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Note that previous FMIE models were “non-equilibrium”. We digress to a
quite different FMIE model designed to have an equilibrium.



I can remember Bertrand Russell telling me of a horrible dream. He was
in the top floor of the University Library, about A.D. 2100. A library
assistant was going round the shelves carrying an enormous bucket,
taking down books, glancing at them, restoring them to the shelves or
dumping them into the bucket. At last he came to three large volumes
which Russell could recognize as the last surviving copy of Principia
Mathematica. He took down one of the volumes, turned over a few
pages, seemed puzzled for a moment by the curious symbolism, closed
the volume, balanced it in his hand and hesitated . . . .
(G. H. Hardy, A Mathematician’s Apology)

Want to store information (informally, a book) somewhere in a
data-storage network, for a LONG time, longer than the reliable lifetime
of an individual node. Need more than one copy of each book. Cost of
storage/communication of title of book is negligible. Set time unit so
that cost of storage of book for one time unit = cost of communicating
the book.

Goal: A distributed algorithm which maintains a small number of copies
of each book in an unreliable network over times much longer than
lifetimes of individual vertices. The algorithm doesn’t know the current
number of copies.

In our FMIE setting, with (large) n vertices, set µ (= 10, say) for desired
average number of copies, then set p = µ/n. We want to define a
particle process (particle = copy of book) such that, in the “reliable
network” setting,

the stationary distribution is independent Bernoulli(p)
conditioned on non-empty. (1)

The evolution rule is simple. Use the directed meeting model. At a
directed meeting (i → j),

if i has a particle then j “resets” to have a particle with chance p
and no particle with chance 1− p;

if i has no particle then j does not change state.

Note (1) holds by checking the reversible equilibrium criterion.



What happens on a low-degree graph?

First-order effect: Isolated particles do RW at rate p/2.
Second-order effect: A particle splits into two non-adjacent particles at
rate O(p2). Two particles which become adjacent have chance O(1) to
merge.
Math Insight: Could directly define a process of particles doing RW,
splitting, coalescing – but wouldn’t know its stationary distribution. This
constrained Ising model has these qualitative properties and a simple
stationary distribution.

Continuing in the “reliable” setting, what can one say about
mixing/relaxation times? Take µ fixed and n→∞. There are two kinds
of obstacles . . . . . .

From motion of single particle, get lower bound
Ω(p−1 × mixing/relaxation time of MC).

From the mean-field birth-coalescence chain, that is the birth-death chain
with

qi,i+1 = µi ; qi+1,i = (i + 1)i

and Poisson(µ) stationary distribution. This has finite mixing/relaxation
time, so we get lower bound Ω(p−2). This bound is typically larger.

xxx studied on infinite lattice xxx refs but not xxx finite.
xxx theory project to prove anything.



xxx unreliable network.
xxx have implicitly assumed the typical meeting rate ν = νi is Θ(1). In
order to restore lost copies we want

p2ν � 1/L

for L := reliable lifetime. This becomes

ν � n2/L.

Key point is that this should work on a dynamic (changing) graph – can
have much more drastic changes than independent single-site failures.
Challenge to prove anything like this!

Two variants of the averaging model
Model 2 (the averaging model), with state interpreted as opinion, is a
rather extreme instance of a “consensus-seeking” model – extreme
because agents ultimately retain no memory of their original opinion.
One can invent variants where some aspects of opinion are fixed, and we
will look at two such models.

Subjective assessment of an average. Consider a model of how
humans assess the average opinion. Presumably people are in fact biased
towards the opinions of those who are close in the underlying geometry.
Here is a model for such subjective assessment.



Model: Subjective assessment of an average. Each agent i has a
fixed real-valued opinion y(i), centered so that ȳ := n−1

∑
i yi = 0, and a

subjective assessment of other’s opinions, a random process Xi (t). We
suppose that when an agent j communicates with another agent, the
impression that the other agent gets of j ’s opinion is a linear combination
of j ’s own opinion and j ’s view of the average opinion:

λy(j) + (1− λ)Xj(t−),

where either 0 < λ < 1 or λ > 1.
[ discuss on board: compromising or polarizing]

Now when agent i meets agent j , agent i updates his opinion of the
consensus as an average of his previous opinion and the opinion received
from j :

Xi (t+) = µXi (t−) + (1− µ)[λy(j) + (1− λ)Xj(t−)]

where here 0 < µ < 1. (note that j also updates).

This completes the model description. We consider the case 0 < λ < 1,

where it turns out that Xi (t)
d→ Xi (∞) as t →∞ and we study the

limit distribution. Write W (i , t), t = 0, 1, 2, 3 for the discrete-time jump
chain associated with the meeting rate matrix. Then

Lemma

EXi (∞) = Ey(W (i ,Gλ)) where Gλ has Geometric(λ) distribution.

Note that the value of µ does not matter.

[argument on board]

Theory project: similar formula for varXi (∞)?

How can we extract some insight from the identity in the lemma? Assume
normalized meeting rates, so that the dominant eigenvalue 1− λ2 for the
jump chain matches the eigenvalue λ2 of the continuous-time chain.



Digression: In the context of real-valued MC-like FMIE processes, it
may be helpful to consider an initial configuration y(i) of the form

y(i) = σgloα(i) + σlocz(i) (2)

where α is the normalized eigenvector associated with the eigenvalue λ2
of the associated continuous-time MC, and z = z(i) is a typical
realization of IID, mean zero and variance one, RVs. This form
constitutes a “mixture of opposites”, because we may interpret σglo and
σloc as indicating the amounts of “purely global” and “purely local”
variation. See (3) below.

In the current model, let us measure the extent of influence of the
geometry on the subjective assessments of the average via the ratio

ρ := E[y(U)XU(∞)]/E[y2(U)]

where U is a uniform random agent. This is somewhat reasonable,
because the ratio would be zero if XU(∞) were the correct average
(zero), and would be one if XU(∞) were replaced by the agent’s own
opinion y(U).

To study ρ when y is of the form (2), note

Eα2(U) = 1, Ez2(U) ≈ 1, E[α(U)z(U)] ≈ 0

so
E[y2(U)] ≈ σ2

glo + σ2
loc. (3)

From the eigenvector interpretation of α

E[α(U)α(W (U, g))] = (1− λ2)g .

We can calculate [board]

E[y(U)XU(∞)] ≈ σ2
gloE(1− λ2)G(λ) + σ2

locE[z(U) z(W (U,G (λ)) ]

≈ σ2
glo

λ(1− λ2)

1− (1− λ)(1− λ2)
+ σ2

locP(W (U),G (λ) = U).



In terms of the relaxation time,

E[y(U)XU(∞)] ≈ σ2
glo

λ(τrel − 1)

λ(τrel − 1) + 1
+ σ2

locP(W (U),G (λ) = U).

We interpret this as saying that the global and local structure of the
geometry affect this particular FMIE model via two different weighting
factors. For the effect of the global structure to be small we need
λ = o(1/τrel). For the effect of the local structure to be small we just
need, in the case where there is a n→∞ limit matching infinite
geometry, λ = o(1).

Of course this is all rather obvious from the model definition – it’s just
nice we can do a calculation.

Here is an alternative model whose analysis is quite similar. Details have
been written out in Acemoglu et al (2010), in somewhat more generality
than below.

In Model 2 (Averaging model) and the model above, when i and j meet
they both update. But the behavior of the “asymmetric” version where
only one agent updates is qualitatively similar. So consider the directed
meeting model (there is a meeting i → j at rate νij/2) and the associated
asymmetric averaging model:

at a meeting i → j at time t, set

Xj(t+) = (1− θ)Xj(t−) + θXi (t−).

Note that θ = 1 is essentially the voter model; we take 0 < θ < 1. Now
suppose some specified subset S of agents are “stubborn” and never
update their opinions. Call this

Model: Asymmetric averaging model with some fixed opinions.



Why is there a limit distribution? Can apply a standard method, iterated
random functions.

[board]

In the FMIE setting, we imagine the meeting model run over time
(−∞, 0]. Suppose we can construct a time-0 random configuration X∗

such that, for any configuration x(t0) at time t0 < 0, the resulting time-0
configuration X(x(t0)) satisfies

X(x(t0))→ X∗ a.s. as t0 → −∞.

Then X∗ has the stationary distribution, and from any time-0
configuration the forwards process satisfies

X(t)
d→ X∗ as t →∞.

How does this work in the present model?

Condition on the meeting process over time (−∞, 0]. We want to
construct Xi (0). Run t backards from 0; at each meeting we “accept”
with chance θ. The first accepted meeting is at some time −T1 and with
some agent J1. If J1 is not a stubborn agent then continue; run t
backwards from −T1 until the first accepted meeting, with some agent
J2. And so on.

As in the previous model, J0 = i , J1, J2 is the associated jump chain.
Eventually this chain hits some stubborn agent J∗. This J∗ depends on
the history of the meeting process (H, say) and the extra randomness of
accepting/rejecting. From the model description we can get the time-0
value as the expectation over the latter

Xi (0) = E(xJ∗ |H)



Underlying this is the continuous-time MC Q(t) which follows only the
“accept” meetings. It is distributed as the usual associated MC, slowed
down by the factor θ.

As in Model 2, one can study variances of the stationary distribution X
via a specific coupling of two versions of this process. (what we wrote in
Model 2 was the θ = 1/2 case). In terms of the coupling (Q i (t),Q j(t))

started at (i , j) and stopped at the first hitting times T i
S ,T

j
S on S,

E[XiXj ] = E[x(Q i (T i
S))x(Q j(T j

S))]. (4)

This is Theorem 3 of Acemoglu et al (2010). That paper gives
calculations for some standard geometries; also a general result (Theorem
4) formalizing the following intuition.

Write π(S) = |S|/n for the proportion of stubborn agents, and write τ for
a suitable mixing time (of the usual associated MC). If τπ(S)� 1 then
the MC gets close to the uniform distribution before hitting S. So each
stationary value Xi will likely be close to the expectation, for the chain
started from stationarity, of the opinion of the first stubborn agent met:

Xi ≈ Eπx(Q(TS)).

The proof uses standard MC tools, such as variation distance mixing
times and the approximate exponential distribution for stationary-start
hitting times.

Some theory projects.
1. Cleaner proofs?
2. Adapt to previous model.
3. Is there an analog of the “universality property” of local smoothness
in the averaging model?



Model 4 (ordered consensus-seeking model) envisages agents as “slaves
to authority”. Here is a conceptually opposite “slaves to fashion” model,
whose analysis is surprisingly similar.

Model: Fashionista.
Take a general meeting model. At the times of a rate-λ Poisson process,
a new fashion originates with a uniform random agent, and is
time-stamped. When two agents meet, they each adopt the latest (most
recent time-stamp) fashion.

There is a stationary distribution, for the random partition of agents into
“same fashion”, to which one can include the “time before present” that
the fashion started. Existence of the stationary distribution follows easily
from the “FMIE version of iterated random functions” method used in
the previous model.

Let us repeat the analysis of Model 4 in tbe complete graph geometry.

Model 4. Ordered consensus-seeking model; complete graph geometry,
(i) The agents are labelled 1 through n. Agent i initially has opinion i .
(ii) When two agents meet, they adopt the same opinion, the smaller of
the two labels.

Here is some heuristic analysis of (X n
1 (t), . . . ,X n

k (t)), where X n
k (t) is the

proportion of the population with opinion k at time t.

The first component X n
1 (t) evolves as the epidemic process, which during

the pandemic phase follows a deterministic function H1(t) satisfying the
logistic equation H ′1 = H1(1− H1) whose general solution is
H1(t) = F (t + c1) for the logistic function F . We can rephrase the
randomly-shifted logistic limit theorem to say

(X n
1 (log n + s), −∞ < s <∞)→ (F (C1 + s), −∞ < s <∞)

where C1 = log ξ1
d
= −G for Exponential(1) ξ1 and Gumbel G .



Use the same “martingale” argument to see that, durng the pandemic
phase, the random process (X n

1 (·),X n
2 (·)) will follow a determinstic

function (H1(·),H2(·)) that satisfies the DEs

H ′1 = H1(1− H1)

H ′2 = H2(1− H1 − H2)− H1H2.

We can solve these by simply observing that H1 + H2 must satisfy the
logistic equation; so the general solution is

(H1(t),H2(t)) = (F (t + c1),F (t + c2)− F (t + c1))

for c2 > c1. So we expect limit behavior of the form

((X n
1 (log n+s),X n

2 (log n+s), . . . ,X n
k (log n+s)), −∞ < s <∞)→ (5)

((F (C1+s),F (C2+s)−F (C1+s), , . . . ,F (Ck+s)−F (Ck−1+s)), −∞ < s <∞)

for some random C1 < C2 < . . . < Ck .

We can determine the Cj by considering large negative s. From the Yule
process approximation to the initial phase we have

X n
j (log n + s) ∼ esξj ; for IID Exponential(1)(ξj)

But since F (s) ∼ es we have

F (Cj + s)− F (Cj−1 + s) ∼ es(eCj − eCj−1).

This gives the equations

eCj − eCj−1 = ξj j ≥ 2

eC1 = ξ1.

which have solution

Cj = log(ξ1 + . . .+ ξj), j ≥ 1. (6)



Fashionista model; complete graph geometry.

We start with some notational issues. Consider a configuration of points
on (0, 1) with only finitely many points in any interval [ε, 1− ε]. We
want to think of the space of such configurations in the usual “point
process” way. For notational simplicity we write a configuration as
s = (si ,−∞ < i <∞) but only the ordering of the i is relevant; s is the
same as (si+1,−∞ < i <∞).

In the fashionista model write Xn(t) = (X n
i (t),−∞ < i <∞) for the

proportions of agents adopting the different fashions i at time t, where
the fashions i are ordered from “most recent” to “least recent”, that is
i + 1 originated before i . We study Xn by studying the cumulative
process Sn, that is Sn

i (t) =
∑

j≤i X n
j (t), and regarding a realization of

Sn(t) as a point configuration, as above.

For the stationary version of the fashionista model, we will argue that as
n→∞ the process Sn converges (no rescaling is involved) to a limit
process S with the following general structure.

Take the points (Ci , −∞ < i <∞) of a stationary process on (−∞,∞).
Write F for the logistic function. Define, for −∞ < t <∞,

Si (t) = F (Ci + t). (7)

The resulting process S(t) = (Si (t),−∞ < i <∞) is stationary (as t
varies)

We repeat the general method of analysis used for Model 4: first argue
that the limit process must be of the form X(t) above for some (Ci );
then determine the distribution of (Ci ) by considering the initial
“pandemic” stage..

We study the stationary fashionista process over time −∞ < t <∞.
Consider some −t0 = − log n ±O(1) and some −t1 = −O(1). Over time
[−t1, t1] write Y n

−t0(t) for the proportion of agents at time t adopting
some fashion introduced during [−t0,−t1]. The process t → Y n

−t0(t)
evolves essentially as the epidemic process over time [−t1, t1]; whenever
an agent in this group meets another agent, the other agent adopts one
of the group’s fashions. The O(1) new fashions introduced over [−t1, t1]
only attract O(1) agents and so make negligible contribution.



This argument shows that a process t → Sn
i (t) must (to first-order)

follow the logistic curve as its values increase over the range [ε, 1− ε]. So
the limit process must be of the form (7):

Si (t) = F (Ci + t).

Because the limit process (as a limit of stationary processes) must be
stationary, the (Ci ) must form a stationary point process.

Now consider the fashions at time t = 0 adopted by small but
non-negligible proportions of the population. More precisely, consider
fashions originating during the time interval [− log n + tn,− log n + 2tn],
where tn →∞ slowly. For a fashion originating at time − log n + η, the
time-0 set of adopting agents will be a subset of the corresponding
epidemic process, which we know has proportional size
ξ exp(−η) = exp(−η + log ξ) where ξ has Exponential(1) distribution.

The times − log n + ηj of origination of different fashions form by
assumption a rate-λ Poisson process, and after we impose IID shifts log ξj
we note (as an elementary property of Poisson processes) that the shifted
points − log n + ηj + log ξj still form a rate-λ Poisson process, say γj , on
(−∞,∞). So the sizes of small recent fashion groups (that is letting
j → −∞), for which overlap between fashions becomes negligible, are
approximately exp(γj). Summing over j ≤ i gives∑

j≤i

exp(γj) ≈ F (Ci ) ≈ exp(Ci )

and we end up with the representation

Ci = log

∑
j≤i

exp(γj)

 = γi + log

∑
k≥1

exp(γi−k − γi )

 . (8)



Digression: Consider any FMIE process where
(i) states are qualitative (categories) rather than quantitative (numerical)
(ii) there is a stationary distribution.

Two natural summary statistics of the stationary distribution of such a
process are
(a) s := E

∑
i (|Ci |/n)2, where Ci is the set of category-i agents.

(b) µ := (1/n)× (mean meeting rate between agents of different
categories).

[discuss s on board]

In our (complete graph) fashionista model we can just write down
expressions for s or µ (which are closely related, here) in the n→∞ limit.

[project: do these simplify?]


