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Abstract. In a coalescing random walk, a set of particles make independent random walks
on a graph. Whenever one or more particles meet at a vertex, they unite to form a single
particle, which then continues the random walk through the graph. Coalescing random
walks can be used to achieve consensus in distributed networks, and is the basis of the
self-stabilizing mutual exclusion algorithm of Israeli and Jalfon [11].
Let G = (V,E), be an undirected, connected n vertex graph. Let C(n) be the expected
time for all particles to coalesce, when initially one particle is located at each vertex of an
n vertex graph.
We study the problem of bounding the coalescence time C(n) for general classes of graphs.
For d-regular graphs with expansion parameterized by the eigenvalue gap 1 − λ2, where
λ2 is the second eigenvalue of the transition matrix of the random walk, we establish that
C(n) = O(n/(1 − λ2)). This result also extends of near regular graphs; where a graph is
near regular if the ratio of the maximum and minimum degrees ∆/δ is constant.
Our general result is, that C(n) = O(n/(ν(1− λ2))), where ν = (

∑
d2(v))/(d2n), and d is

the average node degree. The parameter ν is an indicator of the variability of node degrees:
1 ≤ ν = O(n), with ν = 1 for regular graphs. The result holds provided the maximum
node degree is O(m1−ǫ).
A system of coalescing particles where initially one particle is located at each vertex,
corresponds to a voter model. Initially each vertex has a distinct opinion, and at each step
each vertex changes its opinion to that of a random neighbour. The voting process can
be used for leader election in a distributed context. Let E(Cv) be the expected time for
voting to complete, i.e. for a unique opinion to emerge. It is known that E(Cv) = C(n),
so our results imply that E(Cv) = O(n/(ν(1− λ2))).
We also investigate how the voting time improves when a vertex elicits more than one
opinion at each step. In a model which we call min-voting, each vertex initially holds an
opinion from {1, 2, ..., n}. At each step each vertex takes the opinions of two random neigh-
bours and keeps the smaller. We show that for regular graphs with very good expansion
properties, voting is completed in O(log n) time with high probability. This result can be
viewed as an example for the “power of two choices” in distributed voting.

http://arxiv.org/abs/1204.4106v1
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1 Introduction

In a coalescing random walk, a set of particles make independent random walks in
an undirected connected graph. Whenever one or more particles meet at a vertex,
then they unite to form a single particle which then continues to make a random
walk through the graph.

The expected time for the particles to coalesce to a single particle depends
on their initial positions. For a connected graph G = (V,E) with n vertices and
m edges, let Ck(i1, ..., ik), 2 ≤ k ≤ n, be the coalescence time when there are
initially k particles starting from distinct vertices i1, ..., ik. The quantity we study
is C(k) = maxi1,...,ik E(Ck(i1, ..., ik)), the worst case expected coalescence time.

A system of n coalescing particles where initially one particle is located at
each vertex, corresponds to another classical problem, the voter model, defined as
follows. Initially each vertex has a distinct opinion, and at each step each vertex
changes its opinion to that of a random neighbour.

Let Cv be the number of steps for voting to be completed, i.e. for a unique opin-
ion to emerge. The random variable Cv has the same distribution, and hence the
same expected value, as the coalescence time Cn of n coalescing particles, where one
particle is initially located at each vertex, (see [2]). Thus C(n) ≡ E(Cn) = E(Cv).
The expected completion time E(Cv) is also called the voting time, trapping time
or the consensus time.

The coalescing random walk is the basis of the self-stabilizing mutual exclusion
algorithm of Israeli and Jalfon [11]. Initially each vertex emits a token which makes
a random walk on G. On meeting at a vertex, tokens coalesce. Provided the graph
is connected, and not bipartite, eventually only one token will remain, and the
vertex with the token has exclusive access to some resource. The token makes a
random walk on G, so in the long run it will visit all vertices of G in proportion
to their stationary distribution.

The results given in this paper. We study the problem of bounding the
coalescence time C(n) for general classes of graphs. For d-regular graphs with
expansion parameterized by the eigenvalue gap 1 − λ2, where λ2 is the second
eigenvalue of the transition matrix of the random walk, we establish that C(n) =
O(n/(1− λ2)). This bound is actually a consequence of our general result that

C(n) = O

(

n

ν(1− λ2)

)

.

where parameter ν = (
∑

v∈V d2(v))/(d2n) ≥ 1 measures the variability of the
degree sequence; d is the average degree. This parameter ranges from 1 for regular
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graphs to Θ(n) for a star graph. Our bound on C(n) holds provided the maximum
degree ∆ satisfies the (weak) condition that ∆ = O(m1−ǫ), where m is teh number
of edges and ǫ can be an arbitrarily small positive constant.

We also investigate the voting time when each vertex elicits more than one
opinion at each step. Our model, which we call min-voting, is as follows. Initially
each vertex holds a distinct opinion, chosen uniformly at random without replace-
ment from {1, 2, ..., n}, and, at each step each vertex takes the opinions of two
random neighbours and keeps the smaller of the two (disregarding its own opin-
ion). We establish that for regular graphs with very good expansion properties (in
the sense of [7]), voting can be completed in O(logn) time with high probability.
(With high probability, whp with probability tending to 1 as n → ∞).

Previous work on coalescing walks and voting systems. We next sum-
marize some of what is known about these topics. Cox [6] considered coalescence
time of random walks and the consensus time of the voter model for d-dimensional
tori. In a variant of the voter model, the two-party model, initially there are only two
opinions A and B. The two-party model was considered by Donnelly and Welsh [9].
Hassin and Peleg [15] and Nakata et al. [14] also consider the two-party model,
and discuss its application to agreement problems in distributed systems. Papers
[14, 15] focus on analysing the probability that all vertices will eventually adopt
the opinion which is initially held by a given group of vertices. The central result
is that the probability that opinion A wins is d(A)/(2m), where d(A) is the sum of
the degrees of vertices initially holding opinion A, and m is the number of edges
in G.

Let Hu,v denote the hitting time of vertex v starting from vertex u, that is,
the random variable which gives the time taken by a random walk starting from
vertex u to reach vertex v; and let Hmax = maxu,v E(Hu,v). Aldous [1] showed that
C(2) = O(Hmax), which implies that C(n) = O(Hmax log n) (since the number of
particles halves in O(Hmax) steps), and conjectured that C(n) is actually O(Hmax).
Cox’s results [6] imply that the conjecture C(n) = O(Hmax) is true for constant
dimension tori and grids. Aldous [1] also states a lower bound for C(2). For graphs,
this bound can be simplified to C(2) = Ω(m/∆), where ∆ is the maximum degree
of a vertex in G ([1] considers more general Markov Chains). For the class of local
expanders we study in this paper, this gives C(2) = Θ(n). However, the bounds
C(2) = Ω(m/∆) and C(2) = O(Hmax) can be far apart. For example, for a star
graph (with loops), C(2) = Θ(1) whereas the bounds give Ω(1) ≤ C(2) = O(n).

Aldous and Fill [2] showed that for regular graphs C(n) ≤ e(logn+2)Hmax, for
d-regular s-edge connected graphs C(n) ≤ dn2

4s
, and for complete graphs C(n) ∼ n

(where f(n) ∼ g(n) means that f(n) = (1± o(1))g(n)).
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Cooper et al. [5] showed that the conjecture C(n) = O(Hmax) is true for the
family of random regular graphs. They proved that for r-regular random graphs,
E(C) = C(n) ∼ 2((r − 1)/(r − 2))n, whp.

As noted above, our voting processes can be viewed as consensus, or aggre-
gation. There is a large amount of research focusing on distributed selection and
aggregation in different scenarios and various settings (see e.g. [16, 17] or [3] for
a survey). Here, we only mention the result of [8], in which the following process
related to min-voting is analysed. At the beginning each vertex of a complete graph
has its own opinion. In each step every vertex contacts two other nodes uniformly
at random, and changes its opinion to the median of the opinions of these two nodes
and its own opinion. It is shown in [8] that this rule converges in time O(logn) to a
single opinion, whp. Unfortunately, the results of [8] cannot be directly extended
to sparse graphs with good expansion properties.

1.1 Results: Coalescence and Voting

We assume the graphs G we consider are not bipartite, or that if G is bipartite,
then we assume the coalescing random walk is lazy, and pauses with probability
1/2 at each step. Equivalently, for the voting process, we assume that vertices may
choose their own opinion with this probability.

We prove the following very general theorem.

Theorem 1. Let G be a connected graph with n vertices, m edges, average vertex
degree d, and maximum degree ∆ = O(m1−ǫ), for an arbitrary constant ǫ > 0. Let
ν = (

∑

v∈V d2(v))/(d2n). Let C(n) be the expected coalescence time for a system on
n particles making a lazy random walk on G, where originally one particle starts
at each vertex. Then

C(n) = O

(

n

ν(1− λ2)

)

. (1)

Thus by the equivalence between coalescence and voting, the expected time E(Cv)
to complete voting on G is

E(Cv) = O

(

n

ν(1− λ2)

)

. (2)

The quantity ν = (
∑

v∈V d2(v))/(d2n) measures the variability of the degree se-
quence. It is easy to check that 1 ≤ ν ≤ ∆/d ≤ n. The result (1) holds for many
classes of graphs, provided the bound ∆ = O(m1−ǫ), which is not that restrictive.
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For near regular graphs, when the ratio of the largest to the smallest vertex
degree is bounded by a constant, we have ν ≤ ∆/d = O(1), so the bound (2)
becomes

C(n) = O

(

n

1− λ2

)

, (3)

In particular, If G is an expander in the classic sense that the eigenvalue gap
(1− λ2) is constant, then C(n) = O(n).

As 1 − λ2 ≥ 1/2n2 for any connected graph (see e.g. Sinclair [18]) our bound
shows that coalescence is completed in O(n3) expected time on any connected n
vertex graph, provided the required bound on ∆. Hassin and Peleg [15] showed
that the voting (hence also coalescence) is completed in expected O(n3 log n) time
on any connected graph. Our bound parameterized by the eigenvalue gap can be
viewed as refinement of such absolute bounds.

The proof of our results is based on the following theorem bounding the time
to first meeting between any of k particles.

Theorem 2. For 2 ≤ k ≤ k∗ = log3 n particles starting from general position
in G, let Mk be the time to first meeting. Let ∆(G) = o(m/ log6 n). Then for
ν = (

∑

d2(v)) /d2n,

E(Mk) = O

(

1

1− λ2

(

k logn+
n

νk2

)

)

. (4)

1.2 Results: Min-Voting on regular expanders

Here we consider d-regular graphs G = (V,E) with good global expansion prop-
erties. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of the transition matrix of the
random walk on G, and let λ = max{λ2, |λn|}. We assume that λ ≤ c/

√
d for some

constant c, where c <<
√
d if d = O(1). In terms of the previous theorems, this

corresponds to a second eigenvalue gap 1 − λ2(P ) of the transition matrix of size
1− c/

√
d > 0. We call such a connected graph an almost Ramanujan or expanding

(cf. [7]).

As shown in [4, 7], these graphs satisfy the following expansion properties. If
d is large enough, then there exists a constant β such that for any constant φ,
sufficiently small α > 0, and any A ⊂ V with |A| ≤ n/2:

1. αd|A| ≤ |E(A, V \ A)| ≤ d·|A|·|V \A|
n

+ λd
√

|A| · |V \ A|;
2. if |A| ≤ min{φn/d, n/2}, then |N(A)| ≥ αd|A|;



Coalescing random walks and voting on graphs 5

3. the number of vertices in V \ A with at least αd|A|/n neighbours in A is at

least |V \ A| − βn2

d|A|
.

Here E(A, V \ A) represents the set of edges between A and V \ A and N(A)
is the set of neighbours of A in V \ A. In the following, we assume that d is large
enough, and α, φ, and β do not depend on d. It is easy to see that if the definition
holds for some α (where φ is fixed), then it also holds for values smaller than α.
Hence, we assume that α is arbitrarily small and φ is arbitrarily large.

For this class of graphs, we consider the following voting model called min-
voting. Initially each node has a distinct opinion from {1, . . . , n}. In each step,
every node contacts two neighbours independently and uniformly at random, and
changes its opinion to the smallest among the opinions of the two nodes. The
two neighbours are not necessarily distinct. We obtain the following result for this
voting model.

Theorem 3. Let G = (V,E) be a d-regular almost Ramanujan graph, where d
exceeds some large constant value. Applying min-voting, after a certain number of
O(logn) steps all nodes will have the same opinion, whp.

The proof consists of three main phases. In the first phase, we show that a small
opinion is either removed from the graph or it resides at Ω(log2 n) nodes after
(log logn)2 steps. In the second phase, we show that after O(logn) steps, at least
n/2 nodes have the same (currently smallest) opinion in the graph. (which at this
time is not necessarily 1). Finally, we show that after additional O(logn) steps, all
nodes will adopt this opinion. The full proof of Theorem 3 for min-voting is given
in the Appendix.

2 Random Walk Properties

Let G = (V,E) denote a connected graph, |V | = n, |E| = m, and let d(v) be the
degree of a vertex v. A simple random walk Wu, u ∈ V , on graph G is a Markov
chain modeled by a particle moving from vertex to vertex according to the following
rule. The probability of transition from vertex v to vertex w is equal to 1/d(v), if
w is a neighbour of v, and 0 otherwise. The walk Wu starts from vertex u at t = 0.
Denote by W(t) the vertex reached at step t; W(0) = u.

We assume the random walk Wu on G is ergodic with stationary distribution
π, where πv = d(v)/(2m). If this is not the case, e.g. G is bipartite, then the walk
can be made ergodic, by making it lazy. A random walk is lazy, if it moves from
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v to one of its neighbours w with probability 1/(2d(v)), and stays where it is (at
vertex v) with probability 1/2.

Let P = P (G) be the matrix of transition probabilities of the walk and let
P t
u(v) = Pr(Wu(t) = v). Let the eigenvalues λ(P ) of P (G) be λ1 = 1 ≥ λ2 ≥ · · · ≥

λn > −1, as we assume G is not bipartite. Let λmax = max(λ2, |λn|). The rate of
convergence of the walk is given by

|P t
u(x)− πx| ≤ (πx/πu)

1/2λt
max, (5)

see for example, Lovasz [13]. We assume henceforth that λmax = λ2. If not, the
standard way to ensure that λmax = λ2, is to make the chain lazy.

We use the following definition of mixing time TG, for a graph G. For all vertices
u and x in G and any t ≥ TG,

|P (t)
u (x)− πx| ≤ o

(

1

n2

)

. (6)

For convenience we assume that TG = Ω(log n), even if this is not necessary.

Let Eπ(Hw) denote the expected hitting time of a vertex w from the stationary
distribution π. The quantity Eπ(Hw) can be expressed as (see e.g. [2], Chapter 2)

Eπ(Hv) = Zvv/πv, (7)

where

Zvv =

∞
∑

t=0

(P (t)
v (v)− πv). (8)

Let Av(t; u) denote the event that Wu does not visit vertex v in steps 0, ..., t.
The following lemma gives a bound om the probability of this event in terms of
Eπ(Hv) and the mixing time of the walk.

Lemma 1. Let T = TG be a mixing time of a random walk Wu on G satisfying
(6). Then

Pr(Av(t; u)) ≤ e−⌊t/(T+3Eπ(Hv))⌋.

Proof. Let ρ ≡ P
(T )
u be the distribution of Wu on G after T steps. Then (6) and

the fact that πx = Ω(1/n2) for any connected graph imply

Eρ(Hv) = (1 + o(1))Eπ(Hv). (9)
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Let Hv(ρ) be the time to hit v starting from ρ, and let τ = T +3Eπ(Hv). Then,
noting that Eρ(Hv) ≡ E(Hv(ρ)),

Pr(Av(τ ; u)) = Pr(Av(T ; u) and Hv(ρ) ≥ 3Eπ(Hv) )

≤ Pr (Hv(ρ) ≥ 3Eπ(Hv) ) ≤ Pr (Hv(ρ) ≥ e · E(Hv(ρ)) ) ≤ 1

e
.

By restarting the process Wu at W (0) = u,W (τ),W (2τ), . . . ,W (⌊t/τ⌋τ) we obtain

Pr(Av(t; u)) ≤ e−⌊t/τ⌋.

✷

3 Multiple random walks

In this paper we consider the coalescence of k ≥ 2 independent random walks on a
graph G = (VG, EG). To do this we replace the k walks by a single walk as follows.

Let graph Q = Qk = (VQ, EQ) have vertex set VQ = V k. A vertex v of Qk is a
k-tuple v = (v1, v2, ..., vk) of vertices vi ∈ VG, i = 1, ..., k, with repeats allowed. Two
vertices v,w ∈ VQ are adjacent if {v1, w1}, ..., {vk, wk} are edges of G. There is a
direct equivalence between k random walks Wui

(t) on G with starting positions ui

and a single random walk Wu(t) on Qk with starting position u = (u1, u2, ..., uk).
For any starting positions u = (u1, ..., uk) of the walks, let Mk(u) be the time

until the first meeting in G. Let Sk ⊂ V (Qk), the diagonal set of vertices, be defined
by

S = Sk = {(v1, ..., vk) : vi = vj some 1 ≤ i < j ≤ k}.
If the random walk on Qk visits this set, two particles occupy the same vertex in
the underlying graph G and a (coalescing) meeting occurs.

Because visits to a set by a random walk is not a readily manipulated quantity,
the easiest approach is to contract Sk to a single vertex γ = γk = γ(Sk), thus
replacing Qk by a graph Γ = Γk. On contraction, all edges, including loops, are
retained. Thus dΓ (γ) = dQ(S), where dF denotes vertex degree in graph F , and the
degree dF (X) of a set X is the sum of the degrees of the vertices in X. Moreover Γ
and Q have the same total degree, and the degree of any vertex of Γ other than γ
is the same as in graph Q. Let π and π̂ be the stationary distributions of a random
walk on Q and Γ , respectively. If v 6∈ S then π̂v = πv, and π̂γ = πS ≡ ∑

x∈S πx.
It follows that, if TΓ is a mixing time satisfying (6) in Γ , then

E(Mk(u)) ≤ TΓ + (1 + o(1))Eπ̂(Hγk), (10)
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where Eπ̂(Hγk) is the hitting time of γk in Γ from stationarity.
Because we have replaced k individual walks on G by a single walk on Qk, and

then on Γ , we need to relate mixing times on TQ and TΓ directly to a given mixing
time TG of a single random walk on the underlying graph G. (We will need TΓ to
apply Lemma 1 to graph Γ .)

Lemma 2. For random walks in graphs G, Q and Γ , there are mixing times

TG =
log n

1− λ2(G)
, TQ = O(kTG), and TΓ = O(kTG) (11)

such that
max
u,x∈VF

|P t
u(x)− πx| = o(1/n2

F ), for any t ≥ TF ,

where F is any of the graphs G, Q or Γ , and nF = |VF |.
Proof. We get the bound on TG from (5), since πx/πu = O(n) and λ1−λ2

2 has a
constant c < 1 upper bound. To use (5) also to derive bounds on TQ and TΓ , we
need to know the eigenvalues of Qk and Γ in terms of the eigenvalues of G. We
claim that λ2(Γ ) ≤ λ2(Qk), and λ2(Qk) = λ2(G). This follows from established
results, as we next explain.

In the jargon of Markov processes, the random walk on Qk is known as the
tensor product chain, and its eigenvalues are the k-wise products of the eigenvalues
of G. Thus, assuming λ2(G) = λmax(G), it follows that λ2(Qk) = λ2(G). See [12]
page 168 for more details.

In the notation of [2, Ch. 3], the random walk on Γ is the random walk on Qk

with S collapsed to γ(S). It is proved in [2, Ch. 3], Corollary 27, that if a subset
A of vertices is collapsed to a single vertex, then the second eigenvalue of the
transition matrix cannot increase (in that corollary the variable τ2 = 1/(1− λ2)).
Thus λ2(Q) ≥ λ2(Γ ).

We get the factor k in the bounds (11) on the mixing times because we need
|P T

u (x) − πx| = o(1/n3k), as the number of vertices in graphs Q and Γ is O(nk)
and πx/πu = O(n2k). ✷

For reference, we record the salient facts for G,Q, Γ in Table 1. The bound on
πγ will be established in Lemma 4.

4 Expected hitting time from stationarity

Our proofs of Theorems 1 and 2 are based on a good upper bound on the expected
hitting time of vertex γ by a random walk in Γ which starts from the stationary
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Graph F nF πv – stationary distribution TF – mixing time

G nG = n πv = d(v)/2m TG = O(log n/(1− λ2))

Qk nQ = nk πv ≤ (∆/2m)k TQ = O(kTG)

Γk nΓ ≤ nk πγ ≤ (k2(2m)k−2n∆2)/(2m)k TΓ = O(TQ)

Table 1. The main parameters of the random walks on graphs G, Qk and Γk.

distribution. We obtain such a bound using (7) and deriving an upper bound on
Zγγ (Lemma 3) and a lower bound on πγ (Lemma 4).

Lemma 3. Let F be a graph with the eigenvalue gap 1− λ2, then

Zvv ≤
1

1− λ2
. (12)

In particular, for any vertex v of Q or Γ , Zvv ≤ 1/(1− λ2(G)).

Proof. Let λ2 = λ2(F ). Using (5) with x = u = v, then

|P t
v(v)− πv| ≤ λt

2,

and

Zvv =
∑

t≥0

(P t
v(v)− πv) ≤

∑

t≥0

λt
2 =

1

1− λ2
.

From the proof of Lemma 2, both F = Q, Γ satisfy (1 − λ2(Γ )) ≥ 1 − λ2(Q) =
1− λ2(G). ✷

Lemma 4. Let k ≤ log3 n. Let G be a connected n vertex, m edge graph satisfying
∆(G) = o(m/ log6 n). Let γ = γk in Γ be the contraction of S = Sk in Q. Then
there exists ck > 0 constant such that

πγ =
d(γ)

(2m)k
≥ ckk

2ν

n
. (13)

Proof. By definition, d(γ) = d(S). For 1 ≤ x < y ≤ k, define the following subsets
of S:

S(x,y) = {(v1, . . . , vk) : vx = vy}.
We have

S =
⋃

1≤x,<y≤k

S(x,y),
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d
(

S(x,y)

)

= (2m)k−2
∑

v∈V

d2(v),

and for {x, y} 6= {p, q},

d
(

S(x,y) ∩ S(p,q)

)

=

{

(2m)k−4
∑

v,u∈V d2(v)d2(u), if {x, y} ∩ {p, q} = ∅,
(2m)k−3

∑

v∈V d3(v), if |{x, y} ∩ {p, q}| = 1.

Therefore, from the inclusion-exclusion principle and recalling
∑

v∈V d2(v) = νd2n,

d(S)≥
∑

{x,y}

d
(

S(x,y)

)

−
∑

{x,y}6={p,q}

d
(

S(x,y) ∩ S(p,q)

)

≥
(

k

2

)

(2m)k
ν

n
− 3

(

k

4

)

(2m)k
ν2

n2
− 3

(

k

3

)

(2m)k
∆ν

2mn

≥
(

k

2

)

(2m)k
ν

n

(

1− k2ν

n
− k∆

2m

)

=

(

k

2

)

(2m)k
ν

n
(1− o(1)) . (14)

The last equality follows from the assumptions that ∆ = o(m/ log6 n) and k ≤
log3 n, and the fact that ν ≤ ∆n/(2m) = o(n/ log6 n). The bound (13) follows
from (14).

✷

5 Proof of coalescence time

Proof of Theorem 2

Let Mk be the time of the first meeting among k ≤ k∗ particles in G, and let
γ = γk be the contraction of the diagonal set S = Sk. Using (7) for graph Γ and
with v = γ, and Lemmas 3 and 4 we have, that the hitting time Hγ of γ from
stationarity has expected value

Eπ(Hγ) ≤ 1

π(γ)

1

1− λ2
≤ 1

ckk2

n

ν

1

1− λ2
. (15)

Since TΓ = O(kTG), and referring to (10), and Table 1,

E(Mk) ≤ O(kTG) + (1 + o(1))Eπ(Hγ) = O

(

1

1− λ2

(

k log n+
n

νk2

)

)

. (16)
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Proof of Theorem 1

Let Ck be the time for k ≤ k∗ = log3 n particles to coalesce. Then, using (16), we
get

E(Ck) ≤
k

∑

s=2

E(Ms) = O

(

1

1− λ2

(

k2 logn +
n

ν

)

)

, (17)

since
∑

s(1/s
2) ≤ π2/6 is constant.

Now we consider q particles, where log3 n < q ≤ n. We prove that whp there
cannot be a set of k = log3 n particles which has not had a meeting by time t∗,
where

t∗ = k2 (TΓ + 3Eπ(Hγk)) = O

(

1

1− λ2

(

k3 log n+
n

ν

)

)

,

Let P(k) = P(k, v) be the set of particles starting from vertices v = (v1, ..., vk).
Either there has been a meeting during the mixing time TΓ , or if not, Lemma 1
applies for any t ≥ TΓ . The probability that the particles do not meet by time t is
the same as the probability that the random walk in Γk starting from v does not
visit γk by time t. Therefore, applying Lemma 1 to graph Γk, we get

ρk = Pr( No meeting among P(k) particles has occurred by t∗) ≤ e−k2 = e− log6 n.

Hence

Pr(∃ a set P(k) having no meeting by t∗) ≤
(

n

k

)

ρk = O
(

e− log5 n+log4 n
)

.

Thus by t∗ fewer than k particles remain, and an upper bound on the expected
time for all particles to coalesce is

t∗ + E(Ck) +O
(

n−(log4 n)/2t∗
)

= O

(

1

1− λ2

(

k3 logn +
n

ν

)

)

. (18)

The second term, E(Ck), (see (17)) is the expected coalescence time of the (at
most) k particles remaining after t∗. The last term is the expected time to coalesce,
restarting the process at t∗, as many times as needed, under the assumption that
some set of k = log3 n particles had not met at that time. It can be shown that if
∆ = O(m1−ǫ), then the n/ν term dominates the right-hand side of (18)
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Appendix: Proof of Theorem 3 for min-voting

Lemma 5. Let Vq be the set of nodes with a certain opinion q ∈ Olog2 n at a given
time step t. Furthermore, let Wq = ∪q

i=1Vq. If ρ ≤ |Wq| ≤ φn/d for a certain
constant ρ and opinion q, then with probability 1 − exp(−Θ(|Wq|)) the size of the
set Wq increases by a constant factor c′ > 1 in a step.

Proof. First, we show that with probability 1 − exp(−Θ(|Wq|)), the nodes of Wq

are contacted by at least (2−α3)|Wq| edges. We consider a vertex exposure Martin-
gale sequence (Xi)1≤i≤|Wq|, representing the number of edges contacting the nodes
v1, . . . , v|Wq| ∈ Vq. We assume that if more than 1/α2 edges contact a node, then
1/α2 of them are selected uniformly at random, which are allowed to keep their con-
tacts. The rest is released, and the corresponding nodes may contact other nodes in
the remaining steps of the exposure process. Since the released edges may choose
their contacts outside Wq in the subsequent steps of the process, we only make the
number of edges contacting Wq smaller. This implies that the Martingale satisfies
the 1/α2-Lipschitz condition, and the Azuma-Hoeffding bound implies that

Pr(|X|Wq| −X1| ≥ α3|Wq|) ≤ 2 exp

(

− α6|Wq|2
2|Wq|/α4

)

≤ exp(−Θ(|Wq|)). (19)

Now we show that with probability 1 − exp(−Θ(|Wq|)) there are at least
α2|Wq| nodes, which contact exactly one node in Wq. Since |Wq| ≤ φn/d, we have
|N(Wq)| ≥ αd|Wq|. Then, the pigeonhole principle implies that at least αd|Wq|/2
nodes in N(Wq) have at most 2/α neighbours in Wq. An arbitrary such node u
contacts exactly one neighbour in Wq with probability at least

2
|E(u,Wq)|

d

(

1− |E(u,Wq)|
d

)

≥ 2

d
− 2

d2
.

Since there are at least αd|Wq|/2 such nodes, and each of these acts independently,
we use Chernoff bounds to conclude that at least α2|Wq| nodes will contact exactly
one node in Wq, with probability at least 1− exp(−Θ(|Wq|)), whenever ρ is large
enough. Then, with probability 1− exp(−Θ(|Wq|)) the nodes of Wq are contacted
in total by at least

(

2− α3 − α2

2
+ α2

)

|Wq| ≥
2 + α2 − α3

2
|Wq|

nodes, which is larger than |Wq| by at least a constant factor c′ > 1.
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Lemma 6. After step (log log n)2, for an arbitrary q we have |Wq| = 0 or |Wq| ≥
log2 n, with probability 1−1/ logω(1) n. Furthermore, whp there will be at least one
opinion q ∈ Olog2 n, which is contained in at least log2 n nodes.

Proof. For simplicity, we assume that d = o(n/|Wq|), i.e., |N(Wq)| ≥ αd|Wq|. If
|Wq| ≥ ρ, then it follows from Lemma 5 that with probability 1− exp(−Θ(|Wq|))
the number of nodes in Wq increases by some factor c′ > 1 in a step. Now, we
consider the case when |Wq| < ρ. We show that with constant probability the
number of nodes having some opinion at most q increases by at least 1 in a step.
Since we assumed that d is large enough, and due to the fact that ρ does not depend
on d, we may assume ρ << d. We know that each node has d neighbours, and a
node of Wq can have at most |Wq| − 1 neighbours in Wq. Then, a node of N(Wq)
contacts a neighbour in Wq with probability at least 1− (1− 1/d)2 = 2/d− 1/d2.
Since N(Wq) ≥ d − ρ, simple Chernoff bounds imply that whenever d > 2ρ + 1,
there will be ρ + 1 nodes in N(Wq) contacting a node with some opinion 1 . . . q,
with constant probability.

Now we describe the process by a simple random walk. Let P ′ = (V ′, E ′)
with V ′ = {uρ, uρ+1, . . . , ulog2 n} be a path of length O(log2 n), in which node
ui represents the case when |Wq| = i. Furthermore, node ulog2 n represents the

case when at least log2 n nodes have some opinion 1 . . . q. We also define path
P ′′ = (V ′′, E ′′) with V ′′ = {w0, . . . , wρ} of length ρ+1, whose node wi corresponds
to the case |Wq| = i. Note that state ρ is contained in both paths. On path P ′

there is a transition from each node ui to the set of nodes uc′i+Ω(1) with probability
1−exp(−Θ(i)). On path P ′′, there is a constant transition from each node wi with
i > 0 to the set of nodes wi+Ω(1). Furthermore, the random walk is stopped as
soon as node ulog2 n is reached. Therefore, a random walk on the combined path
P ′ ∪P ′′ satisfies the conditions of Lemma A.4 from [8], and we may conclude that
the number of nodes with some opinion 1 . . . q will exceed log2 n within (log logn)2

steps, with probability 1−log−ω(1) n. According to Lemma 5, once some Wq reaches
log2 n, it will allways increase within the next (log log n)2 steps, with probability
1− n−ω(1).

Concerning the second statement of the lemma, we observe that |Wlog2 n| =
log2 n at step (log log n)2, with probability 1 − log−ω(1) n. Thus, there is a q with
|Wq| = |Vq| ≥ log2 n at step (log logn)2, whp.

In the following, we assume that q is chosen such that Wq = Vq at step
(log logn)2. That is, q is the smallest opinion, which is contained in the graph
after (log log n)2 steps. Then, it follows from the previous lemma that |Vq| ≥ log2 n
at that time step, whp. Now we show the following lemma.
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Lemma 7. Assume that at some time step the number of nodes with the (cur-
rently) smallest opinion q in the graph is at least log2 n. Then, after additional
O(logn) steps the number of nodes with this opinion is at least n/2, with probabil-
ity 1− n−ω(1).

Proof. As long as |Vq| ≤ φn/d, the statement of the lemma follows from Lemma
5. Therefore, we only consider the case φn/d ≤ |Vq| ≤ n/2 here. First, we assume
that there are n/40 nodes in V \ Vq, which have more than αd|Vq|/n, but less
than d− αd|Vq|/n neighbours in Vq. Then, using similar Martingale arguments as
in Lemma 5, Equation (19) implies that there are at least (2 − α/42)|Vq| edges
contacting nodes in Vq. Furthermore, one of the n/40 nodes above contacts set Vq

with exactly one edge with probability 2αd|Vq |
nd

(

1− αd|Vq |
nd

)

. Since there are at least

n/40 such nodes, there will be in expectation 2α|Vq|
40

(

1− α|Vq|
40

)

nodes contacting

Vq with exactly one edge. Applying simple Chernoff bounds, at least 2α|Vq|/41
nodes will contact Vq with exactly one edge, with probability 1 − n−Ω(1). Putting
everything together, we obtain that within one step, the number of nodes with
opinion q increases by a constant factor larger than 1, with probability 1− n−Ω(1).

Now we show that there must exist n/40 nodes in V \Vq which have more than
αd|Vq|/n, but less than d− αd|Vq|/n neighbours in Vq. We know that

|E(Vq, V \ Vq)| ≤
d|Vq||V \ Vq|

n
+ λd

√

|Vq||V \ Vq|.

In the rest of the proof, we assume for simplicity that λ = o(1) (a more sophisti-
cated analysis leads to the same result if λ << 1/

√
d, if d = O(1)). Assume that

there are less than n/20 nodes in V \ Vq with less than d−αd|Vq|/n neighbours in
Vq. Then, the number of edges between Vq and V \ Vq is at least

(

|V \ Vq| −
n

20

)

(

d− αd
|Vq|
n

)

≥
(

|V \ Vq| −
n

20

)

d
(

1− α

2

)

(20)

≥ 9|V \ Vq|
10

d
(

1− α

2

)

,

where α/2 can be arbitrarily small. On the other side

|E(Vq, V \ Vq)| ≤
d|Vq||V \ Vq|

n
(1 + o(1)) ≤ |V \ Vq|

2
d(1 + o(1))

which is much smaller than the value in Equation (20) leading to contradiction.
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On the other hand, the number of nodes in V \Vq which have less than αd|Vq|/n
neighbours in Vq is at most

βn2

d|Vq|
≤ βn

φ
<

n

40

if β/φ < 1/40. This implies that at least n/40 nodes in V \ Vq have more than
αd|Vq|/n, but less than d− αd|Vq|/n neighbours in Vq.

Now we consider the case |Vq| > n/2.

Lemma 8. Assume that at some time step the number of nodes with the (cur-
rently) smallest opinion q in the graph is at least n/2. Then, after additional
O(logn) steps all nodes will have opinion q, whp.

Proof. The proof basically follows the arguments given in the previous lemmas. Let
V q represent the set of nodes which do not have opinion q. We show that within
one step, V q decreases by a constant factor, with probability 1 − n−Ω(1). Again,
we consider two cases. First, we assume that |V q| ≥ φn/d. Then, using the same
arguments as in Lemmas 7 and 5, there are at most (2+α/42)|V q| edges contacting
nodes in V q. On the other hand, Lemma 7 also implies that at least n/40 nodes
in V \ V q have more than αd|V q|/n, but less than d−αd|V q|/n neighbours in V q.
These statements combined with the arguments of Lemma 5 imply that at least
2α|V q|/41 nodes will contact V q with exactly one edge, with probability 1−n−Ω(1).
Then, the total number of nodes contacting V q with both edges is at most

(

2 +
α

42
− 2α

41

) |V q|
2

,

with probability 1−n−Ω(1). Thus, with probability 1−n−Ω(1) the number of nodes,
which do not have opinion q, decreases by a constant fraction.

Now we consider the case |V q| < φn/d. Using the same Martingale approach as
in Lemma 5, Equation (19) implies that with probability 1 − exp(−Θ(V q)) there
are at most (2 + α3)|V q| edges contacting nodes in V q. On the other hand, with
probability 1− exp(−Θ(|V q|)) there are at least α2|V q| nodes in Vq, which contact
V q with exactly one edge. Thus, the total number of nodes which contact V q with
both edges is at most (2 + α3 − α2)|V q|/2, with probability 1 − exp(−Θ(|V q|)).
This implies that after logn steps, all but at most log2 n nodes will have the same
opinion q, with probability 1− n−Ω(1).

For the case |V q| ≤ log2 n, we use the random walk approach described in
Lemma 5. However, in this case, the nodes ui and wi in the paths P ′ and P ′′,
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respectively, represent the cases when i nodes do not have opinion q. Then, a node
ui makes a transition to some node ui/c′−Ω(1) with probability 1−exp(−Θ(i)), where
c′ > 1. Furthermore, a node wi makes a transition to a node wi−Ω(1) with constant
probability. According to the arguments above and to Lemma 5, the random walk
will reach node u0 within (log log n)2 steps, with probability 1 − log−ω(1) n. Thus,
the lemma follows.


