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Abstract

A random graph model with prescribed degree distribution and degree dependent
edge weights is introduced. Each vertex is independently equipped with a random
number of half-edges and each half-edge is assigned an integer valued weight accord-
ing to a distribution that is allowed to depend on the degree of its vertex. Half-edges
with the same weight are then paired randomly to create edges. An expression for
the threshold for the appearance of a giant component in the resulting graph is
derived using results on multi-type branching processes. The same technique also
gives an expression for the basic reproduction number for an epidemic on the graph
where the probability that a certain edge is used for transmission is a function of the
edge weight. It is demonstrated that, if vertices with large degree tend to have large
(small) weights on their edges and if the transmission probability increases with the
edge weight, then it is easier (harder) for the epidemic to take off compared to a
randomized epidemic with the same degree and weight distribution. A recipe for
calculating the probability of a large outbreak in the epidemic and the size of such
an outbreak is also given. Finally, the model is fitted to three empirical weighted
networks of importance for the spread of contagious diseases and it is shown that
R0 can be substantially over- or underestimated if the correlation between degree
and weight is not taken into account.
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1 Introduction

Random graph models aimed at describing large scale network structures have been much
studied the last few years; see e.g. [9, 10] and the references therein. One reason for being
interested in such models is that realistic network models make it possible to quantify
and predict the outcome of epidemics taking place on the networks. Most work so far on
network epidemics have been restricted to unweighted graphs where transmission takes
place along all edges with the same probability; see e.g. [1, 2, 4, 16]. The purpose of the
present work is to formulate a model for a weighted network where the weight of an edge
is a function of the degrees of the adjacent vertices. Moreover, a simple epidemic on such
a network will be analyzed where the transmission probability is taken to be a function
of the edge weight. This generalizes work by Britton et al. [4] and Deijfen [8].

The network model we shall work with is a generalization of the well known configura-
tion model; see [14, 15]. Each vertex is independently assigned a number of half-edges
according to a fixed degree distribution and each half-edge is given an integer valued
weight according to a distribution that is allowed to depend on the degree of its vertex.
Half-edges with the same weight are then paired completely at random to create edges.
Once the graph has been generated we let a Reed-Frost epidemic with weight-dependent
infection probabilities spread on it. More specifically, each vertex that is infective at time
t (t = 1, 2, . . .) independently infects each of its susceptible neighbors with a probabil-
ity that is a function π(w) of the weight w of the connecting edge and is then removed
from the epidemic process. At time t + 1, the infected neighbors become infective and
transmit the infection according to the same rules. The weights hence have a twofold ef-
fect: they affect the structure of the underlying network and they determine the infection
probabilities in the epidemic taking place on the network.

We analyse the model as the vertex population size n tends to infinity using branching
process approximations. A large outbreak in the epidemic is said to occur if a positive
fraction of the population is asymptotically infected and the basic reproduction number,
R0, is defined as a function of the parameters of the model such that a large outbreak has
positive probability if and only if R0 > 1. Clearly, positive probability of a large outbreak
in a Reed-Frost network epidemic initiated by one single infective is equivalent to the
existence of a giant component – that is, a component of order n – in a thinned version of
the underlying network where each edge is kept independently with a probability specified
by the infection probability through the edge. We derive an expression for the basic
reproduction number in our model. Taking the infection probability deterministically
equal to 1 in this expression yields a threshold parameter for the occurrence of a giant
component in the underlying graph. Furthermore, we briefly mention how an expression
for the probability of a large outbreak and the relative size of the outbreak can be derived.
Indeed, these quantities coincide and can be characterized using the same branching
process approximation that yields the basic reproduction number.

The basic reproduction number for our model is a function of the degree distribution, the
(degree dependent) weight distribution and the (weight dependent) infection probability.
We illustrate its behavior in a few specific cases. For instance we demonstrate that,
in a case where the edges of high degree vertices tend to be given small weights (that
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is, the network has a negative degree-weight correlation) and the infection probability
increases with the weight, it is more difficult for an epidemic to take off compared to
a situation where the weights are assigned independently of the degrees, with the same
fraction of edges of each weight. Conversely, if the edges of high degree vertices tend to
have large weights (that is, the network has positive degree-weight correlation), epidemics
take off more easily. We also illustrate our results on three empirical networks. The
first network comprises patients that have been registered at the same ward at a hospital
and the weights here correspond to the number of days that pairs of patients have spent
simultaneously at the same ward. The second network is obtained from register data
on household and workplace structure in Sweden. Vertices represent workplaces and the
weight on a link between two workplaces indicates the number of households that contain
one person working at one of the workplaces and one person working at the other. The
third data network consist of sexual contacts and the weights here represent the number
of intercourses per contact. The first two networks have positive degree-weight correlation
whereas the third data set has negative degree-weight correlation.

The rest of the paper is organized as follows. In Section 2, we define the network model,
comment on its relation to the standard configuration model and define the epidemic
model on the network. Section 3 is devoted to the derivation of the basic reproduction
number for the epidemic and, as a special case, the threshold parameter for the appearance
of a giant component in the network itself. The behavior of the threshold is then illustrated
in a few examples in Section 3.1. In Section 4, we briefly describe how the probability of
a large outbreak and, equivalently, the size of the outbreak, can be characterized. Section
5 contains applications with data from real-world networks, and Section 6 concludes with
a short discussion on further work.

2 Description of the model

In this section we define the construction of the network model and the epidemic model,
starting with the network.

2.1 A model for a weighted network

Let n denote the number of vertices. The vertices are first given strictly positive i.i.d.
degrees D1, . . . , Dn according to a prescribed distribution P (D = d) = p(d) (the degrees
are assumed strictly positive since vertices with degree zero are not part of the network
and can therefore be disregarded). We think of Di as the number of stubs (or half-
edges) sticking out of vertex i (i = 1, . . . , n). Each stub is then independently assigned
a non-negative integer valued weight, where the weights of the stubs of vertex i have a
distribution that is determined by the degree Di of the vertex. More specifically, if Di = d,
then the d stubs are given i.i.d. weights Wi1, . . . ,Wid according to a distribution {q(w|d)},
that is, we have

P (Wij = w|Di = d) = q(w|d), j = 1, . . . , d.
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The network is now formed by paring up stubs with the same weight completely at
random. More specifically, to pair up the stubs with weight w, first pick two stubs at
random from the set of all stubs with weight w and join them into an edge, then pick
two stubs at random from the set of remaining stubs with weight w and join them. And
so on. If the number of stubs with weight w is odd, we throw away the last stub. This
pairing procedure is applied separately for each weight w.

To conclude, the model is defined in a very similar way as the well-known configuration
model using the degree distribution {p(d)} and the family of weight distributions {q(w|d)}.
Indeed, we retrieve the standard configuration model if all stubs are deterministically
assigned the same weight regardless of the degree. If, more generally, the edges are
assigned weights independently of the degrees – that is, if q(w|d) = q(w) for all d – then the
model is equivalent to first generating the graph according to the standard configuration
model and then assigning the weights independently according to the distribution q(w).
This case has previously been analyzed in [8].

It is not hard to see that the fact that we are removing the last remaining stub with a
given weight in case the total number of stubs with this weight is odd does not affect
the degree and weight distributions in the network in the limit as n → ∞. Furthermore,
for the standard configuration model, it is well-known that the fraction of self-loops and
multiple edges between vertices is small as soon as the degree distribution has finite
second moment. More specifically, removing self-loops and multiple edges does not change
the degree distribution in the graph, and the probability of obtaining a simple graph is
bounded away from 0 as n → ∞; see [10, Theorem 7.9] and [4, Lemma 5.5]. Clearly
the same applies to our generalized model. Furthermore, the graph is tree-like, meaning
that with high probability it does not contain short cycles. This allows for various types
of branching process approximations; see e.g. [1, 4, 12] for rigorous treatments of the
standard configuration model.

Before proceeding, we remark that the proposed model can give rise to graphs that are
very different from the standard configuration model. For instance, if all stubs at vertices
with degree d are assigned weight wd, with wd1 6= wd2 for d1 6= d2, then a graph is obtained
where edges run only between vertices with the same degree and where the set of vertices
with degree d constitute a sub-graph with the same structure as a graph obtained from the
standard configuration model with constant degree d. The configuration model yields a
fully connected graph (in probability) if P (D ≥ 3) = 1, see [10, Theorem 10.14], and hence
the above assignment of weights leads to a graph where, for each d = 3, 4, . . ., all vertices
with degree d constitute a connected component of their own. This contrasts with the
standard configuration model where a giant component – that is, a component containing a
positive fraction of the vertices – is unique and occurs if and only if E[D(D−1)]/E[D] > 1;
see e.g. [12, 14]. Various generalizations of the above division of the graph based on
the degrees of the vertices are possible. For instance, take subsets A1, A2, . . . ⊂ N and
B1, B2 . . . ⊂ N, and assign the weights in such a way that vertices with degrees in Ai are
given weights in Bi. If Ai∩Aj = Bi∩Bj = ∅ for i 6= j, then each component in the graph
will contain only vertices with degrees in a given set Ai.
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2.2 The epidemic model

Given the network defined above, a Reed-Frost type epidemic spreads randomly in the
network in the following way. Initially, at time t = 1, one randomly selected vertex
is infected and the remaining vertices are susceptible. The infection then spreads in
generations in that a vertex that is infected at time t (t = 1, 2, . . .) infects each of its
susceptible neighbors independently with a probability that depends on the weight of the
connecting edge: if the weight is w, then the infection probability is π(w) ∈ [0, 1]. At
time t + 1, all vertices that were infected at time t become immune (or die) and play no
further role in the epidemic. The epidemic goes on until there are no new infections –
then the epidemic stops, and the vertices that have been infected during the course of the
outbreak make up the set of ultimately infected vertices.

As for the infection probability π(w), there are many possible choices. Typically, we think
of the weight of an edge as representing the strength or the intensity of the connection,
and the infection probability π(w) is then increasing in w. For instance, in a situation
where the integer weight w on an edge represents the number of contacts between the
corresponding vertices in a certain time interval, one natural candidate is

π(w) = 1− (1− s)w,

where s is the per-contact probability of infection. However it is also possible to let the
weights represent resistances in the connections, and π(w) is then naturally decreasing.
Finally, if we let π(w) ≡ 1 for all w there is no thinning and we retrieve the original
network.

3 Threshold parameter

In this section we derive an asymptotic expression for the basic reproduction number
in the epidemic as n → ∞ or, equivalently, for the threshold for the appearance of a
giant component in the weighted network where an edge with weight w is removed with
probability 1 − π(w). The expression is valid under the assumption that a component
can contain vertices with all possible degrees. This excludes cases where the weights
are assigned in such a way that certain degrees are isolated in separate components, as
described in Section 2.2. Furthermore, in order to be able to rely on standard results for
multi-type branching processes, we shall assume throughout that the degree distribution
as well as the weight distributions have bounded support. We expect however that the
resulting expressions are valid as soon as the degree distribution has finite second moment.

Denote a vertex with degree d by ‘d-vertex’ and let pd(k) denote the probability that a
given neighbor of a d-vertex is a k-vertex. A d-vertex has d neighbors and, because the
weights of the stubs are independent, the degrees of different neighbors become indepen-
dent as n → ∞. The probability that a given neighbor has degree k depends on the weight
w of the connecting edge: if the weight is w, the probability that it leads to a k-vertex
equals the probability p̃w(k) that a randomly chosen w-stub belongs to a k-vertex, where
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we have

p̃w(k) =
q(w|k)kp(k)
∑

j q(w|j)jp(j)
.

Hence
pd(k) =

∑

w

q(w|d)p̃w(k). (1)

Now consider the epidemic process and assume that n is large. Except for the index case,
all infected vertices will have been infected by one of their neighbors. On the other hand,
because there are with high probability no short cycles in the network, the remaining
neighbors of an infected vertex during the early stages of the epidemic will be susceptible
with high probability. As a consequence, an infected d-vertex will with high probability
have d − 1 susceptible neighbors during the early stages. How many of these will the d-
vertex infect and what are the degrees of the infected neighbors? The answer depends on
the degree distribution of the neighbors and on the weights of the connecting edges. For
k = 1, 2, . . ., let pxd(k) denote the probability that a given susceptible neighbor has degree
k and becomes infected by our d-vertex and write Xd(k) for the number of susceptible
k-neighbors that become infected. As in deriving (1), we obtain

pxd(k) =
∑

w

π(w)q(w|d)p̃w(k), (2)

and conclude that E[Xd(k)] = (d− 1)pxd(k).

During the early stages of the epidemic, when the fraction of already infected vertices
is still negligible, the epidemic may be approximated by a multitype branching process,
where the type of a vertex is given by its degree. For vertices in generation t ≥ 2, the
expected offspring is specified above (the offspring of the index case is different; see Section
4). In particular, during the early stages of the epidemic (excluding the first generation),
the expected number of k-vertices that an infected d-vertex infects equals

mdk = E[Xd(k)] = (d− 1)pxd(k) = (d− 1)
∑

w

π(w)q(w|d)p̃w(k).

The matrix M = (mdk)d,k≥1 is known as the mean offspring matrix and it is well-known
from the theory of multi-type branching processes that, under the assumption that each
type has the possibility of giving rise to offspring of any other type within a finite number
of generations, the process has a positive probability of growing beyond all limits if and
only if the largest eigenvalue of the offspring matrix exceeds 1; see e.g. [11, Chapter 4]. In
our setting, the type 1 vertices are infertile and the above assumption is hence not met.
It is however easy to see that our process has a positive probability of exploding if and
only if the process defined by the type d vertices, with d ≥ 2, has a positive probability
of exploding. Indeed, the degree 1 vertices do not contribute to further spread of the
epidemic (they do however contribute to the final size of the epidemic; see Section 4).
The basic reproduction number R0, is hence given by the largest eigenvalue of the matrix
M2 = (mdk)d,k≥2 and a major outbreak can occur if and only if R0 > 1. Taking π(w) ≡ 1
gives the threshold for the occurrence of a giant component in the original network.
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Before proceeding, we remark that M can be written as the product A ·B of two matrices
A = (adw) and B = (bwk), where adw = (d−1)π(w)q(w|d) is the expected number of edges
with weight w from a d-vertex that are used to transmit infection, and bwk = p̃w(k) is the
probability that a given edge with weight w is attached to a k-vertex. The exploration of
the degrees of the neighbors that are infected by a given d-vertex can hence be divided
in two steps: first the d-vertex gives rise to a number of weighted transmission links,
and then the other end of each transmission link is connected to a vertex whose degree
depends on the weight of the link.

3.1 Examples

Here we investigate the threshold parameter for some specific choices of degree and weight
distributions.

Example 3.1 First we consider the case where the weights are independent of the degrees,
that is, q(w|d) = q(w) for all d. As already pointed out, the model is then equivalent
to first generating the graph according to the standard configuration model and then
assigning a weight independently to each edge according to the weight distribution q(w),
a case previously analyzed in [8]. Using (1), we get that

pd(k) =
kp(k)
∑

j jp(j)
=

kp(k)

µD

:= p̃(k), (3)

so the degree distribution of the neighbors of a d-individual is independent of d and given
by the size-biased degree distribution. The mean offspring matrix M = (mdk) is given by

mdk = (d− 1)
kp(k)

µD

∑

w

π(w)q(w) = (d− 1)p̃(k)E[π(W )],

where E[π(W )] is the unconditional transmission probability of a randomly selected edge
(which is independent of the adjacent vertices in this example). Since this matrix can be
written as a column vector multiplied by a row vector, the largest eigenvalue equals the
sum of the diagonal elements, that is,

R0 = E[π(W )]
∑

k

(k − 1)p̃(k) = E[π(W )]

(

µD +
σ2
D − µD

µD

)

,

where µD and σ2
D denote the mean and variance, respectively, in the degree distribution.

The threshold is hence the same as for a homogeneous infection on the standard configu-
ration model with infection probability given by the expected transmission probability of
the connections, which is in agreement with the result in [8]. Furthermore, when W ≡ 1,
the transmission probability along any edge is π(1) =: π and the above expression con-
incides with previous results for homogeneous epidemics on the configuration model; see
e.g. [4]. ✷

Example 3.2 When the weights are correlated with the degrees, the underlying graph
can have a structure that is very different from graphs obtained from the standard con-
figuration model. Consider for instance a case where the only possible degrees are 1 and
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3 and with p(1) = 1 − p(3) = 0.8 (and π(w) ≡ 1). The value of the critical parameter
E[D(D−1)]/E[D] for the standard configuration model is then 0.86. On the other hand,
assume that there are two possible weights w1 and w2 for the 1-vertices and two possible
weights w2 and w3 for the 3-vertices. Figure 1 shows a plot of the critical parameter as
a function of q(w2|3) for q(w2|1) = 0.3 (so q(w1|1) = 0.7 and q(w3|3) = 1 − q(w2|3)). We
see that the graph is supercritical for all choices of q(w2|3). This is because 1-vertices
and 3-vertices are now only connected by edges with weight w2 and, when the fraction of
edges with weight w2 on the 1-vertices is small, the interference from the 1-vertices is not
enough to suppress the giant component formed by the 3-vertices without the presence
of 1-vertices. Note that, since π(w) ≡ 1 in this example, the only effect of the weight is
that they introduce degree correlation in the graph. ✷

Example 3.3 We next give an example with Po(4)-degree distribution conditioned on
being in [1,200], and with two possible weights w1 and w2, with w1 < w2. First take
q(w2|d) = d−α (and q(w1|d) = 1 − q(w2|d)) for α > 0– that is, the probability that a
given link from a d-individual has the larger weight w2 decays with d at rate α – and set
π(w1) = 0.1 and π(w2) = 0.7. Figure 2 shows a plot of R0 (solid line) against α. The
dashed line represents the basic reproduction number for an epidemic where the weights
are assigned independently of the degrees in such a way that the fraction of edges with
weight w1 and w2 respectively is the same as in the above network, that is, the probability
of assigning weight w2 to a given stub is set to

q(w2) =
∑

k

p̃(k)k−α,

where p̃(k) = kp(k)/µD. The plot reveals that the epidemic with negative degree-
correlated weights has a smaller R0, which is explained by the fact that the high-weight
edges are then less likely to be connected to high-degree vertices. Naturally, the repro-
duction numbers converge as α increases to the threshold for a homogeneous epidemic
with infection probability 0.1 (since there will be very few high-weight edges for large α).

Figure 3 shows a plot of R0 against α for the same setup, but with q(w2|d) = 1 − d−α,
that is, the probability that a given link from a d-individual has the larger weight w2

now instead increases with d. Now the epidemic with the degree-correlated weights has
the largest R0, since the large-weight edges occur with higher probability at high-degree
vertices, making it easier for the epidemic to take off. ✷

Example 3.4 Finally consider a case where the expected total weight of all edges of
a vertex, given the degree of the vertex, is fixed and independent of the degree. More
specifically, fix γ ∈ R and, for w ∈ N, let q(w|d) be the probability that a Po(γ/d)-variable
takes on the value w. The expected weight on an edge of a d-vertex is then γ/d and hence
the expected total weight of a d-vertex is γ. The transmission probability for an edge with
weight w is set to π(w) = 1− (1− s)w+1. Figure 4 shows a plot of the basic reproduction
number against s when the degree distribution is Po(8), conditioned on being positive,
and with γ = 8 (so on average 8 friends and expected total weight γ = 8). For comparison,
a plot of the basic reproduction number for an epidemic where the weights are assigned
independently of the degrees is also included. There, q(w|d) is taken to be the probability
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Figure 1: Threshold parameter for p(1) = 1 − p(3) = 0.8 with two possible weights w1

and w2 for degree 1 and weights w2 and w3 for degree 3, and with π(w) ≡ 1 (cf. Example
3.2). The value of the threshold is plotted as a function of q(w2|3) for q(w2|1) = 0.3 (solid
line) and the horizontal line indicates the threshold for the standard configuration model
with the same degree distribution.
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Figure 2: Basic reproduction numbers for two-point weights w1 < w2 with π(w1) = 0.1
and π(w2) = 0.7 and with Po(4) degrees conditioned on being in [1,200] (cf. Example 3.3).
Degree correlated weights with P (w2|D = d) = d−α (solid line) and degree independent
weights with the same fraction of large-weight edges (dashed line) plotted against α.
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that a Po(γ/µ) variable takes on the value w, which means that the expected total weight
per vertex still equals γ = 8 (and E(D) = µ = 8). The plot reveals however that the basic
reproduction number for the epidemic with degree dependent weights is much smaller (in
fact always below the critical value 1). This follows from the fact that the expected total
weight of a vertex is kept fixed independently of the degree which implies that the edges
of high degree vertices will be assigned smaller weights. ✷

In Example 3.4, the expected total weight of a vertex conditionally on its degree, is kept
fixed, which may be natural in many applications. From the perspective of the epidemic,
a related, and perhaps even more important quantity, is the expected total ”infection
pressure” of a vertex. This is quantified for a d-vertex by

t(d) := (d− 1)
∑

w

q(w|d)π(w) = (d− 1)E[π(W )|D = d], (4)

that is, t(d) is the expected number of neighbors that a d-vertex infects during the early
stages of the epidemic. If t(d) is increasing (decreasing) in d, vertices with high degree
tend to cause more (fewer) new cases. Furthermore, it is easy to see that, if t(d) =
t for all degrees d, then R0 = t. Equation (4) also illustrates that two ”competing”
factors determine whether a large outbreak is possible or not. One factor is the degree
distribution, further emphasized by the size-biasing for infected vertices. This factor is
also present in un-weighted networks, as described in Example 3.1, and it is well-known
that a heavy tailed degree distribution gives rise to a large R0. The other factor is the
expected transmission probability as a function of the degree, or more generally, the
distribution of the transmission probability as a function of the degree. If E[π(W )|D = d]
also increases with d this will make R0 even larger, whereas the perhaps more likely
scenario that E[π(W )|D = d] decreases with d will typically downplay the role of a heavy
tailed degree distribution (cf. [5] for an illustration of this phenomenon only allowing two
different weights). If the transmission probability is very small for vertices with high
degree, a heavy tailed degree distribution may even lead to a smaller R0.

4 Outbreak probability and final size

As mentioned in the introduction there is a close relationship between the final size of a
major outbreak and the probability of a major outbreak for Reed-Frost type epidemics.
In particular, if the epidemic is started by one randomly selected index case, then, as the
population size n tends to infinity, the probability ρ of a major outbreak coincides with
the proportion τ that is infected in case a major outbreak occurs; see e.g. [3]. Below we
outline how to derive ρ having the above dual interpretation. We do this by taking the
methodology presented in Section 3 one step further.

Recall that Xd(k) is the (random) number of k-vertices that a d-vertex infects during
the early stages of the epidemic (excluding the first generation since the index case has
all its neighbors susceptible instead of all but one). The d-vertex has d − 1 susceptible
neighbors (it was infected by one neighbor but the others are, with high probability,
still susceptible) and of these it might infect some k-neighbors, some j-neighbors and so
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Figure 3: Basic reproduction number plotted against α for Example 3.3, but with
P (w2|D = d) = 1− d−α.
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Figure 4: Plot of the basic reproduction number R0 as a function of s for Example 3.4.
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are assigned independently of the degrees.
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on. It might however also fail to infect some k-neighbors, some j-neighbors and so on.
What happens along each outgoing stub from the d-vertex is independent and identically
distributed, and the probability that a k-individual is infected equals pxd(k) defined in (2).
If we let Y count the number of neighbors that do not get infected (irrespective of type) it
hence follows that the vector Zd = (Xd(1), . . . , Xd(kmax), Y ) is multinomially distributed
with parameters d − 1 and pxd(1), . . . , p

x
d(kmax), p̄, where p̄ = 1 −

∑

k
pxd(k). This holds

for d = 1, . . . , kmax. These so-called offspring distributions Zd, d = 1, . . . , kmax, defines
the multi-type branching process with which the initial phase of the epidemic may be
approximated by (for large n).

We now use results from branching process theory (see e.g. [11]) to derive the probability
ρ that the branching process grows beyond all limits (which corresponds to a major
outbreak in the epidemic). First we note that 1-vertices that are infected in the second
or succeeding generations have no effect on ρ because they will never spread the infection
onwards and hence have no effect on the probability of growing beyond all limits. We
hence neglect 1-vertices in the branching process. Define for d = 2, . . . , kmax

fd(s2, . . . , skmax
) = E

(

s
Xd(2)
2 · · · · · s

Xd(kmax)
kmax

)

=

(

pxd(1) +
∑

k≥2

skp
x
d(k) + p̄

)d−1

,

where the last equality follows from properties of the multinomial distribution (fd is more
or less the probability generating function of Zd). The extinction probability qd if starting
with one d-vertex in generation 2 or later (d = 2, . . . , kmax) is then given by the smallest
solution to the equation system

q2 = f2(q2, . . . , qkmax
)

... (5)

qkmax
= fkmax

(q2, . . . , qkmax
).

From branching process theory it is well-known that qk = 1 for all k if R0 ≤ 1, whereas
if R0 > 1 there is a unique solution q = (q2, . . . , qkmax

) satisfying 0 < qk < 0 for all k.
These are the extinction probabilities of ancestors in the second generation and later.
The distribution of the number of vertices infected in the second generation (i.e. by the
index case) is different for two reasons: the index case has degree distribution {p(d)} and
can infect all (rather than all but one) of its neighbors, implying that also 1-vertices can
start a major outbreak. We obtain the outbreak probability ρ by conditioning first on
the degree of the index case and secondly on the number of infected vertices of each type
that the index case infects (that is, those that make up the second generation). For d =
1, . . . , dkmax

, let (X̃d(2), . . . , X̃d(kmax)) have the same distribution as (Xd(2), . . . , Xd(kmax))
with the only difference that d− 1 is replaced by d in the multinomial distribution. The
probability 1− ρ of not having a major outbreak is then given by

1− ρ =
∑

d≥1

p(d)E
(

q
X̃d(2)
2 · · · · · q

X̃d(kmax)
kmax

)

=
∑

d≥1

(

pxd(1) +
∑

k≥2

qkp
x
d(k) + p̄

)d

. (6)
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The numerical difficulties in deriving ρ are two-fold. First pxd(k) defined in (2) have to be
computed for all d and k, and then the equation system (5) defining the vector q has to
be solved numerically. Once this is done, computing ρ is straightforward using (6).

5 Fitting the network model to data

Suppose data is collected from a weighted network with n vertices. The information is
summarized by a table {n(w, d);w = 1, 2, . . . , d = 1, 2, . . . }, where n(w, d) denotes the
number of edges with weight w that are connected to d-vertices. Furthermore, let n(d)
denote the number of d-vertices. We then have

∑

w n(w, d) = dn(d), or equivalently
n(d) =

∑

w n(w, d)/d, satisfying
∑

d n(d) = n.

The data give rise to natural estimates of the degree distribution p(d) and the weight
distribution q(w|d):

p̂(d) =
n(d)

n
, (7)

q̂(w|d) =
n(w, d)
∑

v n(v, d)
. (8)

We now fit the model to three empirical weighted networks with importance for the spread
of contagious diseases.

Network 1: Inpatients. The first network consists of hospital inpatients connected to
each other by weighted links, where the weight on a link between two patients indicates
the number of days that these patients have been registered simultaneously at the same
ward in the region of Stockholm [13]. A patient leaving a ward the same day as another
patient enters the ward induces a link with weight 1, a patient leaving the ward the day
after another patient enters the ward induces a link with weight 2, and so on. The total
sampling period is seven days. The network has a positive degree-weight correlation.

Network 2: Workplaces. The second network is based on register data on workplaces
and households in Sweden [6, 7]. Vertices represent workplaces and the weight on a link
between two workplaces indicates the number or households where one person works at
one of the workplaces and one person works at the other. Here, a household is defined
as a married couple (with or without children), or a unmarried couple having children
together, that live in the same flat or house. Unmarried couples without children and
other individuals sharing a household are not registered as households in the database
and are therefore not taken into account in the analysis. The network exhibits positive
degree-weight correlation.

Network 3: Sex contacts. The third network describes survey data from a detailed
sexual study carried out on the island of Gotland in Sweden in 1988 [5, 19]. The survey
contained questions that make it possible to estimate both the number of partners and
the number of intercourses per partner for each respondent (during a year). We will not
take gender into account in the analysis since, in its current form, the model suggested
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Inpatients Workplaces Sex contacts
n 8227 318362 477
# Links 133762 957778 1159
Mean(d) 50.2 104.0 2.4
Stdev(d) 31.7 305.0 2.1
Deg.corr. 0.29 0.10 -0.34
Mean(w) 4.4 1.1 40.7
Stdev(w) 2.3 0.9 59353

Table 1: Summary statistics for the empirical networks.

here is not applicable to bipartite network data. The network has negative degree-weight
correlation.

Basic statistical information about the networks can be found in Table 1. All three net-
works display non scale-free degree distributions; see Figure 5. A difference however is
that the patient and workplace networks have an assortative structure (that is, positive
degree correlation) while the sexual contact network has a disassortative structure. Fur-
thermore, the workplace network stands out from the other two in that it has a mean
weight close to 1 (meaning that most connected workplaces are only connected through
one common household).

Figures 6-8 show R0 as a function of s, where π(w) = 1− (1− s)w. In the three networks,
the parameter s is interpreted as risk of transmission per day spent at the same ward,
risk of transmission per household connecting two workplaces and risk of transmission
per sexual intercourse, respectively. As a reference, the values obtained in networks with
the same degrees and weights but where the weights have been re-shuffled and assigned
independently of the degree are also included.

For both the hospital and the workplace networks we observe higher values of R0 com-
pared to the re-shuffled networks. This is because in those networks vertices with large
degree have larger average weight on their edges compared to vertices with low degree,
and will therefore be more effective spreaders than their counterparts in the re-shuffled
networks. The sexual contact data exhibits a qualitatively different relationship between
the empirical network and the re-shuffled network: here R0 is smaller for the empirical
data than the re-shuffled data when s is small and larger than the re-shuffled data when
s is large. The reason for this is that large degree vertices will tend to have larger weights
on their edges in the re-shuffled network, which is important when the risk of transmission
per contact (that is, s) is small. On the other hand, the empirical data is more assortative
than the re-shuffled data, which results in larger values of R0 compared to the re-shuffled
data when the risk of transmission per contact is high. Finally, the observed differences
in functional form of R0 as a function of s between the networks can mainly be explained
by the differences in average weight.
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Figure 5: Degree tails for the empirical networks.
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Figure 6: Basic reproduction number plotted against transmission probability per contact
s for the inpatient network.
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Figure 7: Basic reproduction number plotted against transmission probability per contact
for the workplace network.
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Figure 8: Basic reproduction number plotted against transmission probability per contact
for the sexual contact network.
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6 Discussion

In the present paper we have defined a network model with weighted edges and studied
limiting properties of such a network as well as properties of an epidemic spreading on the
network. The weights may have two effects: they may induce degree correlation in the
underlying network, and they (typically) affect the transmission probability and hence
the propagation of the epidemic. We have seen that the behavior of R0 (as well as the
outbreak probability) is affected by the joint distribution of the pair (D,W ), in particular,
the correlation between D and W is important. The effects caused by the distribution of
(D,W ) can then be either amplified or mitigated by the functional relationship between
the weight and the transmission probability. The main conclusion is that R0 can be
substantially overestimated or underestimated if the degree-weight correlation is not taken
into account.

Having relaxed the assumption of equal weights on the edges, there are of course many
additional model extensions that could be of interest both from an applied and from a
theoretical point of view. For example, the present model has no clustering, meaning that
it does not contain any short cycles. Many empirical networks however have large cluster-
ing and it would therefore be relevant to try to include this in the model. Furthermore,
it would be natural to allow for dependence between weights of edges at the same vertex.
For example, one could think of the total weight of a vertex as being fixed and distributed
randomly in some way among the edges. Also the choice of the transmission probability
could be extended. Here we have frequently taken π(w) = 1 − (1− s)w, where s denotes
the per-contact transmission probability. More generally, the per-contact transmission
probability could be modeled as a random variable S, defined to be i.i.d. among different
pairs of connected vertices (with for instance a Beta-distribution), and the unconditional
infection probability along an edge with weight w is then given by π(w) = E[1−(1−S)w].

Finally, there are of course other ways of constructing a weighted network with prescribed
degree distribution. One suggestion is the following. First perform the standard configu-
ration model with degree distribution {p(d)}. Then go through all edges and give weights
to them independently in that an edge between two vertices with degrees d1 and d2 is
given a weight from a distribution q(w|d1, d2). In contrast to the model of the present
paper, which uses the weights to construct the network, this model uses the network to
prescribe the weights. As a consequence, this model will not have any degree correlation,
which is a drawback, since many empirical networks exhibit such correlation. Indeed, so-
cial networks tend to have positive degree correlation, while some technological networks
tend to have negative degree correlation; see [17, 18]. The model of the present paper
only seems to be able to produce positive degree correlation (although this remains to be
verified). It would be of interest to find a natural model for a weighted graph that can
also produce negative degree correlation.
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