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The simple epidemic model as a FMIE.
General underlying meeting model parametrized by rates N = (νij).

Initially one or more agents are infected. Whenever an infected agent
meets another agent, the other agent becomes infected.

If initially the single agent i is infected, natural objects of study are

T epi
ij = time until agent j is infected.

Just as the token model (as a FMIE) can be viewed as a MC plus extra
underlying structure, so the simple epidemic model (as a FMIE) can be
viewed as the following process plus extra underlying structure.



The percolation model. Given N , construct a randomly-weighted
graph by creating, for each unordered pair {i , j} with νij > 0, one
Exponential(rate νij) r.v. ξij , regarded as the length of an edge ij . Then
define T per

ij as the distance between i and j , that is the length of the
shortest route between i and j .

Terminology: traditionally percolation theory views the r.v.’s as indicating
time; I find it conceptually clearer to think of distance. Note one could
use this kind of construction to define random geometric substructures,
though that is not our purpose now.

The following argument formalizes the idea

the epidemic process, from a given initial infective or set of infectives,
evolves as the percolation process.

The growing cluster argument. Fix i . Define processes
(Ci (t), 0 ≤ t <∞) by

(epidemic model): Ci (t) is the set of infected agents at time t,
if initially only agent i is infected.
(percolation model): Ci (t) is the set of vertices as distance ≤ t
from vertex i .

Each process evolves in the same way, as the continuous-time set-valued
chain with transition rates

C → C ∪ {j} : rate
∑
i∈C

νij .

So the two processes have the same distribution. But each process
determines, and is determined by, the corresponding family (Tij , j 6= i).
So these two families must have the same distribution. That is

for each i , (T epi
ij , j 6= i)

d
= (T per

ij , j 6= i) (1)

and so in particular

for each pair i , j T epi
ij

d
= T per

ij . (2)



The former extends to the case of an initial set B of infectives:

for each B, (T epi
Bj , j 6= i)

d
= (T per

Bj , j 6= i).

Here T per
Bj is the distance between j and B, and T epi

Bj is the infection time
of j from initial infective set B.

Separate from the relation between the epidemic and the percolation
processes, recall our prototype use of the time-reversal argument applied
to the epidemic process.
For fixed t, the matrix of events {T epi

ij ≤ t} has symmetric distribution:(
{T epi

ij ≤ t}
)
ij

d
=
(
{T epi

ji ≤ t}
)
ij

(3)

In particular, for a single entry we have P(T epi
ij ≤ t) = P(T epi

ji ≤ t), and
since this is true ∀t

T epi
ij

d
= T epi

ji . (4)

One might guess this distributional symmetry holds for the whole matrix,
but that is wrong. Consider the 3-agent case νab = νbc = 1, νac = 0.
Then

P(T epi
ac = T epi

bc ) > 0 but P(T epi
ca = T epi

cb ) > 0

implying (T epi
ac ,T

epi
bc )

d

6= (T epi
ca ,T

epi
cb ). However there are results for

maxima: (3) implies that for fixed i and t

P(max
j

T epi
ij ≤ t) = P(max

j
T epi
ji ≤ t)

and since this is true ∀t

max
j

T epi
ij

d
= max

j
T epi
ji .



To spotlight the distinction between the epidemic process and the
percolation process, consider the facts

T per
ij = T per

ji but T epi
ij 6= T epi

ji although T epi
ij

d
= T epi

ji . (5)

The first equality (there, and in the subsequent inequality, we mean equal
as random variables) holds simply because distance is symmetric, and
then the third equality (in distribution) follows via (4). The inequality is
readily seen in the 3-agent case where νab = νbc = 1, νac = 0, pictured
below. If ξab(1) < ξbc(1) then T epi

ac = ξbc(1) but
T epi
ca = min{ξab(k) : ξab(k) > ξbc(1)}.

a b c

ξab ξbc

0 < ξab(1) < ξab(2) . . . 0 < ξbc(1) < ξbc(2) . . .

(percolation)

(epidemic)

Figure 1. The 3-agent case.

The simple epidemic model, and many variants, have been studied
extensively over the usual geometries.

In contrast to MC, for the simple epidemic there seem no interesting
non-trivial known general-geometry results.

We will start by looking at particular geometries, and then try to
formulate some general conjectures.



The epidemic process on the complete n-vertex graph.

νij = 1/(n − 1), j 6= i .

As default, start with one infective.
This is maybe the 27’th most basic stochastic process. Its basic
properties have been rediscovered many times, but there seems no
authoritative survey.

Literature project; collect results.

Write D(k) = Dn(k) = time at which k people are infected.
The observation

The r.v.’s D(k + 1)− D(k) are independent with Exponential( k(n−k)
n−1

) distribution.
(6)

is a basic starting place for analysis. For instance, the time T epi
∗ until the

whole population is infected is just D(n), and so

ET epi
∗ =

n−1∑
k=1

E(D(k + 1)− D(k)) = (n − 1)
n−1∑
k=1

1
k(n−k) ∼ 2 log n.

And the time T epi
rand until a random person (amongst the n − 1 initially

uninfected) is infected is

ET epi
rand = ED(U), U uniform on {2, 3, . . . , n}

= 1
n−1

n∑
k=2

ED(k)

= 1
n−1

n−1∑
k=1

(n − k) E(D(k + 1)− D(k))

=
n−1∑
k=1

1
k (7)

∼ log n.

This analysis can be pursued to get distributional results, but let us first
look at different methods that indicate the behavior without extensive
calculation. The idea is to analyze separately the initial phase when
o(n) people are infected, and the pandemic phase when Θ(n) people
are infected.



The “deterministic, continuous” analog of our “stochastic, discrete”
model of an epidemic is the logistic equation

F ′(t) = F (t)(1− F (t))

for the proportion F (t) of a population infected at time t. A solution is a
shift of the basic solution

F (t) = et

1+et , −∞ < t <∞. logistic function

Setting Mn(t) for the number of individuals infected in our stochastic
process, then scaling to the proportion Xn(t) = Mn(t)/n, we find

E(dXn(t)|Fn(t)) = n
n−1Xn(t)(1− Xn(t)) dt.

By including variance estimates, one could prove the following (the
details are messy, so we omit them) formalization of the idea that, during
the pandemic phase, Xn(t) behaves as F (t) to first order.

Precisely, for fixed ε and t0 we have (in probability)

(Xn(Dn(nε) + t), 0 ≤ t ≤ t0)→ (F (F−1(ε) + t), 0 ≤ t ≤ t0). (8)

That is, we “start the clock” when a proportion ε of the population is
infected.

This can now be reformulated more cleanly in terms of the time
Gn = Dn(n/2) at which half the population is infected:

sup
−Gn≤t<∞

|n−1Mn(Gn + t)− F (t)| → 0 in probability

For later use, consider the times at which each process equals kn/n,
where kn/n→ 0 slowly. We find

Gn + log(kn/n) = Dn(kn) + o(1)

which rearranges to

Dn(kn)− log kn = Gn − log n + o(1). (9)



Now turn to the initial phase of the epidemic. On a fixed initial time
interval [0, t0], the process Mn(t) of number of infectives converges in
distribution to the process M∞(t) for which the times D(k) satisfy

the r.v.’s D(k + 1)− D(k) are independent with Exponential(k)
distribution

and this is the classic Yule process, for which it is well known that

M∞(t) has Geometric(e−t) distribution

e−tM∞(t)→ E∞ a.s. as t →∞, where E∞ has Exponential(1) distribution.

Now calculate informally, for 1� k � n,

P(Dn(k) ≤ t) = P(Mn(t) ≥ k) ≈ P(M∞(t) ≥ k)

= P(e−tM∞(t) ≥ ke−t) ≈ P(E∞ ≥ ke−t) = exp(−ke−t).

In other words
Dn(k)− log k ≈d G , 1� k � n (10)

where G has the Gumbel distribution P(G ≤ x) = exp(−e−x).
Comparing with (9) gives (11) below.

Theorem (The randomly-shifted logistic limit)

For the simple epidemic process on the complete n-vertex graph, there
exist random Gn such that

sup
−Gn≤t<∞

|n−1Mn(Gn + t)− F (t)| → 0 in probability

Gn − log n
d→ G (11)

where F is the logistic function and G has Gumbel distribution.

One could prove this by formalizing the arguments above, but there is a
more efficient though less illuminating way.



The result is essentially equivalent to the assertion

Dn(bunc)− log n
d→ F−1(u) + G , 0 < u < 1 (12)

The basic observation (6) allows one to write down an explicit expression
for the Fourier transform of the left side, and one just needs to work
through the calculus to check it converges to the Fourier transform of the
right side.

As mentioned before, tracing the history of this type of result is a literature

project. Transform methods are very classical in applied probability, and their

use in epidemic models goes back at least to Bailey (1950).

The same transform argument (then taking a different limit regime) can
be used to prove the following result (e.g. van der Hofstad -
Hooghiemstra - van Mieghem, 2002) for the time Dn(n) until the entire
population is infected:

Dn(n)− 2 log n
d→ G1 + G2

where G1,G2 are independent with Gumbel distribution. While not
obvious from the statement of the theorem above, it can in fact be
deduced as follows. From (12) the time Dn(n/2) until half the population
is infected satisfies

Dn(n/2)− log n
d→ G .

Then symmetry (under k → n − k) of the transition rates (6) implies
that Dn(n) is essentially distributed as the sum of two independent copies
of Dn(n/2).



Reconsider the time Dn(U) until a random person is infected. The
Theorem implies it has asymptotic distribution

Dn(U)− log n
d→ G + L

where L has logistic distribution function, independent of the Gumbel
time-shift G . So we expect

EDn(U)− log n→ EG + EL.

Now EL = 0 by symmetry (L
d
= −L) and one can calculate (or look up)

that EG = Euler’s constant, so the limit theorem is consistent with the
exact formula (7).

Digression. Take the percolation model with νij = 1/(n − 1) viewed as
edge-lengths, there is an induced distance metric d(i , j) = minimum
route-length. This structure has been studied in many contexts. – I like
to call it “the mean-field model of distance”. A famous result of Frieze
(1985) says that the expectation of the length of the MST ∼ nζ(3).
Much deeper recent work of Wastlund (2010) gives the parallel result for
TSP.

An aspect that can be related to FMIE concerns distances T per
ij . We have

seen that

ET per
ij = (1 + o(1)) log n; Emax

j
T per
ij = (2 + o(1)) log n.

Given the former, there is a simple heuristic picture for the latter. For a
particular agent and a particular time-interval of duration log n there is
chance 1/n of not meeting anyone during the time-interval. So some one
person will not meet anyone during the time-interval. So the percolation
process from i reaches most other people around time (1± o(1)) log n,
but there will be one “isolated” person during the next (1− o(1)) log n
time interval.



For the result above the epidemic and percolation setting are identical. If
we next study maxij Tij then the two processes become different – recall

T per
ij = T per

ji but T epi
ij 6= T epi

ji . Repeating the heuristic suggests

Emax
ij

Tij = (3 + o(1)) log n (13)

because some initial agent will be isolated for the first (1− o(1)) log n
interval, then the epidemic will spread to most agents at the end of the
next (1− o(1)) log n interval, but then some other agent will be isolated
for a final (1− o(1)) log n interval.
Janson (1999) proved (13) for the percolation model, but heuristically
the epidemic case should behave similarly.
Theory project. Prove (13) for the epidemic model, and prove (14)
below.
In the FMIE context think of the epidemic process as a broadcast process
of a message from agent i , and suppose that when each agent j receives
the message they initiate (as a broadcast process) an acknowledgement,
which will be received by i at some time Tiji distributed as the sum of
two independent copies of Tij . Heuristically

Emax
j

Tiji = (3 + o(1)) log n; Emax
i,j

Tiji = (4 + o(1)) log n. (14)

Digress to study, in this complete graph geometry,
Model 4. Ordered consensus-seeking model

which can be rstated as follows.
(i) The agents are labelled 1 through n. Agent i initially has opinion i .
(ii) When two agents meet, they adopt the same opinion, the smaller of
the two labels.

Here is some heurstic analysis of (X n
1 (t), . . . ,X n

k (t)), where X n
k (t) is the

proportion of the population with opinion k at time t.

The first component X n
1 (t) evolves as the epidemic process, which during

the pandemic phase follows a deterministic function H1(t) satisfying the
logistic equation H ′1 = H1(1− H1) whose general solution is
H1(t) = F (t + c1) for the logistic function F . We can rephrase the
randomly-shifted logistic limit theorem to say

(X n
1 (log n + s), −∞ < s <∞)→ (F (C1 + s), −∞ < s <∞)

where C1 = log ξ1
d
= −G for Exponential(1) ξ1 and Gumbel G .



Use the same “martingale” argument to see that, durng the pandemic
phase, the random process (X n

1 (·),X n
2 (·)) will follow a determinstic

function (H1(·),H2(·)) that satisfies the DEs

H ′1 = H1(1− H1)

H ′2 = H2(1− H1 − H2)− H1H2.

We can solve these by simply observing that H1 + H2 must satisfy the
logistic equation; so the general solution is

(H1(t),H2(t)) = (F (t + c1),F (t + c2)− F (t + c1))

for c2 > c1. So we expect limit behavior of the form

((X n
1 (log n + s),X n

2 (log n + s), . . . ,X n
k (log n + s)), −∞ < s <∞)→

(15)
((F (C1+s),F (C2+s)−F (C1+s), , . . . ,F (Ck+s)−F (Ck−1+s)), −∞ < s <∞)

for some random C1 < C2 < . . . < Ck .

We can determine the Cj by considering large negative s. From the Yule
process approximation to the initial phase we have

X n
j (log n + s) ∼ esξj ; for IID Exponential(1)(ξj)

But since F (s) ∼ es we have

F (Cj + s)− F (Cj−1 + s) ∼ es(eCj − eCj−1).

This gives the equations

eCj − eCj−1 = ξj j ≥ 2

eC1 = ξ1.

which have solution

Cj = log(ξ1 + . . .+ ξj), j ≥ 1. (16)

Theory project: formalize the result (15, 16) and prove Conjecture 1
and (18) below.



For another interesting aspect of this model, let us study Nn = number
of different opinions at time log n, and give a heuristic argument for

Nn = Θ(n1/2). (17)

First we assert
at time 1

2 log n there are Ω(n1/2) opinion-clusters of sizes Ω(n1/2).
[discuss on board].
But during the time-interval [ 12 log n, log n] each agent has chance n−1/2

to be isolated. So each of the clusters above has chance Ω(1) to be still
represented at time log n. This gives the lower bound for (17). Next
consider the quantity

number of agents at time log n with opinions in [k + 1, n].

From (15, 16) this is approximately

n(1− F (Ck)) ≈ n(1− F (log k)) ≈ n/k.

The argument there presumed a fixed k, but suppose it remains true for
k = n1/2. Then there are at most n1/2 opinions from opinions [n1/2, n].
This gives the upper bound for (17).

One can repeat the lower bound argument in the broader setting
Nn(2α log n) = number of different opinions at time 2α log n
to get a heuristic lower bound Ω(n1−α), suggesting

Conjecture

For 0 < α < 1 we have Nn(2α log n) = Θ(n1−α).

At first sight this may seem unexpected, in that the “pandemic window”
log n±O(1) plays no visible role, but in fact it parallels well-known results
for the number of components in the Erdos-Renyi random graph process.
[Calculation on board]



A final aspect of this consensus-seeking model is the spectrum of
opinions, which we will represent as

Hn(t, u) := n−1 (number of agents with opinion ≤ nu at time t).

Taking u > 0, the initial phase (over a fixed time interval [0, t0])
corresponds already to the pandemic phase, so to first order t → Hn(t, u)
follows the logistic equation started at u, and so

Hn(t, u) ∼ F (t + F−1(u)) as n→∞

where F is the logistic function. Heuristically we expect this to remain
true for

tn →∞, tn = o(log n).

If so, this implies, after simple manipulations [board], that the time-tn
opinion Y n(tn) of a random agent satisfies

tn − log n + log Y n(tn)
d→ L (18)

for the logistic limit L.

Infection times and percolation distance on the complete graph.

On the complete graph, symmetry implies that fixed agents are like
random agents:

T epi
ij

d
= T epi

U1,U2

d
= T epi

i,U2
; random distinct U1,U2

and we have seen the n→∞ limit

T epi
i,U2
− log n

d→ Gi + L

where L has logistic distribution function, independent of the Gumbel
time-shift Gi associated with the initial growth of the epidemic from i . So

T per
i,j − log n

d
= T epi

i,j − log n
d→ Gi + L.

If we fix i and vary j we get

(T per
i,j(1) − log n, . . . ,T per

i,j(k) − log n)
d
=

(T epi
i,j(1) − log n, . . . ,T epi

i,j(k) − log n)
d→ (Gi + L(1), . . . ,Gi + L(k))

for IID logistic L(u).
[continue on board]



[continue on board]
bottom line

(T per
ij − log n, 1 ≤ i < j ≤ k)

d→ (T ∗ij , 1 ≤ i < j ≤ k)

where the limit can be reprsented as

T ∗ij = Gi + Gj − Hij

and where the RVs (Gi ,Hij) are all IID Gumbel. (Stated in Aldous -
Bhamidi (2010)).

[on board: partial exchangeability representation theory. This is getting
“off topic” but (see discussion in Aldous (2010)) there is a potentially
widely-applicable idea worth knowing. Given random variables T ∗ab
associated with pairs (a, b) of elements in some n-element random
structure, take random elements xxx continue ]

The epidemic process over a general geometry.

So far we have considered only the complete graph. As usual we can
derive bounds for a general geometry via the bottleneck parameters.
Recall that for any FMIE process and a general geometry N = (νij) it is
often useful to consider

ν(A,Ac) =
∑

i∈A,j∈Ac

n−1νij

φ(m) = min{ν(A,Ac) : |A| = m}, 1 ≤ m ≤ n − 1.

For the epidemic process

D(m) = time at which m people are infected

satisfies
E(D(m + 1)− D(m)) ≤ (nφ(m))−1 (19)

and so

ED(k) ≤ n−1
k−1∑
m=1

1/φ(m).



ED(k) ≤ n−1
k−1∑
m=1

1/φ(m).

Setting k = n, or averaging over 2 ≤ k ≤ n, gives upper bounds on
ET epi
∗ or on ET epi

rand.
To get bounds involving a single parameter we can re-use the Cheeger
time constant (1/(conductance)) defined as

τcond := sup
m

(m
n

n−m
n )/φ(m) (20)

which for the complete graph is n−1
n .

The point is that inequality (19) implies

E(D(m+1)−D(m)) ≤ n
m(n−m)τcond = τcond

n
n−1 E(Dcomplete(m+1)−Dcomplete(m))

This enables us to immediately bound T epi
rand and T epi

∗ for a general
geometry in terms of the corresponding quantities for the complete graph:

ET epi
∗ ≤ τcond n

n−1ET complete
∗ = (2 + o(1))τcond log n (21)

ET epi
rand ≤ τcond

n
n−1ET complete

rand = (1 + o(1))τcond log n. (22)

These parallel “gossip algorithm” results in the graph setting – see
Theorem 3.1 of Shah (2008).

Theory project. Study FMIE analogs of other results in Shah (2008),
e.g. Theorem 3.2.

For the d-dimensional torus Zd
m, as m→∞ for fixed d , we have

τcond = Θ(m) and the above general upper bounds give O(m log m). We
next see that the log term is unnecessary.



The epidemic process on Zd

Theorem (Shape theorem for lattice FPP)

Consider the epidemic process on the edges of Zd with Exponential(1)
edge-weights. Write S(t) ⊂ Zd for the infected set at time t, and
S̄(t) ⊂ Rd for its fattening. There is a non-random closed convex set
B = Bd such that, for each 0 < ε < 1,

P((1− ε)tB ⊆ S̄(t) ⊆ (1 + ε)tB)→ 1.

Give proof on board

Key ingredient is the subadditive ergodic theorem.

Works for general IID edge-times

Bd not the unit ball in Euclidean norm

Write bd for the “volume” of Bd

Understanding variance is famous hard problem.

The epidemic process on the discrete torus Zd
m

The following results are immediate from the shape theorem.
Asymptotics are as m→∞ for fixed d .

E|S(t)| ∼ (2d)−1bd td over 1� t � m.

The same holds (in L1) for S(t) itself.

m−1T epi
∗ → cd a.s.

for a constant cd defined in terms of the shape of Bd .

The proportion Xm(t) of infected agents satisfies

sup
s
|Xm(ms)− Fd(s)| →p 0

for a certain function Fd defined in terms of the shape of Bd .
Heuristically clear (maybe a theory project to prove carefully) is that in
Model 4, the number Nm(t) are different opinions satisfies

Nm(t) ∼ γd t−dn over 1� t � m.



An epidemic process on the discrete torus Z2
m with short- and

long-range interactions.

In this model the underlying geometry N associated with agents Z2
m is:

at rate 1 the agent meets a uniform random neighbor
at rate m−α an agent meets a uniform non-neighbor.

[board:] take 0 < α < 3. Over this range it qualitativelly interpolates
between the complete-graph case and the nearest-neighbor lattice case.

Key qualitative property: during the pandemic phase, the new infectives
arise from “colonies” started earlier in the pandemic phase, not in the
initial phase.
This enables us to derive heuristically the behavior over the pandemic
window, following Aldous (2011). See Chatterjee - Durrett (2011) for a
rigorous treatment (talk project?). We assume some result analogous to
the randomly-shifted logistic limit in the complete graph model

sup
−Gn≤t<∞

|n−1Mn(Gn + t)− F (t)| → 0 in probability

and seek an equation for the function F .

At recentered time s, the total rate of creation of new “centers” is
m2F (s)×m−α, and so the space-time process of creation of centers is
approx a Poisson point process (on Z2

m) of intensity F (s)m−α. Each
colony grows at linear rate 1/4 w.r.t. the norm defined by B2. So the
condition for a typical point, the origin, to be infected at recentered time
t is

a center was created at some time −∞ < s < t at some position x such
that x is in the set t−s

4 B2 .

But we can calculate the chance this does not happen by standard
Poisson process arguments:

1− F (t) = exp

(
−
∫ t

−∞
F (s)m−α b2 ( t−s

4 )2 ds

)
.

Write F0 for the solution of the standardized form

1− F (t) = exp

(
−
∫ t

−∞
F (s) (t − s)2 ds

)
.



Write F0 for the solution of the standardized form

1− F (t) = exp

(
−
∫ t

−∞
F (s) (t − s)2 ds

)
.

[Board: this is a 3rd order ODE].
Then the solution we want is

Fm(t) = F0

(
( b2m

−α

16 )1/3t
)
.

In particular, the width of the pandemic window is Θ(mα/3), consistent
with intuitive “interpolation” assertion.

A separate analysis (not done here: see Chatterjee - Durrett (2011)) of
the initial phase shows that the center of the pandemic window is (to
first order) (2− 2α

3 )mα/3 log m.

Game-theoretic aspects of FMIE processes
Our FMIE setup rests upon a given matrix (νij) of meeting rates. We
can add an extra layer to the model by taking as basic a given matrix
(cij) of meeting costs. This means that for i and j to meet at rate νij
incurs a cost of cijνij per unit time. Now we can allow agents to choose
meeting rates, either
[reciprocal] i and j agree on a rate νij and share the cost
[unilateral] i can choose a “directed” rate νij but pays all the cost.

One can now consider models of the following kind. Information is spread
at meetings, and there are benefits associated with receiving information.
Agents seek to maximize their payoff = benefit - cost.
We study a particular model from Aldous (2011).
Theory project: Invent and study other models.



[board;] Our setup rather different from what you see in a Game Theory
course.

n→∞ agents; rules are symmetric.

allowed strategies parametrized by real θ.

Distinguish one agent ego.

payoff(φ, θ) is payoff to ego when ego chooses φ and all other
agents choose θ.

payoff is “per unit time” in ongoing process.

The Nash equilibrium value θNash is the value of θ for which ego cannot
do better by choosing a different value of φ, and hence is the solution of

d

dφ
payoff(φ, θ)

∣∣∣∣
φ=θ

= 0. (23)

So we don’t use any Game Theory – we just need a formula for
payoff(φ, θ).

The model’s key feature is rank based rewards – toy model for gossip or
insider trading.

New items of information arrive at times of a rate-1 Poisson process;
each item comes to one random agent.

Information spreads between agents in ways to be described later [there
are many variants], which involve communication costs paid by the
receiver of information, but the common assumption is

The j ’th person to learn an item of information gets reward R( j
n ).

Here R(u), 0 < u ≤ 1 is a decreasing function with

R(1) = 0; 0 < R̄ :=

∫ 1

0

R(u)du <∞.

Note the total reward from each item is
∑n

j=1 R( j
n ) ∼ nR̄. That is, the

average reward per agent per unit time is R̄.



We shall use the ”unilateral” cost model; i can call j at cost cij and learn
all items j knows – maybe 0 new items, maybe 2 new items.

Recall rewards and costs are “per unit time”. Because average reward
per unit time does not depend on the agents’ strategy, the “social
optimum” protocol is for agents to communicate slowly, giving payoff
arbitrarily close to R̄. But if agents behave selfishly then one agent may
gain an advantage by paying to obtain information more quickly, and so
we seek to study Nash equilibria for selfish agents.

We study three models for costs (cij), chosen so that the spread of
information is just the epidemic process on the three geometries we have
already studied (complete graph, NN torus, torus with short-and-long
interactions).

Rank-based reward game: complete graph case.

Here cij = 1. In words, each agent i may, at any time, call any other
agent j (at cost 1), and learn all items that j knows.

Poisson strategy. The allowed strategy for an agent i is to place calls,
at the times of a Poisson (rate θ) process, to a random agent.

Result. In the n→∞ limit the Nash equilibrium value of θ is

θNash =

∫ 1

0

(1 + log(1− u))R(u)du =

∫ 1

0

r(u)g(u)du > 0 (24)

where g(u) = −(1− u) log(1− u) > 0 and r(u) = −R ′(u) ≥ 0.

In particular the Nash equilibrium payoff R̄ − θNash is strictly less than the
social optimum payoff R̄ but strictly greater than 0. So this is a
“wasteful” case.



We first give a qualitative argument, to show it is not possible that
θNash
n → 0.

If all agents meet at rate θ, then the way the information spreads through
the population is as the epidemic model, scaled by rate θ. In particular
the window width is order 1/θ.

To argue by contradiction, suppose all agents except ego call at rate
θNash
n → 0. And suppose ego calls at a fixed slow rate φ. Then

[picture on board]

the reward to ego → R(0) as n→∞. So his payoff is ≈ R(0)− φ. But
this is better than the payoff R̄ to other agents.

Suppose all agents use the Poisson(θ) strategy. In the case θ = 1, the
way that a single item of information spreads is exactly as the epidemic
process above; and the general-θ case is just a time-scaling by θ. So (all
calculations in the n→∞ limit) the recentered time Sθ to reach a
random agent has distribution function

Fθ(x) = F1(θx) (25)

which is the solution of the time-scaled logistic equation

F ′θ
1− Fθ

= θFθ (26)

(Recall F1 is the logistic distribution). Now consider the case where all
other agents use a value θ but ego uses a different value φ. The (limit,
recentered) time Tφ,θ at which ego learns the information now has
distribution function Gφ,θ satisfying an analog of (26):

G ′φ,θ
1− Gφ,θ

= φFθ. (27)

To explain this equation, the left side is the rate at time t at which ego
learns the information; this equals the rate φ of calls by ego, times the
probability Fθ(t) that the called agent has received the information.



To solve the equation, first we get

1− Gφ,θ = exp

(
−φ
∫

Fθ

)
.

But we know that in the case φ = θ the solution is Fθ, that is we know

1− Fθ = exp

(
−θ
∫

Fθ

)
,

and so we have the solution of (27) in the form

1− Gφ,θ = (1− Fθ)φ/θ. (28)

If ego gets the information at time t then his percentile rank is Fθ(t) and
his reward is R(Fθ(t)). So the expected reward to ego is

ER(Fθ(Tφ,θ)); where dist(Tφ,θ) = Gφ,θ.

We calculate

P(Fθ(Tφ,θ) ≤ u) = Gφ,θ(F−1θ (u))

= 1− (1− Fθ(F−1θ (u)))φ/θ by (28)

= 1− (1− u)φ/θ (29)

and so

ER(Fθ(Tφ,θ)) =

∫ 1

0

r(u) (1− (1− u)φ/θ)du.

This is the mean reward to ego from one item, and hence also the mean
reward per unit time in the ongoing process. So, including the
“communication cost” of φ per unit time, the net payoff (per unit time)
to ego is

payoff(φ, θ) = −φ+

∫ 1

0

r(u) (1− (1− u)φ/θ)du. (30)

The criterion (23) for θ to be a Nash equilibrium is, using the fact
d
dφxφ/θ = log x

θ xφ/θ,

1 = 1
θ

∫ 1

0

r(u) (− log(1− u)) (1− u)du. (31)

This is the second equality in (24), and integrating by parts gives the first
equality.



Rank-based reward game: the nearest neighbor grid

Agents are at the vertices of the m ×m torus. Each agent i may, at any
time, call any of the 4 neighboring agents j (at cost 1), and learn all
items that j knows.
Poisson strategy. The allowed strategy for an agent i is to place calls, at
the times of a Poisson (rate θ) process, to a random neighboring agent.
Result. The Nash equilibrium value of θ is such that

θNash

m ∼ m−1
∫ 1

0

g(u)r(u)du (32)

where g(u) > 0 is a certain function and r(u) = −R ′(u) ≥ 0.

So here the Nash equilibrium payoff R̄ − θNash
m tends to R̄; this is an

“efficient” case.

[board: order of magnitude]

The m ×m torus with short and long range interactions

Model. The agents are at the vertices of the m ×m torus. Each agent i
may, at any time, call any of the 4 neighboring agents j (at cost 1), or
call any other agent j at cost cm ≥ 1, and learn all items that j knows.

Poisson strategy. An agent’s strategy is described by a pair of numbers
(θnear, θfar) = θ:

at rate θnear the agent calls a random neighbor
at rate θfar the agent calls a random non-neighbor.

This model obviously interpolates between the complete graph model
(cm = 1) and the nearest-neighbor model (cm =∞). It turns out the
interesting case is

1� cm � m2.

[board: hard to guess good strategy!]

We will give the “order of magnitude” argument,which involves three
steps.



1. Consider the window width wm of the associated percolation process
at the Nash equilibrium (θNash

near , θ
Nash
far ). Suppose ego deviates from the Nash

equilibrium by setting his θfar = θNash
far + δ. The increased benefit to ego is

order δwm and the increased cost is δcm. At the Nash equilibrium these
must balance, so

wm � cm.

2. Now consider the difference `m between the times that different
neighbors of ego are reached. Then `m is order 1/θNash

near . Write δ = θNash
near

and suppose ego deviates from the Nash equilibrium by setting his
θnear = 2δ. The increased benefit to ego is order `m/wm and the increased
cost is δ. At the Nash equilibrium these must balance, so δ � `m/wm

which becomes
θNash

near � w−1/2m � c−1/2m .

3. Finally we need to calculate how the window width wm for FPP
depends on (θnear, θfar). From the analysis of the epidemic process with
short- and long-range interactions we have, in the case (θnear = 1, θfar),

that wm � θ−1/3far , and then by scaling [board] for general (θnear, θfar) we
have

wm � θ−2/3near θ
−1/3
far

We have 3 equations for 3 unknowns, and we solve to find

θNash
near is order c

−1/2
m and θNash

far is order c−2m .

In particular the Nash cost � c
−1/2
m and the Nash equilibrium is efficient.



Earlier we said

The simple epidemic model, and many variants, have been studied
extensively over the usual geometries.

In contrast to MC, for the simple epidemic there seem no interesting
non-trivial known general-geometry results.

We now formulate some problems and conjectures for epidemic process
on general geometries.

Research problem. Give general conditions on a sequence N n which
imply there exists constants t̄n such that

aveij P((1− ε)t̄n ≤ T epi
ij ≤ (1− ε)t̄n)→ 1.

In other words, that the time Tn for the epidemic to spread from a
uniform random start to a uniform random target satisfies Tn/t̄n →p 1

Here the intent of “general conditions” is as opposed to assuming some
specific structure which enables one to calculate t̄n.

This problem is analogous to two problems which have been studied in
the literature. First is the cut-off window for variation distance mixing.
[xxx explain on board]. It remains a longstanding open problem to give
“general conditions” which imly a cut-off. See sec 1.1 of
Ding-Lubetzky-Peres (2008) for discussion and references to many known
special cases.

Second, there is a simple general condition for a MC cover time C to
have a cut-off.

Theorem (Aldous (1991))

For a finite-state irreducible MC define C = maxj T hit
j and

t∗ = maxij EiT
hit
j . If a sequence of chains is such that EiC/t∗ →∞ then

(under Pi ) we have C/EiC →p 1.



A related problem is to give conditions under which a particular T epi
ij is

concentrated around its mean. Recall

ν(B,Bc) := n−1
∑
i∈B

∑
j∈Bc

νij

and then define

φ̄ij := min{ ν(B,Bc) : i ∈ B, j ∈ Bc}.

Suppose rates are normalized. The following conjecture looks plausible
but turns out to be false.

Conjecture (False!)

In a sequence of geometries and agents (i , j) with nφ̄ij = Ω(1) and

ET epi
ij →∞, we have

s.d .(Tij)

ET epi
ij

→ 0. (33)

Example. Take agents 0, 1, . . . , 2K and rates

νi,i+1 = 1
2 , 0 ≤ i ≤ 2K − 1; ν0,K = νK ,2K = 1/K .

Then [board] as K →∞ we have nφ̄ij = Ω(1) but

ET epi
0,2K ∼ c1K , s.d.(T epi

0,2K ) ∼ c2K .

Here is another conjecture, which I have not thought about carefully.
Thinking in terms of the FPP process, we want to assume that the
random percolation path from i to jattaining T per

ij is “spread over many
alternate routes” rather than being likely to include a prespecified edge.

Conjecture

In a sequence of geometries and agents (i , j), write B(n, δ) for the set of
edges e that appear in the percolation path from i to j with probability
≥ δ. Suppose that, for each δ > 0,∑

e∈B(n,δ)

1/νe = o(ET per
ij ).

Then (33) holds.



There are many loose analogies or weak inequalities relating, for a general
geometry, the behavior of the MC (mixing and cover times, and their
windows) and the behavior of the epidemic process.

Vague Big Problem: Is there any sharp relation?


