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1.8. Ohservations on subadditive subseguences.

Subadditive sequences are such handy tools that one is almost forced to explore
the extent to which the subadditivity hypotheses can be modified without harm.
Two particularly natural modifications are (1) to relax the requirement that
subadditivity holds for all m and n and (2) to relax the subadditivity condition
itself to a weaker inequality. Marvelously, these two possibilities are closely
related, and in both cases, one can provide results that are the best possible.

TruroreM 1.9.1 (DeBruijn-Erdds (1952a)). If the sequence {an} of real
numbers satisfies the subadditivity condition

. . 1 !
G < @y + Ay, OveEr the restricted range -2—n <m < in,

then 1ty — oo Gn /1 = ¥, where —o0 < v < 0o and 7y = inf a, /n.
Proof. If we set g(n) = a,/n, then subadditivity expresses itself as a convex-
ity relation:
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1.36) g(n) <knlglk)+(n—kmn Yo(n — k) forall - <k Yn—k)y<2
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The idea that drives the proof is that when n is chosen so that g(n) is large,
then (1.36) can be used to show g(k) is large for many values of k.

To exploit this idea, we choose a subsequence n, so that as 7 — 00, we have
g(n,) — g* = limsupg(n). We then have for any ¢ > 0 that there is an N{e)
such that j > N(e¢) implies g(j) < g* + ¢, and we can even require of N{¢), that
for n, > N(¢), we also have g(n.) > g* —¢.

For k such that n, < 3k < 2n,., where n, > 3N{(e}, we have n, — k > N{e),
so inequality (1.36) implies

9" — € < g(ns) < kg(k)/n, + (nr — k)(g" +€)/nr.
This bound simplifies to g* — 2n,¢/k < g(k), and hence for n, > 3N(¢), we have
g* — 6 <min{g(k): n, <3k <2n,}.

Next, we let g, = liminf, .o g(n) and choose m so that g(m) < g« + ¢. Taking
a; = m, as = 2m, and apr1 = ag + a1 for k > 3, we have by {1.36) and
induction that glax) < g, + ¢ We also have agy/ar < % for k > 3 since
(I,k_H/(Lk <14 ak-,i/a,k_ﬁ and Gpi1 > 2051
Tf there is no element of 4 = {a;,as,...} that is alsoin {j : n, <35 <2n,},
then there would be a k such that
(2n.)/3 2

- > = =
e Ny

hence we therefore find {j : n,/3 < j < 2n./3} N A # ¢. By (1.36) and the
fact that for all k we have g{ay) < g +¢, we find g* — 6¢ < g, + ¢. Since this
inequality holds for all € > 0, we conclude that g* = g..
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A couple of easy points serve to illuminate this theorem. First, it is not hard
to check that the hypothesis cannot be relaxed to n Ja <m < anforany o < z.
Further, one should note that there is a three-term version of Theorem 1.9.1
where we require f(n1 +na +n3) < f(m) + f(ng) + f(ng) for all n; satisfying

I < m/n; £ 3 Here one should note that for the restricted subadditivity
theorem, the three-term result is not contained in the two-term result, but in

the basic unrestricted case, the three-term version is just a special case of the

two-term version.
The next theorem shows that the basic subadditivity condition can be relaxed

in terms of quality as well as extent without doing damage to the conclusion.
The theorem also illustrates the gains that are made by relaxing the range over
which one needs the subadditive inequality. In many circumstances, it can be
difficult (or impossible) to show subadditivity of a sequence over its whole range,
and the proof of the next result lustrates that at the very least it can be much
more convenient to build sequences that have subadditivity over a restricted set.

THEOREM 1.9.2 (DeBruijn- Erdds (1952a)). Suppose ¢ is a positive and
nondecreasing function that satisfies

/ gs~(—th < 00.
t2

1

If {a,} satisfies the relazed subadditivity relation

1
Op+m < ap + m + ¢(n + m) fOT 57’1 <m < 2n,

then as n — 00, 4y, /1 converges to 7y = inf a,/n.

Proof. The natural idea is to add a term b, to a, 80 that the sum an + by, 18
subadditive. For this idea to lead to the convergence of an /n, one also needs for
b,, to be small in the sense that b, = o{n). We will verify that a suitable choice

18

[s9]
by, = 3n / $(3t)t™2dt.

By the convergence of the integral of ¢(x)/t?, the added term is o(n), so we
just need to check the subadditivity of ¢, = ¢n + b,,. From the monotonicity of

¢, we have the estimation
b b
/ S(36)~2dt > B(30) / 124t = ¢(3a){1/a — 1/b},
so substituting into the definition of {cn}. we see that

Cm4n — Cm — Cn

n+m n+m
— @ — 3M / »(3t)t™2dt — 3n / p(3t)t72dt

= Qp4m ~ On

< ¢(n +m) — 3me(3m){l/m — 1/(n+m)} — 3np(3n){1l/n 1/(n+m)}.
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By the range restriction %n < m < 2n and the monotonicity of ¢, we have
d(n+m) < p(83m) and @(n+m) < ¢(3n),
so we have that ¢,y — ¢y — ¢y, is bounded above by
?(B3m){1 - 3m{1/m ~ 1/(n+m))} + ¢(3n){1 - 3n(1/n -~ 1/(n+m))} <0.

There are many embellishments of the subadditive limit relation that might
deserve to be developed at this point, but one stands out above the rest for
the guidance that it offers in problems where one needs information on the rate
of convergence of a,/n to its limit. The central idea is that if one has both a
subadditive relation and a superadditive relation, then a rate result of some type
is guaranteed. One of the oldest and nicest of such results is due to Pélya and
Szegd (1924).

LEMMA 1.9.1 (Subadditive Rate Result). If a real sequence ap,as,as,...
satisfies

(1.37) am+an —1<myn <am+a,+1 forallmmn=1,23,...,

then there is a finite constant w such that

[an/n—w| <1 for all n.

Proof. The proof uses a different principle than the convexity and limit-
supremum ideas of the previous results, and this difference is suggestive of how
one might proceed in other problems where a two-sided condition is available.

We first note that from 2a,, — 1 < as,, < 2a,, + 1, we get a bound on the
change from doubling the index:

1
2m’ i

(1.38) S2m_ Im

2m m

We then note that we have convergence of the series

ay ao ay a4 as as a4 . angn
— — e Rt —— . — e T l =
1+<2 a1)+<4 az)*(s a4)+ e TH

since in view of (1.38), it is majorized by

lay| + 271 272 4270

By the immediately preceding theorem, we already know that a,/n — inf a,/n,
so we can identify the subsequence limit w as inf a,,/n. Finally, we note that by
telescoping and (1.38), we have
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Naturally, the original proof of this lemma did not call on the theorem of
DeBruijn and Erdos since that result came almost thirty years later. Pélya and
Szego (1924) instead used a very clever interpolation argument to extract con-
vergence of a,,/n from the fact that one has convergence along the subsequence ! (= e
n=1,2,4,8,16,.... : s b




