
Finite Markov Information-Exchange processes

David Aldous

February 14, 2011

The voter model and coalescing MCs.
The two models considered here use the “directed” convention: in the
meeting model, when agents i , j meet, choose a random direction and
indicate it using an arrow i → j or j → i .

Voter model. Initially each agent has a different “opinion” – agent i has
opinion i . When i and j meet at time t with direction i → j , then agent j
adopts the current opinion of agent i .

So we can study

Vi (t) := the set of j who have opinion i at time t.

Note that Vi (t) may be empty, or may be non-empty but not contain i .
The number of different remaining opinions can only decrease with time.

Minor comments. (i) We can rephrase the rule as “agent i imposes his
opinion on agent j”.
(ii) The name is very badly chosen – people do not vote by changing their
minds in any simple random way.

(iii) In the classical, infinite lattice, setting one traditionally took only two

different initial opinions.



So {Vi (t), i ∈ Agents} is a random partition of Agents. A natural
quantity of interest is the consensus time

T voter := min{t : Vi (t) = Agents for some i}.

Coalescing MC model. Initially each agent has a token – agent i has
token i . At time t each agent i has a (maybe empty) collection Ci (t) of
tokens. When i and j meet at time t with direction i → j , then agent i
gives his tokens to agent j ; that is,

Cj(t+) = Cj(t−) ∪ Ci (t−), Ci (t+) = ∅.

Now {Ci (t), i ∈ Agents} is a random partition of Agents. A natural
quantity of interest is the coalescence time

T coal := min{t : Ci (t) = Agents for some i}.

Minor comments. Regarding each non-empty cluster as a particle, each

particle moves as the MC at half-speed (rates νij/2), moving independently

until two particles meet and thereby coalesce. Note this factor 1/2 in this

section.

The duality relationship.
For fixed t,

{Vi (t), i ∈ Agents} d
= {Ci (t), i ∈ Agents}.

In particular T voter d
= T coal.

They are different as processes. For fixed i , note that |Vi (t)| can only
change by ±1, but |Ci (t)| jumps to and from 0.

In figures, time “left-to-right” gives CMC,
time “right-to-left” with reversed arrows gives VM.

Note this depends on the symmetry assumption νij = νji of the meeting
process.

Project. Read the abstract discussion of duality in Liggett (IPS sec.
2.3); put the “key identity for averaging processes” in that framework.



Schematic – the meeting model on the 8-cycle.
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?C6(t) = {0, 1, 2, 6, 7}

C2(t) = {3, 4, 5}

V2(t) = {3, 4, 5}

Voter model on the complete graph
There are two ways to analyze T voter

n on the complete graph, both
providing some bounds on other geometries.
Part of Kingman’s coalescent is the continuous-time MC on states
{1, 2, 3, . . .} with rates λk,k−1 =

(
k
2

)
, k ≥ 2. For that chain

EmT hit
1 =

m∑
k=2

1/

(
k

2

)
= 2(1− 1

m )

and in particular limm→∞ EmT hit
1 = 2.

In coalescing RW on the complete n-graph, the number of clusters
evolves as the continuous-time MC on states {1, 2, 3, . . . , n} with rates
λk,k−1 = 1

n−1
(
k
2

)
. So ET coal

n = (n − 1)× 2(1− 1
n ) and in particular

ET voter
n = ET coal

n ∼ 2n. (1)



The second way is to consider the variant of the voter model with only 2
opinions, and to study the number X (t) of agents with the first opinion.
On the complete n-graph, X (t) evolves as the continuous-time MC on
states {0, 1, 2, . . . , n} with rates

λk,k+1 = λk,k−1 = k(n−k)
2(n−1) .

This process arises in classical applied probability (e.g. as the Moran
model in population genetics). We want to study

T hit
0,n := min{t : X (t) = 0 or n}.

By general birth-and-death formulas, or by comparison [board] with
simple RW,

EkT hit
0,n = 2(n−1)

n (k(hn−1 − hk+1) + (n − k)(hn−1 − hn−k+1))

where hm :=
∑m

i=1 1/i . This is maximized by k = bn/2c, and

max
k

EkT hit
0,n ∼ (2 log 2) n.

Now we can couple the true voter model (n different initial opinions)
with the variant with only 2 opinions, initially held by k and n − k
agents. (Just randomly assign these two opinions, initially). From this
coupling we see

Pk(T hit
0,n > t) ≤ P(T voter

n > t)

Pk(T hit
0,n > t) ≥ 2k(n−k−1)

n(n−1) P(T voter
n > t)

In particular, the latter with k = bn/2c implies

ET voter
n ≤ (4 log 2 + o(1)) n.

This is weaker than the correct asymptotics (1).



Voter model on general geometry
Suppose the flow rates satisfy, for some constant κ,

ν(A,Ac) :=
∑

i∈A,j∈Ac

n−1νij ≥ κ|A|(n − |A|)/(n − 1).

On the complete graph this holds with κ = 1. We can repeat the analysis
above – the process X (t) now moves at least κ times as fast as on the
complete graph, and so

ET voter
n ≤ (4 log 2 + o(1)) n/κ.

The optimal κ is (up to a factor (n − 1)/n) just 1/τcond for the Cheeger
time constant τcond, and so

ET voter ≤ (4 log 2 + o(1)) n τcond.

Coalescing MC on general geometry
Issues clearly related to study of the meeting time Tmeet of two
independent copies of the MC, a topic that arises in other contexts.
Under enough symmetry (e.g. continuous-time RW on the discrete torus)
the relative displacement between the two copies evolves as the same RW
run at twice the speed, and study of Tmeet reduces to study of T hit.

First consider the completely general case. In terms of the associated MC
define a parameter

τ∗ := max
i,j

EiT
hit
j .

The following result was conjectured long ago but only recently proved.
Note that on the complete graph the mean coalescence time is
asymptotically 2× the mean meeting time.

Theorem (Oliveira 2010)

There exist numerical constants C1,C2 <∞ such that, for any finite
irreducible reversible MC, maxi,j Ei,jT

meet ≤ C1τ
∗ and ET coal ≤ C2τ

∗.

Proof techniques seem special, but perhaps a good “paper-talk”.



To seek “1± o(1)” limits, let us work in the meeting model setting
(stationary distribution is uniform) and write τmeet for mean meeting time
from independent uniform starts. In a sequence of chains with n→∞,
impose a condition such as the following. For each ε > 0

n−2|{(i , j) : EiT
hit
j 6∈ (1± ε)τmeet}| → 0. (2)

By analogy with the Kingman coalescent argument one expects some
general result like
Open problem. Assuming (2), under what further conditions can we
prove ET coal ∼ 2τmeet?
This project splits into two parts.
Part 1. For fixed m, show that the mean time for m initially independent
uniform walkers to coalesce should be ∼ 2(1− 1

m )τmeet.
Part 2. Show that for m(n)→∞ slowly, the time for the initial n
walkers to coalesce into m(n) clusters is o(τmeet).

Part 1 is essentially a consequence of known results, as follows.

From old results on mixing times (RWG section 4.3), a condition like (2)
is enough to show that τmix = o(τmeet). So – as a prototype use of τmix –
by considering time intervals of length τ , for τmix � τ � τmeet, the
events “a particular pair of walker meets in the next τ -interval” are
approximately independent. This makes the “number of clusters” process
behave as the Kingman coalescent.

Note. That is the hack proof. Alternatively, the explicit bound involving τrel on

exponential approximation for hitting time distributions from stationarity is

applicable to the meeting time of two walkers, so a more elegant way would be

to find an extension of that result applicable to the case involving m walkers.

Part 2 maybe needs some different idea/assumptions.



(restate) Open problem. Assuming (2), under what further conditions
can we prove ET coal ∼ 2τmeet?

What is known rigorously?

Cox (1989) proves this for the torus [0,m− 1]d in dimension d ≥ 2. Here
τmeet = τhit ∼ mdRd for d ≥ 3.

Cooper-Frieze-Radzik (2009) prove Part 1 for the random r -regular
graph, where τmeet ∼ τhit ∼ r−1

r−2n.
(the latter, containing other results, could be a “paper project”).

Various variant models are easy to do heuristically – see e.g.
Sood-Antal-Radner (2008).

In the 2-opinion case, the process X (t) = number of agents with opinion
1 is a martingale. So starting with k opinion-1 agents, the chance of
being absorbed in the all-1 configuration equals k/n.

One can study biased voter models where a agent is more likely to copy
an opinion-1 neighbor. In this case the submartingale property will imply
that the chance above is > k/n. A more challenging situation arises in
the following game-theory variant, studied in Manshadi - Saberi (2011).

Symmetric prisoner’s dilemma. Each agent in state C or state D. When
an agent i plays an agent j
if i is C then i incurs cost c > 0 and j gains benefit b > c .
if i is D then i incurs cost 0 and j gains benefit 0.
Consider a k-regular n-vertex connected graph on agents. Take discrete
time. At each time step, each vertex plays each neighbor. Represent
states by

X i
t = 1( agent i in state C).

So the payoff to i at time t equals

ut
i = −kcX i

t + b
∑
j∼i

X j
t .



Agents change state as follows. Fix small ε > 0. At each time pick a
uniform random agent. Other agents do not change state. Given we
picked agent i at time t, set X i

t+1 = X J
t , where J is a random neighbor of

i chosen according to

P(J = j) = (1− ε) 1
k + εθi,t(j)

where θi,t is the measure

θi,t(j) = 1
k (ut

j + 1− 1
k

∑
h∼i

ut
h)

which is a probability measure when we impose the condition

k(b + c) < 1.

When ε = 0 this is just the voter model. For ε > 0 we are biasing toward
copying the state of a currently successful neighbor.

Theorem (Manshadi - Saberi, 2011)

Consider a connected k-regular graph with girth at least 7. Initially let a
random pair of neighbors have state C and the others state D; the system
then evolves according to the model above. Suppose b/c > k2/(k − 1).
Fix γ > 0 and set ε = n−(4+γ) and suppose n is sufficiently large. Then
the probability of absorption into “all C” is ≥ 2

n + ε
n f (b/c) for a certain

strictly positive function f .


