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What we have called the simple epidemic process could also be called the
SI process, writing the evolution rules as

Initially one agent is Infected, others are Susceptible.

When an Infected agent meets a Susceptible agent, the latter
becomes infected.

We will now study two related models, which maintain the rules above
but add extra rules. An extra rule that both models share is

An Infected agent becomes un-infected at rate λ, that is after an
Exponential(λ) time.

They differ in the consequences of being un-infected. In the SIS model or
equivalently the contact process the un-infected agent becomes
susceptible again. In the SIR model there is a new state “Recovered”
that the un-infected agent enters; subsequently that agent stays in
Recovered state, and cannot infect others.

Terminology. The names SIS, SIR come from classical epidemic
modelling, with somewhat different background assumptions, e.g.
non-Exponential infective times. But let us use the same names in our
FMIE setting.



The name contact process was introduced in mathematical probability
and statistical physics, classically in the infinite lattice setting. Recall our
default assumption is a finite number of agents.

To appreciate the distinction between the three processes, consider what
the final configurations must be.

SI: all agents are Infected.

SIR: some agents are Susceptible (i.e. were never infected), and all
the other are Recovered.

SIS: all agents are Susceptible, because this is the only absorbing
configuration.

Where our finite meeting model can be “matched” with an infinite model
(the torus Zd

m to the lattice Zd , or the r -regular random graph to the
r -regular infinite tree), there are intuitively clear relations between the
qualitative behaviors of the two models. In the infinite model, the SIR
process may be supercritical (positive chance of an infinite number
infected) or subcritical (zero chance). One expects these alternatives to
correspond, in the finite setting, to the number of infected (and then
recovered) agents being Ω(n) or O(1).

For an infinite SIS process, typical alternatives are, starting from a
configuration with an arbitrary non-zero density ρ0 of infectives,

(subcritical) the density of infectives → 0
(supercritical) the density of infectives → ρ∞ > 0.
One expects these alternatives to correspond, in the finite setting, to the
alternatives

(subcritical) the infection dies out in O(1) time with O(1) agents ever
infected.
(supercritical) the process reaches a “quasistationary” distribution and
keeps this distribution for a very long time before (relatively suddenly)
dying out.



Digress to some math theory:

General 1-type branching process.

Parent has lifetime L, and a random number M ≥ 0 of offspring at
random ages 0 < ξ1 ≤ ξ2 ≤ . . . ≤ ξM ≤ L.

The above RVs have arbitrary distribution, except for moment
conditions.

Childen behave as IID copies.

If we ignore clock time and just consider generation structure, this is just
a Galton-Watson BP. But, in the supercritical case, what is the behavior
of

M(t) = Number of births before time t?

N(t) = population at time t?

Answer. Under minor assumptions, and on the “non-extinction:” event,

M(t) ∼ Z exp(θt) as t →∞

where Z is random and θ > 0 is the Malthusian parameter.

Proof is technical, but the bottom line formula for θ is easy to derive,
assuming the result. Recall births are at ages

0 < ξ1 ≤ ξ2 ≤ . . . ≤ ξM ≤ L.

Write
ρ(t)dt = E(number births at age [t, t + dt])

Consider the population growth rate at a large time t. This is

Zθ exp(θt).

But population change is caused by a birth to a parent of some age s.
The growth rate at time t − s was Zθ exp(θ(t − s)), and so the growth
rate at time t is ∫ ∞

0

Zθ exp(θ(t − s))× ρ(s) ds.



Equating these two expressions gives the Malthusian equation∫ ∞
0

ρ(s) e−θs ds = 1.

As a quick check, the Yule process has ρ(s) ≡ 1 and θ = 1.

Note. The behavior of

N(t) = population living at time t

can be deduced [board] as

N(t)/M(t)→ E exp(−θL).

Random graphs with prescribed degree distributions
Specify (di ). Can define models Gn of n-vertex graph, interpretable as
being “random” subject to the following constraint. Write Dn for degree
of a uniform random vertex of Gn, then

Dn
d→ D where P(D = i) = di .

Such models have the following “local GWBP approximation”. The
structure of Gn within some fixed graph-distance r from a uniform
random vertex Un converges in distribution, as n→∞, to the random
tree comprising generations 0 to r of the following modified
Galton-Watson BP. The root has offspring distribution D; in subsequent
generation the offspring distribution is the size-biased distribution D∗

where P(D∗ = i) = (i + 1)di+1/ED.

Assuming ED2+ε <∞ then E(D∗)1+ε <∞ and the Kesten-Stigum
theorem says that the size Yr of generation r grows at a particular rate:
Yr/(ED∗)r →W a.s. and L1.



SIR epidemic on a random graph
Take a typical realization of such a graph Gn. Define a meeting rate
matrix N as the adjacency matrix of Gn:

νij = 1 if (i , j) is an edge of Gn.

We shall analyze the initial phase of a supercritical SIR epidemic. Note
that the limiting case where the recovery rate λ = 0 is just the simple
epidemic.

Key point [board]: combining the local GWBP approximation for the
geometry and the evolution rule for SIR, we see that (in the initial phase,
after the first generation) the process of infectives evolves as the 1-type
branching process with

0 < ξ1 ≤ ξ2 ≤ . . . ≤ ξM ≤ L

as follows. L
d
= Exponential(λ) is infective period; D∗ is number of

offspring in the GWBP approximation, (ζj , 1 ≤ j ≤ D∗) are the first
meeting times with these neighbors, and the (ξi ) are those ζj for which
ζj < L.

Conditional on D∗ = d∗ we have

ρ(s) = d∗e−(1+λ)s

and so unconditionally
ρ(s) = m∗e−(1+λ)s

for m∗ = ED∗ = E[D(D − 1)]/E[D]. Note that the mean number of
infections passed on by a typical infective is m∗/(1 + λ) and so the
condition for supercriticality of the SIR epidemic is λ < m∗ − 1. The
Malthusian equation becomes

m∗

1 + λ+ θ
= 1

and so

θ =
m∗

1 + λ
− 1.



A full study of “proportion of population infected before time t” is rather
complicated, so let us just study the final proportion (π, say) of
population never infected. For this, the key point is to consider the
probability (x , say) that, for a typical directed edge (v ,w), the event

v and w meet while v is infected, the infection having reached
v from some neighbor other than w

does not happen. We argue informally that

π = ExD (1)

where x is the solution of

(1− x)(1 + λ) = 1− φ(x); φ the p.g.f. of D∗. (2)

Recall configuration model. Recall in GWBP approx. a typical vertex w
has D branches. Heuristic idea is that, for an epidemic started far away,
there is chance x of non-infection from a neighbor v , independently for
different v . (This implicitly assumes the proportion ever infected is
first-order constant). The independence now gives (1).

To derive the formula for x , consider a neighbor w of v , who has D∗

other neighbors y . Now [board] the chance that w is never infected from
some other neighbor is (conditionally) xD

∗
and so is (unconditionally)

φ(x). So w will be sometime infected, with chance 1− φ(x), and if so
then there is chance 1/(1 + λ) to infect v before recovery. In this story
(w , v) is a typical edge, so we have shown

1− x = (1− φ(x))/(1 + λ)

which is (2).

As a quick example, for a 4-regular random graph we get [board]

π = x4; x = x(λ) = 1
2 (
√

1 + 4λ− 1).

The condition for supercriticality is λ < 2, and we get the correct limits
x(0+) = 0, x(2−) = 1.

See e.g. Karrer - Newman (2010) for more detailed analysis along these
lines.



Note: SIR epidemics and percolation. A classical discrete-time SIR
model is the Reed-Frost model on a graph G . Here, for an agent v
infected at time t, each susceptible neighbor is infected independently
with probability p at time t + 1, and v itself is recovered at time t + 1. A
moment’s thought shows this process is closely related to the random
subgraph Gp of G in which each edge is retained with probability p; in
fact the set of agents who are ever infected in the epidemic started at i is
distributed as the component of Gp containing i . In particular, on the
complete graph, the sometime-infected set is just the connected
component (containing the original infective) of the Erdos-Renyi random
graph, and on the lattice Zd it is the analogous component in bond
percolation.

Note this identification does not hold precisely for our continuous-time
model: the events that neighbor w becomes infected from v are no
longer independent as w varies, because all are influenced by the random
duration that v is infective. However, certain “expectation” results could
be rephrased in the percolation setting.

If we seek conditions for subcriticality of the SIR epidemic, it turns out
that the simplest arguments give bounds for the (a priori larger) SIS
epidemic, so we study that.



Consider the FMIE setting of an SIS epidemic over a meeting model N .
In the “normalized” case where νi :=

∑
j νij = 1 for all i , there is a very

simple sufficient condition for subcriticality. In this case, the process

N(t) := number infected at time t

is clearly dominated by the linear birth-and death process N∗(t) with
transition rates

qi,i+1 = i , qi,i−1 = iλ.

For the latter process we have

EN∗(t) = exp((1− λ)t)

and, for λ > 1,
E(total number infected) = λ

λ−1 .

Corollary

For the SIS epidemic over a normalized meeting model, and for λ > 1,

E(total number infected) ≤ λ
λ−1 .

Corollary

For the SIS epidemic over a normalized meeting model, and for λ > 1,

E(total number infected) ≤ λ
λ−1 .

For a sequence of meeting models one can define [board] asymptotically
critical values λcritn , and the result is saying that

λcritn ≤ 1 in the normalized case.

This bound is not tight on the lattice. To relate this to our previous
analysis, for the SIR model on the r -regular infinite tree with normalized
rates we have λcrit = (r − 2)/r , agreeing with the specialization of our
previous “random graphs with prescribed degree distributions” analysis in
the case of random r -regular graphs. Roughly speaking, the bound is
good only in the case of high-degree locally tree-like models.

Extending the subcriticality condition to the non-normalized case involves
some standard ideas, useful in other contexts too.



Probability and matrix powers

For the transition matrix P of a discrete-time MC (Xt), we know the
interpretation of the entries ptij of Pt as

ptij = Pi (Xt = j).

For the adjacency matrix A of a graph, the textbook interpretation of the
entries atij of At is

atij = number of length-t walks from i to j .

To bring these ideas together, consider first a “deterministic branching
walk”. Initially there is one particle at i . For each particle at state j at
time t, it is replaced at time t + 1 with one particle at each neighbor of j .
Writing

Zij(t) = number of particles at j at time t

we have
atij = Zij(t).

Changing to a “random branching walk” where instead the replacement
is a random (mean 1) number of particles at each neighbor of j , then

atij = EZij(t).

This line of thought quickly leads to the following interpretation of the
powers Wt of an arbitrary non-negative n × n matrix. Take a branching
Markov chain, in which each particle at state j at time t is replaced at
time t + 1 with a random (mean wjk) number of particles at each
neighbor k of j . Then, for Zij(t) as before,

w t
ij = EZij(t).

Perron-Frobenius theory says that, under the usual “irreducible
aperiodic” condition on W familiar from MC theory,

w t
ij ∼ αiβjθ

t

where θ is the eigenvalue of W of largest modulus (and θ is real) and α
and β are the associated eigenvectors, normalized as

∑
i αiβi = 1.

One can apply this fact directly to a discrete-time Reed-Frost type of SIR
epidemic over a general geometry, to deduce that the epidemic is
subcritical when θ < 1 – see e.g. section 8.2 of Draif - Massoulié. We
will instead write out the continuous-time analog, that is our FMIE
model of a SIS epidemic.



Recall we are studying the following SIS model over a general geomtery
N = (νij).

Initially one agent is Infected, others are Susceptible.

When an Infected agent meets a Susceptible agent, the latter
becomes infected.

An Infected agent becomes Susceptible at rate λ.

We couple this to the particle process (branching MC) in which particles
have Exponential(λ) lifetimes, and a particle at i has a child at j at rate
νij . The coupling maintains the relationship

if i is infective at t in the SIS process then there is at least one
particle at i at t in the particle process.

As before, we consider, for the branching MC,

Zij(t) = number of particles at j at time t

from one initial particle at i .

Fact: The matrix EZij(t) is the matrix e−λt exp(N t).

Consider a line of descent i = i0, i1, . . . , im = j with births at times
0 < t1 < t2 < . . . < tm < t.

The chance of this particular line is
νi0,i1νi1,i2 . . . νim−1,im dt1 . . . dtm × e−λt .

Summing over lines gives (Nm)ij dt1 . . . dtm × e−λt

and integrating over times (ti ) gives e−λt(Nm)ij t
m/m!

so sum over m.

Of course, this is just the continuous-time analog of matrix powers.

We now can almost formalize the following assertion. Write θ(N ) for the
Perron-Frobenius eigenvalue of N . [board: P-F extends]. Consider a
sequence with θ(Nn)→ θ ∈ (0,∞).

For λ > θ the SIS process is subcritical.

(minor) theory project: cleanest formalization?
[Discuss on board; and see e.g. section 8.3.1 of Draif - Massoulié.]



Diffusion of innovation [coordination game] on random graphs

This lecture follows Lelarge (2011), which formalizes work of Watts
(2002). Topic is mathematically a variant of SI epidemics. The setting is
discrete time and a graph G of agents (later we’ll ponder the FMIE
setting). Parameter 0 < q < 1. Each agent at each time chooses action
A (“old”) or B (“new”). Each edge (i , j) gives payoffs, to each agent,

0 if agents choose opposite actions
q if both i and j choose A
1− q if both i and j choose B.

If i knows that NA
i neighbors will play A and NB

i neighbors will play B
then

(payoff from A) - (payoff from B) = q(di − NB
i )− (1− q)NB

i

where di = number of neighbors of i .
As default we assume agents use “best response dynamics”, the myopic
strategy of making the choice at time t + 1 that would be optimal if
neighbors make same choice at t + 1 as they did at t. Explicitly,

i chooses B iff NB
i > qdi .

So these are deterministic dynamics. Obviously “all A” and “all B” are
stable configurations.

We first consider a “single seed model”. Start with all agents except v
choosing A; agent v chooses B and is forced to choose B forever. Check
inductively the process is “monotone” – only changes are A→ B actually
happen. So there is a final configuration – write C (v , q) for the set of
agents choosing B in the final configuration.

We study this in the random graph model.



Random graphs with prescribed degree distributions
Specify (di ). Can define models Gn of n-vertex graph, interpretable as
being “random” subject to the following constraint. Write Dn for degree
of a uniform random vertex of Gn, then

Dn
d→ D where P(D = i) = di .

Such models have the following “local GWBP approximation”. The
structure of Gn within some fixed graph-distance r from a uniform
random vertex Un converges in distribution, as n→∞, to the random
tree comprising generations 0 to r of the following modified
Galton-Watson BP. The root has offspring distribution D; in subsequent
generation the offspring distribution is the size-biased distribution D∗

where P(D∗ = i) = (i + 1)di+1/ED.

Assuming ED2+ε <∞ then E(D∗)1+ε <∞ and the Kesten-Stigum
theorem says that the size Yr of generation r grows at a particular rate:
Yr/(ED∗)r →W a.s. and L1.

Define
qcrit = sup{q : E[D(D − 1)1(D < q−1] > E[D]}.

Write C n for the final B-set, from a random initial single seed. Write Πn

for the set of “pivotal” agents, defined as the (largest component of) the
subgraph on agents of degree < q−1.

Proposition

(i) For q > qcrit we have n−1|C n| →p 0.
(ii) For q < qcrit we have n−1|Πn| →p γ(q) > 0. And for v ∈ Πn we have
n−1|C n(v)| ≥p (1− o(1))s(q).

Here γ(q) and s(q) depend on q and (pi ).

xxx explain [board]



Now imagine fixing q and varying a parameter in the random graph
model. Consider the Erdos-Renyi random graph G(n, λ/n), that is (di ) is
Poisson(λ). Here is a figure of
s(q, λ) = proportional size of B-set
γ(q, λ) = proportional size of pivotal set

for q = 0.15. xxx discuss [board]

This is typical; for small q, as we vary a parameter λ in the random
graph model, there is some interval [λi (q), λs(q)] in which the cascade
has size Ω(n).

Little difference between starting with 1 seed or O(1) seeds. What about
starting with a small proportion of agents as seeds? Fix a measure (αd)
where
αd = proportion of degree-d agents who are initially B.
Introduce a more general model. Fix a probability π (previous model was
the π = 1 case). For agent i , each time a new neighbor adopts B, agent
i increments their “enthusiasm” by 1 with probability π; agent i will
adopt B when their enthusiasm reaches qdi . (Note this model looks more
like FMIE.)

Mathematical point: the kind of heuristic GWBP-approximation
argument (which we used before for SIR epidemics) continues to work in
more elaborate settings like this. One gets an explicit formula for the
proportional size of cascade.



Lower line is size of initial seed.
To quote Lelarge (2011), from which figures and some other text are
taken:

If the seed is too small, then each early adopter starts a small cascade which is

stopped by high-degree nodes. When the seed reaches the critical mass, then

the cascades coalesce and are able to overcome barriers constituted by

high-degree nodes so that a large fraction of the nodes in the giant component

of the graph adopt. Then increasing the size of the seed has very little effect

since most of the time, the new early adopters (chosen at random by the firm)

are already reached by the global diffusion.

σi = 1(i initially active)
Y` = 1(` active from above)
B`i independent Bernoulli(π).
State of general i :

Yi = 1− (1− σi ) 1

(∑
`→i

B`iY` ≤ qdi

)
, (3)

State of the root:

X∅ = 1− (1− σ∅) 1

(∑
i→∅

Bi∅Yi ≤ qd∅

)
. (4)

In order to compute the distribution of X∅, we first solve the Recursive
Distributional Equation (RDE) associated to the Yi ’s: thanks to the tree
structure, the random variables Y` are i.i.d. and have the same
distribution as Yi . Hence their distribution solves the RDE

Y
d
= 1− (1− σ(D∗ + 1)) 1

(
D∗∑
i=1

BiYi ≤ q(D∗ + 1)

)
, (5)



Y
d
= 1− (1− σ(D∗ + 1)) 1

(
D∗∑
i=1

BiYi ≤ q(D∗ + 1)

)
, (6)

where for a given d , the random variable σ(d) is Bernoulli with parameter
αd , Bi ’s are independent Bernoulli with parameter π, D∗ has distribution
p∗r , Y and the Yi are i.i.d. copies (with unknown distribution).

To solve the RDE (6), we need to compute only the mean of the
Bernoulli random variable Y . Hence taking expectation in (6) directly
gives a fixed-point equation for this mean.

Can we devise an interesting FMIE variant?
Recall: envisage unknown rates νij , no analog of degree di .

Suppose we are told global proportions of B’s at each time.
Agent i has record of past meetings with already-met j , and their states.
Agent i makes some (Bayes?) estimate ν∗ij of such meeting rates, and of
meeting rate with new agents.
So get estimate of (current) rates ν∗i (A) and ν∗i (B) of meeting each type.
Switch when estimated payoff rate (1− q)ν∗i (B) > qν∗i (A).

More elaborate: agents have some different opinions about future growth
of number of Bs.


