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Markov Chains

The next few lectures give a brisk discussion of

Basics: discrete- and continuous-time.

Hitting times and mixing times.

Three standard examples.

Other examples.

Only occasional math arguments here, but when we use some technique
later for FMIEs that parallels a technique for MC, we’ll recall the MC
argument then.



A discrete-time MC (Z (t), t = 0, 1, 2, . . .) is specified by its transition
matrix P = (pij). The t-step transition probability are

Pi (Z (t) = j) are entries of Pt .

A continuous-time MC (Z (t), 0 ≤ t <∞) is specified by its transition
rate matrix N = (νij), where given the off-diagonal entries we set

νi :=
∑
j 6=i

νij , νii := −νi .

The time-t transition probability are

Pi (Z (t) = j) are entries of exp(N t).

If irreducible then there is a unique stationary distribution π = (πi )
and

Pi (Z (t) = j)→ πj as t →∞

holds always in continuous-time. If we can find a distribution π = (πi )
such that

πiνij = πjνji ∀j 6= i

then π is the stationary distribution and the chain is called reversible.

In our FMIE setting we use a symmetric matrix N and so we have an
associated continuous-time MC which is reversible and has uniform
stationary distribution. We sometimes impose assume regularity:∑

j 6=i

νij = 1 ∀i . (1)

This restriction is loosely analogous to discrete-time random walk on a
graph being restricted to a regular graph.
Consider the (continuous-time) quantity

zij =

∫ ∞
t=0

(Pi (Z (t) = j)− πj) dt (2)

analogous to the discrete-time quantity

zij =
∞∑
t=0

(
p
(t)
ij − πj

)
(3)

which can be viewed as a generalized inverse of the singular matrix I −P.
The matrix of mean hitting times EiT

hit
j can be expressed in terms of the

matrix Z.



Theorem (Mean hitting time formula)

Without assuming reversibility, EiT
hit
j = (zjj − zij)/πj .

See RWG 2.2 for proof and detailed discussion. Here, let me observe
three consequences.
Noting

∑
j zij = 0 ∀i we get

∑
j(EiT

hit
j )πj =

∑
j zjj and in particular

Corollary (Random Target Lemma)

τhit :=
∑

j(EiT
hit
j )πj does not depend on i

and so this particular statistic τhit is the mathematically natural way to
summarize the matrix of mean hitting times by a single number. Note
however that

∑
i πizij = 0 ∀j and so

EπT hit
j :=

∑
i

πiEiT
hit
j = zjj/πj (4)

which in general does depend on j .

In the FMIE setting N is a symmetric matrix, which makes Z a
symmetric matrix, as well as making π be the uniform distribution. But
this does not imply that (EiT

hit
j ) is symmetric; in fact

EiT
hit
j = EjT

hit
i iff zjj = zii iff EπT hit

j = EπT hit
i .

A chain is transitive if for each pair i1, i2 there is a permutation σ of the
state space such that σ(i1) = i2 and

νij = νσ(i),σ(j) ∀i , j .

Informally, the chain “looks the same from each state”. Transitivity

implies zii = zjj ∀i , j and hence Tij
d
= Tji ∀i , j .

[Board: degrees of freedom].



[RWG Chapter 3]
There are two parallel ways to think about the dynamics of the
distribution of Z (t). First, in terms of matrices. The transition rate
matrix N has eigenvalues

0 = λ1 > −λ2 ≥ −λ3 ≥ . . . ≥ −λn

and there is a spectral representation (matrix diagonalization)

Pi (Z (t) = j) = π
−1/2
i π

1/2
j

n∑
m=1

exp(−λmt)uimujm (5)

for orthonormal U. In particular, the time-asymptotics for convergence to
stationarity are

Pi (Z (t) = j)− πj = cije
−λ2t + o(e−λ2t) as t →∞. (6)

Jargon: λ2 is the spectral gap, τrel := 1/λ2 is the relaxation time.

Knowing λ2 doesn’t tell you anything precise about the finite-time
distribution of the MC starting at an arbitrary state, but it does tell you
some things about the stationary chain. For instance (cf. the extremal
characterization later)

max
f ,g

corπ(f (Z (0)), g(Z (t))) = exp(−λ2t).

Note also
Pi (Z (t) = i) = πi +

∑
m≥2

u2im exp(−λmt) (7)

so the right side is decreasing with t, and in fact is completely monotone.



The second way – which we might call “L2 theory” or “the Dirichlet
formalism” – requires some notational setup. For a “test function”
g : Agents→ R write

ḡ =
∑
i

πigi

||g ||22 =
∑
i

πig
2
i

E(g , g) = 1
2

∑
i

∑
j 6=i

πiνij(gj − gi )
2 (the Dirichlet form).

When ḡ = 0 then ||g ||2 measures “global” variability of g whereas
E(g , g) measures “local” variability relative to the underlying geometry.
[Discussion on board]

For a (signed) measure θ we define ||θ||2(m) = ||f ||2 for the density
fi = θi/πi , and then for a PM µ we have

||µ− π||22(m) = −1 +
∑
i

µ2
i /πi .

This is “L2 distance” for probability measures.

Why is this viewpoint useful?

The basic evolution equation, for the time-t distribution ρ(t) = (ρj(t))
from an arbitrary start, is

d

dt
ρj(t) =

∑
j

νijρi (t) (8)

from which we previously obtained

Pi (Z (t) = j) are entries of exp(N t).

But a little algebra, directly from (8), gives

Lemma (Global convergence equation)

d

dt
‖ρ(t)− π‖22(m) = −2E(f (t), f (t)); fj(t) = ρj(t)/πj .

Because E ≥ 0 this gives a certain “monotonicity” in global convergence;
cf. monotonicity of Pi (Z (t) = i).



Reformulating the classical Rayleigh–Ritz extremal characterization of
eigenvalues:

Theorem (Extremal characterization of relaxation time)

τrel = sup{||g ||22/E(g , g) : ḡ = 0}.

So we can get lower bounds on τrel by plugging in a test function g
chosen heuristically. Much of (algorithm-related) uses of finite MCs
involves getting reasonable upper bounds on τrel and τmix below. The
extremal characterization doesn’t help directly but is the starting point
for other methodologies.
Combining the extremal characterization with the global convergence
equation leads easily to [calculation on board]

Lemma (L2 contraction lemma)

The time-t distributions ρ(t) of a reversible MC satisfy

‖ρ(t)− π‖2(m) ≤ e−t/τ2‖ρ(0)− π‖2(m).

Hitting times and mixing times are distinct aspects of a MC; but here’s a
minor connection. Write T hit

A for the hitting time on a subset
A ⊂ Agents.

Proposition

For a subset A of a continuous-time chain,

sup
t
|Pπ(TA > t)− exp(−t/EπTA)| ≤ τrel/EπTA.

In words: for the hitting time distribution to be approximately
Exponential it is sufficient that the mean hitting time be large compared
to the relaxation time τrel.

Theory project. Give a bound on the dependence between initial state
X (0) and TA, for instance

max
f ,g

cor(f (X (0)), h(TA)) ≤ ψ(τrel/EπTA).

For another connection, recall the Random Target Lemma said that
τhit :=

∑
j(EiT

hit
j )πj does not depend on i . It turns out that τhit has a

simple expression in terms of the eigenvalues:

τhit =
n∑

i=2

1/λi the eigentime identity. (9)



Variation distance (or total variation) between a PM µ and the
stationary distribution π is defined as

||µ− π||VD := 1
2

∑
i

|µi − πi |.

This is essentially “L1 distance”. Note that, like “L2 distance”, it ignores
the geometry.

For a continuous-time MC, define (variation distance) mixing time
τmix to be the smallest time t for which

max
i
||Pi (Z (t) ∈ ·)− π(·)||VD ≤ 1/(2e).

The choice of constant on the right must be < 1/2 but is otherwise
rather arbitrary; the particular choice 1/(2e) ensures

τrel ≤ τmix.

Variation distance and τmix are central to many theoretical algorithmic
uses of MCs – see Montenegro-Tetali (2006) and the monographs.

The general version of the “bottleneck parameters” earlier are defined in
terms of stationary flow rates

Q(A,Ac) :=
∑

i∈A,j∈Ac

πiνij .

In particular, define the Cheeger time constant by

τcond := sup
A

π(A)(1− π(A))

Q(A,Ac)
.

[Discussion on board: up to factors of 2 this is 1/conductance; n-cycle
case].
There is a (not easy)

Theorem (Cheeger’s inequality)

For any continuous-time reversible MC,

τrel ≤ 8τ 2cond max
i
νi .



So in the FMIE context with the regularity assumption (1) we have

φ(m) = min{ν(A,Ac) : |A| = m}, 1 ≤ m ≤ n − 1

τcond := sup
m

m
n

n−m
n

φ(m)
.

and Cheeger’s inequality becomes

τrel ≤ 8τ 2cond.

More sophisticated results can be found in the survey by
Montenegro-Tetali (2006).

Helpful intuition is that a sequence

Ẑ1, Ẑ2, . . .

obtained as either a stationary MC sampled at multiples of τrel

Z (τrel),Z (2τrel), . . .

or an arbitrary-start MC sampled at multiples of τmix

Z (τmix),Z (2τmix), . . .

behaves similarly to an IID sequence as far as quantitative versions of
limit theorems are concerned. See e.g. León-Perron (2004) for a large
deviation inequality for occupation times.



Another well-studied MC topic is the cover time

C := max
j

T hit
j = time until every state visited.

There is a “non-clever” bound in term of the parameter
τ∗ := maxi,j EiT

hit
j , because inductively

Pi (T
hit
j > 2mτ∗) ≤ 2−m, m = 1, 2, 3, . . .

and it quickly follows that

max
i

EiC ≤ (1 + o(1))τ∗ log n.

And a “clever” argument called Matthews’ method sharpens this to

max
i

EiC ≤ τ∗
n−1∑
i=1

1/i .

Recent deep results of Ding-Lee-Peres (2010) give very sharp general
estimates of EC .

Reversible Markov chains: standard examples

For any discrete-time MC with transition probabilities pij there is a
corresponding continuous-time MC with transition rates νij = pij . In
particular, discrete-time RW on a d-regular undirected graph is the MC
with transition probabilities

pij = d−1 for edges (i , j)

and there is a corresponding continuous-time RW.

For a continuous-time MC, in the case where νi :=
∑

j 6=i νij is constant in
i , it is natural to standardize the time unit so that νi ≡ 1.

[board: comments re 2 different continuous-times RWs on graphs with
highly varying degrees – needs watching in all FMIE contexts]



Continuous-time RW on the complete n-vertex graph.

νij = 1/(n − 1), j 6= i .

The basics are easy – no surprise!

EiT
hit
j = n − 1; T hit

j
d
= Exponential(1/(n − 1)).

Pi (Z (t) = i) = 1
n +

(
1− 1

n

)
exp

(
− n

n−1 t
)
.

τrel = n−1
n .

Because here τrel ≈ 1, for other geometries we can think of τrel as
relaxation time relative to the complete graph case.

Continuous-time RW on the d-dimensional
lattice/cube/torus.

First consider the infinite lattice Zd . Discrete-time RW on Zd is a
well-studied classical object. The continuous-time RW Z (d)(t) is nicer in
that the co-ordinate processes are independent slowed-down
1-dimensional RWs; for the origin 0 and x = (x1, . . . , xd)

P0(Z (d)(t) = x) =
d∏

i=1

P0(Z (1)(t/d) = xi ).

Five facts you should know about RW on Zd .



(CLT): The distribution of Z (d)(t) for large t is approximately
multivariate Normal; marginals are Normal(0, t/d).

(Local density) P0(Z (1)(t) = 0) ∼ (2π)−1/2t−1/2 and so

P0(Z (d)(t) = 0) ∼ (2πt/d)−d/2.

(Recurrence/transience) In d = 1, 2 RW is recurrent: each vertex is
visited infinitely often. In d ≥ 3 RW is transient: the chance state x is
ever visited → 0 as |x| → ∞.

(Fair game: winner and mean duration). In d = 1, for −a < 0 < b

P0(Tb < T−a) = a/(a + b); E0 min(T−a,Tb) = ab.

Continuous-time RW on the d-dimensional torus.

One natural geometry is the 2-dimensional discrete square [0,m − 1]2 as
a subgraph of Z2. It is mathematically nicer to eliminate the boundary by
imposing “periodic boundary conditions”, that is to use the 2-dimensional
discrete torus, which is vertex-transitive. In general dimension d ≥ 1 this
becomes the d-dimensional (discrete) torus, denoted Zd

m.

Warning; we study m→∞ asymptotics for fixed d . To compare with
other models, remember n = md .

We quote some basic facts. Consider d = 1, so Zm is the m-cycle. The
eigenvalues are

cos(2πj/m), 0 ≤ j ≤ m − 1

and the relaxation time is

τrel =
1

1− cos(2π/m)
∼ m2

2π2
.



For d ≥ 2 we retain the nice property that the co-ordinate processes are
independent slowed-down versions of the RW on the m-cycle; so for fixed
m the d-dimensional and 1-dimensional RWs are again related by

P0(Z (d)(t) = x) =
d∏

i=1

P0(Z (1)(t/d) = xi ).

From this we see that the eigenvalues on Zd
m are

λ(k1...kd ) =
1

d

d∑
u=1

(1− cos(2πku/m)), 0 ≤ ku ≤ m − 1.

In particular, the relaxation time satisfies

τ2 ∼
dm2

2π2
=

dn2/d

2π2
.

We can also use the eigentime identity to compute the mean hitting time
parameter

τhit =
∑
k1

· · ·
∑
kd

1/λ(k1,...,kd )

(the sum excluding (0, . . . , 0)),

and hence
τhit ∼ mdRd (10)

where

Rd ≡
∫ 1

0

· · ·
∫ 1

0

1
1
d

∑d
u=1(1− cos(2πxu))

dx1 · · · dxd (11)

provided the integral converges. In fact by the recurrence/transience
properties of RW on the whole integer lattice we must have Rd <∞ for
d ≥ 3 only. For d = 1 we must have τhit = Θ(m2), and the case d = 2 is
best understood via a later argument.



Random graphs with prescribed degree distributions
[on board: only key points here]

Maybe 500 papers since 2000 on such random graph models.

Configuration model: basic properties and local Galton-Watson
approximation.

Continuous-time vs discrete-time RW

Mean hitting times via tree recursions. In particular, on random
r -regular graph τhit ∼ r−1

r−2n

Outline. Specify (di ), Can define models Gn of n-vertex graph,
interpretable as being “random” subject to the following constraint.
Write Dn for degree of a uniform random vertex of Gn, then

Dn
d→ D where P(D = i) = di .

Such models have the following “local GWBP approximation”. The
structure of Gn within some fixed graph-distance r from a uniform
random vertex Un converges in distribution, as n→∞, to the random
tree comprising generations 0 to r of the following modified
Galton-Watson BP. The root has offspring distribution D; in subsequent
generation the offspring distribution is the size-biased distribution D∗

where P(D∗ = i) = (i + 1)di+1/ED.
Assuming d0 = d1 = 0, the GWBP is an infinite tree (non-extinction).
Assuming ED2+ε <∞ then E(D∗)1+ε <∞ and the Kesten-Stigum
theorem says that the size Yr of generation r grows at a particular rate:
Yr/(ED∗)r →W a.s. and L1.

The results above suggest heuristics for the structure of Gn and the
behavior of RW and other FMIE processes on Gn.



Let us record the following local transience principle. For a large
finite-state MC whose behavior near a state i can be approximated be a
transient infinite-state chain,

EπT hit
i ≈ Ri/πi

where Ri is defined in terms of the approximating infinite-state chain as∫∞
0

pii (t) dt = 1
νiqi

, where qi is the chance the infinite-state chain started
at i will never return to i .

The approximation comes from (4) via a “interchange of limits”
procedure which requires ad hoc justification.

In the case of simple RW on the d ≥ 3-dimensional torus, this identifies
the constant Rd at (11) as Rd = 1/qd where qd is the chance that RW
never returns to the origin. So (11) provides a formula for qd .

In the “random graphs with prescribed degree distribution” model, this
argument shows (heuristics) that EπT hit

i = Θ(n).

Other geometries

The d-dimensional hypercube {0, 1}d is often used as the simplest
non-trivial example of a geometry on which the RW is rapidly mixing. In
particular it illustrates the cut-off window for variation distance mixing
[xxx explain on board]. But it seems not so natural for the applications
we have in mind.

Small world graphs, which start with the d-dimensional lattice and add
random long edges (v ,w) with probabilities ∝ ||v − w ||−γ , are
interesting but hard to study analytically.

Proximity graphs, described next, are also interesting but hard to study
analytically.



Given points (xi ) in the plane in general position, create edges according
to a deterministic rule such as

create an edge (xi , xj) iff the disc A(xi , xj) with diameter-line (xi , xj) does
not contain any third point of (xi ).

Replacing the disc with a one-parameter family of other shapes, and
applying this construction to random (Poisson) points, gives a family of
random proximity graphs which (unlike the more familiar random
geometric graphs) are always connected.

Simulation project. Study RW and other FMIE processes on these
graphs.


