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We study a stochastic gossip model of continuous opinion dy-
namics in a society consisting of two types of agents: regular agents,
who update their beliefs according to information that they receive
from their social neighbors; and stubborn agents, who never update
their opinions and might represent leaders, political parties or me-
dia sources attempting to influence the beliefs in the rest of the
society. When the society contains stubborn agents with different
opinions, opinion dynamics never lead to a consensus (among the
regular agents). Instead, beliefs in the society almost surely fail to
converge, and the belief of each regular agent converges in law to
a non-degenerate random variable. The model thus generates long-
run disagreement and continuous opinion fluctuations. The structure
of the social network and the location of stubborn agents within it
shape opinion dynamics. When the society is “highly fluid”, meaning
that the mixing time of the random walk on the graph describing
the social network is small relative to (the inverse of) the relative
size of the linkages to stubborn agents, the ergodic beliefs of most
of the agents concentrate around a certain common value. We also
show that under additional conditions, the ergodic beliefs distribu-
tion becomes “approximately chaotic”, meaning that the variance of
the aggregate belief of the society vanishes in the large population
limit while individual opinions still fluctuate significantly.

1. Introduction. Disagreement among individuals in a society, even on
central questions that have been debated for centuries, is the norm; agree-
ment is the rare exception. How can disagreement of this sort persist for so
long? Notably, such disagreement is not a consequence of lack of communi-
cation or some other factors leading to fixed opinions. Disagreement remains
even as individuals communicate and sometimes change their opinions.

Existing models of communication and learning, based on Bayesian or
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2 D. ACEMOGLU, G. COMO, F. FAGNANI, AND A. OZDAGLAR

non-Bayesian updating mechanisms, typically lead to consensus provided
that communication takes place over a strongly connected network (e.g.,
Smith and Sorensen [42], Banerjee and Fudenberg [7], Acemoglu, Dahleh,
Lobel and Ozdaglar [1], Bala and Goyal [6], Gale and Kariv [23], DeMarzo,
Vayanos and Zwiebel [17], Golub and Jackson [24], Acemoglu, Ozdaglar and
ParandehGheibi [2]), and are thus unable to explain persistent disagree-
ments.1

In this paper, we investigate a possible source of persistent disagreement
in social networks. We propose a tractable model that generates both long-
run disagreement and opinion fluctuations so that a consensus fails to emerge
even as individuals communicate and sometimes change their opinions.

We consider a stochastic gossip model of communication combined with
the assumption that there are some “stubborn” agents in the network who
never change their opinions. We show that the presence of these stubborn
agents leads to persistent opinion fluctuations and disagreement among the
rest of the society.

More specifically, we consider a society envisaged as a social network of
n interacting agents (or individuals), communicating and exchanging infor-
mation. Each agent a starts with an opinion (or belief) Xa(0) ∈ R and is
then “activated” according to a Poisson process in continuous time. Follow-
ing this event, she meets one of the individuals in her social neighborhood
according to a pre-specified stochastic process. This process represents an
underlying social network. We distinguish between two types of individuals,
stubborn and regular. Stubborn agents, which are typically few in number,
never change their opinions (they might thus correspond to media sources
or political leaders wishing to influence the rest of the society). In contrast,
regular agents, which make up the great majority of the agents in the social
network, update their beliefs to some weighted average of their pre-meeting
belief and the belief of the agent they met. The opinions generated through
this information exchange process form a Markov process over the graph in-
duced by the social network. Much of our analysis characterizes the long-run
behavior of this Markov process.

1One notable exception is provided by models that incorporate a form of “homophily”
mechanism in communication, whereby individuals are more likely to exchange opinions or
communicate with others that have similar beliefs, and fail to interact with agents whose
beliefs differ from theirs by more than some given confidence threshold. This mechanism
was first proposed by Axelrod [5] in the discrete opinion dynamics setting, and then
by Krause [27], and Deffuant and Weisbuch [16], in the continuous opinion dynamics
framework. Such beliefs dynamics typically lead to the emergence of different asymptotic
opinion clusters (see, e.g., [31, 9, 12]); however, they are unable to explain persistent
opinion fluctuations in the society.
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OPINION FLUCTUATIONS AND DISAGREEMENT IN SOCIAL NETWORKS 3

We show that, under general conditions, these opinion dynamics never
lead to a consensus (among the regular agents). In fact, regular agents’ be-
liefs almost surely fail to converge, and keep on oscillating. Instead, the belief
of each regular agent converges in law to a non-degenerate random variable
and thus has a limiting ergodic distribution (and similarly, the vector of
beliefs of all regular agents jointly converge to a non-degenerate random
vector). This model therefore provides a new approach to understanding
persistent disagreements.

We then study the long-run dynamics of opinions in “highly fluid” social
networks, defined as networks where the product between the fraction of
edges incoming in the stubborn agent set times the mixing time of the asso-
ciated random walk is small. We show that in highly fluid social networks,
the expected value and variance of the ergodic opinion of most of the agents
concentrate around certain values in the large population limit. We refer to
this result as “approximately equal influence” of stubborn agents on the rest
of the society—meaning that their influence on most of the agents in the
society are approximately the same.

Finally, we show that, if the presence of stubborn agents in the society is
“significant”, then the variance of the ergodic aggregate belief of the society
vanishes in the large population limit, and the ergodic opinion distribu-
tion is “approximately chaotic”. If, moreover, the influence of any stubborn
agent does not dominate the influences of the rest, then the mean squared
disagreement, i.e., the average of the expected squared differences between
the agents’ ergodic beliefs, remains bounded away from zero in the large
population limit.

Our analysis uses several new approaches to the study of belief dynam-
ics. First, convergence in law of the regular agents’ beliefs is established
by first rewriting the dynamics in the form of an iterated affine function
system, and studying the corresponding time-reversed process; the latter is
converging almost surely and, at each time instant, has the same marginal
distribution as the actual beliefs process. Second, we use a characterization
of the expected values and correlations of the ergodic beliefs in terms of the
hitting probability distribution of a pair of coupled random walks moving
on the directed graph describing the communication structure in the social
network. Third, we use the characterization of these hitting distributions as
solutions of a Laplace equation with boundary conditions on the stubborn
agents set in order to find explicit solutions for the expected ergodic beliefs
in some social networks with additional structure. Fourth, we derive bounds
on the behavior of the expected values and variances of the ergodic beliefs in
large population size limit, by showing that, on highly fluid networks, these
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4 D. ACEMOGLU, G. COMO, F. FAGNANI, AND A. OZDAGLAR

expectations and variances are almost equal for most of the agents. This
is a consequence of the fact that the hitting probabilities on the stubborn
agents set of the associated random walk have a weak dependence on the
initial state, which is in turn proved by combining properties of fast-mixing
chains, including the approximate exponentiality of the hitting times.

In addition to the aforementioned works on learning and opinion dynam-
ics, our model is closely related to the work by Mobilia and co-authors
[33, 34, 35], which propose a variation of the discrete opinion dynamics
model, also called the voter model, with “zealots” (equivalent to our stub-
born agents). This work generally relies on heuristic mean-field approxima-
tions, valid for certain graphical structures, and numerical simulations, to
characterize belief dynamics. In contrast, we prove convergence in distribu-
tion and characterize the properties of the limiting distribution for general
finite graphs. Even though our model involves continuous belief dynamics,
we shall also show that Mobilia’s model can be recovered as a special case
of our general framework.

Our work is also related to work on consensus and gossip algorithms,
which is motivated by different problems, but typically leads to a similar
mathematical formulation (Tsitsiklis [43], Tsitsiklis, Bertsekas and Athans
[44], Jadbabaie, Lin and Morse [26], Olfati-Saber and Murray [38], Olshevsky
and Tsitsiklis [39], Fagnani and Zampieri [22], Nedić and Ozdaglar [36]).
In consensus problems, the focus is on whether the beliefs or the values
held by different units (which might correspond to individuals, sensors, or
distributed processors) converge to a common value. Our analysis here does
not focus on limiting consensus of values, but in contrast, characterizes the
ergodic fluctuations in values.

The rest of this paper is organized as follows: In Section 2, we intro-
duce our model of interaction between the agents, describing the resulting
evolution of individual beliefs, and we discuss two special cases, in which
the arguments simplify particularly, and some fundamental features of the
general case are highlighted. Section 3 presents convergence results on the
evolution of agent beliefs over time, for a given social network: the beliefs
are shown to converge in distribution, and to be an ergodic process, while in
general they do not converge almost surely. Section 4 presents a characteri-
zation of the first and second moments of the ergodic beliefs in terms of the
hitting probabilities of two coupled random walks on the network. Section
5 narrows down the discussion to reversible social networks, and presents
explicit computations of the expected ergodic beliefs and variances for some
special network topologies. Section 6 provides bounds on the level of dis-
persion of the first two moments of the ergodic beliefs: it is shown that, in
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OPINION FLUCTUATIONS AND DISAGREEMENT IN SOCIAL NETWORKS 5

highly fluid networks, most of the agents have almost the same ergodic belief
and variance. Section 7 studies the mean square oscillations and disagree-
ment in highly fluid networks: if there is a significant presence of stubborn
agents, the variance of the ergodic aggregate belief of the society vanishes in
the large population limit, and the joint distribution of the ergodic beliefs
is close to a chaotic law. Section 8 contains some concluding remarks.

Basic Notation and Terminology

Before proceeding, we establish some notational conventions and terminol-
ogy to be followed throughout the paper. We shall typically label the entries
of vectors by elements of finite alphabets, rather than non-negative integers,
hence RI will stand for the set of vectors with entries labeled by elements of
the finite alphabet I. An index denoted by a lower-case letter will implicitly
be assumed to run over the finite alphabet denoted by the corresponding
calligraphic upper-case letter (e.g.

∑

i will stand for
∑

i∈I). For any finite
set J , we use the notation 1J to denote the indicator function over the set
J , i.e., 1J (j) is equal to 1 if j ∈ J , and equal to 0 otherwise. For a matrix
M ∈ RI×J , ||M ||1 := maxj

∑

iMij and ||M ||∞ := maxi
∑

j Mij will denote

its 1-norm, and ∞-norm, respectively, as an operator from RI to RJ . For
a probability distribution µ over a finite set I, and a subset J ⊆ I we will
write µ(J ) :=

∑

j µj. If ν is another probability distribution on I, we shall
use the notation

||µ− ν||TV :=
1

2

∑

i
|µi − νi| = sup {µ(J )− ν(J ) : J ⊆ I} ,

for the total variation distance between µ and ν. The probability law (or
distribution) of a random variable Z will be denoted by L(Z).

Let V (t) and V ′(t) be continuous-time random walks on a finite set V,
defined on the same probability space, both with marginal transition prob-
ability matrix P . We use the notation Pv( · ), and Pvv′( · ), for the condi-
tional probability measures given the events V (0) = v, and, respectively,
(V (0), V ′(0)) = (v, v′). Similarly, for some probability distribution π over V
(possibly the stationary one), Pπ( · ) :=

∑

v,v′ πvπv′Pvv′( · ) will denote the
conditional probability measure of the Markov chain with initial distribution
π, while Ev[ · ], Ev,v′ [ · ], and Eπ[ · ] will denote the corresponding conditional
expectations.

For two non-negative real-valued sequences {an : n ∈ N}, {bn : n ∈ N},
we will write an = O(bn) if for some positive constant K, an ≤ Kbn for all
sufficiently large n, an = Θ(bn) if bn = O(an), an = o(bn) if limn an/bn = 0,
an ≈ bn if limn an/bn = 1, and an = ω(bn) if bn = o(an).
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Fig 1. A social network with seven regular agents (colored in grey), and five stubborn
agents (colored in white, and black, respectively). Links are only incoming to the stubborn
agents, while links between pairs of regular agents may be uni- or bi-directional.

2. Belief evolution model. We consider a finite population V of inter-
acting agents, of possibly very large size n := |V|. The connectivity among

the agents is described by a simple directed graph
−→
G =

(

V,
−→
E
)

, whose node

set is identified with the agent population, and where
−→
E ⊆ V ×V stands for

the set of directed edges (or links) among the agents.
At time t ≥ 0, each agent v ∈ V holds a belief (or opinion) about an

underlying state of the world, denoted by Xv(t) ∈ R. The full vector of be-
liefs at time t will be denoted by X(t) = {Xv(t) : v ∈ V}. We distinguish
between two types of agents: regular and stubborn. Regular agents repeat-
edly update their own beliefs, based on the observation of the beliefs of their

out-neighbors in
−→
G . Stubborn agents never change their opinions, i.e., they

do not have any out-neighbors. Agents which are not stubborn are called
regular. We shall denote the set of regular agents by A, the set of stubborn
agents by S, so that the set of all agents is V = A ∪ S (see Figure 1).

More specifically, the agents’ beliefs evolve according to the following
stochastic update process. At time t = 0, each agent v ∈ V starts with an
initial belief Xv(0). The beliefs of the stubborn agents stay constant in time:

Xs(t) = Xs(0) =: xs , s ∈ S .

In contrast, the beliefs of the regular agents are updated as follows. To every

directed edge in
−→
E of the form (a, v), where necessarily a ∈ A, and v ∈ V,

a clock is associated, ticking at the times of an independent Poisson process
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OPINION FLUCTUATIONS AND DISAGREEMENT IN SOCIAL NETWORKS 7

of rate rav > 0. If the (a, v)-th clock ticks at time t, agent a meets agent
v and updates her belief to a convex combination of her own current belief
and the current belief of agent v:

(1) Xa(t) = (1− θav)Xa(t
−) + θavXv(t

−) ,

where Xv(t
−) stands for the left limit limu↑tXv(u). Here, the scalar θav ∈

(0, 1] is a trust parameter that represents the confidence that the regular
agent a ∈ A puts on agent v’s belief.2 That rav and θav are strictly positive

for all (a, v) ∈
−→
E is simply a convention (since if ravθav = 0, one can always

consider the subgraph of
−→
G obtained by removing the edge (a, v) from

−→
E ).

Similarly, we also adopt the convention that rvv′ = θvv′ = 0 for all v, v′ ∈ V

such that (v, v′) /∈
−→
E . For every regular agent a ∈ A, let Sa ⊆ S be the

subset of stubborn agents which are reachable from a by a directed path in
−→
G . We refer to Sa as the set of stubborn agents influencing a. For every
stubborn agent s ∈ S, As := {a : s ∈ Sa} ⊆ A will stand for the set of
regular agents influenced by s.

The tupleN =
(−→
G , {θe}, {re}

)

contains the entire information about pat-

terns of interaction among the agents, and will be referred to as the social
network. Together with an assignment of a probability law for the initial be-
lief vector, L(X(0)), the social network designates a society. Throughout the
paper, we make the following assumptions regarding the underlying social
network.

Assumption 1. Every regular agent is influenced by some stubborn agent,
i.e., Sa is non-empty for every a in A.

Assumption 2. Every stubborn agent influences some regular agent,
i.e., As is non-empty for every s in S.

Notice that both assumptions may be easily removed. If there are some
regular agents which are not influenced by any stubborn agent, then there
is no edge in E connecting the set R of such regular agents to V \ R.
Then, one may decompose the subgraph obtained by restricting G to R
into its communicating classes, and apply the results in [22] (see Example
3.5 therein), showing that, with probability one, a consensus on a random
belief is achieved on every such communicating class. On the other hand, if
a stubborn agent does not influence any agent, it can clearly be neglected.

2We have imposed that at each meeting instance, only one agent updates her belief.
The model can be easily extended to the case where both agents update their beliefs
simultaneously, without significantly affecting any of our general results.
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8 D. ACEMOGLU, G. COMO, F. FAGNANI, AND A. OZDAGLAR

In the subsequent analysis, it is convenient to consider a rate matrix
R ∈ RA×V whose entries coincide with the edge activation rates rav. We
denote the total meeting rate of agent v ∈ V by rv, i.e., rv :=

∑

v′∈V rvv′ ,
and the total meeting rate of all agents by r, i.e., r :=

∑

v∈V rv. We use
N(t) to denote the total number of agent meetings (or edge activations)
up to time t ≥ 0, which is simply a Poisson arrival process of rate r. We
also use the notation Tk to denote the time of the k-th belief update, i.e.,
Tk := inf{t ≥ 0 : N(t) ≥ k}.

For a given social network, we associate a transition rate matrix H ∈
RA×V , whose entries are defined by

(2) Hav := θavrav , a ∈ A , v ∈ V ,

and a transition probability matrix P ∈ RA×V , whose entries are defined by

(3) Pav = Hav/
∑

v′
Hav′ , a ∈ A , v ∈ V .

The following example describes the canonical construction of a social
network from an undirected graph, and will be used often in the rest of the
paper.

Example 1. Let G = (V, E) be an undirected connected graph, and

S ⊆ V, A = V \ S. Define the directed graph
−→
G = (V,

−→
E ), where (a, v) ∈

−→
E

if and only if a ∈ A, v ∈ V, and {a, v} ∈ E , i.e.,
−→
G is the directed graph

obtained by making all edges in E bidirectional except edges between a
regular and a stubborn agent, which are unidirectional (pointing from the
regular agent to the stubborn agent). For every node v ∈ V, let dv be its
degree in G. Let the trust parameter be constant, i.e., θav = θ ∈ (0, 1] for all

(a, v) ∈
−→
E . Define

(4) rav = 1/da , a ∈ A , v ∈ V : {a, v} ∈ E .

This concludes the construction of the social network N =
(−→
G , {θe}, {re}

)

.

For this social network, one has

Hav = θ/da , Pav = 1/da , ∀(a, v) ∈
−→
E .

We conclude this section by discussing in some detail two special cases
whose simple structure sheds light on the main features of the general model.
In particular, we consider a social network with a single regular agent and
a social network where the trust parameter satisfies θav = 1 for all a ∈ A
and v ∈ V, which corresponds to the classical voter model with zealots. We
show that in both of these cases agent beliefs almost surely fail to converge.
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Fig 2. Typical sample-path behavior: in (a) the actual belief process Xa(t), oscillating
ergodically on the interval [0, 1]; in (b), the time-reversed process, rapidly converging to an
asymptotic random belief Xa.

2.1. Single regular agent. Consider a society consisting of a single regular
agent, i.e., A = {a}, and two stubborn agents, S = {s, s′}. Assume that
ras = ras′ = 1/2, θas = θas′ = 1/2, xs = 0, xs′ = 1, and Xa(0) = 0. Then,
one has for all t ≥ 0,

Xa(t) =
∑

1≤k≤N(t)

2k−N(t)−1W (k) ,

where N(t) is the total number of agent meetings up to time t (or number
of arrivals up to time t of a rate-1 Poisson process), and {W (k) : k ∈ N} is
an independent sequence of Bernoulli(1/2) random variables. Consider the
events Ek := {W (3k− 2) = 0,W (3k − 1) = 0,W (3k) = 1}, for k ≥ 1, which
are independent and all have probability 1/8. Then, an application of the
Borel-Cantelli lemma implies that Ek occurs for infinitely many values of
k ≥ 1. Notice that, when Ek occurs, one has

(5)

Xa(T3k) =
1
2 +

∑

1≤j≤3k−3

2j−3k−1W (j) ≥ 1
2 ,

Xa(T3k−1) =
∑

1≤j≤3k−3

2j−3kW (j) ≤ 1
4 ,

where Tk is the time of the k-th belief update. It follows from (5), and the
fact that N(t) grows unbounded almost surely, that the belief Xa(t) does
not converge almost surely.
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10 D. ACEMOGLU, G. COMO, F. FAGNANI, AND A. OZDAGLAR

On the other hand, observe that, since
∑

k>n 2
−k|W (k)| ≤ 2−n, the series

Xa :=
∑

k≥1

2−kW (k)

is sample-wise converging. It follows that, as t grows large, the time-reversed
process

←−
Xa(t) :=

∑

1≤k≤N(t)

2−kW (k)

converges to Xa, with probability one, and, a fortiori, in distribution. Notice
that, for all positive integer k, the binary k-tuples {W (1), . . . ,W (k)} and
{W (k), . . . ,W (1)} are uniformly distributed over {0, 1}k , and independent
from the Poisson arrival process N(t). It turns out that, for all t ≥ 0, the

random variable
←−
X a(t) has the same distribution as Xa(t). Therefore, Xa(t)

converges in distribution to Xa as t grows large. Moreover, it is a standard
fact (see e.g. [41, pag.92]) that Xa is uniformly distributed over the interval
[0, 1]. Hence, the probability distribution of Xa(t) is asymptotically uniform
on [0, 1].

The analysis can in fact be extended to any trust parameter θis = θis′ =
θ ∈ (0, 1). In this case, one gets that

Xa(t) = θ
∑

1≤k≤N(t)

(1− θ)N(t)−kW (k)

converges in distribution to the asymptotic belief

(6) Xa := θ(1− θ)−1
∑

k≥1

(1− θ)kW (k) .

As explained in [18, Sect. 2.6], for every value of θ in (1/2, 1), the probability
law of Xa is singular, and in fact supported on a Cantor set. In contrast,
for almost all values of θ ∈ (0, 1/2), the probability law of Xa is absolutely
continuous with respect to Lebesgue’s measure.3 The extreme case θ = 1
falls within the framework of Sect. 2.2. On the other hand, observe that,
regardless of the fine structure of the probability law of the asymptotic
belief Xa, i.e., on whether it is absolutely continuous or singular, it is not
hard to characterize its moments for all values of θ ∈ (0, 1]. In fact, it follows
from (6), that the expected value of Xa is given by

E[Xa] = θ(1− θ)−1
∑

k≥1

(1− θ)kE[W (k)] = θ
∑

k≥0

(1− θ)k
1

2
=

1

2
,

3See [40]. In fact, explicit counterexamples of values of θ ∈ (0, 1/2) for which the
asymptotic measure is singular are known. For example, Erdös [20, 21] showed that, if
θ = (3−

√
5)/2, then the probability law of Xa is singular.
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t=0 t

u=0u=U1uu=t

Fig 3. Duality between the voter model with zealots and the coalescing random walks
process with absorbing states. The network topology is a line with five regular agents and
two stubborn agents placed in the two extremities. The time index for the opinion dynamics,
t, runs from left to right, whereas the time index for the coalescing random walks process,
u, runs from right to left. Both dotted and solid arrows represent meeting instances. Fixing
a time horizon t > 0, in order to trace the beliefs X(t), one has to follow coalescing random
walks starting at u = 0 in the different nodes of the network, and jumping from a state
to another one in correspondence to the solid arrows. The particles are represented by
bullets at times of their jumps. Clusters of coalesced particles are represented by bullets of
increasing size.

and, using the mutual independence of the W (k)’s, the variance of Xa is
given by

Var[Xa] = θ2(1−θ)−2
∑

k≥1

(1−θ)2k Var[W (k)] = θ2
∑

k≥0

(1−θ)2k
1

4
=

θ

4(2− θ)
.

2.2. Voter model with zealots. Let us consider the case when θav = 1
for all (a, v) ∈ E . In this case, whenever an edge (a, v) ∈

−→
E is activated,

the regular agent a adopts agent v’s current opinion as such, completely
disregarding her own current opinion.

This opinion dynamics, known as the voter model, was introduced in-
dependently by Clifford and Sudbury [11], and Holley and Liggett [25]. It
has been extensively studied in the framework of interacting particle sys-
tems [29, 30]. While most of the research focus has been on the case when
the graph is an infinite lattice, the voter model on finite graphs, and with-
out stubborn agents, was considered, e.g., in [13, 15], [3, Ch. 14], and [19,
Ch. 6.9]: in this case, consensus is achieved in some finite random time,
whose distribution depends on the graph topology only.

In some recent works of Mobilia and others [33, 34, 35] a variant with one
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12 D. ACEMOGLU, G. COMO, F. FAGNANI, AND A. OZDAGLAR

or more stubborn agents (there referred to as zealots) has been proposed
and analyzed mainly through simulations. We wish to emphasize that the
voter model with zealots can be recovered as a special case of our model,
and hence our general results, to be proven in the next sections, apply to
it as well. However, we prefer to discuss this case here in some detail, since
proofs are much more intuitive, and allow one to anticipate some of the
general results.

The main tool in the analysis of the voter model is the dual process, which
runs backward in time and allows one to identify the source of the opinion
of each agent at any time instant. Specifically, let us focus on the belief of
a regular agent a at time t > 0. Then, in order to trace Xa(t), one has to
look at the last meeting instance of agent a that occurred no later than time
t. If such a meeting instance occurred at some time t − U1 ∈ [0, t] and the
agent met was v ∈ V, then the belief of agent a at time t coincides with
the one of agent v at time t − U1, i.e., Xa(t) = Xv(t − U1). The next step
is to look at the last meeting instance of agent v occurred no later than
time t − U1; if such an instance occurred at time t − U2 ∈ [0, t − U1], and
the agent met was w, then Xa(t) = Xv(t− U1) = Xw(t − U2). Clearly, one
can iterate this argument, going backward in time, until reaching time 0. In
this way, one implicitly defines a random walk Va(u) on V, which starting at
Va(0) = a and stays put there until time U1, when it jumps to node v and
stays put there in the time interval [U1, U2), then jumps at time U2 to node
w, and so on. It is not hard to see that, thanks to the fact that the meeting
instances are independent Poisson processes, the random walk Va(u) has
transition rate matrix R (recall that R is the matrix of edge activation rates
R = [rav ]a∈A, v∈V), and it halts when it hits some state s ∈ S. In particular,
this shows that

L(Xa(t)) = L(XVa(t)(0)) .

More generally, if one is interested in the joint probability distribution of
the belief vector X(t), then one needs to consider n − |S| random walks,
{Va(t) : a ∈ A} starting one from each node a ∈ A, and run simultaneously
on V (see Figure 3). These random walks move independently with transition
rate matrix R, until the first time that they either meet, or they hit the set
S: in the former case, they stick together and continue moving on V as a
single particle, with transition rate matrix R; in the second case, they halt.
This process is known as the coalescing random walk process with absorbing
set S. Then, one gets that

(7) L({Xa(t) : a ∈ A}) = L({XVa(t)(0) : a ∈ A}) .

Equation (7) establishes a duality between the voter model with zealots and
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Fig 4. Typical sample-path behavior of the beliefs, and their ergodic averages for a social
network with population size n = 4. The topology is a line graph, displayed in (a). The
stubborn agents corresponds to the two extremes of the line, S = {0, 3}, while their constant
opinions are x0 = 0, and x3 = 1. The regular agent set is A = {1, 2}. The confidence
parameters, and the interaction rates are chosen to be θav = 1/2, and rav = 1/3, for
all a = 1, 2, and v = a ± 1. In picture (b), the trajectories of the actual beliefs Xv(t),
for v = 0, 1, 2, 3, are reported, whereas picture (c) reports the trajectories of their ergodic
averages {Zv(t) := t−1

∫ t

0
Xv(u)du}.

the coalescing random walks process with absorbing states. In particular,
Assumptions 1 and 2 imply that, with probability one, each Va(u) will hit
the set S in some finite random time T a

S , so that in particular the vector
{Va(u) : a ∈ A} converges in distribution to an asymptotic SA-valued ran-
dom vector {Va(T

a
S ) : a ∈ A}. It then follows from (7) that X(t) converges

in distribution to an asymptotic belief vector X whose entries are given by
Xs = xs for every stubborn agent s ∈ S, and Xa = xVa(Ta

S
) for every regular

agent a ∈ A.

3. Convergence in distribution and ergodicity of the beliefs.

This section is devoted to studying the convergence properties of the ran-
dom belief vector X(t) for the general update model described in Sect. 2.
Figure 4 reports the typical sample-path behavior of the agents’ beliefs for
a simple social network with population size n = 4, and line graph topology,
in which the two stubborn agents are positioned in the extremes and hold
beliefs x0 < x3. As shown in Fig. 4(b), the beliefs of the two regular agents,
X1(t), and X2(t), oscillate in the interval [x0, x3], in an apparently chaotic
way. On the other hand, the time averages of the two regular agents’ beliefs
rapidly approach a limit value, of 2x0/3+x3/3 for agent 1, and x0/3+2x3/3
for agent 2.
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14 D. ACEMOGLU, G. COMO, F. FAGNANI, AND A. OZDAGLAR

As we shall see below, such behavior is rather general. In our model of
social network with at least two stubborn agents having non-coincident con-
stant beliefs, the regular agent beliefs almost surely fail to converge: we have
seen this in the special cases of Sect. 2.1, while a general result in this sense
will be stated as Theorem 2. On the other hand, we shall prove that, regard-
less of the initial regular agents’ beliefs, the belief vector X(t) is convergent
in distribution to a random asymptotic belief vector X (see Theorem 1),
and in fact it is an ergodic process (see Corollary 1).

In order to prove Theorem 1, we shall rewrite X(t) in the form of an iter-
ated affine function system [18], as explained below. We shall then consider
the so-called time-reversed belief process. This is a stochastic process whose
marginal probability distribution, at any time t ≥ 0, coincides with the one
of the actual belief process, X(t). In contrast to X(t), the time-reversed be-
lief process is in general not Markov, whereas it can be shown to converge
to a random asymptotic belief vector with probability one. From this, we
recover convergence in distribution of the actual belief vector X(t).

Formally, for any time instant t ≥ 0, let us introduce the projected belief
vector Y (t) ∈ RA, where Ya(t) = Xa(t) for all a ∈ A. Let IA ∈ RA×A be
the identity matrix, and for a ∈ A, let ea ∈ RA be the vector whose entries
are all zero, but for the a-th which equals 1. Similarly, for a, a′ ∈ A, let
eaa′ ∈ RA×A be the matrix whose entries are all 0, but for the (a, a′)-th
which equals 1. For every positive integer k, consider the random matrix
A(k) ∈ RA×A, and the random vector B(k) ∈ RA, defined by

A(k) = IA + θaa′(eaa′ − eaa) B(k) = 0 ,

if the k-th activated edge is (a, a′) ∈
−→
E , with a, a′ ∈ A, and

A(k) = IA − θaseaa B(k) = eaθasxs ,

if the k-th activated edge is (a, s) ∈
−→
E , with a ∈ A, and s ∈ S. Define the

matrix product
−→
A (k, l) := A(l)A(l − 1) . . . A(k + 1)A(k) , 1 ≤ k ≤ l ,

with the convention that
−→
A (k, l) = IA for k > l. Then, one has for all t ≥ 0,

(8) Y (t) =
−→
A (1, N(t))Y (0) +

∑

1≤k≤N(t)

−→
A (k + 1, N(t))B(k) ,

where we recall that N(t) is the total number of agents’ meetings up to time
t. Now, define the time-reversed belief process

(9)
←−
Y (t) :=

←−
A (1, N(t))Y (0) +

∑

1≤k≤N(t)

←−
A (1, k − 1)B(k) ,
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where
←−
A (k, l) := A(k)A(k + 1) . . . A(l − 1)A(l) , k ≤ l ,

with the convention that
←−
A (k, l) = IA for k > l. The following is our first,

but fundamental, observation:

Lemma 1. For all t ≥ 0, Y (t) and
←−
Y (t) have the same probability dis-

tribution.

Proof. Notice that {(A(k), B(k)) : k ∈ N} is a sequence of independent
and identically distributed random variables, independent from the process
N(t). This, in particular, implies that, the l-tuple {(A(k), B(k)) : 1 ≤ k ≤ l}
has the same distribution as the l-tuple {(A(l − k + 1), B(l − k + 1)) : 1 ≤
k ≤ l}, for all l ∈ N. From this, and the identities (8) and (9), it follows that

the belief vector Y (t) has the same distribution as
←−
Y (t), for all t ≥ 0.

The second fundamental result is that, in contrast to the actual regular

agents’ belief vector Y (t), the time-reversed belief process
←−
Y (t) converges

almost surely, as formalized in the next lemma.

Lemma 2. Let Assumptions 1 and 2 hold. Then, for every value of the
stubborn agents’ beliefs {xs} ∈ RS , there exists an RA-valued random vari-
able Y , such that,

P

(

lim
t→+∞

←−
Y (t) = Y

)

= 1 ,

for every initial distribution L(Y (0)) of the regular agents’ beliefs.

Proof. Observe that the expected entries of A(k), and B(k), are given
by

E[Aaa′(k)] =
Haa′

r
, E[Aaa(k)] := 1−

1

r

∑

v∈V

Hav , E[Ba(k)] =
1

r

∑

s∈S

Hasxs ,

for all a 6= a′ ∈ A. In particular, it follows from Assumption 1 that E[A(k)] is
a strictly substochastic matrix, with no invariant subset, i.e., such that if y is
a non-negative vector supported in some J ⊆ A, then

∑

j

∑

a E[Aja(k)]ya <
∑

j yj. Hence, its spectrum is contained in the disk centered in 0 of radius ρ,
where ρ ∈ (0, 1) is the largest eigenvalue of E[A(k)]. Then, using the Jordan
canonical decomposition, one can show that

∣

∣

∣

∣

∣

∣
E

[←−
A (1, k)

]
∣

∣

∣

∣

∣

∣

∞
≤ Ckn−1ρk , ∀k ≥ 0 ,
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16 D. ACEMOGLU, G. COMO, F. FAGNANI, AND A. OZDAGLAR

where C is a constant depending on E[A(1)] only. Now, upon observing that

the
←−
A (1, k) has non-negative entries, and using the inequality E[max{Z,W}] ≤

E[Z] + E[W ] valid for all nonnegative-valued random variables W and Z,
one gets that

(10)

E
[
∣

∣

∣

∣

∣

∣

←−
A (1, k)

∣

∣

∣

∣

∣

∣

1

]

= E

[

max
a′

∑

a

←−
A aa′(1, k)

]

≤
∑

a,a′ E

[←−
A a,a′(1, k)

]

≤ n
∣

∣

∣

∣

∣

∣
E

[←−
A (1, k)

]
∣

∣

∣

∣

∣

∣

∞

≤ Cnkn−1ρk .

It follows that

(11)

inf
k∈N

1

k
E

[

log ||
←−
A (1, k)||1

]

≤ inf
k∈N

1

k
logE

[

||
←−
A (1, k)||1

]

≤ lim
k→+∞

log(Cnkn−1ρk)

k
= log ρ

< 0 ,

Then, it follows from [18, Th. 2.1] that the series

Y :=
∑

k≥1

←−
A (1, j − 1)B(j)

is convergent with probability one. Since, with probability one, lim
t→+∞

N(t) =

+∞, one has that

lim
t→+∞

←−
Y (t) = lim

t→+∞

←−
A (1, N(t))Y (0) +

∑

1≤j≤N(t)

←−
A (1, j − 1)B(j)

= lim
k→∞

←−
A (1, k)Y (0) +

∑

1≤j≤k

←−
A (1, j − 1)B(j)

= Y ,

with probability one. This completes the proof.

Lemma 1 and Lemma 2 allow one to prove convergence in distribution of
X(t) to a random belief vector X, as stated in the following result.
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Theorem 1. Let Assumptions 1 and 2 hold. Then, for every value of
the stubborn agents’ beliefs {xs : s ∈ S}, there exists an RV -valued ran-
dom variable X, such that, for every initial distribution L(X(0)) satisfying
P(Xs(0) = xs) = 1 for every s ∈ S, and

lim
t→+∞

E[ϕ(X(t))] = E[ϕ(X)] ,

for all bounded and continuous test functions ϕ : RV → R. Moreover, the
probability law of the asymptotic belief vector X is invariant for the system,
i.e., if L(X(0)) = L(X), then L(X(t)) = L(X) for all t ≥ 0.

Proof. It follows from Lemma 2
←−
Y (t) converges to Y with probability

one, and a fortiori in distribution. By Lemma 2,
←−
Y (t) and Y (t) are identically

distributed. Therefore, Y (t) converges to Y in distribution, and the first part
of the claim follows by defining Xa = Ya for all a ∈ A, and Xs = xs for
all s ∈ S. For the second part of the claim, it is sufficient to observe that

the distribution of Y =
∑

k≥1

←−
A (1, k − 1)B(k) is the same as the one of

Y ′ := A(0)Y +B(0), where A(0), and B(0), are independent copies of A(1),
and B(1), respectively.

Remark 1. In fact, a more detailed proof of Lemma 2 (based on the
estimate (10), and using directly Markov’s inequality, without appealing to
[18, Th. 2.1]) would have shown that

lim
t→+∞

W1 (L(X(t)),L(X))1/t ≤ ρ ,

where W1 denotes the so-called order-1 Wasserstein distance. The latter is
a metric between probability measures on RV which metrizes weak conver-
gence, and has been made popular by optimal transportation theory: we
refer to [45] for definition, and an extensive survey of its properties.

Now, we observe that, if α is the unique probability distribution on A such
that E[A(k)]α = ρα, and Eα[TS ] is the expected time to hit the stubborn
agents set S for the continuous-time random walk V (t), with transition rates
Hav defined in (2), and initial state distribution α, then

(1− ρ)−1 = Eα[TS ]

(see [3, Ch. 3, Sect. 6.5]). This shows that, as already observed in the voter
model with zealots of Sect. 2.2, the speed of convergence of the beliefs’

imsart-aap ver. 2009/08/13 file: disagreement18.tex date: September 15, 2010



18 D. ACEMOGLU, G. COMO, F. FAGNANI, AND A. OZDAGLAR

distribution to the asymptotic belief vector is related to the hitting time TS
of the random walk V (t) on the stubborn agents’ set S. In the following
section, we shall see that also the probability law of the asymptotic beliefs,
L(X), can be related to properties of the random walk V (t), and specifically
to the probability distribution of V (TS).

Using standard ergodic theorems for Markov chains, an immediate impli-
cation of Theorem 1 is the following corollary, which shows that time aver-
ages of any continuous bounded function of agent beliefs are given by their
expectation over the limiting distribution. Choosing the relevant function
properly, this enables us to express the empirical averages of and correlations
across agent beliefs in terms of expectations over the limiting distribution,
highlighting the ergodicity of agent beliefs.

Corollary 1. For all initial distributions X(0) ∈ RV , with probability
one,

lim
t→+∞

1

t

∫ t

0
ϕ(X(u))du = E[ϕ(X)] ,

for all continuous and bounded test functions ϕ : RV → R.

Proof. Consider the joint discrete-time process {Zk := (X(Tk), Uk) :
k ∈ N}, where Uk := Tk − Tk−1, and Tk is the time of the k-th belief update
(with the convention that T0 = 0). Since {Uk : k ∈ N} is an independent
identically distributed sequence of exponential random variables with rate
r, independent from X(Tk), Theorem 1 implies that Zk converges in distri-
bution to Z := (X,U), where X is as in Theorem 1, U is an independent
random variable with exponential distribution of rate r. It follows from [10]
that the process {Zk} s ergodic. Hence, for every test function ϕ continuous
and bounded over RV ,

1
k

∫ Tk

0 ϕ(X(u))du = 1
k

∑

1≤j≤k

ϕ(X(T−
j ))Uj

k→+∞
−→ E[ϕ(X)U ]

= E[ϕ(X)]E[U ]

= rE[ϕ(X)] ,

with probability one. Moreover, one has

1

k
Tk =

1

k

∑

1≤j≤k

(Tk − Tk−1)
k→+∞
−→ E[T ] = r .
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Hence,

1

TN(t)

∫ TN(t)

0
ϕ(X(u))du =

N(t)−1
∫ TN(t)

0 ϕ(X(u))du

N(t)−1TN(t)

t→+∞
−→ E[ϕ(X)]

with probability one, and the claim follows from the observation that, as t
grows large, t−1(t− TN(t)) converges to zero almost surely.

Motivated by Corollary 1, for any agent v ∈ V, we refer to the random
variable Xv as the ergodic belief of agent v.

Theorem 1, and Corollary 1, respectively, show that the beliefs of all
the agents converge in distribution, and that their empirical averages con-
verge almost surely, to a random asymptotic belief vector X. In contrast,
the following theorem shows that the asymptotic belief of a regular agent
which is connected to at least two stubborn agents with different beliefs
is a non-degenerate random variable. As a consequence, the belief of every
such regular agent keeps on oscillating with probability one. Moreover, the
theorem shows that, with probability one, the difference between any pair
of distinct regular agents which are influenced by more than one stubborn
agent does not converge to zero, so that disagreement between them persists
in time. For a ∈ A, let Xa = {xs : s ∈ S} denote the set of stubborn agents’
belief values influencing agent a.

Theorem 2. Let Assumptions 1 and 2 hold, and let a ∈ A be such
that |Xa| ≥ 2. Then, the asymptotic belief Xa is a non-degenerate random
variable. Furthermore, if a, a′ ∈ A, with a′ 6= a are such that |Xa ∩Xa′ | ≥ 2,
then P(Xa 6= Xa′) > 0.

Proof. With no loss of generality, since the distribution of the asymp-
totic belief vector X does not depend on the probability law of the initial
beliefs of the regular agents, we can assume that such a law is the asymptotic
one, i.e., that L(X(0)) = L(X). Then, Theorem 1 implies that

(12) L(X(t)) = L(X) , ∀t ≥ 0 .

Let a ∈ A be such that Xa is degenerate. Then, almost surely, Xa(t) = xa
for almost all t, for some constant xa. Then, as we shall show below, all the
out-neighbors of a will have their beliefs constantly equal to xa with proba-
bility one. Iterating the argument until reaching the set Sa, one eventually
finds that xs = xa for all s ∈ S, so that |Xa| = 1. This proves the first part of
the claim. For the second part, assume that Xa = Xa′ almost surely for some
a 6= a′. Then, one can prove that, with probability one, every out-neighbor
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of a and a′ agrees with a and a′ at any time. Iterating the argument until
reaching the set Sa ∪ Sa′ , one eventually finds that |Xs ∪ Xs′ | = 1.

One can reason as follows in order to see that, if v is an out-neighbor of a,
and Xa is degenerate, then Xv(t) = Xa for all t. Fix some scalars xa, ζ > 0,
ε > 0, and, for every time instant t ≥ 0, consider the events

Ct := {Xa(t) = xa} , Dt := {|Xv(t)− xa| ≥ ζ} , Et := Ct ∩Dt ,

E′
t := { agent v is never active in (t, t+ ε)} ,

E′′
t := {edge (a, v) is activated at some time u ∈ (t, t+ ε)} ,

Ft := {|Xa(u)− xa| ≥ θavζ , for some time u ∈ (t, t+ ε)} .

Observe that Et∩E
′
t∩E

′′
t implies Ft. Moreover, Et, E

′
t, and E

′′
t are mutually

independent, and if rav > 0 is the activation rate of edge (a, v), and rv =
∑

v′ rvv′ ≥ 0 is the meeting rate of agent v, then P(E′
t) = e−rvε, and P(E′′

t ) =
1− e−raε, respectively. It follows that

(13) P(Ft) ≥ P(E′
t ∩ E

′′
t ∩ Et) = αP(Et) , α := e−rvε(1− e−raε) .

Let Q+ be the set on non-negative rationals, define C :=
⋂

t∈Q+ Ct, D :=
⋃

t∈Q+ Dt, and observe that, since Ft implies Cc, the complementary event
of C, one has P(Ft) ≤ 1 − P(C) for every t ≥ 0. The foregoing, combined
with (13), gives

(14) P(Et) ≤ α
−1(1− P(C)) , ∀t ≥ 0 .

On the other hand, since the event C ∩D implies that Et occurs for some
nonnegative rational t, the union bound gives

(15) P(C ∩D) ≤ P

(

⋃

t∈Q+
Et

)

≤
∑

t∈Q+

P(Et) .

Then, (12) implies P(Xa(t) = xa) = 1 for all t ≥ 0, and then C has prob-
ability one since it is a countable intersection of events of probability one.
Then, it follows from (14) that P(Et) = 0 for all t ≥ 0, and thus (15) implies
that P(D) ≤ 1− P(C) + P(C ∩D) = 0.

In order to prove that, if Xa = Xa′ almost surely, then Xv(t) = Xa(t) for
all t ≥ 0, and every out-neighbor v of either a or a′, one can argue in a very
similar fashion. Assume without loss of generality that v is an out-neighbor
of a. Fix some ε > 0, ζ > 0, and, for t ≥ 0, consider the events

Gt := {Xa(t) = Xa′(t)} , Ht := {|Xv(t)−Xa(t)| ≥ ζ} , Lt := Gt ∩Ht ,

E′′′
t := {agent a′ is never active in (t, t+ ε)} ,

Mt := {|Xa(u)−Xa′(u)| ≥ θavζ , for some time u ∈ (t, t+ ε)}

G :=
⋂

t∈Q+ Gt , H :=
⋃

t∈Q+ Ht .
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Arguing as before, one finds that E′
t ∩ E

′′
t ∩ E

′′′
t ∩ Lt implies Mt, and that

E′
t, E

′′
t , and E′′′

t are conditionally independent given Lt, with conditioned
probabilities P(E′

t|Lt) = e−rvε, P(E′′
t |Lt) = 1 − e−raε, and P(E′′′

t |Lt) =
1− e−ra′ε, respectively, so that

(16) P(Mt ∩ Lt) ≥ P(E′
t ∩E

′′
t ∩ E

′′′
t ∩ Lt) = βP(Lt) ,

where β := e−rvε(1− e−raε)(1 − e−ra′ε). Moreover, since Mt implies Gc, for
all t ≥ 0, one has that P(Lt ∩Mt) ≤ P(Mt) ≤ 1 − P(G), which, together
with (16), implies that P(Lt) ≤ β−1(1 − P(G)) for all t ≥ 0. Arguing as
before, one finds that P(G) = 1, so that P(Lt) = 0 for all t ≥ 0, and thus
P(H) = P(G∩H) = 0. Then, from the arbitrariness of ζ > 0, it follows that
Xv(t) = Xa(t) for all t ≥ 0.

Theorem 1 and Theorem 2 are two of the central results of our paper. Even
though beliefs converge in distribution, the presence of stubborn agents with
different beliefs ensures that almost surely they fail to converge. Moreover
there will not be a consensus of beliefs in this society. Both of these are a con-
sequence of the fact that each regular agent is continuously being influenced
–directly or indirectly– by stubborn agents with different beliefs.

4. Empirical averages and correlations of agent beliefs. In this
section, we provide a characterization of the empirical averages and corre-
lations of agent beliefs {Xv(t) : v ∈ V}, i.e., of the almost surely constant
limits

lim
t→+∞

1

t

∫ t

0
Xv(u)du, lim

t→+∞

1

t

∫ t

0
Xv(u)Xv′ (u)du.

By Corollary 1, these limits are given by the first two moments of the er-
godic beliefs, i.e., E[Xv] and E[XvXv′ ], respectively, independently of the
distribution of initial regular agents’ beliefs.

We next provide explicit characterizations of these limits in terms of hit-

ting probabilities of a pair of coupled random walks on
−→
G = (V,

−→
E ).4 Specif-

ically, we consider a coupling (V (t), V ′(t)) of continuous-time random walks
on V, such that both V (t), and V ′(t), have marginal state transition rates
Hav, as defined in (2). In fact, one may interpret (V (t), V ′(t)) as a ran-
dom walk on the Cartesian power graph G�, whose node set is the product
V × V, and where there is an edge from (v, v′) to (w,w′), if and only if

either (v,w) ∈
−→
E and v′ = w′, or v = w and (v′, w′) ∈

−→
E , or v = v′ and

4Note that the set of states for such a random walk corresponds to the set of agents,
therefore we use the terms “state” and “agent” interchangeably in the sequel.
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(a) (b) (c)

Fig 5. In (a), a network topology consisting of a line with three regular agents and two stub-
born agents placed in the extremes. In (b), the corresponding graph product G�. The latter
has 25 nodes, four of which are absorbing states. The coupled random walk (V (t), V ′(t))
moves on G�, its two components jumping independently to neighbor states, unless they
are either on the diagonal, or one of them is in S: in the former case, there is some chance
that the two components jump as a unique one, thus inducing a direct connection along
the diagonal; in the latter case, the only component that can keep moving is the one which
has not hit S, while the one who hit S is bound to remain constant from that point on. In

(c), the product graph G� is reported for the extreme case when θe = 1 for all e ∈
→

E . In
this case, the coupled random walks (V (t), V ′(t)) are coalescing: once they meet, they stick
together, moving as a single particle, and never separating from each other. This reflects
the fact that there are no outgoing edges from the diagonal set.
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w = w′ (See Figure 5). The transition rates of the coupled random walks
(V (t), V ′(t)) are given by
(17)

K(v,v′)(w,w′) :=







































Hvw if v 6= v′ , v 6= w , v′ = w′

Hv′w′ if v 6= v′ , v = w , v′ 6= w′

0 if v 6= v′ , w 6= v , w′ 6= v
θvwHvw if v = v′ , w = w′

(1− θvw)Hvw if v = v′ , v′ = w′

(1− θvw′)Hvw′ if v = v′ , v = w
0 if v = v′ , w 6= w′ , w 6= v , w′ 6= v′ .

The first three lines of (17) state that, conditioned on (V (t), V ′(t)) being
on a pair of non-coincident nodes (v, v′), each of the two components, V (t)
(respectively, V ′(t)), jumps to a neighbor node w, with transition rate Hvw

(respectively, to a neighbor node w′ with transition rate Hv′w′), whereas the
probability that both components jump at the same time is zero. On the
other hand, the last four lines of (17) state that, once the two components
have met, i.e., conditioned on V (t) = V ′(t) = v, they have some chance to
stick together and jump as a single particle to a neighbor node w, with rate
θvwHvw, while each of the components V (t) (respectively, V ′(t)) has still
some chance to jump alone to a neighbor node w with rate (1 − θvw)Hvw

(resp., to w′ with rate (1 − θvw′)Hvw′). In the extreme case when θvw = 1
for all v,w, the last three lines of the righthand side of (17) equal 0, and
in fact one recovers the expression for the transition rates of two coalescing
random walks: once V (t) and V ′(t) have met, they stick together and move
as a single particle, never separating from each other.

We use the notation TS and T ′
S to denote the hitting times of the random

walks V (t), and respectively V ′(t), to the set of stubborn agents S, i.e.,

TS := inf{t ≥ 0 : V (t) ∈ S} , T ′
S := inf{t ≥ 0 : V ′(t) ∈ S} .

Further, for all v, v′ ∈ V, we define the hitting probability distributions γv

over S, and ηvv
′

over S2, whose entries are respectively given by

(18)
γvs := Pv(V (TS) = s) , s ∈ S ,

ηvv
′

ss′ := Pvv′(V (TS) = s, V ′(T ′
S) = s′) , s, s′ ∈ S .

The following lemma characterizes {γvs : v ∈ V} and {ηvv
′

ss′ : v, v′ ∈ V} as
solutions of harmonic equations on A and A2, with boundary conditions on
S and V2 \ A2.
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Lemma 3. For all s, s′ ∈ S, one has that

(19)

∑

vHav(γ
v
s − γ

a
s ) = 0 , ∀a ∈ A ,

γss = 1 , γss′ = 0 , ∀s′ ∈ S \ {s} ,

(20)

∑

v,v′ K(a,a′)(v,v′)

(

ηvv
′

ss′ − η
aa′

ss′

)

= 0 , ∀a, a′ ∈ A ,

ηvv
′

ss′ = γvsγ
v′

s′ , ∀(v, v′) ∈ V2 \ A2 .

Proof. Observe that the second line of (19) is trivial since, if V (0) = s,
then TS = 0, and thus γss′ = Ps(V (TS) = s′) = Ps(V (0) = s′) is 1 if
s′ = s and 0 otherwise. On the other hand, the first line of (19) follows by
conditioning on the first state v ∈ V hit by a random walk V (t) started from
V (0) = a ∈ A: the probability γas that such a walk hits some s before any
other s′ ∈ S equals the sum over all neighbors v of a of the probability γvs
that a walk started from v hits some s before any other s′ ∈ S, times the
probability that the first neighbor hit by the random walk started in a is
actually v, which is proportional to Hav.

As far as the first line of (20) is concerned, it follows from conditioning
on the first pair of vertices (v, v′) hit by the joint random walk (V (t), V ′(t)),
arguing as before. To see why the second line of (20) holds, first assume
v′ ∈ S (the alternative case when v ∈ S follows from a symmetric argument):
in this case, necessarily V ′(T ′

S) = V ′(0) = s′, so that ηvv
′

ss′ = 0 if v′ 6= s′,
while, if v = s′, one has

ηvv
′

ss′ = P(V (TS) = s, V ′(T ′
S) = s′) = P(V (TS)) = γvs ,

thus concluding the proof.

The next theorem provides a fundamental characterization of the expected
values and correlations of ergodic beliefs in terms of the hitting probabilities
of the coupled random walks V (t) and V ′(t).

Theorem 3. For all v, v′ ∈ V,

E[Xv ] =
∑

s
γvsxs , E[XvXv′ ] =

∑

s,s′
ηvv

′

ss′ xsxs′ .

Proof. With no loss of generality, since the distribution of the asymp-
totic belief vector X does not depend on the probability law of the initial
beliefs of the regular agents, we can assume that such a law is the asymptotic
one, i.e., that L(X(0)) = L(X). Then, Theorem 1 implies that

(21)
d

dt
E [ϕ(X(t)] = 0 , ∀t ≥ 0 ,
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for all continuous bounded test function ϕ : RV → R.
In order to show the first part of the claim, we consider the Laplace

equation with boundary conditions

(22)

∑

vHav(hv − ha) = 0 , ∀a ∈ A ,

hs = xs , ∀s ∈ S .

It is a standard fact (see e.g. [3, Ch. 2, Lemma 27]) that the system of
equations (22) admits a unique solution {hv : v ∈ V}, and, thanks to (19),
it is easy to verify that (22) is satisfied by hv :=

∑

s γ
v
sxs. Now, (21) with

the specific choice of the test function ϕ(x) = xa yields

0 =
d

dt
E[Xa(t)] =

∑

v

ravθav (E[Xv(t)]− E[Xa(t)]) =
∑

v

Hav (E[Xv]− E[Xa]) ,

for every a ∈ A. On the other hand, E[Xs(t)] = xs for all s ∈ S. Hence, the
expected asymptotic beliefs vector {E[Xv] : v ∈ V} solves (22), and the first
part of the claim follows by the aforementioned uniqueness of solutions.

In order to prove the second part of the claim, we proceed in a similar fash-
ion. First, observe that thanks to (20), the vector {hvv′ :=

∑

s,s′ η
vv′

ss′ xsxs′}
is the unique solution of the Laplace equation with boundary conditions

(23)

∑

v,v′ K(a,a′)(v,v′)(h(v,v′) − h(a,a′)) = 0 , ∀a, a′ ∈ A ,

h(v,v′) = E[Xv]E[Xv′ ] , ∀(v, v′) ∈ V2 \ A2 .

Then, for all a 6= a′ ∈ A, (21) applied to the test function ϕ(x) = xaxa′

implies that

0 =
d

dt
E[Xa(t)Xa′(t)]

=
∑

v ravθav (E[Xv(t)Xa′(t)]− E[Xa(t)Xa′(t)])

+
∑

v′ ra′v′θa′v′ (E[Xa(t)Xv′(t)]− E[Xa(t)Xa′(t)])

=
∑

v,v′ K(a,a′)(v,v′) (E[XvXv′ ]− E[XaXa′ ]) ,

while (21) applied to ϕ(x) = x2a gives

d

dt
E[X2

a(t)] =
∑

v ravE
[

((1− θav)Xa + θavXv)
2 −X2

a

]

=
∑

v ravθav
(

θavE[X
2
v ] + 2(1− θav)E[XaXv ]− (2− θav)E[X

2
a ]
)

=
∑

vHav(1− θav)
(

E[XaXv]− E[X2
a ]
)

+
∑

v′ Hav′(1− θav′)
(

E[XaXv′ ]− E[X2
a ]
)

+
∑

vHavθav
(

E[X2
v ]− E[X2

a ]
)

=
∑

v,v′ K(a,a′)(v,v′) (E[XvXv′ ]− E[XaXa′ ]) .
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On the other hand, it is easy to see that E[XvXv′ ] = E[Xv]E[Xv′ ] for all
(v, v′) ∈ V2 \A2, thus proving that E[XvXv′ ] solves (23). Hence, the second
part of the claim follows by the uniqueness of solutions of (23).

Remark 2. As a consequence of Theorem 3, one gets that, if Xa = {x∗},
then Xa = x∗, and, by Corollary 1, Xa(t) converges to x∗ with probability
one. This can be thought of as a sort of complement to Theorem 2.

5. Reversible social networks. From now on, we restrict to consid-
ering social networks whose transition probability matrix P satisfies an ad-
ditional assumption of reversibility. Recall from Sect. 2 that the stochastic
matrix P was defined only on A× V, and not on S × V.

Assumption 3. The restriction of P to A × A is irreducible and re-
versible, i.e., there exist positive values π̃a, for a ∈ A, such that

(24) π̃aPaa′ = π̃a′Pa′a , a, a′ ∈ A .

The irreducibility assumption will be satisfied when the graph
−→
G re-

stricted to the regular agent set A is strongly connected. In fact, the ir-
reducibility assumption causes no significant loss of generality, as one can
always separately study the different communicating classes in the network.
On the other hand, the reversibility assumption is more stringent, as it en-
tails a sort of reciprocity between the intensity of influence of a regular agent
on another, and vice versa. In particular, it implies that if (a, a′) ∈ E , then
also (a′, a) ∈ E , so that the restriction of the di-graph G to A is in fact
undirected.

We shall refer to social networks whose transition probability matrix P
satisfies Assumption 3 as reversible (social) networks. Observe that, when-
ever Assumption 3 is satisfied, the vector {π̃a : a ∈ A} is uniquely defined
up to a multiplicative constant: to see this, fix the value π̃a on some a, then
(24) fixes the entries π̃a′ for a

′ in the out-neighborhood of a, and the irre-
ducibility assumption allows one to iterate the argument until covering the
whole A. Now, it is possible to extend P on S × V as follows: Put Pss′ := 0
for all s, s′ ∈ S, and

(25) π̃s :=
∑

a∈A

π̃aPas , Psa := Pasπ̃a/π̃s , s ∈ S, a ∈ A .

In particular, Psa does not depend on the particular choice of π̃, and, ex-
tended in this way, P becomes an irreducible and reversible stochastic matrix
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of dimension V ×V.5 Furthermore, the probability measure π on V, defined
by

(26) πv :=
(

∑

v′
π̃v′

)−1
π̃v ,

is its unique invariant distribution. The measure of the stubborn agents’ set
under such a distribution is given by,

(27) π(S) =
∑

s
πs =

(

∑

v
π̃v

)−1 ∑

a,s
π̃aPas

Observe that (24) and (25) imply that Pvv′ > 0 if and only if Pvv′ > 0.
It is then natural to associate to any social network satisfying Assumption
3 an undirected graph G = (V, E), in which {v, v′} ∈ E if and only of
Pvv′ > 0. From now on, we refer to this undirected graph G, rather than to

the directed graph
−→
G considered so far. Clearly, a given undirected graph G

may be associated to many reversible social networks.

Example 2. Let us consider the canonical construction of a social net-
work from a given undirected graph G = (V, E), explained in Example 1.
Extend P by putting Psv = 1/ds, for all s ∈ S, and v ∈ V such that
{s, v} ∈ E , and Psv = 0, for all s ∈ S, and v ∈ V such that {s, v} /∈ E . Then,
Assumption 3 can be checked to hold, with the invariant measure given by

πv = dv/(nd) ,

where dv is the degree of node v in G and

d := n−1
∑

v

dv

is the average degree of G. Observe that, in this construction,

π(S) =
(

∑

v
dv

)−1∑

s
ds

is the fraction of edges incident to the stubborn agents, or, in other words,
the relative size of the boundary of S in G.

5This is not the only possible extension that makes P irreducible and reversible, as one
may allow, e.g., for non-zero valued Pss′ . However, our subsequent analysis is valid for
all such extensions, while tightness of the estimates may vary with the choice of such an
extension.
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E[X
v
] Var[X

v
]

v

s
0

s
1

x
1

x
0

(x1−x0)
2

4
0

s
0

s
1

Fig 6. In the left-most figure, expected ergodic beliefs and variances in a social network with
a line graph topology with n = 5, and stubborn agents positioned in the two extremities.
The expected ergodic beliefs are linear interpolations of the two stubborn agents’ beliefs,
while their variances follow a parabolic profile with maximum in the central agent, and
zero variance for the two stubborn agents s0, and s1. In the right-most figure, expected
ergodic beliefs in a social network with a tree-like topology, represented by different levels
of gray. The solution is obtained by linearly interpolating between the two stubborn agents’
beliefs, x0 (white), and x1 (black), on the vertices lying on the path between s0 and s1, and
then extended by putting it constant on each of the connected components of the subgraph
obtained by removing the edges of such path.

5.1. Explicit computations for some reversible networks. We present now
a few examples of explicit computations of the ergodic average beliefs and
variances for reversible social networks, obtained using the construction in
Example 1.

Example 3. (Tree) Let us consider the case when G = (V, E) is a tree.
Let the stubborn agent set S consist of only two elements, s0 and s1, with
beliefs x0, and x1, respectively.

If Sa = {s0} (respectively, Sa = {s1}), then Remark 2 implies that
E[Xa] = x0 (resp., E[Xa] = x1), and Var[Xa] = 0. Instead, if Sa = {s0, s1},
then one has

E[Xa] :=
d(a, s0)x1 + d(a, s1)x0
d(a, s0) + d(a, s1)

,

where d(a, v) denotes the distance in G, between (i.e., the length of the
shortest path connecting) nodes a and v. Hence, the ergodic average beliefs
are linear interpolations of the beliefs of the stubborn agents. Moreover, if
the confidence parameters are θe = 1 for all e, then the ergodic variance of
agent a’ belief is given by

Var[Xa] :=
d(a, s0)d(a, s1)

(d(a, s0) + d(a, s1))2
(x0 − x1)

2 .
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s
0

s
1

s
0

s
1

Fig 7. Two social network with a special case of tree-like topology, known as star graph,
and two stubborn agents. In social network depicted in left-most figure one of the stubborn
agents, s0, occupies the center, while the other one, s1, occupies one of the leaves. There,
all regular agents’ ergodic beliefs coincide with the belief x0 of s0, represented in white. In
social network depicted in right-most figure, none of the stubborn agents, occupy the center.
There, all regular agents’ ergodic beliefs coincide with the arithmetic average (represented
in gray) of x0 (white), and x1 (black).

The two equations above show that the belief of each regular agent keeps
on oscillating ergodically around a value which depends on the relative dis-
tance of the agent from the two stubborn agents. The amplitude of such
oscillations is maximal for central nodes, i.e., those which are approximately
equally distant from both stubborn agents. This can be given the intuitive
explanation that, the closer a regular agent is to a stubborn agent s with
respect to the other stubborn agent s′, the more frequent her, possibly in-
direct, interactions are with agent s and the less frequent her interactions
are with s′, and hence the stronger the influence is from s rather than from
s′. Moreover, the more equidistant a regular agent a is from s0, and s1, the
higher the uncertainty is on whether, in the recent past, agent a has been
influenced by either s0, or s1.

On its left-hand side, Figure 6 reports the expected ergodic beliefs and
their variances for a social network with population size n = 5, line (a spe-
cial case of tree-like) topology: the two stubborn agents are positioned in
the extremities, and plotted in white, and black, respectively, while reg-
ular agents are plotted in different shades of gray corresponding to their
relative distance from the extremities, and hence to their expected ergodic
belief. In the right-hand side of Figure 6, a more complex tree-like topol-
ogy is reported, again with two stubborn agents colored in white, and black
respectively, and with regular agents colored by different shades of gray cor-
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s
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0

a
1

s
1

a
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Fig 8. A social network with population size n = 12, a barbell-like topology, and two stub-
born agents. In each of the two halves of the graph the expected average beliefs concentrate
around the beliefs of the stubborn agent in the respective half.

responding to their relative vicinity to the two stubborn agents. Figure 7
reports two social networks with star topology (another special case of tree).
In both cases there are two stubborn agents, colored in white, and black,
respectively. In the left-most picture, the white stubborn agent occupies the
center, so that all the rest of the population will eventually adopt his be-
lief, and is therefore colored in white. In the right-most picture, none of the
stubborn agents occupies the center, and hence all the regular agents, hence
colored in gray, are equally influenced by the two stubborn agents.

Example 4. (Barbell) For even n ≥ 6, consider a barbell-like topology
consisting of two complete graphs with vertex sets V0, and V1, both of size
n/2, and an extra edge {a0, a1} with a0 ∈ A0, and a1 ∈ A1 (see Figure 8).
Let S = {s0, s1} with s0 6= a0 ∈ V0 and s1 6= a1 ∈ V1. Then, the expected
ergodic beliefs satisfy

E[Xa] =























4
n+8xs0 +

n+4
n+8xs1 if a = a1

n+4
n+8xs0 +

4
n+8xs1 if a = a0

2
n+8xs0 +

n+6
n+8xs1 if a ∈ A1 \ {a1}

n+6
n+8xs0 +

2
n+8xs1 if a ∈ A0 \ {a0} .
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Fig 9. Two social networks with cycle and 2-dimensional toroidal topology, respectively.

In particular, observe that, as n grows large, E[Xa] converges to xs0 for all
a ∈ A0, and E[Xa] converges to xs1 for all a ∈ A1. Hence, the network
polarizes around the opinions of the two stubborn agents.

Example 5. (Abelian Cayley graph) Let us denote by Zm the inte-
gers modulo m. Put V = Zd

m, and let Θ ⊆ V \ {0} be a subset generating
V and such that if x ∈ Θ, then also −x ∈ Θ. The Abelian Cayley graph
associated with Θ is the graph G = (V, E) where {v,w} ∈ E iff v − w ∈ Θ.
Notice that Abelian Cayley graphs are always undirected and regular, with
dv = |Θ| for any v ∈ V. Denote by ei ∈ V the vector of all 0’s but the i-th
component equal to 1. If Θ = {±e1, . . . ,±ed}, the corresponding G is the
classical d-dimensional torus of size n = md. In particular, for d = 1, this is
a cycle, while, for d = 2, this is the torus (see Figure 9).

Let the stubborn agent set consist of only two elements: S := {s0, s1}.
Then the following formula holds (see [3, Ch. 2, Corollary 10]):

(28) γvs0 = Pv(Ts1 < Ts0) =
Evs0 − Evs1 + Es1s0

Es0s1 + Es1s0

where Evw := Ev[Tw] denotes the expected time it takes to a random walk
started at v to hit for the first time w. On the other hand, mean hitting
times Evw can be expressed in terms of the Green function of the graph,
which is defined as the unique matrix Z ∈ RV×V such that

Z1 = 0 , (I − P )Z = I − n−111T ,
where 1 stands for the all-1 vector. The relation with the hitting times is
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given by:

(29) Evw = n−1(Zww − Zvw) .

Let P be the stochastic matrix corresponding to the simple random walk
on G. It is a standard fact that P is irreducible and its unique invariant
probability is the uniform one. There is an orthonormal basis of eigenvectors
for P good for any Θ: if l = (l1, . . . ld) ∈ V define φl ∈ RV by

φl(k) = m−d/2 exp

(

2πi

m
l · k

)

, k = (k1, . . . , kd) ∈ V ,

(where l · k =
∑

i liki). The corresponding eigenvalues can be expressed as
follows

λl =
1

|Θ+|

∑

k∈Θ+

cos

(

2π

m
l · k

)

where Θ+ is any subset of Θ such that for all x ∈ Θ, |{x,−x} ∩ Θ+| = 1.
Hence,

(30) Zvw = m−d
∑

l 6=0

exp
[

2πi
m l · (v − w)

]

1− 1
|Θ+|

∑

k∈Θ+

cos
[

2π
m l · k

]

From (28), (29), and the fact that Es0s1 = Es1s0 by symmetry, one obtains

(31) γas1 =
1

2
+

m−d
∑

l 6=0

exp
[

2πi
m l · (a− s1)

]

− exp
[

2πi
m l · (a− s0)

]

1− 1
|Θ+|

∑

k∈Θ+

cos
[

2π
m l · k

]

2m−d
∑

l 6=0

1− cos
[

2π
m l · (s0 − s1)

]

1− 1
|Θ+|

∑

k∈Θ+

cos
[

2π
m l · k

]

6. Approximately equal influence in highly fluid social networks.

In this section, we present estimates for the ergodic belief expectations and
variances as a function of the underlying social network. Our estimates will
prove to be particularly relevant for large-scale social networks satisfying
the following condition.

Definition 1. Given a reversible social network, let P denote its tran-
sition probability matrix, extended as in (25), and π denote its stationary
distribution defined as in (26). Define π∗ := minv πv, and let
(32)

τ := inf

{

t ≥ 0 :
∑

w

|Pv(V (t) = w)− Pv′(V (t) = w)| ≤
2

e
,∀v, v′ ∈ V

}

.
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denote the (variational distance) mixing time of the continuous-time random
walk V (t) with transition rate matrix P . We say that a sequence6 of social
networks of increasing population size n is highly fluid if it satisfies

(33) τπ(S) = o(1) , nπ∗ = Θ(1) , as n→ +∞ ,

where π(S) is the size of the stubborn agents’ set, defined in (27).

Our estimates will show that for large-scale highly fluid social networks,
the ergodic beliefs of most of the regular agents in the population can be
approximated (at least in their first and second moments) by a ‘virtual’
random belief Z, whose distribution is given by

(34) P(Z = xs) = γs , γs :=
∑

v
πvγ

v
s , s ∈ S .

We refer to the probability distribution {γs : s ∈ S} as the stationary
stubborn agent distribution. Observe that γs = Pπ(V (TS) = s) coincides
with probability that the random walk V (t), started from the stationary
distribution π, hits the stubborn agent s before any other stubborn agent
s′ ∈ S. In fact, as we shall clarify below, one may interpret γs as a relative
measure of the influence of the stubborn agent s on the society compared
to the rest of the stubborn agents s′ ∈ S.

More precisely, let us denote the expected value and variance of the virtual
belief Z by

(35) E[Z] :=
∑

s
γsxs , σ2Z :=

∑

s
γs (xs − E[Z])2 .

Let σ2v denote the variance of the ergodic belief of agent v,

σ2v := E[X2
v ]− E[Xv]

2 .

We also use the notation ∆∗ to denote the maximum difference between
stubborn agents’ beliefs, i.e.,

(36) ∆∗ := max
{

xs − xs′ : s, s
′ ∈ S

}

.

The next theorem presents the main result of this section.

Theorem 4. Let Assumptions 1, 2, and 3 hold, and assume that π(S) ≤
1/4. Then, for all ε > 0,

(37)
1

n

∣

∣

∣

{

v :
∣

∣

∣
E[Xv]− E[Z]

∣

∣

∣
≥ ∆∗ε

}∣

∣

∣
≤ ψ(ε)

τπ(S)

nπ∗
,

6With a slight abuse of notation, in the following we shall sometimes refer to a sequence
of social networks of increasing population size n simply as a social network.
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with ψ(ε) := 16
ε log(2e2/ε). Furthermore, if the trust parameters satisfy

θav = 1 for all (a, v) ∈
−→
E , then

(38)
1

n

∣

∣

∣

{

v :
∣

∣

∣
σ2v − σ

2
Z

∣

∣

∣
≥ ∆2

∗ε
}
∣

∣

∣
≤ ψ(ε)

τπ(S)

nπ∗
.

This theorem implies that in large-scale highly fluid social networks, as the
population size n grows large, the expected values and variances of ergodic
beliefs of regular agents concentrate around fixed values corresponding to
the expected virtual belief E[Z], and, respectively, its variance σ2Z . We refer
to this as an approximately equal influence of the stubborn agents on the
rest of the society—meaning that their influence on most of the agents in
the society is approximately the same. Indeed, it amounts to approximately
equal (at least in their first two moments) marginals of the agents’ ergodic
beliefs. This shows that in highly fluid social networks, most of the regular
agents feel the presence of the stubborn agents in approximately the same
way.

Intuitively, if the set S and the mixing time τ are both small, then the
influence of the stubborn agents will be felt by most of the regular agents
much later then the time it takes them to influence each other. Hence, their
beliefs’ empirical averages and variances will converge to values very close
to each other. Theorem 4 is proved in Sect. 6.2. Its proof relies on the char-
acterization of the mean ergodic beliefs in terms of the hitting probabilities
of the random walk V (t). The definition of highly fluid network implies that
the (expected) time it takes V (t) to hit S, when started from most of the
nodes of G, is much larger than the mixing time τ . Hence, before hitting S,
V (t) looses memory of where it started from, and approaches S almost as if
started from the stationary distribution π.

Before proving Theorem 4, we present some examples of highly fluid social
networks in Sect. 6.1.

6.1. Examples of large-scale highly fluid social networks. We now present
some examples of family of social networks that are highly fluid in the limit
of large population size n. All the examples will follow the canonical social
network construction of Example 1, starting from an undirected graph G.
Before proceeding, let us recall that the invariant measure of the stubborn
agents set π(S) is given by

(39) π(S) =
∑

s
ds/(nd̄) ,

and observe that π∗n ≤ 1, with equality if and only if π is the uniform
measure over V. Hence, one has π∗n = 1 for regular graphs, while, for
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general undirected graphs (π∗n)
−1 ≤ d, where d is the average degree of the

graph.
We start with an example of a social network which is not highly fluid.

Example 6. (Barbell) For even n ≥ 6, consider the barbell-like topol-
ogy introduced in Example 4. The mixing time of this network can be es-
timated in terms of the conductance Φ∗ of the graph, which is defined as
the minimum over all subsets V ′ ⊆ V with 0 <

∑

v∈V ′ dv ≤ nd/2, of the
ratio between the number of edges connecting V ′ with its complement, and
the sum of the degrees of the nodes in V. It is not hard to see that such a
minimum is achieved by V ′ = V0, so that

Φ∗ =
1

n
2 (

n
2 − 1) + 1

≤
4

(n+ 1)2
.

Using [28, Theorem 7.3], it then follows that

τ ≥
1

4Φ∗
≥

(n+ 1)2

16
.

Since dv ≥ n/2− 1 for all v, it follows that the barbell-like network is never
highly fluid provided that |S| ≥ 1. In fact, we have already seen in Example
4 that the expected ergodic beliefs polarize in this case.

Let us now consider a standard deterministic family of symmetric graphs.

Example 7. (d-dimensional tori) Let us consider the case of a d-
dimensional torus of size n = md, introduced in Example 5. Since this is
a regular graph, one has π∗n = 1. Moreover, it was proved by Cox [15]
that, as n grows large, τ ∼ Cdn

2/d, for some constant Cd depending on
the dimension d only. Then, τπ(S) ∼ |S|n2/d−1. Hence, if |S| = o(n), then
the social network with toroidal topology is highly fluid.7 In contrast, for
the one-dimensional torus (i.e., a ring) of size n, both Eπ[TS ] ∼ n2 and
τC2 ∼ n2; in fact, using the explicit calculations of Example 3, that the
expected asymptotic opinions do not concentrate in this case. Finally, the
two-dimensional torus is not highly fluid, hence Theorem 4 is not sufficient
to prove that the empirical beliefs concentrate around E[Z]. Nevertheless,
one could use the explicit expression (31) and Fourier analysis in order to
show that the condition |S| = o(n1/2) would suffice for that.

An intuition for this behavior can be obtained by thinking of a limit con-
tinuous model. First recall that the expected ergodic beliefs vector solves

7In fact, using Fourier analysis, one may show that |S| = o(n1/d−1) suffices.
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the Laplace equation on G with boundary conditions assigned on the stub-
born agent set S. Now, consider the Laplace equation on a d-dimensional
manifold with boundary conditions on a certain subset. Then, in order for
the problem to be well-posed, one needs that the such a subset has dimen-
sion d − 1. Similarly, one needs |S| = Θ(n(d−1)/d) = Θ(md−1) in order to
guarantee that the expected ergodic beliefs vector is not almost constant in
the limit of large n.

We now present four examples of random graph sequences which have
been the object of extensive research. Following a common terminology, we
say that some property of such graphs holds with high probability, if the
probability that it holds approaches one in the limit of large population size
n.

Example 8. (Connected Erdös-Renyi) Consider the Erdös-Renyi
random graph G = ER(n, p), i.e., the random undirected graph with n
vertices, in which each pair of distinct vertices is an edge with probability
p, independently from the others. We focus on the regime p = cn−1 log n,
with c > 1, where the Erdös-Renyi graph is known to be connected with high
probability [19, Thm. 2.8.2]. In this regime, results by Cooper and Frieze [14]
ensure that, with high probability, τ = O(log n), and that there exists a posi-
tive constant δ such that δc log n ≤ dv ≤ 4c log n for each node v [19, Lemma
6.5.2]. In particular, it follows that, with high probability, (π∗n)

−1 ≤ 4/δ.
Hence, using (39), one finds that the resulting social network is highly fluid,
provided that |S| = o(n/ log n), as n grows large.

Example 9. (Fixed degree distribution) Consider a random graph
G = FD(n, λ), with n vertices, whose degree dv are independent and iden-
tically distributed random variables with P(dv = k) = λk, for k ∈ N. We
assume that λ1 = λ2 = 0, that λ2k > 0 for some k ≥ 2, and that the first two
moments d :=

∑

k λkk, and
∑

k λkk
2 are finite. Then, the probability of the

event En := {
∑

v dv is even} converges to 1/2 as n grows large, and we may
assume that G = FD(n, λ) is generated by randomly matching the vertices.
Results in [19, Ch. 6.3] show that τ = O(log n). Therefore, using (39), one
finds that the resulting social network is highly fluid with high probability
provided that

∑

s ds = o
(

n
logn

)

.

Example 10. (Preferential attachment) The preferential attachment
model was introduced by Barabasi and Albert [8] to model real-world net-
works which typically exhibit a power law degree distribution. We follow
[19, Ch. 4] and consider the random graph G = PA(n,m) with n vertices,
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generated by starting with two vertices connected by m parallel edges, and
then subsequently adding a new vertex and connecting it to m of the exist-
ing nodes with probability proportional to their current degree. As shown
in [19, Th. 4.1.4], the degree distribution converges in probability to the
power law P(dv = k) = λk = 2m(m + 1)/k(k + 1)(k + 2), and the graph
is connected with high probability [19, Th. 4.6.1]. In particular, it follows
that, with high probability, the average degree d remains bounded, while
the second moment of the degree distribution diverges an n grows large. On
the other hand, results by Mihail et al. [32] (see also [19, Th. 6.4.2]) imply
that the mixing time τ = O(log n). Therefore, thanks to (39), the resulting
social network is highly fluid with high probability if

∑

s∈S ds = o
(

n
logn

)

.

Example 11. (Watts & Strogatz’s small world) Watts and Strogatz
[46], and then Newman and Watts [37] proposed simple models of random
graphs to explain the empirical evidence that most social networks contain
a large number of triangles and have a small diameter (the latter has be-
come known as the small-world phenomenon). We consider Newman and
Watts’ model, which is a random graph G = NW(n, k, p), with n ver-
tices, obtained starting from a Cayley graph on the ring Zn with generator
{−k,−k + 1, . . . ,−1, 1, . . . , k − 1, k}, and adding to it a Poisson number of
shortcuts with mean pkn, and attaching them to randomly chosen vertices.
In this case, the average degree remains bounded with high probability as
n grows large, while results by Durrett [19, Th. 6.6.1] show that the mix-
ing time τ = O(log3 n). This, and (39) imply that (33) holds provided that
∑

s∈S ds = o
(

n
log3 n

)

.

6.2. Proof of Theorem 4. In order to prove Theorem 4, we shall obtain
estimates on the hitting probabilities of the random walk. We start by stating
a standard result on the distance of transition probability distribution of a
random walk from its stationary distribution. For a random walk V (t) on
set V, let qv(t) be its probability distribution at time t ≥ 0 when started
from some v ∈ V8, i.e.,

qvv′(t) := Pv(V (t) = v′) , v, v′ ∈ V .

Proposition 1. [3, Ch. 4,Lemma 5] Let V (t) be a random walk on set
V. For all t ≥ 0, we have

max
v,v′

∣

∣

∣

∣

∣

∣
qv(t)− qv

′

(t)
∣

∣

∣

∣

∣

∣

TV
≤ exp(1− t/τ) ,

8We use here the same notation for the generic random walk as the random walk
induced by a social network for convenience.
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where τ is the mixing time of the random walk V (t) [cf. Eq. (32)].

The following result, whose proof is an application of Proposition 1, pro-
vides a useful estimate on the total variation distance between the hitting
probability distribution γv over S and the stationary stubborn agent distri-
bution γ.

Lemma 4. Let Assumptions 1, and 2 hold. Then, for all t ≥ 0, and
v ∈ V,

(40) ||γv − γ||TV ≤ pv(t) + exp(−t/τ + 1) ,

where pv(t) := Pv (TS ≤ t).

Proof. Observe that, with no loss of generality, we may assume
∑

v′ Hvv′ =
1 for all v, since having different rates

∑

v′ Hvv′ does not alter the values
of the hitting probability distributions γv. Then, notice that (40) is trivial
when v ∈ S, for in that case pv(t) = 1.

On the other hand, for every a ∈ A, v ∈ V, and s ∈ S, let us define

γ̃as := Pa (V (TS) = s, TS > t) , ρas := Pa(V (TS) = s|TS ≤ t) .

q̃av := Pa(V (t) = v, TS > t) , χa
s :=

∑

v

(qav − q̃
a
v )γ

s
v/pa .

Clearly, ρa is a probability measure over S, and the same is true for χa, since
χa
v ≥ 0, and

∑

s
χa
s =

∑

v
Pa(V (t) = v|TS ≤ t)

∑

s
γsv = 1 .

On the other hand, neither γ̃a nor q̃a are generally probability measures over
V. Let T̃S := inf{t′ ≥ t : V (t) ∈ S}. For s ∈ S, one has

γas − pa(t)ρ
a
s = Pa (V (TS) = s, TS > t)

=
∑

v Pa (V (TS) = s, V (t) = v, TS > t)

=
∑

v Pa

(

V (T̃S) = s, V (t) = v, TS > t
)

=
∑

v q̃
a
vPa

(

V (T̃S) = s|V (t) = v, TS > t
)

=
∑

v q̃
a
vγ

v
s

=
∑

v q
a
v (t)γ

v
s − pa(t)χ

a
s ,

the last equality following from the strong Markov property of V (t). Hence,

||γa −
∑

v q
a
v (t)γ

v||TV = pa(t)||ρ
a − χa||TV ≤ pa(t) .
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Using (34), one has that

||
∑

v q
a
v(t)γ

v − γ||TV = 1
2

∑

s |
∑

v q
a
v(t)γ

v
s − γs|

= 1
2

∑

s |
∑

v γ
v
s (q

a
v(t)− πv)|

≤ 1
2

∑

v

∑

s γ
v
s |q

a
v(t)− πv|

= 1
2

∑

v |q
a
v(t)− πv|

= ||qa(t)− π||TV .

By applying the triangle inequality, the two estimates above, and Proposi-
tion 1, one shows that

||γa − γ||TV ≤ ||γa −
∑

v q
a
v (t)γ

v||TV + ||
∑

v q
a
v (t)γ

v − γ||TV

≤ pa(t) + ||q
a(t)− π||TV

≤ pa(t) + exp(−t/τ + 1) ,

thus proving the claim.

Lemma 5, stated below, is the main technical result of this section. Its
proof relies on the “approximate exponentiality” of the hitting time TS . This
is the property that the probability law of TS is close to the exponential
distribution with expectation Eπ[TS ] when the initial distribution is the
stationary one, and the mixing time τ is small with respect to the expected
hitting time Eπ[TS ]. In particular, we make use of the following result, due
to Aldous and Brown:

Proposition 2. ([3, Ch. 3,Prop. 23]) Let V (t) be a continuous-time
reversible random walk on V with irreducible transition probability matrix P ,
and stationary distribution π. Let τ2 be its relaxation time, i.e., the inverse
of the spectral gap of P . Then, for all S ⊂ V,

sup
t≥0
|Pπ(TS > t)− exp(−t/Eπ[TS ])| ≤ τ2/Eπ[TS ] .

Lemma 5. Let Assumptions 1, 2, and 3 hold. Then, for all ε > 0,

(41)
1

n

∣

∣

{

v ∈ V : ||γv − γ||TV ≥ ε
}
∣

∣ ≤
2 log(2e2/ε)

ε

τ

nπ∗Eπ[TS ]
.

Proof. From Lemma 4, and Proposition 2, it follows that, for all t ≥ 0,

∑

v

πvpv(t) =
∑

v

πvPv (TS ≤ t) ≤ 1− exp

(

−
t

Eπ[TS ]

)

+
τ2

Eπ[TS ]
≤

t+ τ2
Eπ[TS ]

,
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where the last step follows from the inequality ex ≤ 1 + x. Hence, Markov’s
inequality implies that
(42)
1

n
|{v : pv(t) ≥ ε/2}| ≤

2

ε

∑

v

1

n
pv(t) ≤

2

εnπ∗

∑

v

πvpv(t) ≤
2

εnπ∗

t+ τ2
Eπ[TS ]

.

Now, by applying (40) and (42) with t = τ log(2e/ε), and using the inequality
τ2 ≤ τ , one gets

1

n
|{v : ||γv − γ||TV ≥ ε}| ≤

1

n

∣

∣

∣

{

v : ||qv(t)− π||TV ≥
ε

2

}∣

∣

∣
≤

2 log(2e2/ε)τ

εnπ∗Eπ[TS ]
,

which proves the claim.

Lemma 5 is particularly relevant when τ is much smaller than Eπ[TS ].
Indeed, in this case, it shows that, for all but a negligible fraction of initial
states v ∈ V, the hitting probability distribution γv will be close to the
stationary stubborn agent distribution γ. The intuition behind this result
is simple: if the chain V (t) mixes much before hitting the stubborn agents
set S, then it will hit some s before any other s′ ∈ S with probability close
to γs, independently of the initial state. While the expected hitting time
Eπ[TS ] may be computable in certain cases, it is often easier to estimate it
in terms of the invariant measure of the stubborn agent set, π(S), e.g., using
the following result:

Proposition 3. [4, Proposition 7.13] For all S ⊆ V, Eπ[TS ] ≥
1

2π(S)−
3
2 .

Lemma 5 and Proposition 3 immediately imply the following result:

Lemma 6. Let Assumptions 1, 2, and 3 hold, and assume that π(S) ≤
1/4. Then, for all ε > 0,

1

n
|{v : ||γv − γ||TV ≥ ε}| ≤ ψ(ε)

τπ(S)

nπ∗
,

with ψ(ε) := 16
ε log(2e2/ε).

Proof of Theorem 4:

Let ys := xs +∆∗/2−max{xs′ : s
′ ∈ S} for all s ∈ S. Clearly |ys| ≤ ∆∗/2.

Then, it follows from Theorem 3 that
∣

∣

∣
E[Xv]−E[Z]

∣

∣

∣
=

∣

∣

∑

s
γvsxs−

∑

s
γsxs

∣

∣

∣
=

∣

∣

∑

s
γvs ys−

∑

s
γsys

∣

∣

∣
≤ ∆∗||γ

v−γ||TV ,
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so that (37) immediately follows from Lemma 6.
On the other hand, in order to show (38), first recall that, if θe = 1 for

all e ∈
−→
E , then Eq. (17) provides the transition rates of coalescing random

walks. In particular, if V (0) = V ′(0), then V (TS) = V ′(T ′
S), so that η

vv
ss′ = γvs

if s = s′, and ηvvss′ = 0 otherwise. Then, it follows from Theorem 3 that

σ2v = E[X2
v ]− E[Xv ]

2

=
∑

s,s′ η
vv
ss′xsxs′ − (

∑

s γ
v
sxs)

2

=
∑

s γ
v
sx

2
s − (

∑

s γ
v
sxs)

2

= 1
2

∑

s

∑

s′ γ
v
sγ

v
s′(xs − xs′)

2 .

Similarly, σ2Z = 1
2

∑

s,s′ γsγs′(xs − xs′)
2, so that

|σ2v − σ
2
Z | ≤

1
2

∑

s,s′

∣

∣γvsγ
v
s′ − γsγs′

∣

∣ (xs − xs′)
2

≤ 1
2

∑

s,s′

∣

∣γvsγ
v
s′ − γsγs′

∣

∣∆2
∗

≤ 1
2

∑

s,s′
(

γvs
∣

∣γvs′ − γs′
∣

∣+ γvs′ |γ
v
s − γs|

)

∆2
∗

= ||γv − γ||TV ∆2
∗ ,

and (38) follows again from a direct application of Lemma 6.

7. Opinion oscillations and disagreement. We have seen in the
previous section that in highly fluid social networks a condition of approx-
imately equal influence is achieved, with the expected values and variances
of the ergodic opinions of almost all the agents close to those of the vir-
tual belief. It is worth stressing how the condition of approximately equal
influence may significantly differ from an approximate consensus. In fact,
the former only involves the (the first and second moments of) the marginal
distributions of the agents’ ergodic beliefs, and does not have any impli-
cation for their joint probability law. A chaotic distribution in which the
agents’ ergodic beliefs are all mutually independent would be compatible
with the condition of approximately equal influence, as well as an approxi-
mate consensus condition, which would require the ergodic beliefs of most
of the agents to be close to each other with high probability. In this section,
under additional assumptions, we show that the ergodic belief distribution
in highly fluid social networks is closer to a chaotic distribution than to an
approximate consensus. For the sake of simplicity, throughout this section,
we restrict our attention to the voter model.

Assumption 4. For every e ∈
−→
E , θe = 1.
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We start by introducing two quantities measuring the amplitude of the
aggregate population’s oscillations and the average disagreement among the
agents. Specifically, let us consider the ergodic aggregate belief of the system,
X := n−1

∑

vXv, and let

(43) σ2
X

:= E

[

(

X − E[X]
)2
]

be its variance. Also, define the mean squared disagreement as

(44) ∆2 :=
1

2n2

∑

v,v′

E

[

(Xv −Xv′)
2
]

,

the reason for the factor 1/2 being mere notational convenience. Observe
that, if the ergodic distribution of the agents’ beliefs is chaotic (i.e., it is the
product of its marginals), then X is the arithmetic average of independent
random variables with finite variance, and thus σ2

X
= o(1). On the other

hand, an approximate consensus condition, with the ergodic beliefs of most
of the agents close to each other with high probability, would imply that
∆2 = o(1).

In this section, we focus on highly fluid social networks satisfying the
following:

Definition 2. Given a family of reversible social networks of increasing
population size, we say that there is a significant presence of stubborn agents
if

(45)
π(S)

π(D)
= ω(τ2) , n→ +∞ ,

where τ2 is the relaxation time, i.e., the inverse of the spectral gap, and

π(D) :=
∑

a
π2a

is the invariant measure of the diagonal set D := {(a, a) : a ∈ A}.

In order to obtain some intuition on Definition 2, one should think of the
ratio π(S)/π(D) as a measure of the relative intensity of the interactions
of the regular agents with the stubborn agents (quantified by π(S)), as
compared to the intensity of the interactions between typical pairs of regular
agents (quantified by π(D)). If such a ratio grows fast enough (precisely,
Definition 2 requires it to grow faster than the relaxation time of the network,
but in fact, one may expect that in many cases such ratio going to infinity
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should suffice), then one may expect that the ergodic beliefs of a typical
pair of regular agents in the network should be directly influenced by the
stubborn agents’ beliefs, without a significant coupling between themselves.
Hence, in a social network with a significant presence of stubborn agents, the
ergodic beliefs of most of the regular agents’ pairs are expected to be weakly
coupled, so that the variance of the ergodic aggregate belief should vanish
in the large population limit. Indeed, this is formalized in the following:

Theorem 5. For any family of highly fluid social networks, satisfying
Assumptions 1-4, with a significant presence of stubborn agents, it holds

σ2
X

= o(1) , ∆2 = σ2Z + o(1) , as n→ +∞ .

Theorem 5 shows that in highly fluid social network with a significant
presence of stubborn agents, the amplitude of the ergodic oscillations of the
aggregate belief vanishes, while the mean square disagreement is asymptot-
ically equivalent to the variance of the virtual belief, in the limit of large
population size. Hence, under these conditions the ergodic belief distribution
achieved in this setting is close to a chaotic distribution.

An immediate consequence of Theorem 5 is that, if σ2Z is bounded away
from zero in the large population limit, then so is the mean squared dis-
agreement. Observe that the condition σ2Z = o(1) is equivalent to the fact
that the probability measure

∑

s γsδxs (where γs is defined in (34), and δx
stands for the Dirac’s measure centered in some x ∈ R) concentrates in one
single point. We can think of this as the as the presence of a dominating
stubborn agents’ belief. Hence, we may say that Theorem 5 implies that, on
highly fluid social networks with a significant presence of stubborn agents,
none of whose beliefs is dominating, a significant disagreement persists in
the large population limit.

7.1. Examples of highly fluid social networks with significant presence of
stubborn agents. Observe that, for the canonical construction of a social
network from an indirected graph G, as described in Example 1, one has

π(D) =
∑

a

π2a ≤
∑

v

π2v =
∑

v

d2v
(nd)2

=
d2

(d)2
n−1 ,

where d is the average degree, and d2 := n−1
∑

v d
2
v is the average squared

degree, of G. Notice that the ratio

d2

(d)2
= 1 +

1

n

∑

v

(

dv

d
− 1

)2
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is minimal for regular graphs, where it equals 1, and grows with the normal-
ized variance of the degree distribution. In particular, for a family of social
networks with bounded first and second moment of the degree distribution,
π(D) = O(n−1), so that, in order to have a significant presence of stub-
born agents, its is sufficient that nπ(S) = (d)−1

∑

s ds grows faster than the
relaxation time τ2.

Let us return to the five examples of Sect. 6.1.

Example 12. (d-dimensional tori) Let us consider the case of a d-
dimensional torus of size n, introduced in Example 5, and discussed in Ex-
ample 12. Then, d2 = 2d, and τ2 ≤ τ = O(n2/d) for d ≥ 2. Thus, if d > 4,
and |S| grows faster than n2/d, and slower than n1−2/d, then the associated
social network is highly fluid and with a significant presence of stubborn
agents.

Example 13. (Connected Erdös-Renyi) Consider the Erdös-Renyi
random graph G = ER(n, p), in the regime p = cn−1 log n, with c > 1, as
in Example 8. Then, with high probability, d2/(d)2 = O(1), while τ2 ≤ τ =
O(log n). It follows that the associated social network is highly fluid and
with a significant presence of stubborn agents provided that |S| grows faster
than log n, and slower than n/ log n.

Example 14. (Fixed degree distribution) Consider G = FD(n, λ),
as in Example 9. Then, with high probability, since the expected square
degree is bounded, one has π(D) = O(n−1), while τ2 ≤ τ = O(log n). It fol-
lows that the associated social network is highly fluid and with a significant
presence of stubborn agents provided that

∑

s ds grows faster than log n,
and slower than n/ log n.

Example 15. (Preferential attachment) Consider the preferential
attachment model of Example 10. Then, with high probability, τ2 ≤ τ =
O(log n), while, according to [19, pag. 180], π(D) ≤ n−1 log n. It follows that
the associated social network is highly fluid and with a significant presence
of stubborn agents provided that

∑

s ds grows faster than log2 n, and slower
than n/ log n.

Example 16. (Watts & Strogatz’s small world) For the small-world
model of Example 11, one has that both the average degree and the average
square degree are bounded, so that π(D) = O(n1), while τ2 ≤ τ = O(log3 n),
with high probability. This implies that (33) holds provided that

∑

s∈S ds
grows faster than log3 n and slower than n/log3 n.
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7.2. Proof of Theorem 5. The following result is a consequence of The-
orem 4:

Lemma 7. For any family of highly fluid social networks, satisfying As-
sumptions 1-4,

(46) ∆2 + σ2
X

= σ2Z + o(1) , as n→ +∞ .

Proof. Observe that
(47)

∆2 = 1
2n2

∑

v,v′ E

[

(Xv −Xv′)
2
]

= 1
2n2

∑

v,v′
(

E
[

X2
v

]

+ E
[

X2
v′
]

− 2E [XvXv′ ]
)

= 1
2n2

∑

v,v′
(

E
[

X2
v

]

+ E
[

X2
v′
]

− E [Xv]
2 − E [Xv′ ]

2

+E [Xv]
2 + E [Xv′ ]

2 − 2E[Xv ]E[Xv′ ]

+2E[Xv ]E[Xv′ ]− 2E[XvXv′ ]
)

= 1
2n2

∑

v,v′
(

σ2v + σ2v′ + (E[Xv]− E[Xv′ ])
2 − 2Cov(Xv,Xv′)

)

= n−1
∑

v σ
2
v +

1
2n

−2
∑

v,v′(E[Xv ]− E[Xv′ ])
2 − n−2

∑

v,v′ Cov(Xv ,Xv′) .

Similarly, one gets that

(48)

σ2
X

= E
[

(n−1
∑

vXv)
2
]

−
(

E
[

n−1
∑

vXv

])2

= n−2
∑

v,v′ (E[XvXv′ ]− E[Xv]E[Xv′ ])

= n−2
∑

v,v′ Cov(Xv,Xv′) .

It follows from Theorem 4 that

(49) n−2
∑

v,v′
(E[Xv]− E[Xv′ ])

2 = o(1) , n−1
∑

v
σ2v = σ2Z + o(1) .

Then the claim follows from (47), (48), and (49).

Corollary 7 implies that, the sum of the mean squared disagreement ∆2

and the variance of the ergodic aggregate belief , σ2
X
, remains bounded

away from 0 in the limit of large population size, provided that there is no
dominating stubborn agents’ belief. In fact, we now show that σ2

X
vanishes in

the large population limit of highly social networks with significant presence
of stubborn agents.

To argue that, some considerations are in order on the coupled random
walk (V (t), V ′(t)) of transition ratesK(v,v′),(w,w′) defined in (17). Recall that,
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under Assumption 4, such rates reduce to the ones of a pair of coalescing
random walks which stick together once they meet, and never separate from
each other. It is then of particular interest to consider the diagonal set

D := {(a, a) : a ∈ A} ⊆ V × V ,

and the boundary set

B := (S × V) ∪ (V × S) .

Let C := B ∪D. Let TD, TB, TC denote the hitting times of the random walk
on the sets D, B, and C, respectively. We shall study the probability

pD := Pπ(TD < TB) ,

that, when started from the stationary distribution, V (t) and V ′(t) meet
before any of them hits the stubborn agents’ set. In particular, one has the
following result:

Lemma 8. For every social network satisfying Assumptions 1–4,

σ2
X
≤

∆2
∗

2(nπ∗)2
pD .

Proof. Let us consider another pair of random walks on V, Ṽ (t) and
Ṽ ′(t), such that Ṽ (t) = V (t), and Ṽ ′(t) = V ′(t), for all t ≤ TC . If TC = TD,
then, for t ≥ TC , Ṽ (t) and Ṽ ′(t) continue to move on V with transition
rates Pvv′ , independent of each other, and independent from V (t) and V ′(t).
Otherwise, if TC = TS , then, for all t ≥ TC , Ṽ

′(t) = V ′(t), while Ṽ (t)
continues to move on V with transition rates Pvv′ , independently from V (t),
and V ′(t). In the symmetric case when TC = T ′

S , for all t ≥ TC , Ṽ (t) = V (t),
while Ṽ ′(t) continues to move on V with transition rates Pvv′ , independently
from V (t), and V ′(t). In particular, (Ṽ (t), Ṽ ′(t)) is a pair of independent
random walks on V both with transition rates Pvv′ .

Observe that, if TC = TB, then either TC = TS , or TC = T ′
S . In both cases,

it is not hard to verify that Ṽ (T̃S) = V (TS), and Ṽ
′(T̃ ′

S) = V ′(T ′
S). Now, if

V (TS) = s, and V ′(T ′
S) = s′, for some s 6= s′, then necessarily V (t) and V ′(t)

have not coalesced before hitting B, i.e., TC = TB, and hence Ṽ (T̃S) = V (TS),
and Ṽ ′(T̃ ′

S) = V ′(T ′
S). Let ζ

vv′
a := Pvv′(V (TD) = V ′(TD) = a|TD < TB), and
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pvv′ := Pv,v′(TD < TB). It follows that, if s 6= s′, then

γvsγ
v′

s′ − η
vv′

ss′ = Pvv′

(

Ṽ (T̃S) = s, Ṽ ′(T̃ ′
S) = s′

)

− Pvv′ (V (TS) = s, V ′(T ′
S) = s′)

= Pvv′

(

Ṽ (T̃S) = s, Ṽ ′(T̃ ′
S) = s′

)

−Pvv′

(

Ṽ (T̃S) = V (TS) = s, Ṽ ′(T̃ ′
S) = V ′(T ′

S) = s′
)

= Pvv′

(

TC = TD, Ṽ (T̃S) = s, Ṽ ′(T ′
S) = s′, (V (TS), V

′(T ′
S)) 6= (s, s′)

)

= Pvv′

(

TC = TD, Ṽ (T̃S) = s, Ṽ ′(T ′
S) = s′

)

=
∑

a pvv′ζ
vv′
a γas γ

a
s′ .

On the other hand,

ηvv
′

ss − γ
v
sγ

v′
s = Pvv′ (V (TS) = V ′(T ′

S) = s)− Pvv′

(

Ṽ (T̃S) = Ṽ ′(T̃ ′
S) = s

)

= Pvv′ (V (TS) = V ′(T ′
S) = s, TC = TD)

−Pvv′

(

Ṽ (T̃S) = Ṽ ′(T̃ ′
S) = s, TC = TD

)

+Pvv′ (V (TS) = V ′(T ′
S) = s, TC = TB)

−Pvv′

(

Ṽ (T̃S) = Ṽ ′(T̃ ′
S) = s, TC = TB

)

= Pvv′

(

TC = TD, V (TS) = V ′(T ′
S) = s, (Ṽ (T̃S), Ṽ

′(T̃ ′
S)) 6= (s, s)

)

=
∑

a pvv′ζ
vv′
a (γas − γ

a
s γ

a
s ) .

It follows that

Cov (Xv,Xv′) =
∑

s,s′

(

ηvv
′

ss′ − γ
v
sγ

v′

s′

)

xsxs′

= pvv′
∑

a ζ
vv′
a

(

∑

s γ
i
sx

2
s −

∑

s,s′ γ
a
sγ

a
s′xsxs′

)

= pvv′
∑

a ζ
vv′
a σ2a

≤ pvv′
∑

a ζ
vv′
a

1
2∆

2
∗

≤ pvv′
1
2∆

2
∗ .

Finally, one has that

σ2
X

= n−2
∑

v,v′ Cov (Xv,Xv′)

≤ 1
2∆

2
∗

∑

v,v′ πvπv′
1

n2πvπv′
pvv′

≤ 1
2∆

2
∗(nπ∗)

−2
∑

v,v′ πvπv′pvv′

= 1
2∆

2
∗(nπ∗)

−2pD ,
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which completes the proof.

The probability pD can in turn be upper-bounded using the approximate
exponentiality of the hitting times.

Lemma 9. For coalescing random walks with a reversible irreducible
transition probability matrix P ,

pD ≤
Eπ[TS ]

Eπ[TD]
log

eEπ[TD]

Eπ[TS ]
+

τ2
Eπ[TD]

+
τ2

Eπ[TS ]
.

Proof. For every t ≥ 0, one has that

pD = Pπ(TD < TB)

≤ Pπ({TD ≤ t} ∪ {TB > t})

≤ Pπ(TD ≤ t) + Pπ(TB > t)

≤ Pπ(TD ≤ t) + Pπ(TS > t)

≤ 1− e−t/Eπ [TD ] + e−t/Eπ [TS ] +
τ2

Eπ[TD]
+

τ2
Eπ[TS ]

≤
t

Eπ[TD]
+ e−t/Eπ [TS ] +

τ2
Eπ[TD]

+
τ2

Eπ[TS ]
,

the forth inequality following from, Proposition 2, the last one from the in-
equality e−1 ≤ 1−x. With the optimal choice t = Eπ[TS ] log (Eπ[TD]/Eπ[TS ]),
the foregoing gives the claim.

In order to apply Lemma 9, one needs an upper bound on the ratio
Eπ[TS ]/Eπ[TD]. In the absence of more precise information about these ex-
pected hitting times, one can estimate Eπ[TD] from below using Proposition
3. On the other hand the following general upper bound on Eπ[TS ] can be
applied.

Proposition 4. [3, Ch. 3, Prop. 21] Let V (t) be a continuous-time
reversible random walk on V with irreducible transition probability matrix
P , and stationary distribution π. Then,

Eπ[TS ] ≤
1− π(S)

π(S)
τ2

Combining Lemmas 10 and 9 with Propositions 3 and 4, one obtains the
following:
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Lemma 10. Consider a social network satisfying Assumptions 1-4. As-
sume that π(S) ≤ 1/4, and 8π(D)τ2 ≤ π(S). Then,

σ2
X
≤

∆2
∗

2(nπ∗)2

(

8π(D)τ2
π(S)

log
eπ(S)

8π(D)τ2
+ 8τ2π(S) + 8τ2π(D)

)

Proof. From Proposition 3, and the assumption π(S) ≤ 1/4, one gets

(50) (Eπ[TS ])
−1 ≤

2π(S)

1− 3π(S)
≤ 8π(S) .

Moreover, one has π(D) ≤ π(S)/(8τ2) ≤ π(S)/8 ≤ 32, and, arguing as
above, (Eπ[TD])

−1 ≤ 8π(D). From this inequality, and Proposition 4, one
finds that

(51)
Eπ[TS ]

Eπ[TD]
≤

8τ2π(D)

π(S)
≤ 1 .

Then, Lemmas 10 and 9, together with (50) and (51), imply that

σ2
X
≤

∆2
∗

2(nπ∗)2
pD ≤

∆2
∗

2(nπ∗)2

(

8π(D)τ2
π(S)

log
eπ(S)

8π(D)τ2
+ 8τ2π(S) + 8τ2π(D)

)

,

thus proving the claim.

Now, it is easily seen, using Lemma 10, that σ2
X

= o(1) in the large
population limit of a family of highly fluid social networks with a significant
presence of stubborn agents. From this, and Lemma 7, one gets that ∆2 =
σ2Z + o(1), and Theorem 5 follows.

8. Conclusion. In this paper, we have studied a possible mechanism
explaining persistent disagreement and opinion fluctuations in social net-
works. We have considered a stochastic gossip model of continuous opin-
ion dynamics, combined with the assumption that there are some stubborn
agents in the network who never change their opinions. We have shown that
the presence of these stubborn agents leads to persistent oscillations and
disagreements among the rest of the society: the beliefs of regular agents do
not converge almost surely, and keep on oscillating according to an ergodic
distribution. First and second moments of the ergodic beliefs distribution
can be characterized in terms of the hitting probabilities of a random walk
on the network, while the correlation between the ergodic beliefs of any pair
of regular agents can be characterized in terms of the hitting probabilities
of a pair of coupled random walks. We have shown that in highly fluid, re-
versible social networks, whose associated random walks have mixing times
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which are sufficiently smaller than the inverse of the stubborn agents’ set
size, the vectors of the expected ergodic beliefs and of the ergodic variances
are almost constant, so that the stubborn agents have approximately the
same influence on the society. Finally, we have also shown that in highly
fluid social networks in which there is a significant presence of stubborn
agents, the variance of the ergodic aggregate belief of the system vanishes in
the limit of large population size, and the ergodic distribution of the agents
beliefs approaches an approximately chaotic condition. This implies that, if
the influence of any of the stubborn agents’ opinions does not dominate the
influence of the rest, then the mean square disagreement does not vanish in
the large population size. We conjecture that, in highly fluid social networks
without a significant presence of stubborn agents, i.e., with π(S) and π(D)
of the same asymptotic order, an intermediate condition between approxi-
mate consensus and chaotic ergodic belief distribution should emerge in the
large population limit.
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