
Finite Markov Information-Exchange processes

David Aldous

February 9, 2011

Model 2. Averaging model. Here “information” is most naturally
interpreted as money. When agents i and j meet, they split their
combined money equally, so the values (Xi (t) and Xj(t)) are replaced by
the average (Xi (t) + Xj(t))/2.

The overall average is conserved, and rather obviously each agent’s
fortune Xi (t) will converge to the overall average. It turns out to be easy
to quantify this convergence: Proposition 1 below. We note first a simple
relation with the associated Markov chain. Write 1i for the initial
configuration Xj(0) = 1(i=j) and pij(t) for the transition probabilities for
the Markov chain.

Lemma

In the averaging model started from 1i we have EXj(t) = pij(t/2).
More generally, from any deterministic initial configuration x(0), the
expectations x(t) := EX(t) evolves exactly as the dynamical system

d
dt x(t) = 1

2x(t)N .

So if x(0) is a probability distribution, then the means evolve as the
distribution of the MC started with x(0) and slowed down by factor 1/2.



Proof. The key point is that we can rephrase the dynamics of the
averaging process as

when two agents meet, each gives half their money to the other.
In informal language, this implies that the motion of a random penny is
as the MC at half speed, that is with transition rates νij/2.
To say this in symbols, we augment a random partition X = (Xi ) of unit
money over agents i by also recording the position U of the “random
penny”, required to satisfy

P(U = i |X) = Xi . (1)

Given a configuration x and an edge e, write xe for the configuration of
the averaging process after a meeting of the agents comprising edge e.
So we can define the augmented averaging process to have transitions

(x, u)→ (xe , u) : rate νe , if u 6∈ e

(x, u)→ (xe , u) : rate νe/2, if u ∈ e

(x, u)→ (xe , u′) : rate νe/2, if u ∈ e = (u, u′).

This defines a process (X(t),U(t)) consistent with the averaging process
and satisfying (1). The latter implies EXi (t) = P(U(t) = i), and clearly
U(t) evolves as the MC at half speed.

The case of a general initial configuration follows by linearity. That is, for
a given realization of the underlying meeting process, the map from x(0)
to X(t) is linear.

Lemma (repeat)

In the averaging model started from 1i we have EXj(t) = pij(t/2).
More generally, from any deterministic initial configuration x(0), the
expectations x(t) := EX(t) evolves exactly as the dynamical system

d
dt x(t) = 1

2x(t)N .

So from MC theory the means EX(t) converge to the limit constant x(0)
at asymptotic exponential rate given by half the spectral gap of the MC.
Next we study X(t) itself.



Proposition (Global convergence in the averaging model)

From an initial configuration x = (xi ) with average zero and L2 size
||x||2 :=

√
n−1

∑
i x2

i , the time-t configuration X(t) satisfies

E||X(t)||2 ≤ ||x||2 exp(−λt/4), 0 ≤ t <∞ (2)

where λ is the spectral gap of the associated MC.

Theorems 4.1 and 5.1 of Shah (2008) give an analogous “gossip
algorithm” result.

Proof. A configuration x changes when some pair {xi , xj} is replaced by
the pair {(xi + xj)/2, (xi + xj)/2}, which preserves the average and
reduces ||x||22 by exactly n−1(xj − xi )

2/2. So, writing Q(t) := ||X(t)||22,

E( dQ(t)
dt |t=0|x(0) = x) = −

∑
{i,j}

νij · n−1(xj − xi )
2/2

= −E(x, x)/2

≤ −λ||x||22/2

The middle equality is just the definition of E and the final inequality is
the extremal characterization

λ = inf{E(g , g)/||g ||22 : ḡ = 0}.

Writing F(t) for the filtration of the underlying meeting process we get
the martingale-like inequality

E(dQ(t)|F(t)) ≤ −λQ(t) dt/2.



The rest is routine. Take expectation:

d

dt
EQ(t) ≤ −λEQ(t)/2

and then solve to get

EQ(t) ≤ EQ(0) exp(−λt/2)

in other words

E||X(t)||22 ≤ ||x||22 exp(−λt/2), 0 ≤ t <∞.

Finally take the
√

.

Theory project: Write ent(x) = −
∑

i xi log xi for the entropy of x. If
x(0) is a probability measure then from the global convergence result
ent(X(t)) converges in distribution to ent(π) = log n. Can we get upper
bounds on log n − ent(X(t)) in terms of the log-Sobolev constant of the
MC?
Literature project; what has been done on this model and variants? Certainly

there is some literature on the “noise” variant below.

Averaging process with noise

The model can be described as

dXi (t) = σdWi (t) + (dynamics of averaging model)

where the “noise” processes Wi (t) are defined as follows. First take n
independent standard Normals conditioned on their sum equalling zero –
call them (Wi (1), 1 ≤ i ≤ n). The effect of the conditioning is to make
the variance of Wi (1) become (n − 1)/n (instead of 1) and to introduce
covariance E[Wi (1)Wj(1)] = −1/n, j 6= i . Now take W(t) to be the
n-dimensional Brownian motion associated with the time-1 distribution
W(1) = (Wi (1), 1 ≤ i ≤ n).



For this process we can repeat the analysis in Proposition 1. The only
change is that the noise makes an extra contribution to
E(dQ(t)|F(t))/dt of

n−1 × σ2(n − 1)/n × n = σ2(n − 1)/n.

So
E(dQ(t)|F(t))/dt ≤ −λQ(t)/2 + σ2(n − 1)/n.

By soft arguments there must be a t →∞ limit distribution X(∞) and
EQ(t)→ EQ(∞), implying

0 ≤ −λEQ(∞)/2 + σ2(n − 1)/n.

This rearranges to the following bound on the variability of the
equilibrium distribution.

Corollary (Equilibrium variability in averaging with noise)

E||X(∞)||22 ≤ 2τrel σ
2(n − 1)/n.

We next reconsider the basic averaging model. Note (though we do not
use this fact) that time-reversal gives the self-duality property

X (x, t, j)
d
=

∑
i

X (1j , t, i)xi

where we write X (x, t, j) for the time-t information of agent j when
starting from configuration x.

Intuition suggests that, separate from the “global convergence” given by
Proposition 1, there is some (often initially faster) “local smoothing”
when the initial configuration is not locally smooth (e.g. if it were a
realization of an IID process over agents).

In our setting the natural way to measure “local smoothness” of a
function f is by the Dirichlet form E(f , f ), so we study the random
process E(X(t),X(t)), that is the Dirichlet form applied to a realization
of the averaging process.

The technique we use is to extend the “random penny”/augmented
process argument used in the opening lemma. It uses a particular
coupling (Z1(t),Z2(t)) of two copies of the (half-speed) associated MC,
defined as the following MC on product space.



Here i , j , k denote distinct agents.

(i , j)→ (i , k) : rate 1
2νjk

(i , j)→ (k, j) : rate 1
2νik

(i , j)→ (i , i) : rate 1
4νij

(i , j)→ (j , j) : rate 1
4νij

(i , j)→ (j , i) : rate 1
4νij

(i , i)→ (i , j) : rate 1
4νij

(i , i)→ (j , i) : rate 1
4νij

(i , i)→ (j , j) : rate 1
4νij .

For comparison, for two independent chains the transitions (i , j)→ (j , i)
and (i , i)→ (j , j) are impossible and in the other transitions above all the
1/4 terms become 1/2. (The coupling might be regarded as a weird
mixture of discrete- and continuous-time effects).

Write Xa(t) = (Xa
i (t)) for the averaging process started from

configuration 1a.

Key identity; for each choice of a, b, i , j , not requiring distinctness,

E(X a
i (t)X b

j (t)) = P(Z a,b
1 (t) = i ,Z a,b

2 (t) = j)

where (Z a,b
1 (t),Z a,b

2 (t)) denotes the coupled process started from (a, b).

[give argument on board]

By linearity the key identity implies the following – apply∑
a

∑
b xa(0)xb(0) to both sides.

Lemma (Cross-products in the averaging model)

For the averaging model X(t) started from a configuration x(0) which is
a probability distribution over agents,

E(Xi (t)Xj(t)) = P(Z1(t) = i ,Z2(t) = j)

where (Z1(t),Z2(t)) denotes the coupled process started from random
agents (Z1(0),Z2(0)) chosen independently from x(0).



We will explore consequences in the special case where N is the rate
matrix for RW on a r -regular graph. In this special case

E(x, x) = n−1
∑
e=(ij)

r−1(xi − xj)
2

the sum over undirected edges; rearranging

nE(x, x) =
∑
i

x2
i − 2r−1

∑
e=(ij)

xixj .

So n EE(X(t),X(t))

= E
∑
i

(Xi (t))2 − 2r−1E
∑
e=(ij)

Xi (t)Xj(t)

= P(Z1(t) = Z2(t))− r−1P(Z1(t) ∼ Z2(t)) by the cross-product lemma

where i ∼ j indicates the edge relationship. Now in this special case we
can directly compute, from the dynamics of the coupling (Z1(t),Z2(t)),

d

dt
P(Z1(t) = Z2(t)) = − 1

2P(Z1(t) = Z2(t)) + 1
2r P(Z1(t) ∼ Z2(t))

So we have proved

Proposition

Take N to be the rate matrix for RW on a r-regular graph. For the
averaging model X(t) started from a probability distribution x(0) over
agents.

EE(X(t),X(t)) =
−2

n

d

dt
P(Z1(t) = Z2(t))

where (Z1(t),Z2(t)) denotes the coupled process started from random
agents (Z1(0),Z2(0)) chosen independently from x(0).

Now P(Z1(0) = Z2(0)) = ||x(0)||22 and the t →∞ limit distribution of
(Z1(t),Z2(t)) is independent uniform, so integrating over 0 ≤ t <∞
gives

E
∫ ∞
0

E(X(t),X(t)) dt = 2(||x(0)||22 − n−2).

By scaling, the averaging process Y(t) from an initial configuration y
with ȳ = 0 satisfies



(recall N is r−1× the adjacency matrix of a r -regular graph; ȳ = 0)

E
∫ ∞
0

E(Y(t),Y(t)) dt = 2||y||22. (3)

This is a remarkable “universality” property of local smoothness in the
averaging model.
[Discuss on board: IID starts]
Theory project: Is there an analogous result assuming only the the
standardized setting (νi ≡ 1)?
Theory project: Is there a universal bound on EE(Y(t),Y(t)) at each t?
Theory project: Give a sharp analysis of the behavior of the averaging
process on the n-cycle/integers.
By analogy with theory surrounding Cheeger’s inequality, it is possible
that the 1-dimensional case is the “worst case” re orders of magnitude.

The following example shows that, unlike E||X(t)||2,

E E(X(t),X(t)) is not necessarily decreasing in t.

Take states 1, 2, 3, 4 with ν12 = ν34 = 1 and ν23 = δ, for small δ. Take
initial configuration x(0) = (−1,−1, 1, 1), so E(x(0), x(0)) = δ. Now at
the first time T that the averaging process changes state, it changes to
to (−1, 0, 0, 1), and then E(X(T ),X(T )) = 1/2.



Speculation [theory project] – can we use the averaging process to
estimate mixing times for the associated MC?

Consider the following type of algorithm. At time 0 pick 25 random
agents a ; from each, start the averaging process with one unit at a.
Now each agent i tracks the 25 processes X a

i (t), a = 1, . . . , 25. The
agent continues until the first time t that at least 20 of the 25 processes
have X a

i (t) ≥ 4
5n , then outputs that time as T out.

Can we relate T out to some theoretical notion of mixing time?
[board: discuss type of algorithm]

For the usual reason (some subset of n/100 agents may be almost
disconnected) we cannot hope to estimate τmix or τrel. Instead, for the
MC Z (t) consider a mixing time of the form

τ = min{t : |Pa(Z (t) = i)− 1/n| is small for most pairs (a, i)}.

We will outline a possible argument that T out = O(τ) – the other
direction would be more interesting.

Suppose we can show that the coupling doesn’t make much difference,
specifically that for t of order τ , for most pairs (a, i)

P(Z a,a
1 (t) = i ,Z a,a

2 (t) = i) ≈ [Pa(Z (t) = i)]2

with a bound on the error. Applying the key identity, the error in the
displayed approximation represents the variance of X a

i (t), so proving the
error is small would prove

X a
i (t) is approximately 1/n for most pairs (a, i).

So T out will be O(τ) for most i .



The interchange [exclusion] process

The interchange process is the FMIE process where there are n
distinguishable tokens, one at each agent. When two agents meet, they
exchange tokens.

This is a finite-site variant of the exclusion process which has been
much studied as an infinite site IPS. To get the exclusion process from
the interchange process, declare some of the tokens to be invisible, and
declare the visible tokens to be indistinguishable particles. Then the
visible particles evolve according to the exclusion process rules:

A visible particle at i attempts to jump to j at rate νij ; the jump is
aborted if j is occupied by a visible particle.

These processes don’t seem to naturally fit our “information-exchange”
theme, so we don’t emphasize them, but they may be useful for
comparison purposes. Note that a single token in the interchange process
moves as the associated MC. In particular, here is a recent hard result
(talk project?).

Theorem (Caputo-Liggett-Richthammer (2009))

The relaxation time τrel of the interchange process equals the relaxation
time τrel of the associated MC.

This result is loosely related to analysis of the previous “algorithmic”
scheme, because it suggests that the relaxation time for the coupled
process (in the key identity) should be τMC

rel . If true we could deduce
T out = O(τrel log n). [discuss on board].

The theorem above suggests studying the (variation distance) mixing
time τmix for the interchange process. Recent hard results of Oliveira
(2010) give bounds of the form

τ IPmix = O(τMC
mix log n).

(talk project?).


