
we show that when the girth of the graph is rela-
tively large, the cooperators will cluster together and
help each other. We also upper-bound the conver-
gence time of our dynamics using techniques similar
to those used to bound the convergence time of the
voter model [1, 2].

The dynamics studied in our paper is closely
related to that of [7, 9]. However, our approach differs
in two essential ways: first, unlike [7, 9], our results
are rigorously proved. More importantly, [9], focuses
on the average degree of nodes, and ignores the role
of small cycles. In our examples, we give graphs with
short cycles that do not show the behavior predicted
in [9].

2 Problem Definition and Preliminaries

We are given a set of players V , with |V | = n, that
play prisoner’s dilemma repeatedly at time steps t =
0, 1, 2, 3, . . . . The players interact on an undirected
k-regular connected graph G = (V,E) ; each player
only plays with its neighbors. Each player i ∈ V has
two alternative strategies: cooperate (C) or defect
(D). We associate variable X i

t ∈ {0, 1} to each node
i to represent its action at time t; X i

t = 1 (X i
t = 0)

if player i cooperates (defects) at time t. The vector,
~Xt ∈ {0, 1}n represents the configuration of the
system at time t. The payoff matrix is a 2 × 2-
matrix illustrated in Table 1. Note that the game
is symmetric. The total payoff of player i ∈ V at
time t, ui

t, is:

ui
t = −kcX i

t + b
∑

j∼i

Xj
t (2.1)

where j ∼ i means that j is a neighbor of i in G.
Further, we assume that k(b + c) < 1.

At each time step, one of the nodes is chosen
uniformly at random to update its action. Let Ai

t

be the event that at time t, node i is chosen to
update its action. If Ai

t occurs and i alternates
its strategy then all the other players update their
payoffs. Node i updates its action according to the
following mechanism:

Weak Imitation of Success (WIS): In the WIS
dynamics, the updating node i samples one of its
neighbors and imitates its action. The sampling
is slightly biased in favor of neighbors that have
higher payoffs. In particular, node i first samples
a selector, St, that is an independent Bernouli(ǫ)
random variable, where ǫ is a small positive number.
If St = 0 then node i samples one of its neighbors
uniformly at random and copies its action. On the
other hand, if St = 1, node i will take a biased sample
among its neighbors, where i favors neighbors with
higher payoffs. Formally,

P

(
i samples j | Ai

t,
~Xt, {St = 1}

)
=

1

k

(
uj
t + 1−

1

k

∑

h∼i

uh
t

)
. (2.2)

It is easy to check that for k(b+ c) < 1,

0 ≤ P

(
i samples j | Ai

t, ~Xt, {St = 1}
)
≤ 1,

and,

∑

j∼i

P

(
i samples j | Ai

t,
~Xt, {St = 1}

)
= 1.

Putting these two cases together, the probability that
node i updates its action to C is:

P

(
X i

t+1 = 1|Ai
t, ~Xt

)
=

1

k

∑

j∼i

Xj
t

[
1− ǫ+ ǫ

(
uj
t + 1−

1

k

∑

h∼i

uh
t

)]
(2.3)

It is worth noting that when ǫ = 0, the dynamics
coincides with the VM [1, 6]. In the VM, the sampling
of a neighbor is uniform and the updating node is
more likely to imitate the strategy that the majority
of its neighbors play, regardless of their payoffs. On
the other hand, when ǫ = 1, the sampling is based on
the payoff of the PD games. We call this updating
rule the PD dynamics. Note that for any 0 < ǫ < 1,
the WIS is a mixture of VM and PD dynamics.

It can be readily seen that WIS defines a Markov
chain on {0, 1}n with two absorbing states; the all

zero state, ~X = ~0, and the all one state, ~X = ~1.
Since the graph size is finite, starting from any
configuration, the chain reaches either ~0 or ~1 in a
finite time. We denote the probability that the chain
starting from configuration ~X0 converges to the all
one state, ~X = ~1, by πWIS, ~X0

, i.e.,



πWIS, ~X0

= lim
t→∞

µt, ~X0

( ~X = ~1)

where µt, ~X0

( ~X) is the measure defined by the Markov

chain at time t starting from configuration ~X0. In
this paper, we mainly work with one fixed initial
condition, thus hereafter, we drop the subscripts ~X0.

3 Main Theorem

In this section, we present the main result of the
paper. It states that under the WIS dynamics,
when interactions are local and the graph does not
have short cycles, and the benefit to cost ratio b/c
is moderately large, then the expected number of
cooperators increases.

Theorem 3.1. Suppose graph G is a connected k-
regular graph with girth at least 7. Further, suppose
at time 0, a random pair of neighbors play C and the
rest of the nodes play D; the system evolves according
to the WIS afterwards. For any γ > 0, ǫ = n−(4+γ),

b/c > k2

k−1 , and n sufficiently large, the probability

that the chain converges to the all one state, ~X = ~1,
is strictly larger than 2/n. More precisely, there exists
a positive constant f that is bounded away from zero
and

πWIS ≥
2

n
+

ǫ

n
f.

The constant f is increasing in the ratio b/c.

Initially, the number of cooperators in the net-
work is 2. Eventually, when the system converges,
the expected number of cooperators is nπWIS . When
ǫ = 0, i.e., when we ignore the payoffs, the expected
number of cooperators stays at 2. Our result shows
that in our setting, when we slightly increase the ǫ,
we strictly increase the value of nπWIS . This is an
indication that cooperation has a higher evolutionary
fitness on graphs with large girth.

Consider an updating node i and two of its
neighbors j and h. Suppose j cooperates and h
defects. If the set of neighbors of j and h are
the same, which may happen in graphs with cycles
of length 4, then the payoff of h is always higher
than payoff of j which results in the increase in
the probability that i samples h. On other hand,
suppose that the set of neighbors of j and h are
disjoint and suppose we can show that as a result
of clustering, in expectation, node j has one more

cooperator neighbor than h does. In this case, the
difference between payoff of j and payoff of h is b−kc.
Thus if b/c > k, then the payoff of j will be higher
than the payoff of h implying than i is more likely
to sample j. In fact, the condition on the ratio of
b/c > k(1 + o(1)) is needed even on an infinite tree.

Note that for each i ∈ V , E
[
limt→∞ X i

t

]
=

πWIS . Since random variable X i
t is bounded, Fatou’s

lemma implies that:

lim sup
t→∞

E
[
X i

t

]
≤ πWIS ≤ lim inf

t→∞
E
[
X i

t

]

Since lim sup of a sequence is at least equal to the
lim inf, the above inequalities imply that the sequence
E
[
X i

t

]
converges to πWIS . Therefore, to compute

the probability of convergence to the all one state,
it suffices to analyze the evolution of the marginal
probabilities. In particular, let pit be the probability
that player i cooperates at time t. Then for each
i ∈ V , limt→∞ pit = πWIS . Also, note that the
expected number of cooperators converges to nπWIS .
A major part of the proof of the above theorem
studies the evolution of the marginal probabilities
and the expected number of cooperators.

Main Proof Ideas:

The key idea in the analysis is that the WIS is
a mixture of two dynamics: the voter model (VM)
and the prisoner’s dilemma (PD). At each time step,
depending on the selector St, the updating player
follows one of these dynamics; if St = 0 the player
follows the VM, otherwise it follows the PD.

One of the basic properties of the voter model on
regular graphs is that given an arbitrary configura-
tion, at each time step t, the expected drift in the
number of cooperators is zero: In a regular graph,
for any edge (i, j), the probability that i copies j is
the same as the probability that j copies i. Suppose
at time t, i plays C and j plays D. If i copies j,
the number of cooperators decreases by one. On the
other hand, if j copies i, the number of cooperators
increases by one. Since the probability of these two
events are the same, the expected drift along each
edge is zero, implying that the expected drift is zero
regardless of the configuration at time t.

Let Nθ denote the number of cooperators at time
θ, i.e., Nθ =

∑
i∈V X i

θ. First, we study E [Nθ] and
compute a lower-bound for it. Remember that in the
WIS, at each time step t = 0, 1, . . . , θ−1, we first sam-
ple a selector, St, that is an independent Bernouli(ǫ)
random variable, based on which we follow either VM
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Figure 1: Illustration of Claim 3.1; the expected number of cooperators increases when we apply the PD for
the first time in step t∗.

or PD. Given the sequence S0, S1, . . . , Sθ−1, consider
the following three cases:

Case 1: all the selectors S0, S1, . . . , Sθ−1 are
zero:

In this case the system has followed the VM process.
Therefore, the expected number of cooperators at
time θ remains 2.

Case 2: exactly one of the selectors
S0, S1, . . . , Sθ−1 is one:

Suppose the selector at time t∗ is one. Since the
system has followed the VM up to time t∗, the
expected number of cooperators at time t∗ is 2.
However, after applying the PD at time step t∗, the
expected number of cooperators changes. We denote
the expected drift by E [∆t∗ ] (see Figure 1). A key
part of the analysis is to show that E [∆t∗ ] is positive,
i.e., applying the PD for one period of time results in
an increase in the expected number of cooperators.
More precisely,

Claim 3.1. Given graph G, suppose at time 0, a
random pair of neighbors play C and the rest of
the nodes play D; the system evolves according to
the WIS afterwards. If b/c ≥ k2/(k − 1), then
0 ≤ E [∆t∗ ] ≤ 1.

The proof of this claim is presented in Section 4.
From t∗ + 1 to θ, the system again evolves according
to the VM model, therefore in the time periods t∗+1
to θ, the expected number of cooperators remains

the same.

Case 3: more than one of the selectors
S0, S1, . . . , Sθ−1 are one:

In this case, we just lower-bound the expected num-
ber of cooperators by zero.

Putting the three cases together, we have:

E [Nθ] ≥ E

[
NθI

(
θ−1∧

t=0

{St = 0}

)]

+

θ−1∑

t∗=0

E



NθI




θ−1∧

t=0,t6=t∗

{St = 0} ∧ {St∗ = 1}









= 2(1− ǫ)θ + ǫ(1− ǫ)θ−1
θ−1∑

t∗=0

(2 + E [∆t∗ ]) . (3.4)

Define,

δθ =
1

θ

θ−1∑

t∗=0

E [∆t∗ ] (3.5)

We can rewrite 3.4 as,

E [Nθ] ≥ 2(1− ǫ)θ + [2 + δθ] θǫ(1− ǫ)θ, (3.6)

Function g(ǫ) = (1−ǫ)θ is convex for θ ≥ 2, therefore
(1− ǫ)θ ≥ 1− ǫθ. Substituting this in (3.6), we have:

E [Nθ] ≥ 2− [2 + δθ] θ
2ǫ2 + θδθǫ ≥ 2− 3θ2ǫ2 + θδθǫ

(3.7)



where in the last inequality, we used the fact that
δθ < 1, which follows from Claim 3.1. Let T ∗ be
0.5(k + 1)n2+γ/3, and let CT∗ be the event that the
chain converges by time T ∗, we have:

E [NT∗ ] = E [NT∗ | CT∗ ]P (CT∗) + E
[
NT∗ | CT∗

]
P
(
CT∗

)

≤ E [NT∗ | CT∗ ]P (CT∗) + nP
(
CT∗

)
(3.8)

where in the last inequality we use that NT∗ ≤ n.
Note that πWIS ≥ 1

nE [NT∗ | CT∗ ]P (CT∗). Thus
putting (3.7) and (3.8) together, we have:

πWIS ≥
1

n

[
2− 3T ∗2ǫ2 + T ∗δT∗ǫ− nP

(
CT∗

)]
(3.9)

Having inequality (3.9), the rest of the proof
consists of establishing an upper-bound for P

(
CT∗

)

in Lemma 3.1 and a lower-bound for T ∗δT∗ in Lemma
3.2.

Lemma 3.1. Given graph G, suppose the system
evolves according to the WIS. For ǫ < n−4, we have
P
(
CT∗

)
≤ 1

2n
γ/3 .

We prove this lemma by mapping our Markov
chain into a death-birth chain and using some results
on death-birth chain and the basic voter model. The
proof is presented in Section 5.

Lemma 3.2. Given graph G, suppose at time 0, a
random pair of neighbors play C and the rest of the
nodes play D; the system evolves according to the

WIS afterwards. If b/c > k2

k−1 , then for n sufficiently
large:

T ∗δT∗ ≥
k(k − 1)3

√
(k − 1)/2

k2(k − 1)
√
(k − 1)/2 + k

(b−
k2

k − 1
c)

The proof of this lemma is presented in Section 6.

4 Proof of Claim 3.1

In this section, we prove Claim 3.1 by studying the
expected drift in the number of cooperators when
we apply the PD dynamics for the first time at t∗.
Suppose node i is chosen to update its action at time
t∗. Substituting the payoff function (2.1) into the
sampling probability (2.2), we have:

P

(
X i

t∗+1 = 1| Ai
t∗ ,

~Xt∗ , {St∗=1}
)
=

1

k

∑

j∼i

Xj
t∗


k − 1

k


−kcXj

t∗ + b
∑

l∼j

X l
t∗


+ 1




−
1

k

∑

j∼i

Xj
t∗


1
k

∑

h∼i,h 6=j


−kcXh

t∗ + b
∑

g∼h

Xg
t∗






Simplifying the above expression results in:

P

(
X i

t∗+1 = 1| Ai
t∗ ,

~Xt∗ , {St∗=1}
)
=

1

k

∑

j∼i

Xj
t∗

+
k − 1

k2

∑

j∼i



−kcXj
t∗ + b

∑

l∼j,l 6=i

X l
t∗X

j
t∗





−
1

k2

∑

j∼i

∑

h∼i,h 6=j



−kcXh
t∗X

j
t∗ + b

∑

g∼h,g 6=i

Xg
t∗X

j
t∗





Note that the cooperation probability of node i at
time t∗+1 does not depend on its own action at time
t∗. Further, it is decreasing in the number cooperator
neighbors, but it is increasing in the number of pairs
of neighbors playing C and also in the number of
C − C edges that are incident to neighbors of i.
Given ~Xt∗ , the expected drift in the number of
cooperators, E [∆t∗ ] in Figure 1, is,

E

[
∆∗

t |
~Xt∗

]
=

1

nk

∑

i∈V


−(k − 1)c

∑

j∼i

Xj
t∗

+
(k − 1)b

k

∑

j∼i

∑

l∼j,l 6=i

X l
t∗X

j
t∗

+c
∑

j∼i

∑

h∼i,h 6=j

Xh
t∗X

j
t∗

−
b

k

∑

j∼i

∑

h∼i,h 6=j

∑

g∼h,g 6=i

Xg
t∗X

j
t∗


 (4.10)

Taking expectation over all configurations, ~Xt∗ ∈



{0, 1}n, we have:

E [∆t∗ ] =

1

nk

∑

i∈V



−(k − 1)c
∑

j∼i

pjt∗ +
(k − 1)b

k

∑

j∼i

∑

l∼j,l 6=i

pljt∗

+c
∑

j∼i

∑

h∼i,h 6=j

phjt∗ −
b

k

∑

j∼i

∑

h∼i,h 6=j

∑

g∼h,g 6=i

pgjt∗





(4.11)

where pijt∗ = E

[
X i

t∗X
j
t∗

]
is the pairwise correlation

of i and j at time t∗, which is equal to the joint
probability that nodes i and j play C at time t∗.
Since up until time t∗, the system evolves according
to the VM dynamics, we analyze the drift E [∆t∗ ] by
studying the evolution of the pairwise correlations in
the voter model.

Before proceeding with the analysis, to simplify
the representation, we introduce the average correla-
tions over all pairs in graph G and rewrite the drift
E [∆t∗ ] in terms of these average correlations. For a

graph with girth at least 7, and for d ≤ 4, let q
(d)
t be

the average joint probability of the two endpoints of
any path of length d, i.e.,

q
(d)
t =

2

nk(k − 1)d−1

∑

l∈L(d)

pulvl
t , 1 ≤ d ≤ 4 (4.12)

where L(d) is the set of all length d paths, and ul and
vl are the two endpoints of path l. Similarly, define

q
(0)
t =

1

n

∑

i∈V

pit. (4.13)

For a graph with girth at least 7, between any pair
of nodes that appear in the RHS of (4.11), there is a
unique path of length at most 3. Thus, by rearranging
the sums in (4.11) and using definition (4.13), we can
write E [∆t∗ ] in terms of the average correlations:

E [∆t∗ ] =

(k − 1)c

[
−q

(0)
t∗ +

(k − 1)b

kc
q
(1)
t∗ + q

(2)
t∗ −

(k − 1)b

kc
q
(3)
t∗

]
.

(4.14)

4.1 Pairwise Correlations in the Voter Model
Consider the nodes i and j. For t ≤ t∗, we can write
pijt in terms of the pairwise joint probabilities of the

previous step in the following way: at time t − 1, if
neither i nor j is chosen to update its action, then the
joint probability of i and j does not change. On the
other hand, if i is chosen to update, then it will copy
neighbor h with probability 1/k. Therefore, the joint
probability of i and j at time t will be the same as
the joint probability of h and j in the previous step
(time t − 1). Similarly, if j is chosen to update, we
can write the joint probability of i and j in terms of
the joint probability of i and neighbors of j at time
t− 1:

pijt = (1 −
2

n
)pijt−1 +

1

nk

∑

h∼i

pjht−1 +
1

nk

∑

l∼j

pilt−1, t ≤ t∗

(4.15)

In a graph with girth not smaller than 7, for each
node i, the subgraph that consists of all the nodes at
distance at most 3 from i is a k-regular tree. Further,

for 1 ≤ d ≤ 3, the average correlation q
(d)
t is exactly

the probability that at time t, a randomly selected
pair of nodes at distance d paly C. Thus for 1 ≤ d ≤ 3

and t ≤ t∗, the evolution of q
(d)
t is similar to the

evolution of the pairwise correlation in an infinite k-
regular tree. In particular, using (4.15) and (4.13),
for 1 ≤ d ≤ 3 and t ≤ t∗, we have:

q
(d)
t = (1−

2

n
)q

(d)
t−1 +

2

nk
q
(d−1)
t−1 +

2(k − 1)

nk
q
(d+1)
t−1 ,

(4.16)

Since at time 0, a random pair of neighbors

play C, we have q
(0)
0 = 2/n, q

(1)
0 = 2/(nk), and

q
(d)
0 = 0, for d ≥ 2. Starting from these natural
initial conditions, a simple induction shows that:

q
(4)
t ≤ q

(3)
t ≤ q

(2)
t ≤ q

(1)
t , t ≤ t∗. (4.17)

This monotonicity implies that E [∆t∗ ] is non-
decreasing in the ratio b/c. Thus for b/c ≥ k2/(k−1),
we have:

E [∆t∗ ] ≥ (k − 1)c
[
−q

(0)
t∗ + kq

(1)
t∗ + q

(2)
t∗ − kq

(3)
t∗

]

Using the recursive relation (4.16), we rewrite E [∆t∗ ]



as the following geometric sum:

E [∆t∗ ] ≥

(k − 1)c(1 −
2

n
)t

∗

[
−q

(0)
0 + kq

(1)
0 + q

(2)
0 − kq

(3)
0

]

+ (k − 1)c

[
2

n

t∗−1∑

s=0

(1 −
2

n
)t

∗−s−1

(
1

k
q(1)s + (k − 2)q(2)s

+
k − 1

k
q(3)s − (k − 1)q(4)s

)]
(4.18)

Having the initial conditions, it is easy to see that:

−q00 + kq
(1)
0 + q

(2)
0 − kq

(3)
0 = 0,

Substituting the initial conditions into (4.18), and
using (4.17), we have E [∆t∗ ] ≥ 0.

To complete the proof of Claim 3.1, we need to
show that E [∆t∗ ] ≤ 1. This follows directly form
the definition of E [∆t∗ ]: the number of cooperators
cannot increase by more than one after one step.
Therefore, the expected drift at each time step is at
most one.

5 Proof of Lemma 3.1

First we study the convergence time of our Markov
chain. Let θ be the convergence time, i.e., θ is the
earliest time that the system reaches either the all
one ( ~X = ~1) or the all zero ( ~X = ~0) state. Note that
our Markov chain is essentially a random walk on the
cube {0, 1}n. In order to compute θ we can consider a
slightly different random walk in which there is non-
zero transition probabilities form state ~1 (and ~0) to its
neighbors in the cube. It is easy to see that starting
from any state in {0, 1}n \ {~0,~1}, the time needed to
hit ~0 or ~1 is the same in these two chains. However,
the modified chain is irreducible which makes the
analysis easier. Let T ~X be time needed to hit ~0 or
~1 starting form ~X and let T = max~x∈{0,1}n\{~0,~1} T~x.
Clearly θ ≤ T .

Next, we proceed to compute E [T ]. We show
that for ǫ < n−4, the hitting time of WIS, E [T ] ≤
(k+1)n2/4. Note that for ǫ = 0, our dynamics is the
voter model. The hitting time of the voter model
on a connected k-regular graph is upper-bounded
by kn2/4 [1, Chapter 14, Proposition 9]. In the
following, we show that for ǫ < n−4, the expected
convergence time, E [T ], is within an additive O(1)
factor of the hitting time of the basic voter model,
which implies that E [T ] ≤ (k + 1)n2/4.

Define the mapping M : {0, 1}n → {0, 1, . . . , n},

where M( ~X) =
∑n

i=1 X
i. In words, we contract

all the states with the same number of cooperators.
Note that if we apply this mapping to the modified
irreducible Markov chain, the resulting chain will be
a reversible death-birth chain. The following results
for the reversible death-birth chain enable us to show
that for ǫ sufficiently small, the hitting time of WIS
is almost the same as the hitting time for the basics
voter model.

5.1 Review of Some Results for Reversible
Death-Birth Chains: Let πi, 0 ≤ i ≤ n, be
the stationary distribution of the death-birth chain,
pj−1,j be the transition probability from state j − 1
to state j, qj,j−1 be the transition probability from
state j to state j − 1, and Ej−1 [Tj ] be the expected
time to hit state j, starting from state j − 1.

1. Using the reversibility of the chain, we can easily
compute the stationary distribution πi, 0 ≤ i ≤
n in terms of the transition probabilities. In
particular, given π0,

πi = π0

j−1∏

z=0

pz,z+1

qz+1,z
,

we can compute π0 by setting
∑n

i=0 πi = 1.

2. Using the result of Palacios and Tetali [10], one
can explicitly compute all the hitting times of
such a chain. In particular, Theorem 2.3 of [10]
states that:

Ej−1 [Tj] =
1

πjqj,j−1

j−1∑

z=0

πz

Ej [Tj−1] =
1

πjqj,j−1

n∑

z=j

πz . (5.19)

Since the graph is a line, for any two states a
and b, where 0 ≤ a < b ≤ n:

Ea [Tb] =
b−1∑

j=a

Ej [Tj+1] (5.20)

Having the above results for the reversible death-
birth chain, we show that for ǫ sufficiently small,
the hitting time of WIS is almost the same as the
hitting time of the basics voter model. The difference
between each transition probability in the WIS and



the voter model is at most ǫ, therefore, the difference
in stationary state probability of each state is at most
O(n2ǫ). From relations (5.19) and (5.20), it is evident
that the difference in the hitting times in WIS and
the voter model is at most O(n4ǫ), which is O(1) for
ǫ < n−4.
Finally, note that we have chosen T ∗ such that T ∗ ≥
2nγ/3

E [T ]. We upper-bound the probability of event
CT∗ in the following way. By Markov inequality,

P (T ≥ 2E [T ]) ≤
1

2

Since the modified chain is irreducible, it satisfies the
memoryless property and we have:

P (T ≥ 4E [T ] |{T ≥ 2E [T ]}) = P (T ≥ 2E [T ]) ≤
1

2

Repeating this argument results in:

P (T ≥ 2iE [T ]) ≤
1

2i
, i ≥ 1

Thus for T ∗ ≥ 2nγ/3
E [T ], we have,

P
(
CT∗

)
≤

1

2nγ/3

which completes the proof of the lemma.

6 Proof of Lemma 3.2

The proof of Lemma 3.2 is mainly algebraic and it
amounts for obtaining a lower bound for the solution
of a linear dynamical system. We write (4.14) in the
following matrix form:

E [∆t∗ ] = (k − 1)c~Y T ~Qt∗ ,

where

~Y =




−1
(k−1)b

kc

1

− (k−1)b
kc




and ~Qt∗ =




q
(0)
t∗

q
(1)
t∗

q
(2)
t∗

q
(3)
t∗




Using the recursive relation (4.16), we have:

E [∆t∗ ] = (k − 1)c~Y T ~Qt∗ =

(k − 1)c~Y T

[
At∗ ~Q0 +

2(k − 1)

nk

t∗−1∑

s=0

At∗−s−1 ~Rs

]
,

(6.21)

where matrix A is:

A =




1 0 0 0

2
nk 1− 2

n
2(k−1)

nk 0

0 2
nk 1− 2

n
2(k−1)

nk

0 0 2
nk 1− 2

n




and vector ~Rs is

~Rs = q(4)s

[
0 0 0 1

]T

As mentioned before, for a graph with girth not

smaller than 7, q
(4)
s ≤ q

(3)
s , for s ≤ t∗. Using this

inequality and some tedious algebra, we show that:

~Y TAt∗−s−1 ~Rs ≥ ~Y TAt∗−s−1




0

0

−q
(3)
s

√
(k − 1)/2

q
(3)
s




Substituting this inequality in (6.21), we have:

E [∆t∗ ]

≥ (k − 1)c~Y T

[
At∗ ~Q0 +

2(k − 1)

nk

t∗−1∑

s=0

At∗−s−1 ~Ws

]
,

(6.22)

where vector ~Ws is:

~Ws = q(3)s




0

0

−
√
(k − 1)/2

1




We can rewrite (6.22) as:

E [∆t∗ ] ≥ (k − 1)c~Y TBt∗ ~Q0,

where matrix B is given by,

B =




1 0 0 0

2
nk 1− 2

n
2(k−1)

nk 0

0 2
nk 1− 2

n
2(k−1)

nk (1−
√

k−1
2 )

0 0 2
nk 1− 2

nk




Summing over 0 ≤ t∗ ≤ T ∗ − 1,

T∗−1∑

t∗=0

E [∆t∗ ] ≥ (k − 1)c~Y T

[
T∗−1∑

t∗=0

Bt∗

]
~Q0,

The rest of the proof is algebraic; we compute
the eigenvalue decomposition of matrix B and
based on that, we establish the lower bound on∑T∗−1

t∗=0 E [∆t∗ ].



7 WIS on Graphs with Small Girth

In this section, we present two simple examples,
complete graph and complete bipartite graph, that
show why the expected number of cooperators does
not increase in graphs with small girth. Because of
the symmetry, we can compute the exact drift in these
two examples. The main observation is that in these
graphs, the local clustering of cooperators does not
occur. For instance, in the complete bipartite graph,
the set of neighbors of all the nodes in one side of
the graph is always the same. Thus we have the free-
riding effect that a defector receives a higher payoff,
which results in the decrease in the probability of
imitating cooperation.

Proposition 7.1. Suppose graph G is the complete
graph and suppose at time 0, x nodes play C and the
rest of the nodes play D; the system evolves according
to the WIS afterwards. For any b, c ≥ 0 and ǫ ≥ 0,
we have πWIS ≤ 2/n.

Proof. Suppose at time t, the configuration ~Xt has y
cooperators. Using Relation (4.10), a simple counting
shows that,

E

[
∆t| ~Xt

]
= −

n− 2

n(n− 1)2
[b+ (n− 1)c]y(n− y)

that is non-positive for any 0 ≤ y ≤ n. Thus
E [Nt] ≤ E [Nt−1], for all t ≥ 0, which immediately
implies that πWIS ≤ 2/n. �

Proposition 7.2. Suppose graph G is the complete
bipartite graph and n is even. Also, suppose at time
0, x nodes play C and the rest of the nodes play D;
the system evolves according to the WIS afterwards.
For any b, c ≥ 0 and ǫ ≥ 0, we have πWIS ≤ 2/n

Proof. Suppose at time t, the configuration ~Xt has
y1 and y2 cooperators in the two sides of the graph.
Using Relation (4.10), a simple counting shows that,

E

[
∆t| ~Xt

]
=−

c

n
[(n/2− y1 + y2)y1(n/2− y2)

+ (n/2− y2 + y1)y2(n/2− y1)]

that is non-positive for any 0 ≤ y1, y2 ≤ n/2. Thus
E [Nt] ≤ E [Nt−1], for all t ≥ 0, which immediately
implies that πWIS ≤ 2/n. �

8 Discussion

8.1 Relations to Evolutionary Dynamics of
Nowak et al. As mentioned in Section 1, our WIS

dynamics is closely related to a dynamics of Nowak
et al. [9, 7]. In their work, they use the following
updating rule: node i updates its action to C with
a probability proportional to the fitness of its coop-
erator neighbors. Fitness of node j is defined to be
1 − ǫ + ǫuj

t , where ǫ is a small positive number. In
particular,

P̃

(
X i

t+1 = 1|Ai
t, ~Xt

)
=

∑
j∼i[(1− ǫ) + ǫuj

t ]X
j
t

k(1− ǫ) + ǫ
∑

j∼i u
j
t

,

(8.23)

This dynamics models the mechanism that node i
dies and its cooperator (defector) neighbors compete
to replace i with a cooperator (defector) player in
proportion to their fitness. When ǫ ≪ 1, the
effect of the payoffs is quite small and the process is
called Weak Selection. They show that in the Weak
Selection regime, if b > kc, the expected number of
cooperators increases in the long run of the process.
However, their analysis lacks rigor and ignores the
effect of cycles and the correlation between nodes at
distance more than one.

As it is evident from relation (8.23), this is
a nonlinear dynamics and its rigorous analysis is
prohibitively difficult. However, note that algebraic
manipulation results in having:

P̃

(
X i

t+1 = 1|Ai
t, ~Xt

)
=

1

k

∑

j∼i

Xj
t [1− ǫ

+ǫ

(
uj
t + 1−

1

k

∑

h∼i

uh
t

)]
+O(ǫ2/k)

which is the same as the transition kernel of the WIS
process (relation (2.3)) up to an O(ǫ2/k) factor.

8.2 Constant f in Theorem 3.1 We compute
the constant f by putting Lemma 3.1 and 3.2 to-
gether:

f =
k(k − 1)3

√
(k − 1)/2

k2(k − 1)
√
(k − 1)/2 + k

(b −
k2

k − 1
c)

− 3/4(k + 1)2n−γ/3 −
n5+γ

2nγ/3
.
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