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ABSTRACT
Due to uncertainty in nodal mobility, DTN routing usu-
ally employs multi-copy forwarding schemes. To avoid the
cost associated with flooding, much effort has been focused
on probabilistic forwarding, which aims to reduce the cost
of forwarding while retaining a high performance rate by
forwarding messages only to nodes that have high deliv-
ery probabilities. This paper aims to provide an optimal
forwarding protocol which maximizes the expected delivery
rate while satisfying a certain constant on the number of
forwardings per message. In our proposed optimal proba-
bilistic forwarding (OPF) protocol, we use an optimal proba-
bilistic forwarding metric derived by modeling each forward-
ing as an optimal stopping rule problem. We also present
several extensions to allow OPF to use only partial rout-
ing information and work with other probabilistic forward-
ing schemes such as ticket-based forwarding. We implement
OPF and several other protocols and perform trace-driven
simulations. Simulation results show that the delivery rate
of OPF is only 5% lower than epidemic, and 20% greater
than the state-of-the-art delegation forwarding while gener-
ating 5% more copies and 5% longer delay.

Categories and Subject Descriptors
C.2.2 [Computer Systems Organization]: COMPUTER-
COMMUNICATION NETWORKS—Store and forward net-
works

General Terms
Algorithms, Measurement, Performance

Keywords
Delay Tolerant Networks, Optimal Stopping Rule, Routing.

1. INTRODUCTION
A delay tolerant network (DTN) [1] is a sparse mobile net-

work where a contemporary source-destination path may not
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exist between a pair of source-destination nodes and mes-
sages are routed in a store-carry-forward routing paradigm.
Due to uncertainty in nodal mobility, DTN routing algo-
rithms usually spawn and keep multiple copies of the same
message in different nodes. The message is delivered if one
of these nodes encounters the destination.

The most expensive routing protocol, epidemic [2], for-
wards copies of a message to any possible node and guaran-
tees a maximized delivery rate. Effectively flooding the net-
work with every message, epidemic is impractical because of
poor scalability in large networks. Recently, much effort has
been focused on probabilistic forwarding (or opportunistic
forwarding), which tries to reduce the number of copies of
each message while retaining a high routing performance,
i.e., a high delivery rate1. Since only a small fraction of the
nodes can get copies of a message, it is desired that these
copies are forwarded by the nodes which have a higher de-
livery probability than the other nodes.

In this paper, we propose optimal probabilistic forward-
ing (OPF) that integrates an optimal delivery probability
metric and an optimal forwarding rule. By optimality, we
mean that OPF maximizes the delivery probability based on
a particular knowledge about the network. The optimality
of OPF relies on the assumptions that (1) nodal mobility
exhibits long-term regularity such that mean inter-meeting
times between nodes can be estimated from history, and ide-
ally (2) each node knows the mean inter-meeting times of all
pairs of nodes in the network. Our optimal delivery prob-
ability metric differs from the existing delivery probability
metrics in two important ways.

• It is a comprehensive metric which reflexes not only the
direct delivery probability of a message copy on a node
but also its indirect delivery probability when the node
can forward the message to other intermediate nodes.

• It is a dynamic metric. In a hop-count-limited forward-
ing scheme, our optimal delivery probability metric is
a function of two important states of a message copy:
remaining hop-count and residual lifetime.

Our objective in OPF is that, given a certain constraint
on the maximum number of forwardings per message, OPF
maximizes the delivery rate of each message. The basic idea
is to model each forwarding as an optimal stopping rule
problem. In this forwarding model, a forwarding time is

1In DTNs, we do not consider delay to be an important
performance metric as long as the messages are delivered
before they expire.

105



B

1

G

2

D

A

HA

A

A B

BC D

3

C

Remaining hop−count

F0 E

Figure 1: An illustration of hop-count-limited prob-
abilistic forwarding

deliberately chosen for each forwarding in order to maxi-
mize the joint expected delivery probability of the copies in
the sender and receiver nodes at the time of the forwarding.

Based on the proposed OPF protocol developed for a hop-
count-limited forwarding scheme, we propose two non-trivial
extensions for the ticket-based forwarding scheme and the
broadcast forwarding scheme respectively. In the broadcast
forwarding scheme, we consider the situation that multiple
receivers exist in a single forwarding and tickets are redis-
tributed among all the new copies. We also extend OPF to
work under partial routing information and propose several
promising extensions for future work.

We perform simulations using the National Singapore Uni-
versity (NUS) student trace [3] and the UMassDieselNet [4]
trace to evaluate the routing performance of OPF against
several DTN routing protocols, including epidemic [2], spray-
and-wait [5], and a state-of-the-art delegation forwarding [6],
in terms of delivery rate, cost and delay. Simulation results
show that, in terms of delivery rate, OPF is only 5% worse
than epidemic and 20% better than delegation forwarding
[6]. On the other hand, OPF generates only 5% more for-
wardings and 5% larger delay than delegation.

This paper is organized as follows. Section 2 introduces
preliminaries on probabilistic forwarding, presents an overview
of OPF, displays the compared protocols in our simulation,
and reviews the optimal stopping rule problem. Section 3
proposes our probability delivery metric and optimal for-
warding rule in OPF. Section 4 discusses several useful ex-
tensions of OPF. Section 5 summarizes the related works.
Section 6 presents our simulation methods and results. Fi-
nally, the paper is concluded in Section 7.

2. PRELIMINARIES AND OVERVIEW

2.1 Hop-count-limited forwarding
We will first propose OPF based on a hop-count-limited

probabilistic forwarding scheme. In a hop-count-limited prob-
abilistic forwarding, each message maintains a value, called
remaining hop-count, which indicates the maximum amount
of hops that the message can be forwarded. When a message
whose remaining hop-count is K is forwarded from one node
to another, the remaining hop-count of both copies in the
two nodes becomes K − 1. That is, if the initial hop-count
of a message is a constant H, then the maximum number
of copies of the message is 2H , including the one delivered
to the destination. In Figure 1, a message is created with
H = 3 in node A, and a tree of message forwarding history
is shown.

An advantage of the hop-count-limited probabilistic for-
warding scheme over many other probabilistic forwarding

schemes is that, given a constant H, it has a constant per
message cost2, which is necessary to achieve ultimate scal-
ability: given a constant per node message rate, the per
node forwarding overhead is kept constant as the network
size increases.

A ticket-based forwarding scheme is essentially a more
general version of a hop-count-limited forwarding. An ex-
ample is the spray-and-wait [5] protocol, in which each mes-
sage is associated with a number of logical tickets, and when
forwarding copies, the tickets are redistributed between the
two copies. Assuming a random nodal mobility in the net-
work, the authors wisely adopted the half-half ticket split-
ting strategy. We will extend OPF in a ticket-based for-
warding scheme in Section 4.

2.2 Motivation and overview
In most probabilistic forwarding protocols, each node is

associated with a forwarding quality/probability metric for
each destination, which is usually a direct (1-hop) forward-
ing quality between the node and the destination such as
encounter frequency [7], or time elapsed since last encounter
[8, 9, 10, 11, 12]. When node i meets node j, whether node
i forwards a message to node j depends on whether the di-
rect forwarding quality of i is better than j. We found two
drawbacks in such forwarding strategies.

The first drawback is that a forwarding decision based on
comparing the direct forwarding qualities of nodes i and j
cannot guarantee a good forwarding. (1) The forwarding
quality of j being better than i does not necessarily mean
that j is a good forwarder. (2) Even though the quality of
j is high, i might encounter better nodes in the near future.
(3) Similarly, even though the quality of j is lower than i, j
might still be the best forwarder that i could encounter in
the future. To rectify this drawback, we use a comprehensive
metric which reflexes not only the direct delivery probability
of a particular message copy but also its indirect delivery
probability when the node can forward the message to other
intermediate nodes.

The second drawback is that the quality of a node is a con-
stant regardless of two important states of the copy: remain-
ing hop-count and residual lifetime. Remaining hop-count
is an important factor: a node can be a bad 1-hop forwarder
for having a low direct delivery probability, but it can still be
an excellent 2-hop forwarder if it has a frequent contacting
node which has a high direct delivery probability. On the
other hand, residual lifetime is important because it affects
a node’s direct delivery probability and also the message’s
chance of being forwarded to other high quality nodes.

In this paper, we define a delivery probability Pi,d,K,Tr

for each copy in i and for destination d. This metric is
comprehensive because it represents the joint probability of
all descendant copies, and it is also dynamic since it is a
function of the remaining hop-count K and residual time-
to-live Tr. With Pi,d,K,Tr , our optimal forwarding rule is
presented as follows. We logically regard a forwarding from
a node to another node as replacing a message copy with
two new copies in the sender and the receiver nodes respec-
tively. When node i meets node j, whether i should forward
the copy to j depends on whether replacing the copy in i

2We consider forwarding cost as the major cost in the whole
communication process. We ignore the computation and
storage costs for today’s rapid development in low-voltage,
high-speed computers and large-size flash memories.
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with two logically new copies increases the overall delivery
probability. Specifically, the copy is forwarded only if the
joint probability of Pi,d,K−1,Tr−1 and Pj,d,K−1,Tr−1 (in case
of forwarding) is greater than the probability Pi,d,K,Tr−1 (in
case of no forwarding). Details on our optimal forwarding
rule will be discussed in Section 3.

It is challenging to calculate the accurate delivery prob-
ability Pi,d,K,Tr for each K and Tr (Section 3.5). In this
paper, we first assume that all nodes have full routing infor-
mation, which is the mean inter-meeting times between all
pairs of nodes. Our method is to model the calculation of
Pi,d,K,Tr as an optimal stopping rule problem and apply a
backward induction method. We will release the assumption
from full routing information to partial routing information.

2.3 Protocols in comparison
We compare OPF against several other probabilistic for-

warding protocols in our simulation. While OPF has a well-
defined utility to maximize in each forwarding: the overall
delivery probability of the copies of the same message, the
following algorithms use either heuristic forwarding rules or
blind forwarding.

Epidemic [2]. A node copies a message to every node it
encounters that does not have a copy already, until its copy
of the message times out.

Spray-and-wait [5]. This protocol differs from epidemic
in that it controls the number of copies of each message in
the network. A number L of logical tickets are associated
with each message. A node i can only copy a message to
another node j it encounters if the message in i owns L > 1
tickets or j is the destination. The new copy in j will have
Lj = bL/2c tickets, and Li = L−Lj tickets will remain with
the message in i.

Quality. This is an extension of epidemic where a mes-
sage copy is only forwarded from node i to node j if node j
has a higher forwarding quality than node i. In our simula-
tion, we use a mean inter-meeting time Ik,d with the desti-
nation d as the forwarding quality of a node k. That is, node
j has a higher forwarding quality than node i if Ij,d < Ii,d.

Delegation [6]. In delegation forwarding, each message
copy maintains a forwarding threshold τ which is initialized
as the quality of its source node, i.e. the mean inter-meeting
time between the source and the destination. Whenever
node i meets node j, node i forwards a message to node
j if the forwarding quality of node j exceeds the message’s
threshold τ , i.e. Ij,d < τ , and then the τs of both copies in i
and j are set to Ij,d. In the case that Ij,d < τ but j already
has the message copy, the copy is not forwarded, but the τ
of the copy in i will still be set to Ij,d.

Epidemic and spray-and-wait do not use any forwarding
metric. The performance of spray-and-wait degrades the
fastest as network size increases. In terms of cost, spray-
and-wait and OPF maintain a constant cost per message
which achieves ultimate scalability. Quality has an O(N)

worst-case cost and delegation has an O(
√

N) average-case
cost. Cost being proportional to network size N may result
in degraded performance in small networks and excessive
cost in large networks.

2.4 Optimal stopping rule problem
In a stopping rule problem [13], you may observe a se-

quence X1, X2, . . . for as long as you wish, where X1, X2, . . .
are random variables whose joint distribution is assumed

to be known. For each stage t = 1, 2, . . . after observing
X1, X2, . . . , Xt, you may stop and receive the known reward
yt, or you may continue and observe Xt+1. The optimal
stopping rule is to stop at some stage t to maximize the
expected reward.

A stopping rule problem has a finite horizon if there is a
known upper bound T on the number of stages at which one
may stop. If stopping is required after observing X1, . . . , XT ,
we say the problem has horizon T . In principle, such prob-
lems may be solved by the method of backward induction.
Since we must stop at stage T , we first find the optimal rule
at stage T − 1. Then, knowing the optimal reward at stage
T−1, we find the optimal rule at stage T−2, and so on back

to the initial stage (stage 0). Let V
(T )

t (1 ≤ t ≤ T ) repre-
sent the maximum expected reward one can obtain starting

from stage t. We define V
(T )

T = yT and then inductively for
t = T − 1, backward to t = 0,

V
(T )

t = max
{

yt, E(V
(T )

t+1 )
}

.

The meaning of the above equation is that, at stage t,
we compare the reward for stopping, namely yt, with the

reward E(V
(T )

t+1 ) that we expect to be able to get by contin-
uing and using the optimal rule for stages t + 1 through T .
The optimal reward is therefore the maximum of these two
quantities, and it is optimal to stop at the earliest t when

yt ≥ E(V
(T )

t+1 ).
Here, we use a house-selling scenario as a simple exam-

ple for the finite horizontal optimal stopping rule problem.
Suppose you have a house to sell within T days. An of-
fer comes in each day and Xt denotes the amount of the
offer received on day t. X1, . . . , XT are independent and
identically-distributed (i.i.d.), and are uniform over 0 to M .
You may stop at any day t and receive yt = Xt. You don’t
know the offers before they come in and you cannot recall a
past offer. You need to find a stopping rule that maximizes
the expected sales value.

Let us derive the optimal stopping rule using the backward
induction method. Since we must sell the house by day

T , the expected value E(V
(T )

T ) = E(yT ) = E(XT ) = M
2

.

Inductively, at day t, E(V
(T )

t )

= E(max
{

yt, E(V
(T )

t+1 )
}

) =

∫ M

0

max
{

x, E(V
(T )

t+1 )
}

dF (x)

=

∫ M

E(V
(T )
t+1 )

xd
x

M
+

∫ E(V
(T )
t+1 )

0

E(V
(T )

t+1 )d
x

M
=

M2 + (E(V
(T )

t+1 ))2

2M
,

where F (x) = x
M

is the cumulative distribution function
of yt, a uniform distribution over 0 to M . We can calculate

E(V
(T )

t ) inductively for t = T − 1 down to 1. The optimal

stopping rule is to sell the house on day t if Xt ≥ E(V
(T )

t+1 ).
In other words, the optimal stopping rule uses the expected
reward in stage t + 1 as the decision threshold for stage t.

3. OPTIMAL PROBABILISTIC
FORWARDING (OPF)

3.1 Assumption
Each message has a random source and destination and

is given a time-to-live at its creation time. Expired copies
of messages will be deleted immediately. Different copies of
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the same message are forwarded independently without any
knowledge of the status of the other copies.

Like other probabilistic forwarding protocols, it is ideal
that nodal mobility exhibits long-term regularities such that
some nodes consistently meet more frequently than others
over time. Specifically, the distribution of the mean inter-
meeting times between nodes is slope, and the mean inter-
meeting time between two nodes in the past will be close
to that in the future with high probability. Therefore, OPF
is expected to be efficient in most natural or human-related
mobile networks where nodes have large clustering coeffi-
cients (nodes have preferred contacts which together form
communities) and small degrees of separation (paths be-
tween nodes can have small hop-counts) [14].

First, we assume that each node knows the full routing
information of the mean inter-meeting times Ii,j between
all pairs of nodes {i, j}. This can be accomplished by dis-
semination or via global periodical updates [15], when this
routing information is long-term stable routing information
that requires no timely update. In this case, the amortized
overhead can be arbitrarily small depending on the update
frequency. The assumption on full routing information will
be relaxed in Section 4. Simulation results in Section 6 show
that the performance of OPF degrades gracefully with par-
tial information.

3.2 Discrete residual time-to-live
To model our optimal forwarding problem as an optimal

stopping rule problem, we need to use a discrete residual
time-to-live Tr for each message copy, with time-slot size U .
Tr is a measurement in clock time. Let Tmax be the max-
imum possible time-to-live of any message, the range of Tr

is between 0 and Tmax/U . Our delivery probability metric
is a function of Tr, and it is calculated using an inductive
method. The amount of computation for our delivery prob-
ability metric is inversely proportional to the length of U
but its accuracy decreases as U increases. In the rest of the
paper, we use Tr to denote a residual lifetime or a particular
time-slot at Tr interchangeably without causing confusion.

In each time-slot Tr, a node can either meet or not meet
another node. A node has the probability to meet several
other nodes during the same time-slot, and we simply as-
sume that all meetings start at the beginning of some time-
slot. This assumption holds when U is smaller than any
meeting duration, and we truncate all meeting durations so
that the starting time of them are aligned in the beginning
of their respective time-slots. The meeting probability of
two nodes in any time-slot of length U is estimated under
the assumption of exponential inter-meeting time [5, 10] by

Mi,j = 1− exp(− U

Ii,j
).

Note that the calculation of Mi,j itself does not rely on
the assumption of exponential inter-meeting times. Using a
particular estimation that is more realistic for a network in
question should result in better routing performance.

3.3 1-hop delivery probability
The 1-hop delivery probability of a message copy is the

probability that the hosting node meets the destination di-
rectly within its time-to-live. It is only a function of residual
time-to-live. We estimate the 1-hop delivery probability, as-

Table 1: Forwarding options.
Tr Pi,d,K,Tr

Tr − 1 Not Forward Forward (becomes K − 1)
Pi,d,K,Tr−1 Pi,d,K−1,Tr−1, Pj,d,K−1,Tr−1

suming again an exponential inter-meeting time, by

Pi,d,0,Tr = 1− exp(−Tr × U

Ii,d
),

where 0 means that the remaining hop-count is 0, Tr ×U is
the residual time-to-live of the message (Tr is the number of
residual time-slots of length U before the message expires),
and Ii,d is the mean inter-meeting time between node i and
the destination d. Again, the calculation of Pi,d,0,Tr does not
rely on the assumption of exponential inter-meeting time.

3.4 K-hop delivery probability and
forwarding rule

Our optimal delivery probability and optimal forwarding
rule are inter-dependent. The optimal delivery probability of
a copy in node i, heading for destination d, with a remaining
hop-count K (K > 0), and with a residual time-to-live Tr is
denoted by Pi,d,K,Tr .

First, we present our optimal forwarding rule. When a
copy, whose remaining hop-count is K, is in node i and node
i meets node j at time-slot Tr, the decision on whether to
forward depends on whether replacing the copy in i with two
new copies in i and j respectively will increases the overall
delivery probability. As shown in Table 1, if the message is
not forwarded in time-slot Tr, then in the next time-slot, we
have the same copy (with the same remaining hop-count K)
in i and its delivery probability becomes Pi,d,K,Tr−1. On the
other hand, if the message is forwarded in time-slot Tr, then
in the next time-slot, we have two new copies with remaining
hop-count K−1 in i and j respectively whose delivery proba-
bilities are Pi,d,K−1,Tr−1 and Pj,d,K−1,Tr−1 respectively. To
maximize the delivery probability, the optimal forwarding
rule is to forward the message if

1− (1− Pi,d,K−1,Tr−1)× (1− Pj,d,K−1,Tr−1) ≥ Pi,d,K,Tr−1.

For simplicity, in the above discussion, we assumed that
in a sparse DTN, two consecutive forwardings (i.e. from i
to j and then from j to another node) cannot happen in
the same time-slot. Also, we only considered uni-cast for-
warding. When connected with several nodes at the same
time-slot, we forward the copy to the node j which has
the largest Pj,d,K−1,Tr−1. Since wireless communication is
broadcast in nature, a single forwarding can create copies
in several nodes. A more general forwarding scheme, broad-
cast forwarding, will be discussed as an extension in the next
section.

Our optimal delivery probability Pi,d,K−1,Tr depends on
the optimal forwarding rule and the meeting probabilities
Mi,j of i and each node j in time-slot Tr whose delivery prob-
ability Pj,d,K−1,Tr−1 satisfies the forwarding criteria. We
will calculate Pi,d,K,Tr in the next subsection by modeling
forwarding as an optimal stopping rule problem.

3.5 OPF as an optimal stopping rule problem
We can model each forwarding as an optimal stopping

problem as follows. A node i has a message copy with re-
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maining hop-count K, which can be forwarded once. At the
time of forwarding, the copy is logically regarded as being
replaced by two new copies, both of which have K − 1 re-
maining hop-count. Candidate copy receivers j come in at
each time-slot Tr (which also denotes the residual time-to-
live of the message) with probability Mi,j . Upon meeting
with j, i can either forward the copy to j or not. Since we
assume no consecutive forwardings occur in the same time-
slot, we calculate the resulting overall delivery probability in
the next time-slot Tr−1. If the copy is forwarded, the deliv-
ery probability of the copy in node j will be Pj,d,K−1,Tr−1,
and that of the copy in node i will become Pi,d,K−1,Tr−1.
On the other hand, if the copy is not forwarded to any node
at time-slot Tr, the delivery probability of the same copy in
node i will become Pi,d,K,Tr−1.

In the case that a node meeting several other nodes in the
same time-slot, forwarding the copy to the node with the
highest delivery probability is the optimal strategy to max-
imize delivery probability. Given the sorted delivery prob-
ability Pj,d,K−1,Tr−1, Pk,d,K−1,Tr−1, . . . of the nodes j, k, . . .
that i will probably meet in time-slot Tr with meeting prob-
ability Mi,j , Mi,k, . . . respectively, the maximum probability
that the copy will be forwarded to one of nodes j, k, . . . in
time-slot Tr and then be delivered is
P (delivered|forwarded at Tr) × P (forwarded at Tr) =
P (delivered ∩ forwarded at Tr) = Mi,j × Pi,d,K−1,Tr−1 +
(1−Mi,j)×Mi,k × Pk,d,K−1,Tr−1 + . . .

Therefore, the expected optimal delivery probability Pi,d,K,Tr

equals the sum of (1) the probability that the copy will be
forwarded in time-slot Tr and then be delivered, and (2)
the delivery probability Pi,d,K,Tr−1 when the message is not
forwarded in time-slot Tr multiple by the probability M ′

i,N

that node i does not meet any node in Tr that satisfies the
forwarding criteria, where M ′

i,N = 1 −Mi,j − (1 −Mi,j) ×
Mi,k − . . .. Algorithm 1 shows the calculation of Pi,d,K,Tr

using the backward induction method. In line 7, the while
loop stop when queue Q is empty.

Algorithm 1 Calculation of Pi,d,K,Tr

1: Pi,d,K,Tr := 0
2: M ′

i,N := 1
3: for each (node j, j 6= i ∩ j 6= d) {
4: Pi,j = 1− (1− Pi,d,K−1,Tr−1)× (1− Pj,d,K−1,Tr−1)
5: }
6: Q := a priority queue of j in decreasing order of Pi,j

7: while (j :=dequeue(Q) and Pi,j > Pi,d,K,Tr−1) {
8: Pi,d,K,Tr := Pi,d,K,Tr + M ′

i,N ×Mi,j × Pi,j

9: M ′
i,N := M ′

i,N −M ′
i,N ×Mi,j

10: }
11: Pi,d,K,Tr := Pi,d,K,Tr + M ′

i,N × Pi,d,K,Tr−1

4. EXTENSIONS

4.1 Routing with partial information
To calculate Pi,d,K,Tr for any K and Tr, each node collects

the mean inter-meeting times of every pair of nodes. When
the nodal mobility in the network exhibits long-term regu-
larities, the mean inter-meeting times are a long-term stable
routing information which can be infrequently updated and
therefore generate a low amortized overhead. In practice,
they can be generated from historical connectivity informa-

tion (as in the UMassDieselNet trace [9, 4]) or from prior
knowledge on the contact pattern of the nodes (as in the
NUS student contact trace [3]).

The mean inter-meeting times can also be incrementally
exchanged among the nodes. When node i meets node j,
node i sends to node j its mean inter-meeting time with
the other nodes (1-hop routing information), or it can also
send the mean inter-meeting times received from the other
nodes (k-hop routing information). Alternatively, node i
can send only some preferred information to j, e.g., only the
mean inter-meeting times between frequent meeting nodes
are sent.

OPF can be simply extended to work under partial infor-
mation (including k-hop and preferred mean inter-meeting
times), i.e., when the mean inter-meeting times between all
pairs of nodes are not available to every node. To allow OPF
to work with partial information, for each pair of nodes i and
j whose mean inter-meeting time is unknown, we simply set
their time-slot based meeting probability Mi,j and their 1-
hop meeting probabilities Pi,j,0,Tr (for all Tr) to 0s. When
no routing information is available, it is easy to see that OPF
degrades to spray-and-wait which spawns copies to the first
node seen.

4.2 Ticket-based forwarding
We have proposed an optimal probabilistic forwarding

based on the hop-count-limited forwarding. Using similar
techniques, we can design a slightly more complicated ticket-
based optimal probabilistic forwarding. In this ticket-based
scheme, each message copy is associated with a number of L
logical tickets [5] which will be redistributed between the two
replacing copies in a message forwarding. L upper-bounds
the total number of forwardings of each message. For ticket-
based optimal forwarding, we define a delivery probability
Pi,d,L,Tr , which differs from the hop-count-limited version
by replacing K with L.

When a node i meets node j and is deciding whether to
forward a copy with L > 1 tickets, it first lists all possi-
ble ticket redistribution situations. Lets say that after a
forwarding, the copy in i has Li > 0 tickets and the copy
in j has Lj > 0 tickets. It requires that Li + Lj = L.
Also, Li and Lj must be selected so as to get the maximum
joint delivery probability of the two new copies, P max

i,j =
max 1− (1− Pi,d,Li,Tr−1)× (1− Pi,d,Lj ,Tr−1). In the event
that P max

i,j ≤ Pi,d,L,Tr−1, the message will not be forwarded.

Algorithm 2 Calculation of Pi,d,L,Tr

1: Pi,d,L,Tr := 0
2: M ′

i,N := 1
3: for each (node j, j 6= i ∩ j 6= d) {
4: calculate P max

i,j using all Li and Lj

5: }
6: Q := a priority queue of j in decreasing order of P max

i,j

7: while (j :=dequeue(Q) and P max
i,j > Pi,d,L,Tr−1) {

8: Pi,d,L,Tr := Pi,d,L,Tr + M ′
i,N ×Mi,j × P max

i,j

9: M ′
i,N := M ′

i,N −M ′
i,N ×Mi,j

10: }
11: Pi,d,L,Tr := Pi,d,L,Tr + M ′

i,N × Pi,d,L,Tr−1

With this optimal forwarding rule, we apply backward
induction to calculate each Pi,d,L,Tr as listed in Algorithm 2.
The direct delivery probability Pi,d,0,Tr is identical to that
in the hop-count-limited scheme. The ticket-based optimal
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forwarding is expected to have a better routing performance
than the hop-count-limited counterpart since the later can
be regarded as a special case of the former. In this paper,
we did not implement this ticket-based OPF.

4.3 Broadcast forwarding
Before this point, we assumed uni-cast forwarding, in which

only one copy is created as a result of one forwarding. Now,
we consider a more general ticket-based scheme, broadcast
forwarding, in which a single forwarding can spawn copies in
multiple nodes and redistributes tickets among these copies.

Suppose that in time-slot Tr, node i has a copy with L
tickets and it meets several other nodes S = {j, k, . . .}. Node
i then finds the best combination of ticket redistribution, say
{Li, Lj > 0, Lk > 0, . . .}, which satisfies that Li +Lj +Lk +
. . . = L and that the maximum joint probability P max

i,S of
all copies is achieved when forwarded. In the event that
P max

i,S ≤ Pi,d,L,Tr−1, the message will not be forwarded.
We denote the ticket-based optimal delivery probability

for broadcast forwarding as P m
i,d,L,Tr

, and calculate it us-
ing backward induction as listed in Algorithm 3. In this
algorithm, we let P m

i,d,0,Tr
= Pi,d,0,Tr . For a combination

S = {j, k, . . .} of nodes, we use Mi,S := Mi,j ×Mi,k × . . . as
the probability that i meets all nodes in S simultaneously
(assuming that the meeting probability of i with the other
nodes are independent).

Algorithm 3 Calculation of P m
i,d,L,Tr

1: P m
i,d,L,Tr

:= 0
2: M ′

i,N := 1
3: for each (S = {j, k, . . .} ⊆ N − {i, d}) {
4: calculate P max

i,S using all combinations {Li, Lj , Lk, . . .}
5: }
6: Q := a priority queue of S in decreasing order of P max

i,S

7: while (S :=dequeue(Q) and P max
i,S > Pi,d,L,Tr−1) {

8: Mi,S := Mi,j ×Mi,k × . . .
9: P m

i,d,L,Tr
:= P m

i,d,L,Tr
+ M ′

i,N ×Mi,S × P max
i,S

10: M ′
i,N := M ′

i,N −M ′
i,N ×Mi,S

11: }
12: P m

i,d,L,Tr
:= P m

i,d,L,Tr
+ M ′

i,N × P m
i,d,L,Tr−1

4.4 Closed-form expression
We have solved the optimal forwarding problem assum-

ing that each node has the mean inter-meeting between all
pairs of nodes instead of assuming a stationary distribution
function of the inter-meeting times between the nodes. Our
delivery probability metric is a function of remaining hop-
count K (or tickets L) and the residual time-to-live Tr of
the message. In the future, we will continue our work from a
more theoretical aspect in which we will derive a closed-form
expression for delivery probability Pi,d,K,Tr as a function of
K (L) and Tr assuming a stationary distribution function
for the mean inter-meeting time is available.

4.5 Dynamic routing parameters
In our hop-count-limited or ticket-based forwarding algo-

rithms, we assume that the initial hop-count and the initial
number of tickets are constant parameters in the algorithm.
In the future, we can make them variable parameters in the
forwarding algorithm. For example, we can collect delivery
rate in the network and the ratio between busy time over

idle time in terms of communication during meetings be-
tween nodes, and derive utility functions regarding factors
such as idle time ratio, delivery rate, and initial hop-count.

5. RELATED WORKS
Delay Tolerant Network Research Group (DTNRG) [1]

has designed a complete architecture to support various pro-
tocols in DTNs. In [16], Jain, Fall, and Patra presented a
comprehensive investigation on the DTN routing problem
with different levels of prior knowledge about the network.
Specifically, Dijkstra’s algorithm (with future connectivity
information) or the linear programming approach (with in-
formation of future connectivity, traffic demands, etc.) is
used to obtain an optimal path between a source and a des-
tination. In [17], Merugu, Ammar, and Zegura proposed a
DTN routing algorithm that is similar in spirit to Dijkstra’s
algorithm in [16]. In [18], Liu and Wu propose hierarchical
routing in DTNs with deterministic repetitive mobility to
improve scalability.

Epidemic routing [2] is the first flooding-based routing
algorithm. Gossip [19] forwards with probability p. Proba-
bilistic routings, such as [7], forward based on some deliv-
ery probability metric. Different delivery probability met-
rics are proposed including encounter frequency [7], time
elapsed since last encounter [8, 9, 10, 11, 12], social similarity
[20, 21], location similarity [22], time-varying expected de-
lay [15], timely-contact probability [23], geometric distance
[24],etc.

Trace data available for the research community [25] in-
cludes the UMassDieselNet trace, the NUS student contact
trace. the Haggle project, and the MIT Reality Mining. [32].

6. SIMULATION
We evaluate our protocol, OPF, against other routing

algorithms using the NUS student contact trace and the
UMassDieselNet trace. The routing protocols implemented
to compare with OPF were listed in Section 2.3. All of the
protocols that we implement aim to compare different de-
livery probability metrics, and all other optimizations that
have orthogonal effects on the performance of the protocols
are not implemented. The orthogonality means that these
optimizations can be added to all of our implemented algo-
rithms and they are expected to provide an equal level of
improvement in their routing performance. Such optimiza-
tions may include buffer management [9], global estimation
of message delivery probability [10] and social centrality of
the nodes [20], and geometric information [24].

We do not assume any acknowledgment mechanism, and
therefore even though some copies of a message may have
been delivered, the other copies of the same message may
still be forwarded in the network.

6.1 Simulation methods and settings
NUS student contact trace. Accurate information of

human contact patterns are available in scenarios such as
university campuses. As shown by the National University
of Singapore (NUS) student contact trace model [3], when
the class schedules and student enrollment for each class
on a campus are known, accurate information about con-
tact patterns between students over large time scales can be
obtained without a long-term contact data collection. The
schedules of the 4,885 classes and enrollment of 22,341 stu-
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Table 2: Settings for NUS student trace.
parameter name default range

number of students 300 1∼500
attendance rate (Pattend) 0.8 0.1∼0.9

clustering factor (C) 0.4 0.1∼0.9
message time-to-live (Tr) 77 hours 11∼77 hours

tickets in spray-and-wait (L) 10
initial hop-count (K) 3

length of time-slot (U) 1 hour
simulation time 77 hours

dents for each of the classes for each week of 77 class hours
are publicly available on [25]. Their contact model is sim-
plified in several ways. (1) Two students are in contact with
each other only if they are in the same classroom at the same
time. (2) Sessions start on the hour and end on the hour,
which means that hour is the unit of time for the contact du-
ration. (3) Only the contacts that take place during the 11
class hours per day are used. Non-class hours are removed
to compress time. The trace synthesized in this model ex-
hibits the same set of characteristics to those observed in
the real world.

Similar to [15], we select a number of students N (100 ≤
N ≤ 500) in each experiment due to the memory con-
straint in the simulation environment. Contacts related to
the non-selected students are ignored. We generate non-
deterministic traces by taking absentees into consideration.
Each student attends a class with a attendance probabil-
ity Pattend. A clustering factor C is needed in the selection
of N students. That is because, if students are selected
randomly, the network becomes too sparse for messages to
be delivered. On the other hand, when students are se-
lected by maximizing their similarities (the number of com-
mon classes they are enrolled in), the network becomes al-
most fully connected. To prevent the above extremes and
maintain the small-world property in the size-reduced stu-
dent networks, we use the following process. We select the
first student randomly. To select the kth student, we di-
vide the k − 1th selected students into two groups S1 and
S2, and select the kth student s as the one with the high-
est score

∑
s1∈S1

sim(s, s1)−
∑

s2∈S2
sim(s, s1) among the

students that are not yet selected, where the similarity func-
tion sim is defined as the number of common class sessions
enrolled by two students. The clustering factor is defined
as C = |S1|/(|S1| + |S2|) which determines the degree of
connectivity in the network.

The default settings in our simulation, as shown in Ta-
ble 2, are Pattend = 0.8, C = 0.5, 300 students, 10 tickets
per message in spray-and-wait, and 3 initial hop-counts in
OPF. In different simulations, we vary one of the four vari-
able parameters as shown in the table. For each setting,
30 simulations are run. In the beginning of the simulation,
every node sends 20 messages to 20 randomly selected desti-
nation nodes. The total simulation time in each experiment
is one week, or 77 class hours. The initial time-to-live of all
messages is 77 hours. A message is considered to be unde-
livered if none of its copies are sent to its destination before
the end of the simulation. Since the uniform meeting inter-
val of the nodes is one hour, we can safely use an hour as the
time unit for the residual time-to-live Tr. The mean inter-
meeting time between any pair of students is calculated from

Table 3: Settings for UMassDieselNet trace.
parameter name default range

tickets in spray-and-wait (L) 10
initial hop-count (K) 1∼5

message time-to-live (Tr) 10 hours
length of time-slot (U) 1 minute

simulation time 1 day day 1∼55

the number of their common classes in each week and the
attendance rate.

UMassDieselNet trace. In the UMassDieselNet [4,
9] bus system consisting of 40 buses, the bus-to-bus con-
tacts (the durations of which are relatively short) are logged.
Our experiments are performed on traces collected over 55
days during the spring 2006 semester with weekends, spring
break, and holidays removed due to reduced schedules. The
bus system serves approximately ten routes. There are mul-
tiple shifts serving each of these routes. Shifts are further
divided into morning (AM), midday (MID), afternoon (PM),
and evening (EVE) sub-shifts. Drivers choose buses at ran-
dom to run the AM sub-shifts. At the end of the AM sub-
shift, the bus is often handed over to another driver to op-
erate the next sub-shift on the same route or on another
route. Unfortunately, the all-bus-pairs contacts provided
in the original traces show no discernible contact pattern
among the nodes. We performed the data process in [15]
to generate the contacts at a sub-shift level which exhibit
periodic behavior. This process translates 55 days of the
bus-to-bus contacts into contacts between sub-shifts.

The default settings of the UMassDieselNet trace simula-
tion are shown in Table 3. We use 10 tickets per message
in spray-and-wait and 1∼5 initial hop-counts in OPF. We
use the 55 days of traces to run respective simulations. In
each simulation, every node (sub-shift) sends a message for
a random destination node every five minutes. Since most
contacts in the UMassDieselNet trace are between hours 6
and 20, messages are sent only during hours 6 to 12 and
we set a uniform initial time-to-live of all messages which
is 10 hours. We use one minute as the time unit for resid-
ual time-to-live Tr. The mean inter-meeting time between
all pairs of shifts is generated from the 55 days of sub-shift
based contacts.

6.2 Results with full routing information
NUS student contact trace. The delivery rates of the

forwarding algorithms are compared in Figures 2(a), 2(d),
3(a), and 3(d) with different numbers of students, atten-
dance rate, message time-to-live, and clustering factor. The
results show that OPF delivers only about 5% fewer mes-
sages than epidemic and around 20% more than delegation
in our default settings. Compared with delegation, OPF
has a more steady performance in different network condi-
tions. For example, OPF delivers 50% more messages than
delegation when the clustering factor is 0.5.

The delays of the message delivered by all algorithms are
compared in Figures 2(b), 2(e), 3(b), and 3(e). On average,
OPF has a 5% additional delay than the other forwarding
algorithms. This amount of delay is the side-effect of a de-
liberate forwarding scheme which sends copies to the best
relay nodes instead of the earliest contacting nodes.

While OPF maintains high delivery rates, its also has the
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Figure 2: Delivery rate, delay, and cost verse number of students and attendance rate in NUS trace.

lowest possible cost in terms of number of forwardings, which
is shown in Figures 2(c), 2(f), 3(c), and 3(f). OPF has a
much lower cost than quality and spray-and-wait. Although
delegation has lower costs than OPF in some situations, its
corresponding delivery rates degrade much faster than OPF.

UMassDieselNet trace. The delivery rate, delay, and
cost of different routing algorithms are compared in Fig-
ures 5(a), 5(b), and 5(c) respectively. All probabilistic for-
warding algorithms have lower delivery rates compared with
epidemic. Compared with spray-and-wait, OPF, initialized
with two remaining hop-count (H = 2), has a higher de-
livery rates and a lower cost. In terms of all metrics, OPF
(H = 2) is similar to quality and delegation in this trace.

The performances of OPF with initial hop-counts H rang-
ing from 1 to 5 are compared in Figures 5(d), 5(e), and 5(f).
The delivery rate of OPF has an almost constant increase
at each increment of H. On the other hand, the cost in-
creases much faster and is within the corresponding bounds
of 2H . Note that when H = 5, the delivery rate of OPF is
very close to epidemic with less than a half of its cost; when
H = 4, the delivery rate of OPF is 90% of that of epidemic
with 30% of its cost.

6.3 Results with partial routing information
In this subsection, we will evaluate the routing perfor-

mance of OPF with incomplete routing information by com-
paring it to the routing performance of OPF with full routing
information in the NUS student contact trace using its de-
fault settings. The routing information used by OPF is the
inter-meeting times between the nodes. With full informa-
tion, the mean inter-meeting times between all pairs of nodes
are known to every node in the network. We simulate par-
tial routing information by setting the mean inter-meeting
times between a certain percentage of nodes as unknown. As
presented in Section 4.1, when the mean inter-meeting times
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Figure 4: Performance ratio of OPF with incomplete
routing information.

between a pair of nodes i and d is unknown, their meeting
probability Mi,d = 0 in any time-slot U , and their direct
(1-hop) meeting probability Pi,d,0,Tr = 0 for any Tr.

In our simulation, we perform different sets of simulations
with different percentages of available routing information
ranging from 10% to 90%, in increments of 10%. For ex-
ample, when the available routing information is 10%, we
remove 90% of the mean inter-meeting times from the nodes.

As shown in Figure 4, as the percentage of routing infor-
mation decreases, the delivery ratio of OPF degrades very
slowly and the cost increases moderately. This is because the
delivery probabilities Pi,d,K,Tr will be under-estimated as a
result of the decreasing of (1) the meeting probabilities Mi,j

of node i with other forwarders j and (2) the 1-hop deliv-
ery probabilities of all other nodes Pj,d,0,Tr . With Pi,d,K,Tr

being under-estimated, the forwarding threshold is lowered.
This could explain why the cost (number of forwardings) in-
creases and the delivery rate decreases. The delay increases
as a result of the increase in forwardings.
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Figure 3: Delivery rate, delay, and cost verse number of time-to-live and clustering factor in NUS trace.

However, even though OPF is proposed under a full rout-
ing information assumption, the simulation results show that
OPF maintains a good performance with only a small por-
tion of routing information. As shown in Figure 4, with only
10% of routing information, OPF still delivers 90% of the
message that was delivered with full routing information.
The possible reason for the slow performance degradation
is that the delivery probabilities are under-estimated as a
whole but the ratios between the delivery probabilities are
basically preserved. The fact that OPF performs well with
partial routing information increases its practical value, as
it does not require global information and therefore is appli-
cable to networks with more irregular factors.

We also perform a simulation using the NUS trace where
the partial routing information is simulated by restricting
each node to using the mean inter-meeting times of its k-
hop (1 ≤ k ≤ 3) contacting nodes. The results shown that,
in our network with an average diameter of 4 hops, with 1-
hop information, the delivery ratio is 93% and the cost ratio
is 102%; with 2-hop information the delivery ratio is 98%
and the cost ratio is 101%.

6.4 Summary of simulation
Simulation results confirmed that, compared with other

algorithms, OPF has a high delivery rate and a low cost.
The results under the default setting for the NUS student
trace show that the delivery rate of OPF is only 5% lower
than epidemic, and 20% greater than delegation forward-
ing while having only 5% more copies and 5% longer delay.
Simulation results using partial routing information show
that the routing performance of OPF degrades very slowly
as routing information decreases. With only 10% of routing
information, OPF delivers only 10% fewer messages and has
a 10% increase in cost.

7. CONCLUSION
In this paper, we provided an optimal forwarding protocol

which maximizes the expected delivery rate while satisfying
the constant on the number of forwardings per message. We
proposed the optimal probabilistic forwarding (OPF) proto-
col which makes optimal forwarding decisions by modeling
forwarding as an optimal stopping rule problem. Specifi-
cally, OPF uses forwarding thresholds as functions of re-
maining hop-count and residual time-to-live. We also pre-
sented several useful extensions to allow OPF to run with
partial routing information and work with other probabilis-
tic forwarding schemes. We implemented OPF as well as
several other protocols and performed trace-driven simula-
tions. Simulation results verified the efficiency of OPF.

In the future, we will perform simulations on the extended
version of OPF, i.e., ticket-based forwarding and broadcast
forwarding. We will also do research on existing mobility
models and find a closed-form expression for more accurate
delivery probability metrics using the backward induction
method used in this paper. Also, our algorithm can be more
adaptive by using an adjustable initial hop-count.
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