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Abstract 

Davis, R. and A. Prieditis, The expected length of a shortest path, Information Processing Letters 46 (1993) 135-141. 

We derive an exact summation formula and a closed-form approximation for the expected length of a shortest path for a 
complete graph where the arc lengths are independent and exponentially distributed random variables. Experimental data 

validates both results. The property of completeness allows us to exploit certain symmetries to derive these results, which 

would otherwise require computing an exponential number of recursive equations. We have also found that this formula is a 
close approximation for the expected length of a shortest path in complete graphs with uniformly distributed arc lengths. 
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1. Introduction and motivation 

A shortest path problem involves finding a 
path of shortest length between two nodes in a 
graph. Such problems are perhaps the most com- 
mon and fundamental of all transportation and 
communication network problems. Although most 
shortest path problems involve arc lengths with 
fixed values, many practical situations dictate arc 
lengths that are random variables with certain 
probability distributions. For example the driving 
time from one location to another is typically not 
fixed, but follows some probability distribution. 
Kulkami [4] has developed an analytical method 
for the computation of the expected length of a 
shortest path for networks with independent and 
exponentially distributed arc lengths - such 
graphs are important in communication and 
queuing problems. The analytic method can then 
be used to compute the probability that a given 

Correspondence to: A. Prieditis, Department of Computer 

Science, University of California, Davis, CA 95616-8562, USA. 

path is the shortest path and the conditional 
distribution of the length of a path given that it is 
the shortest path. Unfortunately, Kulkarni’s 
method involves computing a recursive function 
that requires solving an exponential number (of 
the graph size) of recursive equations. We derive 
an easily-computable summation formula and a 
closed-form approximation for the expected 
length of a shortest path by additionally assuming 
that the graphs are complete. 

Other approaches to computing the expected 
length of a shortest path have included numerical 
evaluation of multiple integrals that represent the 
probability distribution [2,5,7,8]. However, such 
numerical evaluation is feasible only for small 
networks. Consequently, several Monte Carlo 
simulation techniques have been developed to 
estimate the probability distributions from the 
integrals [1,91. In contrast, Mirchandiani derives a 
bound on the expected length of a shortest path 
and avoids numerical evaluation of the multiple 
integrals by assuming that the arc lengths are 
discrete random variables 161. Zemel and Hassin 
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derive a bound for the expected length of a 
shortest path for uniform distributions with a 
fixed mean [3]. 

The rest of this paper is organized as follows. 
Section 2 briefly presents Kulkarni’s framework, 
which we will use throughout the paper. For 
brevity, Kulkarni’s theorems are stated without 
proof - these proofs can be found in his paper. 
Next, Section 3 derives the expected length of a 
shortest path for complete graphs. Section 4 then 
experimentally validates this result. Also pre- 
sented in this section are some preliminary exper- 
imental results for uniform distributions. Finally, 
Section 5 summarizes our results and discusses 
several promising directions for future research. 

2. Kulkarni’s analytical framework 

Kulkarni’s key idea is to treat the graph of 
nodes as a communication network where the 
time taken for a message to travel from one node 
to another is the arc length between the two 
nodes. The process starts when the source node 
receives the message and ends when the sink 
node receives the message. As soon as a node 
receives an incoming message, it transmits along 
all its outgoing arcs and then disables itself and 
all nodes without a path to the sink node contain- 
ing only active nodes from receiving or transmit- 
ting any future messages. The time taken for the 
message to travel from the source node to the 
sink node is the length of the shortest path. Using 
this idea, Kulkarni constructs a recursive formula 
that yields the various moments of the shortest 
path. 

More formally, let G = (I’, A) be a directed 
network, where V is the set of nodes and A is 
the set of arcs. Let L(u, u) be the length of arc 
(u, v) EA. The objective is to find the expected 
shortest path length between any two different 
nodes. The source node will be denoted by s; the 
sink node, by t. Each node sends and receives 
messages travelling at unit speed: the time for a 
message to travel between nodes u and u is 

L(u, v). 
To formalize the message transmission pro- 

cess. Kulkarni defines the following functions: 
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X(t) = the set of all disabled nodes at time t 
(i.e. the state of the system), 

X(t - I= the state of the system immediately 
before time t, 

R(X) = (U E VI 3 path from u to t with nodes 
not in X}, for any Xc V such that s E X and 
tEV-x, 

S(X) = V-R(X), 
L?=(XcV: SEX, tS, X=$X)}, 
a* = n u (V}, 
C(X, XI = {(u, U) EA: u EX, u EX), for all 

xc v, 
Y(t) = {(u, u) EA: the arc (u, u> is carrying the 

message at time t). 
At time 0, the source node receives the mes- 

sage and X(0 - ) = @. When any node u E V re- 
ceives a message at time t: 

1. The message is transmitted from u to all u E V 
such that (u, u) EA. 

2. All nodes in S(X(t - 1 u (~1) are disabled. 
3. All messages heading for nodes in S(X(t - ) 

u (u}) are aborted. 

The process terminates when the sink node 
receives the message and all the nodes are dis- 
abled. 

Using these definitions, Kulkarni proves that: 

1. X(t)EL?* for all t>O. 
2. There is a unique minimal cut, C(X), con- 

tained in C(X, x1 if X E 0. 
3. If X(t) # V, then Y(t) = C(X(t)). 

Now we come to Kulkarni’s central theorem: 

Theorem 1. Zf for all (u, u) EA L(u, U) are inde- 
pendent random variables exponentially distributed 
with mean l/p(u, u), then {X(t): t 2 O} is a Con- 
tinuous Time Markov Chain (CTMC) with state 
space 0* and infinitesimal generator matrix Q = 
[q(D, B)] (D,B EL?*) given by 

40, B) I if(3UED) B=S(DU{u}), 

- c p(u, u) ifB=D, 

I (U,U)EC<.(D) 

0 otherwise, 

(1) 

where C,(D) = ((u, u) E C(D)) and C(V) = @. 
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To simplify notation, let N = In* I, and let the 
states in 0* be labeled from 1 to N. Whenever 
X(t) changes to another state, the number of 
nodes in X(t) is increased by at least one. There- 
fore, if the elements in 0* are ordered by non- 
decreasing cardinality, then the generator matrix 
Q will be upper triangular. Since q(D, D) # 0 for 
D E 0, all states in 0 are transient. The state I/, 
however, is absorbing, since q(V, V) = 0. Using 
these facts, Kulkarni derives a set of differential 
equations describing the distribution of the length 
of the shortest path and a recursive formula for 
finding the moments of the shortest path. 

In order to compute the moments of the short- 
est path, he defines 

T=min{t>O: X(t) =NIX(O) =i}, l<igN, 

r,(k) =E(Ti”), k>O, (2) 

where ~~(0) = 1 for all 1 < i Q N and for k z 1, 
TN(k) = 0, where N is the number of states in the 
CTMC. Kulkarni proves (by induction) that: 

kri( k - 1) + C qijr,( k) 

Ti( k) = 
j>i 

-4ii 
(3) 

Thus, to compute E(T:), one needs to com- 
pute TV for r = 1, 2,. . . , k, i = N, N - 1,. . . , 1 
in that order. Hence, to compute the expected 
value of the shortest path, E(T,) = ~~(11, one 
needs to compute ~~(1) for i = N, N - 1,. . . , 1. 

3. The expected length of a shortest path 

For a complete graph, the number of states in 
the continuous time Markov chain is 2”-* + 1. 
Therefore to determine the expected length of a 
shortest path would require solving 2”-* + 1 
equations - roughly one equation per possible 
system state. Clearly this is not feasible for large 
n and is more computationally expensive than 
experimentally computing the expected length of 
a shortest path. However, if we restrict our con- 
sideration to the case when all the arc lengths are 
exponentially distributed with parameter j_~, sym- 
metries in the graph allow these equations to be 
reduced to a simple closed-form formula. This 
section derives that formula. For the remainder 

of the paper, we will assume that the graph is 
complete and that edge weights are independent 
and exponentially distributed with parameter I_L. 
First we must determine the values of the entries 
in the infinitesimal generator matrix Q of the 
CTMC. 

Lemma 2. qij > 0 if and only if either state j = N 
or state j contains one more node than state i. 

Proof. qij is positive if and only if there is a path 
in the network from state i to state j. Since every 
node in G has an edge to the sink node, every 
state will have a path to state N and qiN has a 
positive value for all i. Now, consider the case 
when j <N. State changes occur when a message 
reaches a new node and it is disabled. For a 
complete graph, all nodes have a direct path to 
the sink node so only the node which received the 
message is disabled. Therefore, state changes oc- 
cur only by moving to states with one more node 
if j<N. 0 

Theorem 3. If q,j > 0 and state i contains 1 nodes, 
then qi, = Ip. 

Proof. From Lemma 2, qi, > 0 only if state j 
contains one more node than state i or j = N. If 
j <N call the new node u, else let u = t. qij is 
equal to the rate at which messages travel from 
the nodes in state i to the node u. For each path 
from a node in i to u, the rate is 1/(1/p) =j_~, 
because each edge is exponentially distributed 
with mean l/p. Since the graph is fully con- 
nected, each of the I nodes in i have a path to u. 
Therefore, the rate at which the messages travel 
from nodes in i to the node v is the sum of the 
rates along all these paths, lt.~. q 

Theorem 4. Let 1 be the number of nodes in state i. 
Then the value of qli is given by - (n - 1)lp. 

Proof. From Lemma 2, the only positive values in 
Q are those qij such that state j has one more 
node than state i and qiN for i <N. The number 
of states containing one more node than state i is 
n - 1 - 1. This follows because a state containing 
one more node is formed by adding any node not 
in state i except the sink node to the nodes 
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already in i. Therefore, row i of Q contains n - 1 
positive values. Since the sum of each row of Q 
must be 0 and the diagonal element is the only 
negative element, qii must have a negative value 
to offset the n - I positive values. From Theorem 
3, each of the positive elements in a row has 
value fp. Hence, the value of qii = -(n - 111~. 

0 

The following theorem relates the value of 
ri(k) for different states containing the same 
number of nodes. 

Theorem 5. For any states i and j, such that the 
number of nodes in state i equals the number of 
nodes in state j, TV = TV. 

Proof. am is the expected value of the shortest 
distance from any of the nodes in state I to the 
sink node t. Since the network is complete and 
all arc lengths have the same distribution, the 
expected value of the distance from any node to t 
is the same. Therefore, the expected value of the 
distance from any two sets of nodes containing 
the same number of elements is the same. 0 

We can now simplify the formula for the ex- 
pected length of the shortest path by defining 
li = ~~(11, where i = 1, 2,. . . , n, and j is a state 
containing i nodes. Note that by Theorem 5 all 
states containing the same number of nodes have 
the same value, so this definition assigns only one 
value to each Ji even though one can use any 
state with i nodes to determine this value. ~~(1) 
= 5, is the expected length of the shortest path. 

Theorem 6. 

Lo ifi=n, 

&= l+i(n-i-l)pli+, 

i 
otherwise. (4) 

(n -i)ip 

Proof. Since state N contains n nodes, l,, = r,,,(l) 
= 0. When i < n we have from equation (3): 

rm(l) = r,(O) + C 4mjrj(‘) /-qmrn* 
[ j>m 1 

From Theorem 4, q,, = -(n - i)ip where i is 
the number of nodes in state m. From the defini- 

tion of T,, T,(o) = 1. ASO, from hXIUIKi 2, qmj iS 

nonzero only if state j contains one more node 
than state m or is the final state, so the sum can 
simply be over those nodes j containing one more 
node than state m and state N. However, ~~(1) 
= 0. From Theorem 3, qmj = ip for the remain- 
ing states. From the proof of Theorem 4, we 
showed that the number of states containing one 
more node than state m is n - 1 - i. Therefore, 
we have 

5i=[1+i(n-i-1)p.5i+I]/(n-i)ip. •! 

As before this formula is recursive, requiring 
one to compute &,, l,- r, . . . ,5, to compute the 
expected length of a shortest path, but now only 
n steps will be taken instead of the original 2”-2 
+ 1 steps. We will now reduce the formula for 5, 
to a summation from which we can derive a 
closed form approximation. 

Theorem 7. For i > 0, 

l;,/& ncl ;. 
‘P k=n-i 

Proof. (By induction on i) For the base case i = 1 
and equation (4) gives us 

l + (II - l)OPli+r 1 

lflP1= (l)(n-1)~ = (n-1)j.b’ 

which agrees with Theorem 7. For the induction 
step, we will assume Theorem 7 holds for i and 
show this implies that it holds for i + 1. From 
equation (4): 

&+I) 
1 + (n -i - l)i&n_i 

=‘~-‘-‘= (i+l)(n-i-l)p 

l+(n-i-l)ip 
= 

(i+l)(n-i-1)p 

(i + 1)~ 

(5) 

Therefore by induction, Theorem 7 is true. 0 
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Using Theorem 7, the expected value of the 
shortest path is (l/(n - l)p)CE::l/k. 

Theorem 8. The closed-form function 

In( n - 1) 

(n - 1)~ 

approximates (l/(n - l)p)Ci3:l/k within l/(n 

- 1)/J. 

Proof. 

Theorem 8 implies several interesting facts as 
graph size increases while mean arc length re- 
mains fixed. First, the difference between the 
approximate and the theoretical length of the 
shortest path shrinks to 0. Second, the expected 
length of a shortest path also shrinks to 0. For 
small graphs, the expected length of the shortest 
path can be better approximated by adding in 
polynomial error terms to the closed-form for- 
mula. The theorem also implies that the expected 
length of a shortest path is a linear function of 
the mean arc length for fixed graph sizes. 

4. Experimental results 

To validate our analytical results we ran three 
sets of experiments. The first set was on small 
graphs (from 2-20 nodes in increments of l), the 
second on mid-size (from 30-100 in increments 
of lo), and the last on large graphs (from 200- 
1000 in increments of 100). For smaller graph 
sizes we were able to run many more experi- 
ments. The distribution of arc lengths is exponen- 

tial with a mean arc length of 10. For each 
experiment we computed the theoretical and ap- 
proximate shortest path length and compared it 
to the experimental (actual) one. Figure 1 sum- 
marizes the results for small graphs. As the figure 
shows, the difference between the predicted (the- 
oretical) and actual (experimental) is negligible. 
Moreover, as graph size grows, the approximate 
shortest path length gets closer to the theoretical 
and experimental. For the mid-size to large 
graphs, the difference between the theoretical, 
approximate, and experimental shortest path 
lengths shrinks to zero. (These results are not 
shown because the curves are essentially the 
same.) These results validate Theorem 7. 

Our experimental results also validate Theo- 
rem 8. For the smallest graph size (2), the abso- 
lute error between the approximate and theoreti- 
cal expected shortest path length is at its maxi- 
mum, which is the mean arc length (in our case 
10). This error quickly begins to shrink and even 
for graphs of size 20, the error is only 0.33. The 
error continues shrinking for mid-size and large 
graphs until it shrinks to zero for large graphs. 
These results show that using the closed-form 
approximation for the expected length of a short- 
est path is appropriate in mid-size to large graphs. 
To get less error for small graphs would require 
the addition of error terms to the closed form. 
Although the error terms are easy to compute, 
their addition makes the form of the approxima- 
tion function appear more cumbersome and 
therefore less easily remembered. 

Figure 2 shows that the expected length of a 
shortest path is a linear function of the mean for 
fixed graph sizes. This result also validates Theo- 
rem 8. 

Does Theorem 8 hold for graphs with non-ex- 
ponentially distributed arc lengths? To test the 
hypothesis that the theorem does indeed hold, we 
ran the same set of experiments except with uni- 
formly distributed arc lengths. The uniform distri- 
bution that we used starts at 0 and is positive up 
to the mean of the exponentially distributed arcs. 
For small graphs, the results were nearly identi- 
cal; for large graphs, the difference shrank to 
zero. Although we have not theoretically verified 
this result, it is consistent with the upper bound 
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Fig. 1. Graph size versus shortest path length for small graphs (averaged over 2000 trials). 
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Fig. 2. Mean arc length versus average shortest path length for a 1000 node graph (averaged over 80 trials). 
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obtained by Hassin and Zemel [31 for such uni- 
formly distributed arcs lengths. 

5. Conclusions and future work 

Using analytical methods developed by Kul- 
karni [4], this paper derived a closed-form for- 
mula for the expected length of a shortest path in 
complete graphs where the arc lengths are inde- 
pendent and exponentially distributed random 
variables. The property of completeness allows us 
to exploit certain symmetries to derive this 
closed-form, which would otherwise require nu- 
merically solving an exponential number of recur- 
sive equations. We are currently extending our 
results to other probability distributions and 
graphs of a given sparsity, and deriving a closed- 
form approximation for the probability distribu- 
tion function for shortest path lengths. This prob- 
ability distribution function will be useful in pre- 
dicting which nodes are most likely to be on a 
shortest path from one node to another. 
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