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Style of course

Big Picture – thousands of papers from different disciplines
(statistical physics and interacting particle systems; epidemic theory;
broadcast algorithms on graphs; ad hoc networks; social learning
theory) use stochastic models to study questions involving
“information flow through networks”.

We will study some of the mathematics of such processes . . . . . .

. . . . . . working within a particular framework (FMIE processes),
described in this lecture, which provides a (mathematically)
convenient abstraction of many such models.



In the first half of the course we work explicitly in the FMIE setting,
seeing what results can be derived easily from “standard background” –
the pre-existing theories of Markov chains, interacting particle processes,
and general modern mathematical probability. Here our theme is

Don’t try to be clever
Often we just quote background. Regrading proofs, a guideline is
give only arguments that are useful in more than one context.

In the second half of the course (partly as student projects) we look at
recent papers – some explicitly in the FMIE setting, some which could be
re-formulated in that setting.

What do I need to do to get a grade?

Find something that interests you and is moderately related to
course material.

Most common option (“paper project”): read a recent paper and give a
20-minute talk during last 2 weeks of semester.

Alternatives: theory/simulation/literature-search projects.

Suggestions on web site; will be edited as course progresses. Only first
half of course is pre-planned, so additional suggestions welcome (sooner
better than later).



Prerequisites

Undergraduate probability; EX and all that .

Basic Markov chain notions.

Basic “algorithms on graphs” notions.

The next few lectures go a little way beyond the basics of finite reversible
Markov chains, emphasising mixing and hitting times, and the standard
examples of random walks on the complete graph, the d-dimensional
grid, and on random graphs with prescribed degree distributions. This
topic is treated in much more detail in

Levin-Peres-Wilmer Markov Chains and Mixing Times

Aldous-Fill Reversible Markov Chains and Random Walks on Graphs,

accessible from class web page.
Recall the notion of a rate-λ Poisson process of times of events
0 < ξ1 < ξ2 < . . .. The mean number of events in a time interval of
duration t equals λt, and this particular process formalizes the idea that
the times are “completely random”.

What (mathematically) is a social network?

Usually formalized as a graph, whose vertices are individual people and
where an edge indicates presence of a specified kind of relationship.



In many contexts it would be more natural to allow different strengths of
relationship (close friends, friends, acquaintances) and formalize as a
weighted graph. The interpretation of weight is context-dependent. In
some contexts (scientific collaboration; corporate directorships) there is a
natural quantitative measure, but not so in “friendship”-like contexts.

Our particular viewpoint is to identify “strength of relationship” with
“frequency of meeting”, where “meeting” carries the implication of
“opportunity to exchange information”.

Because we don’t want to consider only social networks, we will use the
neutral word agents for the n people/vertices. Write νij for the weight
on edge ij , the “strength of relationship” between agents i and j .

Here is the model for agents meeting (i.e. opportunities to exchange
information).

Each pair i , j of agents with νij > 0 meets at random times, more
precisely at the times of a rate-νij Poisson process.

Call this the meeting model. It is parametrized by the symmetric matrix
N = (νij) without diagonal entries.

A natural “geometric” model is to visualize agents having positions in
2-dimensional space, and take νij as a decreasing function of Euclidean
distance. This is hard to study analytically. Most analytic work implicitly
takes N as the adjacency matrix of an unweighted graph.



Schematic – the meeting model on the 8-cycle.
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What is a FMIE process?
Such a process has two levels.

1. Start with a meeting model as above, specified by the symmetric
matrix N = (νij) without diagonal entries.

2. Each agent i has some “information” (or “state”) Xi (t) at time t.
When two agents i , j meet at time t, they update their information
according to some rule (deterministic or random). That is, the updated
information Xi (t+),Xj(t+) depends only on the pre-meeting information
Xi (t−),Xj(t−) and added randomness.

We distinguish the two levels as “geometric substructure” and
“informational superstructure”. Different FMIE models correspond to
different rules for the informational superstructure.



Model 0. A token-passing model. [hot potato; white elephant; mathom]

There is one token. When the agent i holding the token meets another
agent j , the token is passed to j .

The natural aspect to study is Z (t) = the agent holding the token at
time t. This Z (t) is the continuous-time Markov chain with transition
rates (νij). (Continuous-time chains, reviewed in next lecture, are very
similar to discrete-time ones).

As we shall see, for some FMIE models interesting aspects of their
behavior can be related fairly directly to behavior of this associated MC,
while for others any relation is not so visible.

Model 1. The simple epidemic model.

Initially one or more agents are infected. Whenever an infected agent
meets another agent, the other agent becomes infected.

If initially the single agent i is infected, natural objects of study are

T epi
ij = time until agent j is infected

T epi
i∗ = time until all agents are infected

F epi
i (t) = proportion of agents infected at time t.



The Markov chain and the simple epidemic can be viewed as the two
“fundamental” FMIE processes. The Markov chain because it is
mathematically simplest. The epidemic because, roughly speaking, in any
FMIE information cannot spread faster than in the epidemic process.

For our purposes, MC theory is well enough understood both “in general”
and in many specific geometries. In contrast, the simple epidemic has
been studied in various specific geometries (a 2001 paper Epidemic
spreading in scale-free networks has acquired 1312 citations!) but
scarcely studied “in general”.

As an illustration of why the two processes are fundamental, consider the
following 3 FMIE models.

Model 2. Averaging model. When agents i and j meet, each replaces
their (real-valued) information by the average (xi (t) + xj(t))/2.

Model 3. Random consensus-seeking model. Each agent initially has
some different “opinion”. When two agents meet, they adopt the same
opinion, randomly chosen from their two previous opinions.

Model 4. Ordered consensus-seeking model. Each agent initially has
some different “opinion”, represented as random uniform(0, 1) numbers.
When two agents meet, they adopt the same opinion, the smaller of the
two numbers.

You should immediately see how Model 4 relates to the epidemic process.
We will see later (not so obvious) that Models 2 and 3 have explicit
connections with the associated Markov chain.

Note that 4 (which 4?) out of these 5 models have deterministic
information-update rules.



Our notion of “information flow” is different from communication, in
the sense of a particular message being conveyed from source to
destination. A standard high-level abstraction of a communication
network is what I’ll call the “graph model”: a vertex can transmit to any
neighbor in unit time slots. Within the graph model, there is a trivial
algorithm (“epidemic routing”) that broadcasts a message from one
originating vertex to all n vertices in minimal time: after receiving the
message for the first time at t, a vertex transmits to all other neighbors
at time t + 1. Moreover the total number of transmits is at most d∗n
where d∗ is maximal degree, so for this to be a “good” algorithm we
need only know that d∗ is small (and that the graph is connected).

Moving away from directed communication within networks of machines
toward e.g. spread of ideas between people, the graph model seems less
appealing and the FMIE setting seems more appealing.

One general program; take algorithmic problems such as
broadcast/coordination problems, previously studied in the graph model,
and reconsider them in the FMIE setting.

Designing a broadcast algorithm: In the FMIE setting, what is a good
rule to use to convey a message from one initial agent i to all agents?

Could just simulate the epidemic process itself : after receiving the
message, copy to each new agent you meet. This takes time T epi

i∗ , and no
algorithm could do better. But this isn’t an honest algorithm (one needs
a rule telling each vertex when to stop copying) and it’s not clear how to
bound the number of transmits in terms of the matrix (νij). So

Vague Big Problem: Can one design a broadcast algorithm that
succeeds w.h.p. in time O(T epi

i∗ ) with O(n) transmits, provided the matrix
(νij), unknown in detail to the algorithm, satisfies some side condition?



Viewing a FMIE as an algorithm designed for a specific purpose (e.g. a
broadcast algorithm or coordination algorithm), knowing some features of
the rates (νij) would presumably help. So
Vague Big Problem: what features of an (unknown in detail) rate
matrix (νij) can be learned from running some FMIE designed to learn
the feature?

Note that FMIEs are quite different from MCs in this respect. One
cannot (except in very special settings) estimate the mixing time τmix of
a MC by running the MC for O(τmix) steps. But parameters of the form

τepi := avei,j ET epi
ij

can be estimated in time O(τepi) by simply running the epidemic process
from random starts.

Note: we take the total meeting rate
∑

j νij for each agent i to be O(1);
very roughly, we consider algorithms doing O(1) computation per unit
time and small storage.

Minor theory/literature project. For unknown rates λj , j ∈ J from an
unknown index set J, we observe the non-zero values and j-values of
independent Poisson(λj) RVs. What can we infer about the rates?

Simulation project. Cute animation of meeting process?

Simulation project. Fix some 50-agent geometry. Do simulations of
each of the main models on this geometry.



Overview of course

3 brief generalities about FMIE processes

Finite reversible Markov chains, emphasising mixing and hitting
times, and the standard examples of random walks on the complete
graph, the d-dimensional grid, and on random graphs with
prescribed degree distributions.

Mathematics of simple information-exchange models (like Models
1-4), relating their behavior to the rate matrix (νij).

Algorithmic contexts

Game theoretic contexts

The style is very variable – some vague “high-level” discussion, some
math details.

3 observations about general FMIEs

1. Irreducibility and convergence.
n = number of agents.

If an agent’s information is limited to k states then the whole FMIE
process itself is a kn-state continuous-time MC. So qualitative
time-asymptotics are determined by the strongly connected components
of the transition graph of the whole process.

[Discussion on board, leading to . . . ]
for a given informational-level model, in order that an n-agent case be
irreducible it is sufficient, but not necessary, that the 2-agent case is
irreducible.

Literature-search project. Find relevant work on asynchronous cellular
automata.

Theory project. Can quantify “mixing (convergence) times” in reducible
setting. Consider deterministic rules (i , j)→ (f (i , j), f (j , i)). Fix
geometry as n-path or Kn. For given (n, k), what can you say about
worst-case (over rules f ) mixing time? [More discussion on board].



2. Bottleneck parameters.
Given a geometry with rate matrix N = (νij), the quantity

ν(A,Ac) =
∑

i∈A,j∈Ac

n−1νij

has the interpretation, in terms of the associated continuous-time Markov
chain Z (t) at stationarity, as “flow rate” from A to Ac

P(Z (0) ∈ A,Z (dt) ∈ Ac) = ν(A,Ac) dt.

So if for some m the quantity

φ(m) = min{ν(A,Ac) : |A| = m}, 1 ≤ m ≤ n − 1

is small, it indicates a possible “bottleneck” subset of size m.

For many models one can obtain upper bounds (on the expected time
until something desirable happens) in terms of the parameters
(φ(m), 1 ≤ m ≤ n/2). Such bounds are always worth having but their
significance is sometimes overstated; note

φ(m) is not readily computable, or simulate-able
The bounds are often rather crude for a specific geometry
More elegant to combine the family (φ(m), 1 ≤ m ≤ n/2) into a
single parameter, but the way to do this is model-dependent.

3. Time-reversal duality

Fix a time t. Regard meeting times during [0, t] as arbitrary, and consider
an event A determined by the meeting times. We can “reflect” or
“time-reverse” meeting times via the map s → t − s. Let A∗ be the
event determined by these reflected times.

In our probability model, reflection does not change the distribution of
the Poisson processes, so we have a “time-reversal duality” principle

P(A∗) = P(A).

This principle is useful in several models. Let’s see – carefully – what this
says for the simple epidemic model.

T epi
ij = time until agent j is infected, if initially only i is infected.

What symmetry properties does the matrix (T epi
ij ) have?
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For fixed t, the matrix of events {T epi
ij ≤ t} has symmetric distribution:(

{T epi
ij ≤ t}

)
ij

d
=
(
{T epi

ji ≤ t}
)
ij

(1)

In particular, for a single entry we have P(T epi
ij ≤ t) = P(T epi

ji ≤ t), and
since this is true ∀t

T epi
ij

d
= T epi

ji . (2)

One might guess this distributional symmetry holds for the whole matrix,
but that is wrong. Consider the 3-agent case νab = νbc = 1, νac = 0.
Then

P(T epi
ac = T epi

bc ) > 0 but P(T epi
ca = T epi

cb ) > 0

implying (T epi
ac ,T

epi
bc )

d

6= (T epi
ca ,T

epi
cb ). However there are results for

maxima: (1) implies that for fixed i and t

P(max
j

T epi
ij ≤ t) = P(max

j
T epi
ji ≤ t)

and since this is true ∀t

max
j

T epi
ij

d
= max

j
T epi
ji .



Recall that in the token-passing model (as a FMIE), for the agent Z (t)
holding the token at time t, the process (Z (t), t ≥ 0) evolves as the
associated Markov chain. The next lectures treat Markov chains as
objects in their own right. First, a few comments on the connection.

The FMIE setting provides more structure than the associated MC alone.
For instance one can ask “how long until agent k receives the token or
meets someone who previously held the token?”; this is a meaningful
question for the token passing model but not for a plain MC.

The FMIE setting provides a particular coupling of the Markov chains
Zi (t) starting from different i . (Such a coupling is not automatically
specified in the plain MC setup. Ours is essentially what is called the
“independent coupling”.)

The “time-reversal duality” argument above gives

P(Zi (t) = j) = P(Zj(t) = i).

Note that symmetry does not extend to hitting times:

T hit
ij

d

6= T hit
ji in general.

Sometimes we do martingale-like calculations. In that context, F(t) is
the filtration of events in the underlying meeting model, together with
the particular information-level process under consideration.

[Board: k ’th hand process – interpolate between MC and epidemic
process].


