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INTERMEDIATE RANGE MIGRATION IN THE

TWO-DIMENSIONAL STEPPING STONE MODEL

By J. Theodore Cox1

Syracuse University

We consider the stepping stone model on the torus of side L in
Z

2 in the limit L→∞, and study the time it takes two lineages trac-
ing backward in time to coalesce. Our work fills a gap between the
finite range migration case of [Ann. Appl. Probab. 15 (2005) 671–699]
and the long range case of [Genetics 172 (2006) 701–708], where the
migration range is a positive fraction of L. We obtain limit theorems
for the intermediate case, and verify a conjecture in [Probability Mod-
els for DNA Sequence Evolution (2008) Springer] that the model is
homogeneously mixing if and only if the migration range is of larger
order than (logL)1/2.

1. Introduction. The subject of this paper is the stepping stone model
of population genetics, and in particular the contrast between recent results
of [14] and [18] in the two-dimensional setting. There is a vast literature on
the many variants of the stepping stone model dating back to the seminal
work of Malècot [13] and Kimura [11]. (A few sources for background and
references are [5, 8, 15] and [16].) We will begin by describing the version of
the model we consider here, generally following the setup in [18].

Let Z2 be the two-dimensional integer lattice, and fix ν > 0 and q :Z2 →
[0,1] with q(0) = 0 and

∑

x q(x) = 1. We suppose that at each site x in

TL = (−L/2,L/2]2 ∩Z
2

there is a colony of 2N haploid individuals. We think of TL as a torus,
and assume a continuous-time Moran model of reproduction. In this model,
a given individual in colony x dies at rate one, independently of all other
individuals, and is replaced by a copy of an individual chosen at random
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2 J. T. COX

from the same colony with probability 1− ν or colony y with probability
νq(y − x) computed modulo L. In this way, we treat TL as a torus. The
genealogical structure of a sample of n individuals is determined by tracing
their lineages backward in time.

We will focus on the case of n= 2 lineages, where one is interested in T0,
the time it takes the lineages to enter the same colony, and t0, the time to
coalescence of the lineages. There are many limit theorems for T0 and t0
in the literature. (A small sampling can be found [2, 3, 10, 14, 16, 17] and
[18].) One may allow N →∞, ν→ 0 and q to vary as L→∞. To understand
the asymptotic behavior of t0, one must first understand the behavior of T0
so we will concentrate on the latter. Furthermore, the question we want
to consider is already of interest in the simplest case of one individual per
colony, so we will assume from now on that ν = 2N = 1, but allow q to vary.

The meanfield or homogeneous mixing case is obtained by taking q to be
uniform over TL\{0}. Suppose the two lineages start at 0, x ∈ TL, x 6= 0. The
law of T0 is exponential with mean (L2−1)/2 and is independent of x, and so
T0/L

2 converges in law, uniformly in x 6= 0, to the exponential distribution
with mean 1/2. Matsen and Wakeley show in [14] that the same limiting
behavior of T0/L

2 holds uniformly in x 6= 0 assuming that q is uniform on
only a positive fraction of the torus. By contrast, if q is kept fixed as L→∞,
then the right normalization for T0 is L2 logL, and the limiting law depends
on the starting positions 0, x. (See [2, 3] and [18] for results of this type.)
The purpose of this paper is to fill the gap between these two situations.

Following two lineages backward in time amounts to following two random
walks until they meet. The difference between the lineage locations is also a
random walk, and T0 is just the time it takes this difference walk to hit 0.
On account of this, we will now focus on the following random walk setting.
For k > 0, let

Λk = [−k/2, k/2]2 ∩Z
2

and for any A⊂R
2 let

A′ =A \ {0}.

For r > 0, let B(r) = {x ∈ R
2 :‖x‖∞ ≤ r}. Let M1,M2, . . . be a sequence of

positive integers and assume that qML
:Z2 → [0,1] satisfies

(P0)

qML
(x) = 0 for x /∈ Λ′

ML
,

∑

x

qML
(x) = 1, qML

is symmetric and

σ2ML
≡

∑

x

x21qML
(x) =

∑

x

x22qML
(x)> 0.
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The uniform distributions uML
(x) = 1Λ′

ML
(x)/|Λ′

ML
| clearly satisfy (P0).

Let Y L
t be a rate one random walk on Z

2 with jump distribution qML
,

and let XL
t be the corresponding walk on TL viewed as a torus. Given Y L

t

we construct XL
t by setting XL

t = YtmodL. Let HL be the hitting time for
XL

t of the origin,

HL = inf{t≥ 0 :XL
t = 0}.

Then HL has the same law as 2T0, so we will study HL. Let Px and Ex

denote probability law and expectation for the walk starting at x.
With the above notation, the Matsen and Wakely result is as follows. Fix

0< c < 1 and let ML = cL and qML
= uML

. Then as L→∞,

HL/L
2 ⇒E(1) uniformly in XL

0 ∈ T
′
L,(1.1)

where ⇒ indicates the law of the left-hand side converges weakly to the
distribution on right-hand side, and E(β) is the exponential distribution
with mean β. On the other hand, if ML ≡M is fixed, so there is a single
jump distribution qM , then by Theorem 1 of [18], if 0< α< 1 and |XL

0 | ≈ Lα

as L→∞, then

HL

L2 logL
⇒ (1− α)δ0 + αE(1/πσ2M ).(1.2)

Here, xL ≈ Lα means xL ∈ TLα logL \TLα/ logL.
It seems clear that the homogeneous mixing behavior of (1.1) should hold

if ML →∞ at a sufficiently fast rate, and it is natural to ask what this rate
might be. Durrett (see Section 5.6 and Theorem 5.18 of [8]) conjectured
that it should be quite slow, only of greater order than

√
logL as L→∞,

meaning that (1.1) should hold exactly when ML/
√
logL→∞. We verify

this conjecture for a large class of jump distributions in Theorems 1.2 and 1.3
below, and obtain a slightly improved version of (1.2) whenML =O(

√
logL).

The proof of (1.1) in [14] makes use of Markov chain techniques from [1] and
[6]. The proof of (1.2) relies heavily on local central limit theorem estimates
for P0(Y

L
t = 0) to then estimate P0(X

L
t = x) [for use in (2.2) below]. Here,

we will use a more direct Fourier-type approach that seems simpler, and
works for both (1.1) and (1.2) as well.

For a jump distribution qM , define the characteristic function

φM (θ) =
∑

x∈ΛM

eiθxqM (x), θ ∈R
2,

where θx = θ · x. We will assume that the jump distributions qML
have

characteristic functions φML
which satisfy the conditions (P1)–(P3) listed

below. These conditions are satisfied for the uniform distributions uML
(see

the Appendix of [4], where M2 in (P2) there should be M ). Proposition



4 J. T. COX

1.1 below shows that they are satisfied in some generality. Note that the
symmetry condition in (P0) implies each φM is real-valued. The conditions
we need are the following.

(P1) There is a σ2 > 0 such that for all ε > 0 there exists δ > 0 such that
for all large L,

1− φML
(θ)

σ2M2
L|θ|2/2

∈ (1− ε,1 + ε) for all θ ∈B′(δ/ML).

(P2) For all δ > 0, there exists δ′ > 0 and ζ > 0 such that for all large L,

1− φML
(θ)> ζ for all θ ∈B(δ′) \B(δ/ML).

(P3) For all ε > 0 and a > 0,

|φML
(θ)|< ε for all θ ∈B(π) \B(a) and all large L.

Proposition 1.1. Let f be a positive, continuous function on B(1/2)
such that f(x1, x2) = f(x2, x1) = f(−x1, x2). Define cM > 0 and qM (x) =
cMf(x/M)uM (x) so that

∑

x qM(x) = 1. Then for any ML →∞ as L→∞,

the corresponding sequence of characteristic functions φML
satisfies proper-

ties (P1)–(P3).

In addition to (P1)–(P3), we impose the mild regularity condition

(P4) lim
L→∞

M2
L

logL
= ρ ∈ [0,∞].

Our first result shows that homogeneous mixing occurs ifM2
L/ logL→∞.

Theorem 1.2. Assume conditions (P0)–(P4) hold with ρ = ∞. Then

for all λ > 0,

lim
L→∞

sup
x∈T′

L

|Ex(e
−λHL/L

2
)− (1 + λ)−1|= 0(1.3)

and

lim
L→∞

sup
x∈T′

L

|Ex(HL/L
2)− 1|= 0.(1.4)

Our next result shows that homogeneous mixing does not occur if ρ <∞,
and that HL can grow at any rate between L2 and L2 logL. We will use the
following notation. For v > 0, define

AL(α,v) =







T
′
v, if α= 0,

TLαv \TLα/v, if 0<α< 1,
TL \TL/v, if α= 1,
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and let

tL =
logL

M2
L

and β = ρ+
1

πσ2
.(1.5)

Theorem 1.3. Assume ML → ∞ and the conditions (P0)–(P4) hold

with ρ <∞. Fix 0 ≤ α ≤ 1 and k > 0, and put vL = (logL)k. Then for all

λ > 0,

lim
L→∞

sup
x∈AL(α,vL)

|Ex(e
−λHL/L

2tL)− [(1−α′) +α′(1 + βλ)−1]|= 0(1.6)

where α′ = (α+ ρπσ2)/(1 + ρπσ2). Furthermore,

lim
L→∞

sup
x∈AL(α,vL)

|Ex(HL/L
2tL)− α′β|= 0.(1.7)

Remark 1.4. If we set ρ= 0 in (1.6), then we recover the form (1.2).
The proof of (1.6) is easily adapted to handle the case of a fixed qM satisfying
(P0), providing a slight strengthening of (1.2). One can also see that (1.6) is
consistent with (1.3) by setting tL ≡ 1, rephrasing (1.6) appropriately, and
then setting ρ=∞.

A one-dimensional stepping stone model was considered in [9], where ex-
ponential limit laws for HL were obtained under rather general assumptions
on the jump distributions. We will not state their results, but note that in
analogy with Theorem 3 there, one might hope in our two-dimensional set-
ting that with M2

L = logL some version of (1.2) would hold with (P1)–(P3)
replaced by the simpler conditions

(i) lim
L→∞

σ2ML
/M2

L = σ2 and

(1.8)
(ii) for some c > 0, qML

≥ cuML
.

More precisely, the desired result would be that (1.8) impliesHL/L
2 ⇒E(β0)

for XL
0 large, where the limiting mean β0 depends only on σ2 and c. This is

not the case, as the following example shows.

Example 1.5. Fix 0< c< 1 and q0 :Z
2 → [0,1] satisfying (P0) for some

fixedM0, and let q̂0(θ) =
∑

x q0(x)e
iθx. Put qML

(x) = cuML
(x)+(1−c)q0(x),

assume that limL→∞M2
L/ logL= 1, and define

β0 =
12

cπ
+

1

(2π)2

∫

B(π)

dθ

1− (1− c)q̂0(θ)
.(1.9)
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Then qML
satisfies (1.8) with σ2 = c/12. If L/ logL < ℓL < L, then for all

λ > 0,

sup
x∈TL\TℓL

|Ex(e
−λHL/L

2
)− (1 + β0λ)

−1| → 0 as L→∞.(1.10)

Remark 1.6. The influence of the short range jumps is reflected in the
dependence of β0 on q̂0. Other mixtures of jump distributions could also
be considered, e.g.,

∑

i ciuM i
L
where M1

L,M
2
L, . . . tend to infinity at different

rates.

The proofs in [2, 3] and [18] for the fixed jump distribution case use the
fact that XL

t becomes uniformly distributed over the torus by times of larger
order than L2. The analogous fact in our setting is given below, it will be
used in the proof of (1.7).

Theorem 1.7. Assume (P1)–(P4) hold. If sL/[(L
2/M2

L) ∨ logL]→∞
as L→∞, then

lim
L→∞

sup
t≥sL

sup
x∈TL

L2|P0(X
L
t = x)−L−2|= 0.(1.11)

Returning to the stepping stone model, we could now consider the ge-
nealogy of a sample of n > 2 individuals. Let ζLt be a system of rate one
coalescing random walks on TL with jump distribution qML

. If we consider
lineages starting at xi ∈ TL,1≤ i≤ n, and put ζL0 = {x1, . . . , xn}, then |ζLt |
is the number of distinct lineages left at time t. Under the assumptions
of Theorem 1.3, and assuming |xi − xj | ≥ L/ logL for i 6= j, the analog of
Theorem 2 of [18] would be

lim
L→∞

P (|ζLsL2tL
|= k) = P (Dπσ2s = k), k = 1, . . . , n,(1.12)

where Dt is the pure death process on the positive integers which makes
transition k→ k−1 at rate

(

k
2

)

. In fact, the genealogy of the lineages (on this
time scale) converges to the genealogy described by Kingman’s coalescent
(see [12]). We will not pursue these matters here, since with the results
developed the methods of [2, 3] and [18] could be adapted to prove such
limit laws.

The outline of the rest of the paper is as follows. In Section 2, we develop
some simple Fourier analytic tools. Proposition 1.1 is proved in Section 3,
Theorem 1.7 is proved in Section 4, Theorem 1.2 is proved in Section 5, and
Theorem 1.3 is proved in Section 6. Finally, we verify the claims for Example
1.5 in Section 7. For simplicity, we will assume throughout the rest of the
paper that L,M,ML, . . . are positive even integers.
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2. Preliminaries. For a jump distribution qM satisfying (P0) with char-
acteristic function φM , define the transforms

φtM (θ) =E0(e
iθY L

t ) = exp(−t(1− φM (θ))),

FL(x,λ) =Ex(e
−λHL) and(2.1)

GL(x,λ) =

∫ ∞

0
e−λsPx(X

L
s = 0)ds,

where θ ∈R
2, t≥ 0, x ∈ TL and λ≥ 0. The reason for our interest in GL(x,λ)

is the formula

FL(x,λ) =
GL(x,λ)

GL(0, λ)
,(2.2)

a simple consequence of the strong Markov property. We will also make use
of the well-known Fourier inversion formula

P0(X
L
t = x) =

1

L2

∑

y∈TL

φtM (2πy/L)e2πixy/L, x ∈ TL,(2.3)

from which it is easy to derive

GL(x,λ) =
1

L2

∑

y∈TL

e2πixy/L

1 + λ− φM (2πiy/L)
.(2.4)

In order to obtain useful bounds on the above, we will need to estimate
sums of complex exponentials over various regions, including

Dk = {x ∈ Z
2 : |x| ≤ k/2},

where |x|= ‖x‖2.

Lemma 2.1. (a) For K ≥ 1 and θ ∈B(π),
∣

∣

∣

∣

∑

x∈TK

eiθx
∣

∣

∣

∣

≤ 4(K +1)(1 + ‖θ‖−1
∞ ) and

(2.5)
∣

∣

∣

∣

∑

x∈DK

eiθx
∣

∣

∣

∣

≤ 4(K +1)‖θ‖−1
∞ .

(b) There is a constant C0 such that for all J ≥ 1 and θ ∈B′(π),

sup
K>J

∣

∣

∣

∣

∑

y∈DK\DJ

eiθy

|y|2
∣

∣

∣

∣

≤ C0

1∧ (J‖θ‖∞)
.(2.6)

(c)

lim
K→∞

1

logK

∑

y∈T′
K

1

|y|2 = lim
K→∞

1

logK

∑

y∈D′
K

1

|y|2 = 2π.(2.7)
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Proof. Combining the two elementary facts sinu ≥ u/2 for |u| ≤ π/2

and
∑k

j=−k e
iju = sin((k + 1

2 )u)/sin
u
2 for any positive integer k and real u

we obtain
∣

∣

∣

∣

∣

k
∑

j=−k

eiju

∣

∣

∣

∣

∣

≤ 4/|u| for all k ∈ Z
+, u ∈B(π).

Consequently,

∣

∣

∣

∣

∑

x∈ΛK

eiθx
∣

∣

∣

∣

≤
K/2
∑

k=−K/2

∣

∣

∣

∣

∣

K/2
∑

j=−K/2

eiθ2j

∣

∣

∣

∣

∣

≤ 4(K + 1)

|θ2|
.

This bound holds with θ1 replacing θ2, and therefore
∣

∣

∣

∣

∑

x∈ΛK

eiθx
∣

∣

∣

∣

≤ 4(K +1)‖θ‖−1
∞ for all θ ∈B(π).(2.8)

The first bound in (2.5) follows from this inequality and the fact that |ΛK \
TK |= 2K +1. The second bound in (2.5) is derived using the argument for
(2.8).

For (b), if 1≤ k ≤ |y| ≤ k+1, then

0≤ 1

k2
− 1

|y|2 ≤ 1

k2
− 1

(k+1)2
≤ 6

|y|3 .

Let γk(θ) = k−2
∑

x∈Dk
eiθx and C = 6

∑

y∈Z2\{0} |y|−3 <∞. Then

∣

∣

∣

∣

∑

y∈DK\DJ

eiθy

|y|2
∣

∣

∣

∣

≤C +

∣

∣

∣

∣

∣

K−1
∑

k=J

∑

y∈Dk+1\Dk

eiθy

k2

∣

∣

∣

∣

∣

.

We can rewrite the sum on the right-hand side above, obtaining
∣

∣

∣

∣

∣

K−1
∑

k=J

∑

y∈Dk+1\Dk

eiθy

k2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

K−1
∑

k=J

(

(k+1)2

k2
γk+1(θ)− γk(θ)

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

K−1
∑

k=J

(

γk+1(θ)− γk(θ) +
2k +1

k2
γk+1(θ)

)

∣

∣

∣

∣

∣

≤ |γK(θ)|+ |γJ(θ)|+3
K−1
∑

k=J

|γk+1(θ)|
k

.

By the bound (2.5),

3

K−1
∑

k=J

|γk+1(θ)|
k

≤ 18

‖θ‖∞

K−1
∑

k=J

1

k(k+1)
≤ 18

J‖θ‖∞
.
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Making use of the trivial bound |γk(θ)| ≤ (k + 1)2/k2 ≤ 4 for |γK(θ)| and
|γJ (θ)|, we therefore have

∣

∣

∣

∣

∑

y∈DK\DJ

eiθ

|y|2
∣

∣

∣

∣

≤C + 8+
18

J‖θ‖ ,

proving (2.6).
The second limit in (c) follows from a simple comparison with an integral.

The first follows from a second comparison showing that

lim
K→∞

∑

D2K\DK

1

|y|2 = 2π log 2.(2.9)
�

We close this section by recording the fact
∑

y∈TL

e2πixy/L = 0 for all x ∈ T
′
L.(2.10)

3. Proof of Proposition 1.1. Throughout this section, we will write M
for ML. It is straightforward to check that the assumptions of Proposition
1.1 imply the following. As M →∞:

(i) cM → c0 = 1/
∫

B(1/2) f(x)dx,

(ii) σ2M/M
2 → σ2 = c0

∫

B(1/2) x
2
1f(x)dx and

(iii) φM (θ/M)→ φ̃(θ) = c0
∫

B(1/2) e
iθxf(x)dx, θ ∈B(π).

Let ZM have distribution qM . By a standard inequality (see (2.3.6) in [7])
and the fact that |ZM | ≤M/2,

|1− φM (θ)− (σ2M |θ|2/2)| ≤ E((|θZM |3/6) ∧ |θZM |2)
(3.1)

≤ |θ|2M2

4
((|θ|M/12) ∧ 1).

Using (ii), this implies that for any δ > 0,

sup
θ∈B′(δ/M)

∣

∣

∣

∣

1− φM (θ)

σ2M |θ|2/2 − 1

∣

∣

∣

∣

≤ 2M2

4σ2M
((δ/12) ∧ 1)

→ 1

2σ2
((δ/12) ∧ 1) as M →∞.

Using (ii) again, this is enough to establish (P1).
Fix ε > 0 and put c̄ = sup{cM}. We will prove that there exists a finite

constant A depending on ε such that

lim sup
M→∞

sup
θ∈B(π)\B(A/M)

∑

x∈ΛM

eiθxqM (x)≤ εc̄(1 + 20‖f‖∞),(3.2)
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which is stronger than (P3). First, we replace the sum over ΛM with one
over TM at the cost of a small error,

∣

∣

∣

∣

∑

x∈ΛM

eiθxqM (x)− cM
|Λ′

M |
∑

x∈TM

eiθxf(x/M)

∣

∣

∣

∣

≤ (2M +2)c̄‖f‖∞
|Λ′

M | .(3.3)

The idea now is to break the sum over TM into sums over disjoint translates
of TK , where K <M is chosen so that f(x/M) is essentially constant on
the translates, and then apply (2.5).

To do this, let ΓM,K = {z ∈KZ
2 : z + TK ⊂ TM}, and choose ε′ ∈ (0, ε)

small enough so that |f(x)− f(x′)| < ε if ‖x − x′‖∞ < ε′. Choose A large
enough so that Aε′ > ε−1 and suppose ‖θ‖∞ >A/M . Since |TM \⋃z∈ΓM,K

(z+

TK)| ≤ 4MK,
∣

∣

∣

∣

∑

x∈TM

eiθxf(x/M)−
∑

z∈ΓM,K

∑

x∈TK

eiθ(z+x)f((z + x)/M)

∣

∣

∣

∣

≤ 4‖f‖∞KM.

(3.4)
For large M , we can choose K to satisfy ε′/2<K/M < ε′. By our choice of
ε′, |f((z+x)/M)− f(z/M)|< ε for all z ∈ ΓM,K and x ∈ TK . Applying this
bound gives

∣

∣

∣

∣

∑

z∈ΓM,K

∑

x∈TK

eiθ(z+x)f((z + x)/M)

(3.5)

−
∑

z∈ΓM,K

eiθzf(z/M)
∑

x∈TK

eiθx
∣

∣

∣

∣

≤ εM2.

By (2.5) and the bound |ΓM,K | ≤M2/K2,
∣

∣

∣

∣

∑

z∈ΓM,K

eiθzf(z/M)
∑

x∈TK

eiθx
∣

∣

∣

∣

≤ M2‖f‖∞
K2

4(K +1)(1 + ‖θ‖−1)

(3.6)

≤ 8M2‖f‖∞
K

(1 + ‖θ‖−1
∞ ).

By combining (3.3)–(3.6), the bounds ε′/2 < K/M < ε′ and then using
‖θ‖∞ >A/M , we obtain

|φM (θ)| ≤ c̄

|Λ′
M |

[

(2M +2)‖f‖∞ +4KM‖f‖∞

+ ε|M2|+ 8M2

K
‖f‖∞(1 + ‖θ‖−1

∞ )

]

≤ c̄

|Λ′
M | [ε|M

2|+ ‖f‖∞((2M +2) + 4ε′M2 + 16(M/ε′)(1 +M/A))]



STEPPING STONE MODEL 11

→ c̄

[

ε+4ε′‖f‖∞ +
16‖f‖∞
ε′A

]

as M →∞.

Since Aε′ > ε−1 and ε′ < ε, the right-hand side above is no larger than
εc̄(1 + 20‖f‖∞), which establishes (3.2).

To prove (P2), it now suffices to prove that for all 0< δ < A <∞ there
exists ζ > 0 such that

lim sup
M→∞

sup
θ∈B(A/M)\B(δ/M)

φM (θ)≤ 1− ζ.(3.7)

Let φ̃M (θ) = φM (θ/M). By (iii), φ̃M (θ)→ φ̃(θ) as M →∞, and the conver-
gence is uniform on compact sets. Since the probability distribution with
density c0f(x) on B(1/2) is not degenerate or of lattice type, |φ̃(θ)| must be
bounded away from 1 on any compact set not containing 0. For 0< δ < A,
we may choose ζ > 0 such that φ̃(θ) < 1 − ζ for all θ ∈ B(A) \ B(δ). The
uniform convergence φ̃M → φ̃ on B(A) \B(δ) now implies (3.7).

4. Proof of Theorem 1.7. We continue to write M for ML. It suffices to
prove that

lim
L→∞

sup
x∈TL

L2|P0(X
L
sL

= x)−L−2|= 0.(4.1)

By pulling out the y = 0 term from (2.3), we see that

L2|P0(X
L
sL

= x)−L−2|=
∣

∣

∣

∣

∑

y∈T′
L

φsLM (2πy/L)e2πixy/L
∣

∣

∣

∣

≤
∑

y∈T′
L

φsLM (2πy/L).

The limit (4.1) will follow from showing the last sum tends to zero as L→∞.
By (P1) there exists δ > 0 such that for large L,

1− φM (2πy/L)≥ π2σ2M2|y|2/L2 for all y ∈ T
′
δL/M .(4.2)

This implies [recall (2.1)] that
∑

y∈T′
δL/M

φsLM (2πy/L)≤
∑

y∈T′
δL/M

exp(−sLπ2σ2M2|y|2/L2).

This last sum tends to 0 as L→∞ by comparison with
∫ ∞

0
e−π2σ2sL(M

2/L2)r2r dr =
1

2π2σ2sLM2/L2
→ 0

since sLM
2/L2 →∞ by assumption.

By (P2) and (P3), there exists ζ > 0 such that for all large L,

1− φM (2πy/L)≥ ζ for all y ∈ TL \TδM/L.
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This bound implies
∑

y∈TL\TδL/M

φsLM (2πy/L)≤ L2 exp(−ζsL)→ 0

since sL/ logL→∞ by assumption. This completes the proof of (4.1).

5. Proof of Theorem 1.2. We continue to write M for ML. To prove
(1.3), it suffices in view of (2.2) to establish the following facts:

lim
L→∞

GL(0, λ/L
2) = λ−1 +1(5.1)

and

lim
L→∞

sup
x∈T′

L

|GL(x,λ/L
2)− λ−1|= 0.(5.2)

Proof of (6.1). By (2.4),

GL(0, λ/L
2) = λ−1 +

1

L2

∑

y∈T′
L

1

1 + λ/L2 − φM (2πy/L)
(5.3)

and thus (5.1) will follow from

lim
L→∞

1

L2

∑

y∈T′
L

1

1− φM (2πy/L)
= 1.(5.4)

We will prove (5.4) by breaking T
′
L into regions appropriate for utilizing

(P1)–(P3). To prepare for this, fix ε > 0. By (P1), there exists δ > 0 such
that for all large L,

1

1− φM (2πy/L)
≤ 1

π2σ2M2|y|2/L2
for y ∈ T

′
δL/M .(5.5)

By (P2) there exists δ′ > 0 and ζ > 0 such that for all large L,

1

1− φM (2πy/L)
< 1/ζ for y ∈ Tδ′L \TδL/M .(5.6)

By (P3), for any 0< a< δ′ and all large L,
∣

∣

∣

∣

1

1− φM (2πy/L)
− 1

∣

∣

∣

∣

< ε for y ∈ TL \TaL.(5.7)

We claim that

lim
L→∞

1

L2

∑

y∈T′
δL/M

1

1− φM (2πy/L)
= 0,(5.8)

lim sup
L→∞

1

L2

∑

y∈TaL\TδL/M

1

1− φM (2πy/L)
≤ a2/ζ(5.9)
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and

limsup
L→∞

∣

∣

∣

∣

1

L2

∑

y∈TL\TaL

1

1− φM (2πy/L)
− (1− a2)

∣

∣

∣

∣

≤ ε.(5.10)

The bounds (5.9) and (5.10) are immediate from (5.6) and (5.7). For (5.8),
we note that since M2/ logL→∞, (2.7) implies that

lim
L→∞

1

M2

∑

y∈T′
L

1

|y|2 = 0.(5.11)

This fact and (5.5) easily imply (5.8). We note for later use that neither
(5.9) nor (5.10) require M2/ logL→∞, they hold for any M →∞ and φM
satisfying (P2) and (P3).

Having established (5.8)–(5.10), we combine them to obtain

lim sup
L→∞

∣

∣

∣

∣

1

L2

∑

y∈T′
L

1

1− φM (2πy/L)
− 1

∣

∣

∣

∣

≤ a2/ζ + a2 + ε.

Let a ↓ 0 and then ε ↓ 0 to complete the proof of (5.4). �

Proof of (5.2). After separating out the y = 0 term as before, it suf-
fices to prove that

lim
L→∞

sup
x∈T′

L

1

L2

∣

∣

∣

∣

∑

y∈T′
L

e2πixy/L

1− φM (2πy/L)

∣

∣

∣

∣

= 0.(5.12)

In view of (5.8) and (5.9), we may concentrate on the region TL \TaL. By
(5.7), uniformly in x ∈ T

′
L,

lim sup
L→∞

1

L2

∣

∣

∣

∣

∑

y∈TL\TaL

e2πixy/L
(

1

1− φM (2πy/L)
− 1

)
∣

∣

∣

∣

≤ ε.

It is here we make use of (2.10). It implies that for all x ∈ T
′
L,

∣

∣

∣

∣

1

L2

∑

y∈TL\TaL

e2πixy/L
∣

∣

∣

∣

=

∣

∣

∣

∣

− 1

L2

∑

y∈TaL

e2πixy/L
∣

∣

∣

∣

≤ a2.

By the last two facts,

lim sup
L→∞

sup
x∈T′

L

1

L2

∣

∣

∣

∣

∑

y∈TL\TaL

e2πixy/L

1− φM (2πy/L)

∣

∣

∣

∣

≤ ε+ a2(5.13)

and we note here that (5.13) does not require that M2/ logL→∞. Taken
together, (5.8), (5.9) and (5.13) imply

limsup
L→∞

sup
x∈T′

L

1

L2

∣

∣

∣

∣

∑

y∈T′
L

e2πixy/L

1− φM (2πy/L)

∣

∣

∣

∣

≤ ε+ a2(1 + 1/ζ).(5.14)
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Let a→ 0 and then ε→ 0 to complete the proof of (5.12). �

Proof of (1.4). By standard monotonicity arguments,

Px(HL > uL2)→ e−u uniformly in x ∈ T
′
L, u≥ 0(5.15)

as L→∞. In particular, for all large L,

Px(HL >L2)≤ e−1/2 for all x ∈ T
′
L.

By this bound and the Markov property,

Px(HL > kL2) =
∑

y∈T′
L

Px(X
L
(k−1)L = y,HL > (k− 1)L2)Py(HL >L2)

≤ e−1/2Px(HL > (k− 1)L2).

Consequently, for all large L, Px(HL > kL2)≤ e−k/2 for k ≥ 1 and x ∈ T
′
L.

This fact and (5.15) easily imply (1.4). �

6. Proof of Theorem 1.3. We continue to write M for ML. The limit
(1.6) follows easily from a little algebra and the following analogues of (5.1),
(5.2):

lim
L→∞

GL(0, λ/L
2tL)

tL
= λ−1 + ρ+

1

πσ2
(6.1)

and

lim
L→∞

sup
x∈A(α,vL)

∣

∣

∣

∣

GL(x,λ/L
2tL)

tL
−
[

λ−1 +

(

1− α

πσ2

)]∣

∣

∣

∣

= 0.(6.2)

The proofs of (6.1) and (6.2) are similar to the proofs of (5.1) and (5.2), but
require a bit more care.

Fix ε > 0. By (P1) there exist δ > 0 and functions ψL such that ‖ψL‖∞ < ε
and for all large L,

1

1− φM (2πy/L)
=

1+ ψL(y)

2π2σ2M2|y|2/L2
for y ∈ T

′
δL/M .(6.3)

As before, we assume δ′, ζ > 0 are such that for all 0< a< δ′, (5.6) and (5.7)
hold. Recall that we are now assuming M2/ logL→ ρ <∞.

Proof of (6.1). The y = 0 term in the sum for GL(0, λ/tL) yields λ
−1,

so it suffices to prove that

lim
L→∞

1

L2tL

∑

y∈T′
L

1

1− φM (2πy/L)
= ρ+

1

πσ2
.(6.4)
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We claim that:

lim sup
L→∞

∣

∣

∣

∣

1

L2tL

∑

y∈T′
δL/M

1

1− φM (2πy/L)
− 1

πσ2

∣

∣

∣

∣

≤ ε

πσ2
,(6.5)

lim sup
L→∞

1

L2tL

∑

y∈TaL\TδL/M

1

1− φM (2πy/L)
≤ ρa2/ζ(6.6)

and

limsup
L→∞

∣

∣

∣

∣

1

L2tL

∑

y∈TL\TaL

1

1− φM (2πy/L)
− (1− a2)ρ

∣

∣

∣

∣

≤ ερ.(6.7)

The limits (5.9) and (5.10) and the fact that 1/tL → ρ imply (6.6) and (6.7),
so consider the region the region T

′
δL/M . By (6.3),

1

L2tL

∑

y∈T′
δL/M

1

1− φM (2πy/L)
=

1

logL

∑

y∈T′
δL/M

1 + ψL(y)

2π2σ2|y|2 .

By using (2.7) above, we obtain (6.5).
Combining (6.5)–(6.7) gives

lim sup
L→∞

∣

∣

∣

∣

1

L2tL

∑

y∈T′
L

1

1− φM (2πy/L)
− β

∣

∣

∣

∣

≤ ε

πσ2
+ ρa2/η+ ρ(a2 + ε).

Let a→ 0 and then ε→ 0 to complete the proof of (6.4). �

Proof of (6.2). Fix 0< α< 1. (We will not give the slight changes in
proof needed to handle the cases α= 0,1.) It suffices to prove that uniformly
in x ∈A(α,vL),

1

L2tL

∑

y∈T′
L

e2πixy/L

1− φM (2πy/L)
→ 1−α

πσ2
as L→∞.(6.8)

With ε, δ as before, we claim that

lim sup
L→∞

sup
x∈A(α,vL)

∣

∣

∣

∣

1

L2tL

∑

y∈T′
δL/M

e2πixy/L

1− φM (2πy/L)
− 1− α

πσ2

∣

∣

∣

∣

≤ ε

πσ2
.(6.9)

Given this, (5.13) and (6.6) imply

limsup
L→∞

sup
x∈A(α,vL)

∣

∣

∣

∣

1

L2tL

∑

y∈T′
L

e2πixy/L

1− φM (2πy/L)
− 1−α

πσ2

∣

∣

∣

∣

≤ ε

πσ2
+ ρ(ε+ a2 + a2/ζ),



16 J. T. COX

which is enough to establish (6.8).
The first step in proving (6.9) is to use (6.3) to obtain

1

L2tL

∑

y∈T′
δL/M

e2πixy/L

1− φM (2πy/L)
=

1

logL

∑

y∈T′
δL/M

e2πixy/L

2πσ2|y|2 (1 +ψL(y)).(6.10)

Next, we may replace T
′
δL/M in the right-hand side above with D′

δL/M be-
cause

lim
L→∞

1

logL

∑

y∈T′
δL/M

\D′
δL/M

1

|y|2 = 0(6.11)

by (2.9). Now, we break AL(α,vL) into the union of the smaller regions

DL(α,m) =DLα(logL)m+1 \DLα(logL)m , m ∈ [−k, k)∩Z.

We will prove that for each fixed m,

lim
L→∞

sup
x∈DL(α,m)

∣

∣

∣

∣

1

logL

∑

y∈D′
δM/L

e2πixyy/L

2π2σ2|y|2 − 1− α

πσ2

∣

∣

∣

∣

= 0.(6.12)

Since (6.9) will follow from (6.10)–(6.12), the problem now is to prove (6.12).
To do this, fix m ∈ Z, let KL = L1−α(logL)−(m+1/2), and consider the

regions DδL/M \DKL
and D′

KL
. The bound (2.6) implies that for all x ∈

DL(α,m),

1

logL

∣

∣

∣

∣

∑

y∈DδL/M\DKL

e2πixy/L

|y|2
∣

∣

∣

∣

≤ C0

(logL)(1 ∧KL|2πx/L|)

≤ C0

logL
∨ C0

2πKL(logL)m+1Lα−1
→ 0(6.13)

as L→∞.

To handle the sum over D′
KL

, we make use of the fact that e2πixy/L ≈ 1
there. More precisely, for x ∈DL(α,m),

1

logL

∣

∣

∣

∣

∑

y∈D′
KL

e2πixy/L − 1

|y|2
∣

∣

∣

∣

≤ 1

logL

∑

y∈D′
KL

2π|x|/L
|y|

≤ 2πLα−1(logL)m
∑

y∈D′
KL

1

|y| .

Comparison with an integral shows there is a constant C <∞ such that
∑

y∈D′
KL

|y|−1 ≤CKL, so it follows that

lim
L→∞

sup
x∈DL(α,m)

1

logL

∣

∣

∣

∣

∑

y∈D′
KL

e2πixy/L − 1

|y|2
∣

∣

∣

∣

= 0.(6.14)
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Coming to the main term at last, by (2.7) we see that

1

2π2σ2 logL

∑

y∈D′
KL

1

|y|2 =
logKL

2π2σ2 logL

1

logKL

∑

y∈D′
KL

1

|y|2 → 1−α

πσ2

(6.15)
as L→∞.

Taken together, (6.13)–(6.15) establish (6.12), as required. �

Proof of (1.7). We proceed as in the proof of (1.4) with just a few
changes. First, by (1.6) with α =m = 1, there exists a finite L0 such that
for all L ≥ L0, Py(HL > L2tL) ≤ e−1/2β for all y ∈ TL \ TL/ logL. Next, by
Theorem 1.7, there exists finite L1 ≥ L0 such that for L≥ L1 and all x, y ∈
TL, Px(X

L
L2tL

= y)≤ 2/L2. Therefore, for all L≥ L1 and x ∈ T
′
L,

Px(HL > 2L2tL)≤ Px(X
L
L2tL∈TL/ logL

) + sup
y∈TL\TL/ logL

Py(HL >L2tL)

≤ 2|TL/ logL|/L2 + e−1/2β ≤ 2/(logL)2 + e−1/2β .

It follows that for some finite L2 ≥L1, if L≥ L2 then

sup
x∈T′

L

Px(HL > 2L2tL)≤ e−1/3β .

Iterating as in the proof of (1.4), we obtain

sup
x∈T′

L

Px(HL > 2kL2tL)≤ e−k/3β(6.16)

for all L≥ L2.
Now for a fixed 0≤ α≤ 1 and k > 0, (1.6) implies

Px(HL >uL2tL)→ (1− q)e−u/β

(6.17)
uniformly in x∈A(α,vL), u≥ 0,

as L→∞. The limit (1.7) is a consequence of this fact and (6.16). �

7. Example 1.5. In this section, we verify the claims made in Example
1.5. We first check that

σ2ML

M2
L

=
1

M2
L

∑

x

x21qML
(x)

=
c

M2
L

∑

x

x21uML
(x) +

1− c

M2
L

∑

x

x21q0(x)→ c

∫

B(1/2)
x21 dx

=
c

12
as L→∞,
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so (1.8) holds with σ2 = c/12. We turn now to the proof of (1.10).
Let ûML

(θ) =
∑

x uML
(x)eiθx. Our first step is to establish the analogues

of (P1)–(P3) for φML
(θ) = cûML

(θ) + (1− c)q̂0(θ). By Proposition 1.1, ûML

satisfies (P1)–(P3) with σ2 = 1/12. Furthermore, it is easy to check that q̂M0

satisfies: for all ε > 0 there exists δ > 0 such that

1− q̂0(θ)

σ20 |θ|2/2
∈ (1− ε,1 + ε) for all θ ∈B′(δ).

With this it is easy to see that the following versions of (P1)–(P3) hold for
φML

.

(P1)′ For ε > 0 there exists δ > 0 such that for all large L,

1

1− φML
(2πy/L)

=
1+ ψL(y)

cM2
Lπ

2|y|2/6L2
for all y ∈ T

′
δL/ML

,

where ‖ψL‖∞ ≤ ε.
(P2)′ For δ > 0 there exists δ′ > 0 and ζ > 0 such that for all large L,

1− φML
(2πy/L)≥ cζ for all y ∈ Tδ′L \TδL/ML

.

(P3)′ For fixed 0< a< 1,

lim
L→∞

sup
y∈TL\TaL

∣

∣

∣

∣

1

1− φML
(2πy/L)

− 1

c+ (1− c)(1− q̂0(2πy/L))

∣

∣

∣

∣

= 0.

With the above in place, the next step is to prove that

lim
L→∞

GL(0, λ/L
2) = λ−1 + β0

or equivalently

lim
L→∞

1

L2

∑

y∈T′
L

1

1− φML
(2πy/L)

= β0.(7.1)

To do this fix ε > 0, choose δ, δ′ as in (P1)′ and (P2)′, and break T
′
L into the

usual subregions.
Applying (P1)′, we have

1

L2

∑

y∈T′
δL/ML

1

1− φML
(2πy/L)

=
6

cM2
Lπ

2

∑

y∈T′
δL/ML

1 + ψL(y)

|y|2 .

This implies, using (2.7),

lim sup
L→∞

∣

∣

∣

∣

1

L2

∑

y∈T′
δL/ML

1

1− φML
(2πy/L)

− 12

cπ

∣

∣

∣

∣

≤ 12ε

cπ
,(7.2)
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where we have used M2
L/ logL→ 1. Next, for 0< a< δ′, (P2)′ implies

lim sup
L→∞

1

L2

∑

y∈TaL\TδL/ML

1

1− φML
(2πy/L)

≤ a2

cζ
.(7.3)

By (P3)′ and continuity,

1

L2

∑

y∈TL\TaL

1

1− φML
(2πy/L)

→
∫

B(1/2)\B(a/2)

dθ

c+ (1− c)(1− q̂0(2πθ))

=
1

(2π)2

∫

B(π)\B(aπ)

dθ

1− (1− c)q̂0(θ)
.

Let a ↓ 0 and then ε ↓ 0 in (7.2) and (7.3) to complete the proof of (7.1).
The final task is to prove that

lim
L→∞

sup
x∈TL\TℓL

|GL(x,λ/L
2)− λ−1|= 0

or equivalently

lim
L→∞

sup
x∈TL\TℓL

∣

∣

∣

∣

1

L2

∑

y∈T′
L

e2πixy/L

1− φML
(2πy/L)

∣

∣

∣

∣

= 0.(7.4)

Consider the region T
′
δL/M . By (2.9), we may replace T′

δL/M with D′
δL/M ,

at the cost of a negligible error. We break D′
δL/M into two pieces. By (2.7),

lim
L→∞

1

logL

∑

y∈D′
Lε

1

|y|2 = 2πε.(7.5)

By (2.5), for all x ∈ TL \Tℓ
∣

∣

∣

∣

1

logL

∑

y∈DδL/M\DLε

e2πixy/L

|y|2
∣

∣

∣

∣

≤ C0

logL
∨ C0L

KL2π|x|
(7.6)

≤ C0

logL
∨ C0L

1−ε

2πℓL
→ 0 as L→∞.

By (P1)′ and the above,

lim sup
L→∞

sup
x∈TL\TℓL

∣

∣

∣

∣

1

L2

∑

y∈T′
δML/L

e2πixy/L

1− φML
(2πy/L)

∣

∣

∣

∣

≤ 12ε

cπ
(7.7)

and combining this with (7.3) gives

lim sup
L→∞

sup
x∈TL\TℓL

∣

∣

∣

∣

1

L2

∑

y∈T′
aL

e2πixy/L

1− φML
(2πy/L)

∣

∣

∣

∣

≤ 12ε

cπ
+
a2

cζ
.(7.8)
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Now consider the region TL \TaL. By (P3)′, for all large L and x ∈ TL,

1

L2

∑

y∈TL\TaL

∣

∣

∣

∣

e2πixy/L

1− φML
(2πy/L)

− e2πixy/L

1− (1− c)q̂0(2πy/L)

∣

∣

∣

∣

≤ ε.(7.9)

For integers K > 0 define ΓL,K = {z ∈KZ
2 : z + TK ⊂ TL \ TaL}, and note

that |ΓL,K | ≤ L2/K2 and |(TL \ TaL) \
⋃

z∈ΓL,K
(z + TK)| ≤ 8LK. By the

trivial bound 1− (1− c)q̂0(θ)≥ c and (7.9),
∣

∣

∣

∣

1

L2

∑

y∈TL\TaL

e2πixy/L

1− φML
(2πy/L)

(7.10)

− 1

L2

∑

z∈ΓL,K

∑

y∈z+TK

e2πixy/L

1− (1− c)q̂0(2πy/L)

∣

∣

∣

∣

≤ ε+
8K

cL
.

By the continuity of q̂0, there exists δ′′ > 0 such that if θ, θ′ ∈ B(π) and
|θ− θ′|< δ′′ then

∣

∣

∣

∣

1

1− (1− c)q̂0(θ)
− 1

1− (1− c)q̂0(θ′)

∣

∣

∣

∣

< ε.

Assuming K < δ′′L, this implies
∣

∣

∣

∣

1

L2

∑

z∈ΓL,K

∑

y∈z+TK

e2πixy/L

1− (1− c)q̂0(2πy/L)

(7.11)

− 1

L2

∑

z∈ΓL,K

e2πixz/L

1− (1− c)q̂0(2πz/L)

∑

y∈TK

e2πixy/L
∣

∣

∣

∣

< ε.

Now (2.5) can be applied, giving
∣

∣

∣

∣

1

L2

∑

z∈ΓL,K

e2πixz/L

1− (1− c)q̂0(2πz/L)

∑

y∈TK

e2πixy/L
∣

∣

∣

∣

(7.12)

≤ |ΓL,K |
cL2

∣

∣

∣

∣

∑

y∈TK

e2πixy/L
∣

∣

∣

∣

≤ (4(K + 1)(1 +L/2πℓL))

cK2

for all x∈ TL \ TℓL . Taken together (7.8) and (7.10)–(7.12) yield

lim sup
L→∞

sup
x∈TL\TℓL

∣

∣

∣

∣

1

L2

∑

y∈T′
L

e2πixy/L

1− φML
(2πy/L)

∣

∣

∣

∣

≤ 12ε

cπ
+
a2

cζ
+ 2ε+ limsup

L→∞

(

8K

cL
+

(4(K +1)(1 +L/2πℓL))

K2

)

.
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If set K = L/
√
ℓ, then the limsup above is 0. Let a ↓ 0 and the ε ↓ 0 to finish

the proof.
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