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Course web site: Google “David Aldous”. [show]

I deliberately chose a topic where there is not any clean
definition-theorem-proof account – but such accounts exist for various
related topics.

A metaphor for research styles: external DLA and internal DLA. [show 2
figs].

So start by looking outside the math literature. What does Google
Scholar find?

Journal Networks and spatial economics [show]

This is O.R. style – not quite what we will focus on. Note student
requirements: give a talk, either on a research paper you read (easy
option), or on some project you do (harder option). [show lists]

“Big Picture” on slides. When we get to non-trivial math, I’ll do chalk.



Consider points in 2-dimensional space. Mathematicians understand
regular patterns. [show Lattice-wikipedia].

Mathematicians also understand completely random points, as modeled
by the Poisson point process.
[show poisson.jpg] [show Complete-wikipedia]. [show list projects]

In mathematics, graph has a fairly precise meaning – vertices (nodes)
and edges (links) – I will call this an “abstract graph”. [draw on board].
But network does not have a standard meaning – I say “a network is a
graph with context-dependent extra structure”.

In our topic, spatial networks, vertices have positions in the plane R2,
and the edges (usually made up of line segments) are point-sets in R2.
[introduce coordinates].

Familiar “regular pattern networks” [show 9networks] and the kind of
questions we will study are (usually) elementary for regular patterns.

What can we do with arbitrary configurations of points in the plane?
Two classical structures are the Voronoi tessellation and the Delaunay

triangulation. [show Voronoi and Delaunay]

We can think of the Delaunay triangulation as the prototype example of
a spatial network.



The Delaunay triangulation (DT) is at the intersection of several
academic fields. In the background are

“graph theory” in Math

much of “theory of algorithms” in C.S. involves algorithms on
abstract graphs

and in the foreground are

Euclidean geometry (the DT itself)

computational geometry studies algorithms for problems such as
finding the DT

stochastic geometry (≈ geometric probability) studies
quantitative aspects (expectations etc) of structures such as the DT
built over random points.

[show book list]



One starting point for this course is to think about random analogs of
regular networks. There are several ways to make probability models. I
will talk first about

schemes for defining a network over arbitrary points (e.g. the DT),
applied to random (Poisson) points in the plane

but other ways start with a regular network (e.g. square grid) and then

randomly delete edges (percolation)

randomly add long edges (small worlds)

assign random lengths to edges (first passage percolation).

Side comments. There is extensive work on
(i) random processes built over regular networks – percolation, interacting
particle systems – see Grimmett Probability on Graphs for a start.
(ii) random models for abstract graphs, generalizing the Erdős-Rényi
model – see van der Hofstad Random Graphs and Complex Networks.



Something potentially confusing is the notion of a planar graph. This is
defined as an abstract graph which can be drawn in the plane with
non-crossing edges. This verbal definition looks ambiguous – are edges
required to be straight lines? – but it’s a fact that the two definitions are
equivalent. [draw picture on board]

This differs from a spatial network in several ways. A spatial network
is drawn in the plane – vertices and edges are at specified coordinates.
So there are several possibilities for a spatial network:

1 edges are line segments and do not cross (e,g, the DT)
2 edges are line segments; may cross but you cannot switch (e.g.

airplane routes)
3 edges can meet at positions (Steiner points or junctions) that are

not the given vertices.

Most literature concerns networks satisfying (1) or (2), but we
(envisaging inter-city road networks) will often allow (3).
[show US-road-map.pdf]

Side comment. There is literature on “random planar graphs”: see
Benjamini (2010) for a brief overview. There the model is the uniform
distribution on the finite set of n-vertex planar graphs, but this model
does not seem realistic for any data.



Another fact about connected planar graphs is Euler’s formula

N − E + F = 2

N = number of vertices
E = number of edges
F = number of faces (= cells = components of plane).
[true for tree; induct on extra edges]

Taking E ≥ 3, a face has at least 3 edges and each edge separates at
most 2 faces, so E ≥ (3/2)F ; substitute into Euler’s formula:

E ≤ 3N − 6.

So the average degree d̄ in a connected planar graph

d̄ = 2E/N ≤ 6− 12
N < 6.

[show 9networks again]



Finite vs Infinite networks

Real networks are finite, and algorithmic questions typically ask how
many steps are required to solve some problem over n points in the
worst case.

Mathematicians like me often think in terms of infinite numbers of
points in the infinite plane.

The latter is perhaps an example of mathematicians putting a lot of
effort into being lazy; in particular one can ignore boundary effects. For
instance

On the infinite square grid the average degree is 4 and the average
length per unit area is 2.

The Voronoi tessellation on a (reasonable) infinite set of points has
only finite-area cells.

In any triangulation of a (reasonable) infinite set of points, the
average degree is 6. [informal argument on board].



The infinite setting is not so relevant for algorithmic or worst-case
studies, but is useful for average-case studies. The natural
“average-case” model for n points is to take them IID uniform in a
square; to avoid rescaling later we take the scaling convention that the
square has area = n. The corresponding infinite model is the rate-1
Poisson point process (PPP) on R2.

Most explicit constructions of networks on n points can be used as
constructions of networks on the infinite PPP. Precise quantitative
connections between the finite and infinite networks are one of the
technical topics we’ll discuss later in the course, involving

subadditivity

local weak convergence

stationarity as the formalization of “reasonable” for infinite networks.



Comments on triangulations (define: = point set triangulation).

not unique [draw n-gon]

given a planar graph spatial network which is not a triangulation, we
can add edges until it becomes a triangulation

in a triangulation, [board]

3(F − 1) = 2E − C

where C = number of edges (or vertices) in convex hull. Euler’s
formula then gives

E = 3N − 3− C

and so the average degree is

d̄ = 2E
N = 6− 6

N − 2C
N

which does not depend on the triangulation

The DT is in general not the minimum-length triangulation;
computing the latter is NP-hard.



A planar graph has a (planar) dual graph
[show Dual] [show 9networks: multigraph]
This duality is the relationship between Voronoi tesselation (considered as
a 3-regular graph) and Delaunay triangulation (DT).

Mention 4-color theorem. Duality relates this to vertex-coloring of the
dual graph.

2 things to note.

What is the DT for the square-lattice configuration?

An edge AB of the DT does not necessarily pass through the edge
separating the cells of A and B; the subgraph of edge that do
defines the Gabriel graph.

[draw fig 2] [show Gabriel graph = Wiki]

AB is edge of Gabriel graph iff disc with diameter AB contains no
other points

AB is edge of DT iff there exists some disc, with A and B on
boundary, containing no other points.



Average degree of the Gabriel graph depends on configuration; for
instance it is 6 for the triangular configuation. We shall soon do a
calculation to show that for Poisson points,

ave degree := d̄ = 4; length-per-unit-area := � = 2.

These of course are the values for the usual grid network. Is there any
more conceptual explanation of this coincidence?



Some useful calculus formulas

� ∞

0
r · exp(−Ar2) dr =

1

2A
� ∞

0
exp(−Ar2) dr =

π1/2

2A1/2

Higher moment formulas most easily found by differentiating w.r.t. A

� ∞

0
r2 · exp(−Ar2) dr =

π1/2

4A3/2



Some calculations with PPP [on board]

Definitions of spatial PPP and finite-n model.

Link via “random position” and “random point”.

PPP as seen from “typical point” is just the PPP with an extra
point planted at origin.

Use in calculations that are exact for PPP model, and are n → ∞
limits for finite-n model.

Basic example. In PPP,

R = distance from typical point ξ to nearest neighbor ξ�

has P(R > r) = exp(−πr2) and so ER = 1/2.

In finite-n model, consider
Rn = distance from random position to nearest point
R∗
n = distance from random point to nearest other point.

Then Rn
d→ R , R∗

n
d→ R .



More elaborate example.

In PPP, take ξ as typical point, ξ� as nearest neighbor of ξ, and ξ�� as
nearest neighbor of ξ�. Then [board]

q := P(ξ�� = ξ) =
π

4π
3 +

�
3
4

.

In finite-n model, let Mn = number of points which are the nearest
neighbor of their nearest neighbor. Then

n−1EMn → q.

To re-interpret as a “network”, put an edge from each point of a PPP to
its nearest neighbor, the mean number of edges per unit area equals
q
2 + (1− q). And [exercise] can also calculate mean length-per-unit-area
of this network.



Almost all the networks we will consider, build over the PPP, have
distributions invariant under translation and rotation [as will be discussed
more carefully later]. For such a network, given the PPP has points at z1
and z2, the chance p(r) that there is an edge (z1, z2) depends only on the
distance r between z1 and z2. Then we can calculate

ave degree := d̄ =

� ∞

0
p(r) · 2πr dr

length-per-unit-area := � = 1
2

� ∞

0
r · p(r) · 2πr dr .

For the Gabriel graph,
p(r) = exp(−Ar2)

where A = area of unit-diameter disc. So

d̄ =

� ∞

0
exp(−Ar2) · 2πr dr = π/A

� = 1
2

� ∞

0
exp(−Ar2) · r · 2πr dr = π3/2

4A3/2

Because A = π/4 we get d̄ = 4; � = 2.



As noted before, these values for the Gabriel graph on the PPP equal the
values for the usual grid network. Is there any more conceptual
explanation of this coincidence?

Similar arguments [board] give more complicated integral expressions for
1 number of triangles per unit area
2 proportion of R2 covered by triangles.

Do these have simple explicit values?

For other literature on the random Gabriel network see Bose et al (2006),
Devroye - Gudmundsson (2009):



Given n points in general position, the literature contains many ways to
define edges to make a spatial network – on the web site I will maintain a
list of those mentioned in the course.
It is a creative exercise to try to invent other (interesting) ways.

Next topic is minimum spanning tree. The definition and the following
properties hold for an abstract connected graph G with distinct
edge-lengths; in our “spatial” context we will be taking the case of n
points in the plane, with the complete graph and Euclidean distance.

Most useful is the following characterization.
An edge AB of G is an edge of the MST if there does not exist m ≥ 2
and a path A = A0,A1,A2, . . . ,Am = B in G with each edge having
length < the length of AB .

Taking this as a definition of MST, it is easy to show [board]
1 the MST has no cycles
2 the MST contains the shortest edge at each point
3 the MST has only one component
4 the MST is the spanning connected subgraph with minimum total

length.



By considering 2-edge paths, the MST is a subgraph of the relative

neighborhood graph (RNG) defined by

AB is an edge of the RNG if there does not exist any point C such that
max(length(CB), length(CA)) < length(AB).

Easy to see RNG is a subgraph of the Gabriel graph, so we have an
ordering

MST ⊆ RNG ⊆ Gabriel ⊆ DT

which implies they are all connected. Note that for MST (or any tree) we
have average degree → 2.

Project: Draw figures of all the networks we will discuss, on a realization
of random points.

(Exercise: what definitions/results remain true for abstract graph with
edge-lengths?)
(Exercise: for an infinitesimal perturbation of the square grid
configuration, what networks do these procedures give?)



If we allow junctions, then the shortest connected network on a finite set
of points in R2 is called the Steiner tree. [draw square on board]. Note:

1. A junction must have exactly 3 edges at 120o angles.
2. The MST can be found by a simple greedy algorithm; but finding the
Steiner tree is a famous example of a NP problem.
3. You can become famous by proving or disproving the conjecture that
the worst-case ratio length(MST)/length(Steiner tree) equals 2/

√
3.

This course does not focus on MSTs or Steiner trees, but rather on
networks that are “efficient” for some purpose. One expects a trade-off
between some measure of efficiency and some measure of cost, and the
simplest measure of cost is just the length of the network. In such an
analysis, the MST or Steiner tree appears as one end of the range of
possible costs.
Project. It is curious there are (apparently) no standard ways to define
networks with junctions, analogous to Gabriel etc for networks without
junctions. Can you invent one? In particular, one for which calculations
over a PPP are possible?



As example of an “extreme” configuration, take n − 1 points evenly
spaced around circle, n’th point in center; then perturb slightly.

[work on board]

In our scaling, length of MST is order n1/2, length of others is order n3/2.

Re previous project, would like scheme which does have order-n length in
worst case.



The natural “average-case” model for n points is to take them IID
uniform in a square; recall our scaling convention is take the square to
have area = n, so this model can be compared with the corresponding
infinite model, which is the rate-1 Poisson point process (PPP) on R2. In
both models the typical distance from a vertex to its nearest neighbor is
order 1.

Useful general principle: in many settings, for “optimal” network over n
points, worst-case has same order of magnitude as average-case.

Illustrate with MST. The length of the MST grows as order n in both
cases.

[work on board]

Exercise: Show that the length of the Steiner tree on random points
grows as (not slower than) order n.



As n → ∞ we expect the MST on the finite-n model to look like the
MST on the PPP. For our purposes, define the latter by the criterion
used before:

AB is an edge of MST if there does not exist 2 ≤ m < ∞ and a path
A = A0,A1,A2, . . . ,Am = B with each edge having length < the length
of AB .

The previous arguments show this MST is a forest, whose components
are infinite trees. In fact this MST is a single tree, but proving this is
much harder – see remark at end of section 2 of Alexander (1995). For
the Z2-with-random-edges-lengths analog see Lyons-Peres (2013) section
11.5. However, the forest-or-tree issue does not affect the calculation

ave degree := d̄ =

� ∞

0
p(r) · 2πr dr

length-per-unit-area := � = 1
2

� ∞

0
r · p(r) · 2πr dr

where p(r) is the probability of an edge between two planted points at
distance r . Being a tree we know d̄ = 2. But there is no explicit formula
for p(r), because one would need to consider paths of each length m ≥ 2.



To get a “big picture”, in the next few lectures we will look at the 100
page survey “Spatial Networks” by Marc Barthélemy. [show page 1] This
is written in statistical physics style and shows some data. What I’ve
selected reflects my own taste – useful to you to browse the survey
yourself.

By coincidence when preparing this lecture last month I was browsing the
BBC web site and found the following [show streets of paris].
Their paper is Barthelemy et al (2013).



Extensive statistical physics literature on (non-spatial) networks since
2000 rather obsessed with power law degree distribution:

d(i) := proportion vertices with degree i ≈ i−γ for large i

This almost never holds for real-world spatial networks. But (analogy:
classical statistics and Normal distributions and regression) one can use a
trick (first non-textbook math from Barthélemy). In a real-world road
network (and some other physical networks) the roads are assigned
names or numbers. [show map.pdf]

So by formalizing “a specific road” as “a specific path of edges in a
spatial network”, with each edge in exactly one road, we can define a
“road-dual” graph in which

a “vertex” is a road in the original network

there is an “edge” between two vertices iff the two roads intersect in
the original network.



The point of the trick is that degree distribution d̂(i) in the road-dual
network becomes

d̂(i) = proportion of roads with i intersections.

From real-world experience there are a few long major roads and many
more short minor roads. So some power-law-like distribution is at least
possible in this dual. For analysis in e.g. “unplanned” European cities see
Porta - Crucitti - Latora (2006) and citations thereto.

Making some math model seems difficult – on the course projects list.



Barthélemy survey gives some discussion of “abstract graph” statistics
based on hop distance. In particular,“betweenness centrality” is the
function q(e) on edges defined by:

for each pair (v ,w) let q(e; v ,w) = probability that a uniform random
min-hop-length path from v to w contains e.

then q(e) =
�

v ,w q(e; v ,w) and analogously for vertices.

This has been used often in study of “streets of Paris” type examples.
But using hop-length seems rather unnatural as measure of traffic flow on
urban road networks. (ignores lengths/capacity of streets). In one sense
more natural to use real-valued edge-lengths (= times), implying unique

shortest paths. But . . . . . . does using shortest paths lead to congestion?

Hop-length is more relevant when there are transfer costs – passenger air
travel, FedEx package delivery. We will (soon) study a math model for
this setting.



Barthélemy survey makes the following observation.

In a spatial network, for vertex v write

d(v) = degree of v ,
D(v) = sum-of-edge-lengths at v .

If the graph structure ignored the spatial structure, (e.g. assign IID
edge-lengths to abstract graph) then the function E(D(v)|d(v) = d) is
linear. In a real-world spatial network (no junctions) we expect edges to
nearby points, implying faster-than-linear (maybe d3/2).

Is there a math question here?



Another aspect of statistical analysis of (abstract) graph data is called
“motifs”, which simply means counting the number of occurences of
fixed small graphs as subgraphs of a given large graph. (This is related to
“local weak convergence” of sparse graphs, discussed much later). For
simple random models of abstract graphs (Erdős-Rényi etc) one can
calculate the expectation (and more) of such numbers.

Re spatial network models, perhaps the simplest “motif” one could
consider would be the number of triangles per unit area in the random
Gabriel network – we asked this question earlier.



When we allow junctions (e.g. large-scale road networks) the number of
possible motifs on 4 points becomes surprisingly large. We have some
data on routes between 4 addresses at corners of a square

[show maps100-567]

Project: to get good data; and a systematic classification of the
different topologies in the “leaf-labeled” planar model of Aldous (2014).



A recurring theme within the “spatial networks” field is to relate
Euclidean distance between two points to either hop distance (number of
edges) or route-length; one can then define statistics to measure
“efficiency” of a given network, and then one can consider optimal
networks.

Graphic from Gastner - Newman (2006) shows a certain notion of
“optimal network” for different parameters δ representing relative weight
of hop-distance and route-length; these look quite realistic. In particular,

simulated δ = 0 network ≈ real-world road network,
simulated δ = 0.5 network ≈ airline hub-spoke network.
simulated δ = 1 ≈ UPS (Louisville) and FedEx (Memphis) networks.

[show newman-figure.pdf] [show NHS-pdf] [show hub.svg]

As the first non-textbook“honest math” in this course, I will outline
results from Aldous (2008a) involving (as a conclusion) hub-spoke
models. Not deep or fundamental, but an example of looking at
non-math literature and inventing some math.



Let’s think about designing a network where routes involve 3 hops
(2 transfers). Take n arbitrary points in area-n square.

• Divide area-n square into subsquares of side L.
• Choose a hub in each subsquare.
• Link each pair of hubs.
• Link each city to the hub in its subsquare (a spoke).

Cute freshman calculus exercise: what total network length do we get by
optimizing over L?

[length of short edges]: order nL
[length of long edges]: order (n/L2)2n1/2.

Sum is minimized by L = order n3/10 and total length is order n13/10.
Note that the total length of all short edges, and of all long edges, have
the same order.



Math project; how does this network compare to some “theoretically
optimum” network?
Seek to model the situation where the time to travel a route depends on
route length and number of hops/transfers, each term contributing sae
order of magnitude. Introduce a weighting parameter ∆ and define (for a
network Gn linking n cities xn in square of area n)

time to traverse a given route from xi to xj

= n−1/2 × ( route length) +∆× ( number of transfers ).

time(xi , xj) = min. time, over all routes

ave time(Gn) = avei,jtime(xi , xj)

≥ n−1/2avei,j ||xi − xj || := ave dist(xn).

Our construction gave a network such that (even for worst-case
configuration xn)

(∗) ave time(Gn)− ave dist(xn) → 2∆

length(Gn) = O(n13/10).

Interpret (*) as saying that average number of transfers → 2.



Our construction gave a network Gn such that (even for worst-case
configuration xn)

(∗) ave time(Gn)− ave dist(xn) → 2∆

length(Gn) = O(n13/10).

Interpret (*) as saying that average number of transfers → 2.
One can do analogous constructions for other (integer) values of
“number of transfers” which give different power exponents.

I will outline proof of

Theorem (Aldous (2008a))

In the random model, for any network Gn satisfying (*), its length grows
at least as fast as order n13/10.



Central idea: pick two of the points at random – call them xI and xJ –
and study the quantity

pn(a, b) = probability route xI -to-xJ has exactly three edges,

the middle edge-length > b and each end-length < a.

We first do calculations based on assuming xI and xJ are independent
uniform, then go back and address this approximation.

pn(a, b) ≤ C
a4

n2b
length(Gn).

1− pn(a, b) ≤
π(2a+ b)2

n
+

4 length(Gn)

an
+ P(Hn ≥ 4)

where Hn = number of hops on route.
[outline on board]



Here I discuss a technical point: in fact the Theorem holds for
non-random configurations xn satisfying a certain “quantitative
equidistribution” property.

Take integers Ln and partition [0, n1/2]2 into L2n subsquares σ of
side-length sn = n1/2/Ln. Define the smoothed empirical distribution ψn

ψn =
�

σ

�

i

1
n1(xi∈σ)µσ

where µσ is the uniform distribution on a subsquare σ.

Theorem

For any network Gn satisfying (*) over a configuration xn, its length
grows at least as fast as order n13/10, provided the configurations satisfy

||ψn − µ̄n||VD → 0 for sn ∼ n3/10

µ̄n is the uniform distribution on [0, n1/2]2.



Remarks on this setup.

1. The classical “equidistribution” property is that (after scaling to
[0, 1]2) the empirical distribution of xn converges weakly to the uniform
distribution. This is equivalent (exercise) to saying that, for Ln → ∞
sufficiently slowly,

||ψn − µ̄n||VD → 0

where convergence is in variation distance and µ̄n is the uniform
distribution on [0, n1/2]2.

2. In the random model, for any Ln = o(n1/2) we have

P (||ψn − µ̄n||VD > ε) → 0, ∀ε > 0.

3. For general xn, the property

||ψn − µ̄n||VD → 0

becomes a stronger property for larger Ln.



[outline proof on board]
Hypothesis implies

P(||xI − Un|| > sn
√
2) → 0

for Un uniform on [0, n1/2]2.

Repeat earlier arguments with this correction: the major change is to the
term

pn(a, b) ≤ C
(a+ sn)4

n2b
length(Gn).

Because we took an ∼ n3/10 we need also sn ∼ n3/10 or smaller.



We will often consider route-length R(xi , xj) between two points in a
given network. It’s natural to compare this with Euclidean distance
||xj − xi ||.

Digression in weird direction to get to a research problem. Intuitively,
using a tree as a network is not good for having short routes. Is this
correct?

An easy construction [outline on board] shows

Proposition

Consider either
(a) the n = m ×m grid of points; or
(b) n points in square of area n.
Then there exists, in case (a) a spanning tree in Z2

m, in case (b) a
spanning tree-network with junctions, such that

ave R(xi , xj) = O(n1/2).

This is the optimal order of magnitude, so in this sense trees are “not
bad”. Is there another sense in which trees are indeed bad?



The following project would make a little research paper. I will outline
why I think it is true.

Conjecture (Route-length in tree-networks)

Consider either
(a) the n = m ×m lattice of points; or
(b) n points in square of area n.
Consider in case (a) a spanning tree in Z2

m, in case (b) an arbitrary
spanning tree-network with junctions. In either case let Ln be the
minimum over trees of the quantity

max
j

ave{R(xi , xj) : 2j ≤ ||xj − xi || < 2j+1}
2j

.

Then (under some equidistribution assumption in case (b)) Ln grows as
order log n.

Note that in case (a) every tree has the same length, whereas in case (b)
the length could be chosen arbitrarily large.
[outline on board: upper bound from previous construction, lower bound
from isoperimetry and tree-centroid].



The previous Proposition suggests that statistics based on averaging
route-lengths over all pairs are not very helpful. Here is a more dramatic
illustration.

The construction is from Aldous-Kendall (2008); see also Dujmovic -
Morin - Smid (2013).

[show AK-lines]



Construction: arbitrary configuration xn of n points in square of area n.
Take the Steiner tree; this has length ST (xn), say. Superimpose a sparse
Poisson line process, length-per-unit-area = wn ↓ 0 slowly.

This gives a network for which

length = ST (xn) + o(n); avei,j
R(xi , xj)

||xi − xj ||
→ 1.

So the network is “optimal” in both respects, but not sensible as a road
network! By analogy with the previous Conjecture, instead of the avei,j
above, a more sensible statistic to measure “route-length efficiency” of a
network might be

(∗) max
j

ave{R(xi , xj) : 2j ≤ ||xj − xi || < 2j+1}
2j

.

Later, I will discuss some heuristics/simulations for optimal networks
under this criterion.



Summary. There are 3 reasons why you might want a statistic to
measure “route-length efficiency” of a network:

as a descriptive statistic of a real-world network

as a statistic of a given mathematical model of a network

as a criterion for designing optimal networks.

We now have 3 statistics “r” one might use to measure “route-length
efficiency”.



rave := avei,j
R(xi , xj)

||xi − xj ||
What has been extensively discussed in algorithms literature is the
statistic stretch defined by

r∗ := max
i,j

R(xi , xj)

||xi − xj ||
.

A statistic like (*) above is intermediate between these; it is awkward to
formalize in worst-case, but in our average-case model we can define it as

r� := sup
r

E(R(xi ,xj )
r | ||xi − xj || = r).



Conceptual comments:

rave not useful as design criterion (examples above).

r∗ not satisfactory as real-world descriptive statistic (e.g. comparing
railway networks in two countries).

Technical comments:

In n → ∞ limit, if the worst-case value of r∗ is finite in the
worst-case model, then it has the same value in the average-case
model, for any network in which edge are determined by some local
rule. This is because the worst-case configuration for given n will
appear somewhere in the random model for N � n. However, when
r∗n → ∞ then the order of magnitude will typically be different in the
two models.



We will try to fill in a table showing n → ∞ limits of these statistics, and

� := length-per-unit-area

for some “mathematically natural” networks.

This may appear to be a boring exercise, but it illustrates different
techniques and open problems.



Stretch in the worst case. For a given network over arbitrary points
consider

r∗n := max
{x1,...,xn}

max
i,j

R(xi , xj)

||xi − xj ||
.

Recall the ordering

MST ⊆ RNG ⊆ Gabriel ⊆ DT

so r∗n can only decrease through this sequence.

For MST, by considering n-cycle we have r∗n = n − 1.

For RNG, a simple construction [on board] from Bose et al (2006) shows
r∗n = Ω(n) and so

r∗n = Θ(n)

For Gabriel, another simple construction [on board] from Bose et al
(2006) shows r∗n ≥ ( 12 − o(1))n1/2. They also show the corresponding
upper bound, so

r∗n = Θ(n1/2)



For Delaunay triangulation, it is known that r∗∞ is finite, with bounds

1.58 < r∗∞ < 2.42.

Upper bound given in Keil - Gutwin (1999) and lower bound in Bose et al
(2009).

Now consider stretch in the random model. As noted earlier, for the
Delaunay triangulation, where r∗∞ is finite, we must get the same value as
in the worst-case. But for the other networks we expect different orders
of magnitude for r∗n . Bose et al (2006) show that for the random Gabriel
network

r∗n = Ω

��
log n

log log n

�
.

[brief outline on board]
For the MST in the random model, the “subtrees at centroid” argument
shows that r∗n must grow at least as fast as n1/2, and this holds for any
tree. In fact we expect (xxx later; MST exponents – project literature).



rave := avei,j
R(xi , xj)

||xi − xj ||

(stretch) r∗ := max
i,j

R(xi , xj)

||xi − xj ||
.

Intermediate is

r� := sup
d

E(R(xi ,xj )
r | ||xi − xj || = d).

= sup
d

ρ(d), say.

Alas this is too difficult to study analytically. Here are plots of the
function ρ(d) in the random model, from Aldous - Shun (2010)
simulations.
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Note the shape – maximum around d = 2.
[board]
Note also rave is asymptotic value.



The beta-skeleton family of networks

[show old proximity slides.pdf]

(i) For 0 < β < 1 let Aβ be the intersection of the two open discs of
radius 1/(2β) passing through v− and v+.
(i) For 1 ≤ β ≤ 2 let Aβ be the intersection of the two open discs of
radius β/2 centered at (±(β − 1)/2, 0).

For the random model, we can calculate length-per-unit-area, for any
such proximity network, as we did for the Gabriel network.

[next slide repeats earlier]



Almost all the networks we will consider, build over the PPP, have
distributions invariant under translation and rotation [as will be discussed
more carefully later]. For such a network, given the PPP has points at z1
and z2, the chance p(r) that there is an edge (z1, z2) depends only on the
distance r between z1 and z2. Then we can calculate

ave degree := d̄ =

� ∞

0
p(r) · 2πr dr

length-per-unit-area := � = 1
2

� ∞

0
r · p(r) · 2πr dr .

For the Gabriel graph,
p(r) = exp(−Ar2)

where A = area of unit-diameter disc. So

d̄ =

� ∞

0
exp(−Ar2) · 2πr dr = π/A

� = 1
2

� ∞

0
exp(−Ar2) · r · 2πr dr = π3/2

4A3/2 .

So we can calculate the values of � for the beta-skeleton family, just from
the area of the excluded region.



Here are plots of � versus r� for the beta-skeleton family (random
model); Aldous - Shun (2010) simulations.
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Networks based on powers of edge-lengths

. Here is one scheme used in, for example, Narayanaswamy et al (2002).

Fix 1 ≤ p < ∞. Given a configuration x and a route (sequence of
vertices) x0, x1, . . . xk say, define the cost of the route to be the sum�

i ||xi − xi−1||p of pth powers of the step lengths. Now say that a pair
(x , y) is an edge of the network Gp if the cheapest route from x to y is
the one-step route. Easy to see

[board]

as p increases from 1 to ∞, the networks Gp decrease from the
complete graph to the MST.

G2, and so Gp for p ≤ 2, is a subgraph of the Gabriel graph.

There are several projects here.

Literature on this model?

Simulations of � versus r� for this family, as done for the
beta-skeleton family (G2 was included in graph as �).

Can you define other “interesting” one-parameter families of
networks.



Miscellaneous comments

1. Regarding worst-case values of � = length-per-unit-area.
For MST we know this is O(1).
For RNG (and hence others) we know it is Ω(n3/2) by example of n − 1
points on cycle, n’th in center. I guess this is worst-case (literature search
needed).

2: Project: Here is a perhaps more interesting and less-studied question.
For (say) Gabriel or DT, can one give sharp conditions for configurations
xn to have the property � = O(1)?

3. Folklore and simulations (literature search needed) say that for the
MST on the infinite Poisson PP, the route-length betwwen point as
distance d should grow as dγ for some γ > 1. This would imply

rave ≈ r� ≈ n(γ−1)/2, r∗ ≈ nγ/2.



� rave r� r∗

MST-ave 0.633 MC ≈ n(γ−1)/2 ? ≈ n(γ−1)/2 ? ≈ nγ/2 ?
MST-worst c – 1 · n
RNG-ave 1.02 1.33 MC 1.38 MC as implied by below
RNG-worst Ω(n1/2) – Θ(n)

Gabriel-ave 2 1.12 MC 1.15 MC Ω
��

log n
log log n

�

Gabriel-worst Ω(n1/2) – Θ(n1/2)
DT-ave 3.40 1.05 MC 1.07 MC as below
DT-worst Ω(n1/2) – 1.58 < c < 2.42

xxx needs explanations
xxx indicates what has perhaps not been studied – worst-case for rave .
For MST, easy to see rave = Θ(n).
[board]
Project: is it true for RNG and Gabriel that worst-case rave is same order
as worst-case r∗?



Back to the Barthélemy survey “Spatial Networks” .

Summary statistics of data (a real-world graph); definitions for abstract
(non-spatial) graphs can of course be used for spatial networks.

n = number of vertices.

Most basic is

d(i) := proportion vertices with degree i

Common “top-down” classification of graphs starts with qualitative
properties of (d(i), i ≥ 1); in particular scale-free means

d(i) ≈ i−γ for large i .

This is not so natural or common for spatial networks.



A fun elementary fact – should be the first theorem in a graph theory
course!

Your friends have more friends than you do (on average).

[board]



Distinguish two cases.

Case (a). Pick uniform random edge; write as (V1,V2) ordering

end-vertices randomly. Then V1
d
= V2 has the degree-biased distribution

with P(V = v) ∝ d(v), so

P(V = v) = d(v)
2m

where d(v) = degree of v and m = number of edges.

Case (b). Pick uniform random vertex U; then pick uniform random
neighbor F of U. (this is model: U = you and F = friend). Here

P(U = u) = 1/n

but the distribution of F depends on more detailed structure –
dependence between degrees across edges.



A natural idea is to consider “correlation between vertex-degrees of
adjacent vertices” but the best way to do this isn’t quite obvious. What
appears in the literature, is an assortivity coefficient. This is (roughly)
the covariance (or correlation ρ, depending on normalization) between
d(V1) and d(V2), the end-vertices of a random edge.

Recall freshman statistics: the slope of the regression line for predicting
d(F ) from d(U) is

slope =
cov(d(U), d(F ))

var d(U)

and this has a more concrete interpretation.

[board]

How is this related to ρ?



For abstract graphs one can have “independence” of degrees across
edges, e.g. the configuration model.

[board]

But there do not seem to be “natural” spatial models with this
independence. Deijfen et al (2012) start with a Poisson PP, assign IID
degrees to vertices (as in the configuration model) and then show it is
possible to join the stubs to make a translation-invariant random network.

Simulations of ρ and “slope” for Gabriel (etc) in the random model?



Betweenness centrality.

For an edge e and a pair of vertices (v ,w) let q(e; v ,w) = probability
that a uniform random min-hop-length path from v to w contains e.

Then define q(e) =
�

(v ,w) q(e; v ,w). This function q(e) (or a
normalized form) gives “relative traffic flow” across different edges e,
assuming uniform sources and destinations of traffic. Can interpret as
“order of importance” for edges.

There is a natural analog q�(v) for vertices.

data from air transportation network.
xxx show Figure 10



Previously mentioned one “alternative representation” for e.g. a road
network:

by formalizing “a specific road” as “a specific path of edges in a spatial
network”, with each edge in exactly one road, we can define a
“road-dual” graph in which

a “vertex” is a road in the original network

there is an “edge” between two vertices iff the two roads intersect in
the original network.

Here are more alternatives, for e.g. a railway network.



[show Figure 6]
Suppose there are different “routes” or “lines”, e.g. Richmond-Fremont
BART route. Can define

P-space: edge (a,b) if some route includes a and b (can travel without
changing trains).
L-space: edge (a,b) if these are successive stops on some route.

data from cargo ship network

[show Figure 17]

Power-law relation between degree and “betweenness centrality”, in
P-space and L-space.



The spirit of this course is to look for research problems that fall
between established math theories.

But of course we need to know something about what’s in the
established math theories . . . . . .



Relating finite-n random models to infinite models

Recall our finite-n random model for vertex positions is to take them IID
uniform in a square of area = n, so this model can be compared with the
corresponding infinite model, which is the rate-1 Poisson point process
(PPP) on R2. In this part of the course we consider technical aspects of
this relationship, starting with this overview lecture.

For models such as the Gabriel network which are defined by explicit local
rules, the relationship is fairly simple; we can use the same rules to define
a network over the PPP and then relate the finite and infinite models
based on local weak convergence of the point processes. The theory we
will develop does apply, but isn’t really needed, for such models. Instead,
it is intended for study of optimal (according to some criterion) networks,
where we don’t have any simple explicit construction of the network.



4 examples; in each we study the total length Ln of the network, in the
finite-n random model.
1. Travelling salesman problem (TSP): the network consisting of the
edges of the shortest possible route that visits each point exactly once
and returns to the starting point.
2. Steiner tree: the network (necessarily a tree) with junctions which
minimizes, over all networks connecting the n cities, the total network
length.
3. Optimal w.r.t. route-length: for fixed r0 > 1, the minimum-length
network subject to r� ≤ r0, in previous notation.

In discussing existing theory we will start with TSP, the classic example,
though examples like (3) are the focus of this course. A somewhat
different example which can also be handled by these methods is
4. The shortest path in PPP which starts at origin and goes

through some n different points.



Bottom line: in each of these examples there is a constant 0 < β < ∞
such that n−1ELn → β.

To prove this, there are 2 techniques, which at first look quite different,
but are in fact related.

Subadditivity: study the numbers an = ELn and relate am+n to
an + am.

Local weak convergence: show that the network itself, centered at
a random position or a random point of the PPP, converges in
distribution (within any fixed window width) to a limit network on
the PPP, interpretable as “the same network” on the PPP.

[board: explain connection]



Subadditivity is more elementary, in that one doesn’t need to
consider explicitly an infinite network.

LWC is more powerful, in that it identifies the limit constant in
terms of edge-lengths at the root in the planted PPP, and gives
extra information, such as distribution of edge-lengths.



Comparisons with other techniques

1. The advantage of these techniques is that they apply to general
models; the disadvantage is that they only give information about the
first moment.

2. For networks given by an explicit local rule; more precisely, under the
assumption that adding one point to the PPP changes the network in
only some a.s. finite window; there is a general CLT for Ln due to Penrose
- Yukich (2001). The technique ultimately rests on the martingale CLT.

Whether the CLT holds for the TSP is a hard open problem; studying
whether the Penrose - Yukich technique works for our kind of “optimal
networks” is a project.

3. Yet another technique is concentration inequalities, giving bounds
on large deviations (LD) P(|Ln − ELn| > x).



4. In our spatial setting, the two techniques we study (Subadditivity and
Local weak convergence) tend to be applicable to the same examples.
But more broadly, the various techniques above are useful in different
contexts.

For instance LWC is useful for (abstract) random graphs models which
are locally tree-like. A toy example was invented in Aldous-Steele (2003)
as the simplest where need this technique

[explain on board]

and one of the highlights is the TSP for the randomly-weighted complete
graph

[show java simulation]

5. Breadth of other techniques [xxx not written].



6. In our spatial setting, the techniques for proving CLTs and for proving
LDs each depend explicitly on bounding the effect of local changes of
vertex-positions; and the same issue arises implicitly in LWC
methodology, to show uniqueness of a structure on the infinite PPP
defined via some optimization criterion. These three techniques are
treated independently in the literature; a (literature survey) project is to
compare the technical assumptions used, in our spatial setting.


