
The Shape Theorem for Route-lengths in

Connected Spatial Networks on Random Points

David J. Aldous∗

November 13, 2013

Abstract

For a connected network on Poisson points in the plane, consider
the route-length D(r, θ) between a point near the origin and a point
near polar coordinates (r, θ), and suppose ED(r, θ) = O(r) as r →∞.
By analogy with the shape theorem for first-passage percolation, for
a translation-invariant and ergodic network one expects r−1D(r, θ) to
converge as r → ∞ to a constant ρ(θ). It turns out there are some
subtleties in making a precise formulation and a proof. We give one
formulation and proof via a variant of the subadditive ergodic theorem
wherein random variables are sometimes infinite.
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1 Introduction

This paper is a technical part of a broader project investigating connected
random spatial networks, in particular networks built over a Poisson pro-
cess of points ξ in the plane. See [3] for the least technical overview. In
any such network there is a (shortest-) route-length d(ξ, ξ′) between each
pair of points of the Poisson process, which by connectivity is finite. Un-
der weak assumptions (see [1] for a sufficient condition) one expects the
mean route-length to grow only linearly with Euclidean distance. Consider
a (deliberately vague, for now) notion

D(r, θ) is the route-length between a point ξ near the origin and
a point ξ′ near polar coordinates (r, θ),

and suppose we know ED(r, θ) = O(r) – that is, suppose we have a linear
upper bound on mean route-length. If the random network has translation-
invariant and ergodic distribution, then we intuitively expect that there
should be a limit constant ρ(θ) = limr→∞ r

−1ED(r, θ) and that in some
sense renormalized random route-lengths should converge to the limit con-
stant: r−1D(r, θ) → ρ(θ). This intuition arises in part from an analogy
with the shape theorem for first-passage percolation [6, 7] on the edges of
the grid Z2. In the usual such model the times τ(e) attached to edges e
are assumed i.i.d., but the proof (based on the subadditive ergodic theo-
rem) extends to the setting where the τ(e) are assumed only to be ergodic
translation-invariant. Studying route-lengths in random networks built over
Poisson point processes is perhaps the most natural continuum analog of
studying first-passage times in such lattice models. Two previously stud-
ied special continuum models, superficially different, can be fitted into our
general setup – see section 1.3.

1.1 Formulating a theorem

In the broader project we visualize a spatial network as having vertices and
edges; in most contexts, summary statistics such as “mean edge-length per
unit area” are natural and important. In the specific context of this paper,
only the induced route-lengths d(ξ, ξ′) are of interest, so we will dispense
with other structure and work within the following set-up throughout this
paper.
(A1) There is a Poisson process of points Ξ = {ξ} of intensity one, on R2.
(A2) On each realization of Ξ there are non-negative finite “route-lengths”
d(ξ, ξ′) = d(ξ′, ξ) which are assumed (only) to satisfy the triangle inequality.
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(A3) The distribution of the whole structure {ξ; d(ξ, ξ′)} is translation-
invariant. That is, invariant w.r.t. the action of the group (Ta,b; (a, b) ∈ R2)
where Ta,b(x, y) = (x+ a, y+ b). Moreover for each (a, b) 6= (0, 0) the action
of Ta,b is ergodic.

Some specific examples are mentioned briefly in section 1.2, though our
emphasis is on the generality of the assumptions. So it is worth mentioning
what we are not assuming. We are not assuming
(B1) rotational invariance
(B2) that d(ξ, ξ′) ≥ |ξ−ξ′| (implicit in the underlying “route-lengths” story)
(B3) any kind of “locality” for the route-lengths d(ξ, ξ′).
In particular, for a nearby pair ξ, ξ′ the route-length d(ξ, ξ′) may depend on
the entire configuration Ξ. Finally, we often describe points in Z2 by their
radial coordinates. So (r, θ) denotes a point z ∈ Z2; conversely, given z ∈ Z2

we write (rz, θz) for its radial coordinates.
At first sight it looks easy to state and prove a theorem under assump-

tions (A1-A3) – just find a suitable formalization of the vague notion D(r, θ)
above, to which the subadditive ergodic theorem can be applied. But ac-
tually carrying this through seems surprisingly subtle. One attempt is to
condition on points being planted at the origin and at (r, θ): the remaining
points being still distributed as the Poisson point process, one can define
a conditioned network and then define D(r, θ) to be the route-lengths be-
tween the planted points in the conditioned network. However, for rather
trivial reasons the desired result is simply not true in this interpretation (see
section 2.2). A second attempt is to interpret D(r, θ) as originally stated
for the point nearest the origin and the point nearest (r, θ); this makes a
precise definition but it seems hard to work directly with this definition. A
third attempt is to start by finding some feature to which one can apply
the subadditive ergodic theorem. For instance, let ξn be the leftmost point
in the semi-infinite strip [n,∞)× [−1, 1]. One can certainly apply the sub-
additive ergodic theorem to the array (d(ξm, ξn)) to conclude that (under
an integrability assumption) n−1d(ξ0, ξn) converges a.s. to a constant limit
ρ(0). At first sight this approach seems to resolve the whole issue. But the
precise hypotheses and conclusions are tied to the particular feature initially
chosen, and it seems technically hard to reconcile the results from different
choices.

We adopt a fourth approach, aimed at a more natural type of con-
clusion. Write A,B for bounded subsets of R2 and for z ∈ R2 write
z + B = {z + z′ : z′ ∈ B}. To motivate the precise definitions (1,2)
below, consider ξ ∈ A and ξ′ ∈ z+B with rz large; the route-length d(ξ, ξ′)
provides one interpretation of our initial vague notion D(rz, θz), which we

3



want to prove is approximately the (deterministic) length rzρ(θz). To avoid
conditioning on existence of points in sets, we sum:

∑
ξ∈A

∑
ξ′∈z+B d(ξ, ξ′)

should be N(A)N(z + B)rzρ(θz) ± o(rz) where N(·) is the counting pro-
cess of Ξ. But we can avoid writing N(·) by rewriting the approximation
as
∑

ξ∈A
∑

ξ′∈z+B |d(ξ, ξ′) − rzρ(θz)| = o(rz). This prompts the following
definitions.

For c ≥ 0 define a random variable

S(A,B; c) :=
∑
ξ∈A

∑
ξ′∈B
|d(ξ, ξ′)− c|. (1)

Say the random network has the L1 shape property if there exist constants
ρ(θ) such that, for all bounded A,B,

r−1
z ES(A, z +B; rzρ(θz))→ 0 as rz →∞. (2)

Because S is an additive set function, it is enough to prove (2) when A and
B are sufficiently large (or sufficiently small) squares centered at the origin;
and in the latter case we see how this notion provides a formalization of the
idea behind D(r, θ).

Having decided on the conclusion we seek, what hypotheses do we need?
Obviously it is necessary that the corresponding linear upper bound holds:
for all bounded A,B,

E
∑
ξ∈A

∑
ξ′∈z+B

d(ξ, ξ′) = O(rz) as rz →∞. (3)

We conjecture that (3) is sufficient (see section 2.1 for precise statement).
However in this paper we work under the analogous, but stronger, L2 as-
sumption: for all bounded A,B,

sup
z

E
∑

ξ∈A
∑

ξ′∈z+B d
2(ξ, ξ′)

max(1, r2
z)

<∞. (4)

Again, it is enough to verify this when A and B are sufficiently small squares
centered at the origin.

Theorem 1 Under the standing assumptions (A1 - A3), if hypothesis (4)
holds then the L1 shape property (2) holds. Moreover

sup
θ2 6=θ1

|ρ(θ2)− ρ(θ1)|
|θ2 − θ1|

<∞. (5)
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This is proved in section 2, though the main work is delegated to a new “sub-
additive ergodic theorem with missing values”, Proposition 4, stated and
proved in section 3. A conjectured stronger “a.s. shape theorem” conclu-
sion is discussed briefly in section 2.1. Obviously, if we add the assumption
of rotational invariance then ρ(θ) is constant.

1.2 Examples using route-lengths

In all these examples, the d(ξ, ξ′) are minimal route-lengths within given
networks.

Proximity graphs [5, 3]. This family of graphs (our main example) is
defined by:

(ξ, ξ′) is an edge iff the set A(ξ, ξ′) contains no other point of the
Poisson process

for different choices of A(ξ, ξ′), a fundamental choice (giving the relative
neighborhood graph) being

A(ξ, ξ′) is the intersection of the disc with center ξ and radius
|ξ′ − ξ| and the disc with center ξ′ and radius |ξ′ − ξ|.

Other graphs in the family use subsets of this A and hence are supergraphs
of the relative neighborhood graph and hence can only have smaller route-
lengths. The purpose of the companion paper [1] is to give a general property
that implies our present condition (4), and to verify this property for the
relative neighborhood graph. It follows that (4) holds for the relative neigh-
borhood graph (and hence for every proximity graph) on a Poisson point
process. Because edges are defined by a deterministic rule, proximity graphs
inherit the stationary ergodicity property (A3) from the trivial tail σ-field
property of the Poisson process. So our Theorem 1 applies, and by rota-
tional invariance ρ(θ) is a constant ρ, depending on the model. Monte Carlo
estimates of ρ (around 1.4 for the relative neighborhood graph) can be seen
in [3] but we do not know any explicit rigorous upper bound.

The general condition in [1] might be applicable to other models, but
the examples below can be handled more directly.

Lattice-based networks. One can start with (for instance) the square
grid lattice as a network, and simply connect each Poisson point to the
nearest grid point. One can see directly that this random network satisfies
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the shape property with ρ(θ) = | cos θ|+| sin θ|. This conclusion remains true
if we make the network be translation-invariant and ergodic by replacing the
deterministically-spaced grid lines by randomly-spaced ones.

Asymptotically efficient networks. It is not surprising that there are
networks which are “optimal” in the sense ρ(·) ≡ 1. It is at first sight
surprising that one can find such networks whose length-per-unit-area is
arbitrarily close to the minimum possible (over all connected networks –
attained by the Steiner tree) length-per-unit-area. But this can be achieved
by the simple device of superimposing, over the Steiner tree, a sparse Poisson
line process. This construction is studied in detail in [2].

The Hammersley network. This network, introduced in [3], has the
remarkable property that at each point ξ there are exactly 4 edges, one in
each of the four quadrant directions (i.e. between East and North, etc).
This network has not been studied carefully, but it is plausible one can use
known properties of the underlying Hammersley process to prove directly
that the shape property holds with ρ(θ) = ρ0(| cos(θ−π/4)|+ | sin(θ−π/4)|)
for some constant ρ0.

1.3 Other examples

Suppose we remove the “satisfy the triangle inequality” requirement from
(A2), to get instead

(A2*) On each realization of Ξ there are “costs” 0 < c(ξ, ξ∗) =
c(ξ∗, ξ) ≤ ∞.

One can now define d(ξ, ξ′) as the cost of the minimum-cost path from ξ to
ξ′, and this makes d satisfy the triangle inequality. So, provided d is always
finite, (A2) holds. If the other hypotheses of Theorem 1 hold for d, then the
conclusion of Theorem 1 gives the L1 shape property for d. The following
two particular cases have been studied previously by direct methods which
establish the a.s. shape theorem; our Theorem 1 applies (assuming second
moments in (a)) to give the L1 shape theorem.
(a) Take the Delaunay triangulation on the Poisson points, and then take
c(ξ, ξ′) to be i.i.d. with finite mean on the edges of the triangulation (and
=∞ elsewhere): [9].
(b) Fix α > 1 and set c(ξ, ξ′) = |ξ − ξ′|α: [4].
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2 Reducing the proof of Theorem 1 to a subaddi-
tivity result

Write A,B for bounded subsets of R2 with non-zero area. Write N(A) for
the number of points of the Poisson point process Ξ in A and write G(A)
for the “good” event {N(A) ≥ 1}. On G(A) let ξA be a uniform random
point of Ξ ∩A. Note that hypothesis (4) implies

E[d(ξz1+A, ξz2+B)1G(z1+A)∩G(z2+B)] ≤ κ(A,B) max(1, |z1 − z2|) (6)

where κ(A,B) <∞ depends only on A,B.
Fix θ ∈ [0, 2π) and fix a bounded subset A ⊂ R2 of non-zero area. Write

zn for the point with radial coordinates (nr0, θ), where r0 is sufficiently large
that the sets zn+A are disjoint. So G(zn+A) is the event {N(zn+A) ≥ 1},
and on G(zn +A) let ξzn+A be a uniform random point of Ξ ∩ (zn +A).

Consider the array of random variables

Xmn = d(ξzm+A, ξzn+A) on G(zm +A) ∩G(zn +A) (7)

= ∞ otherwise .

Note (A2) implies the triangle inequality

for ` < m < n, X`n ≤ X`m +Xmn on 1G(z`+A)∩G(zm+A)∩G(zn+A) . (8)

Proposition 4, stated and proved in section 3, is tailored to this setting.
Specifically, hypothesis (i) is (7), (ii) is (8), (iii) follows from Poisson inde-
pendence, (iv) from (A3) and (v) from (4). The conclusion of Proposition 4
is that there exists a constant 0 ≤ ρ(θ) <∞ such that

E

[∣∣∣∣d(ξA, ξzn+A)

nr0
− ρ(θ)

∣∣∣∣ 1G(A)∩G(zn+A)

]
→ 0. (9)

This is the main ingredient of the proof; the argument below continues
with the details of converting (9) into the stated conclusion of Theorem 1.
The typography in (9) is potentially confusing; note we are multiplying an
absolute value by an indicator, not taking a conditional expectation.

A priori the limit constant ρ(θ) in (9) might depend on A and on r0.
We first show it does not depend on r0; more precisely, we will show

E

[∣∣∣∣d(ξA, ξ(r,θ)+A)

r
− ρ(θ)

∣∣∣∣ 1G(A)∩G((r,θ)+A)

]
→ 0 as r →∞. (10)
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Let us give the argument for (10) in some detail, intending to omit similar
details later. Write r = (n1+n2)r0+γ for some 0 ≤ γ < r0. Let r →∞ while
choosing n1 = n1(r) → ∞ and n2 = n2(r) → ∞. By (9) and translation-
invariance

E

[∣∣∣∣d(ξA, ξ(n1r0,θ)+A)− n1r0ρ(θ)

r

∣∣∣∣ 1G(A)∩G((n1r0,θ)+A)

]
→ 0

E

[∣∣∣∣d(ξ(n1r0+γ,θ)+A, ξ(r,θ)+A)− n2r0ρ(θ)

r

∣∣∣∣ 1G((n1r0+γ,θ)+A)∩G((r,θ)+A)

]
→ 0.

Combining these with (6) applied to ξ(n1r0,θ)+A and ξ(n1r0+γ,θ)+A, and using
the triangle inequality for d(·, ·),

E

[∣∣∣∣d(ξA, ξ(r,θ)+A)

r
− ρ(θ)

∣∣∣∣ 1G(A)∩G((r,θ)+A)∩G((n1r0,θ)+A)∩G((n1r0+γ,θ)+A)

]
→ 0 as r →∞.

This expression differs from (10) only by the inclusion of the restriction to
G((n1r0, θ) + A) ∩ G((n1r0 + γ, θ) + A), an event which has probability at
least 1− p for some p = p(r0, A) < 1. Given k we can choose (for large r) k
different values of n1 such that the k corresponding events are independent
because the underlying sets are disjoint; it follows that

E

[∣∣∣∣d(ξA, ξ(r,θ)+A)

r
− ρ(θ)

∣∣∣∣ 1G(A)∩G((r,θ)+A)∩H(r,k)

]
→ 0 as r →∞

for certain events H(r, k) such that P (H(r, k)) ≥ 1− pk for large r. Letting
k →∞ and appealing to the L2 bound (4) establishes (10).

Now consider two subsets A ⊂ A′. Could the two constants ρ(θ) and
ρ′(θ) in (10) be different? When we make independent choices of random
points ξz+A and ξz+A′ there is some fixed probability p(A,A′) > 0 that the
two random points are the same, and it easily follows that the limit constants
must be equal. That is, ρ(θ) does not depend on choice of A.

Next we prove the Lipschitz property (5). Fix θ1 and θ2. The triangle
inequality and (6) give

E[|d(ξA, ξ(r,θ1)+A)− d(ξA, ξ(r,θ2)+A)|1G(A)∩G((r,θ1)+A)∩G((r,θ2)+A)] ≤

E[d(ξ(r,θ1)+A, ξ(r,θ2)+A)|1G(A)∩G((r,θ1)+A)∩G((r,θ2)+A)] ≤ κ(A,A) min(1, r|θ2−θ1|).

Applying (10),

|ρ(θ2)− ρ(θ1)|P 3(G(A)) ≤ κ(A,A) |θ2 − θ1|
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and now any choice of A establishes (5).
Next we want to prove the analog of (10) where the angle is not fixed.

That is, for z = (rz, θz) with rz →∞, we claim

E

[∣∣∣∣d(ξA, ξz+A)

rz
− ρ(θz)

∣∣∣∣ 1G(A)∩G(z+A)

]
→ 0 as rz →∞. (11)

By compactness and continuity of ρ(·) we can reduce to the case (rn, θn)
where θn → θ, and it is enough to prove

E

[∣∣∣∣d(ξA, ξ(rn,θn)+A)

rn
− ρ(θ)

∣∣∣∣ 1G(A)∩G((rnθn)+A)

]
→ 0 as rn →∞. (12)

Here we repeat the format of the argument for (10). Take r∗n = (1+o(1))rn.
Apply the triangle inequality to ξA, ξ(r∗n,θ)+A

, ξ(rn,θn)+A, apply the fixed-θ
result (10) to the first distance and apply (6) to the second distance; we
deduce the analog of (12) with the extra term 1G((r∗n,θ)+A). But this is true
for each of multiple possible choices for r∗n, so we can deduce (12) and thence
(11).

To complete the proof we need to convert (11) into an assertion involving
the sums S(A, z +B; rzρ(θz)) appearing in (2). Let us state the underlying

logical structure carefully; note there is no assumption that the (Y
(n)
ij ) are

independent of (N
(n)
1 , N

(n)
2 ).

Lemma 2 Fix λ1, λ2. For each n let (Y
(n)
ij , 1 ≤ i ≤ N

(n)
1 , 1 ≤ j ≤ N

(n)
2 ) be

an array of nonnegative random variables, and suppose that N
(n)
1 and N

(n)
2

are independent with Poisson(λ1) (resp. λ2) distributions. On the event

{N (n)
1 ≥ 1, N

(n)
2 ≥ 1}, and conditional on the entire collection (Y

(n)
ij , 1 ≤ i ≤

N
(n)
1 , 1 ≤ j ≤ N (n)

2 ), take (U
(n)
1 , U

(n)
2 ) to be independent with Uniform[1, 2, . . . , N

(n)
1 ]

and Uniform[1, 2, . . . , N
(n)
2 ] distributions. Suppose

Y
(n)

U
(n)
1 ,U

(n)
2

1
(N

(n)
1 ≥1,N

(n)
2 ≥1)

→ 0 in probability as n→∞.

Then
N

(n)
1∑
i=1

N
(n)
y∑
j=1

Y
(n)
ij → 0 in probability as n→∞.

Proof. It is enough to prove the conclusion restricted to {1 ≤ N
(n)
1 ≤

L, 1 ≤ N
(n)
2 ≤ L} for fixed L. But with this restriction, the hypothesis
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implies maxij Y
(n)
ij → 0 in probability, which in turn implies the conclusion.

Now consider the setting of (11). As rz →∞ the array(∣∣∣∣d(ξ, ξ′)

rz
− ρ(θz)

∣∣∣∣ , ξ ∈ A, ξ′ ∈ z +A

)
satisfies the assumptions of Lemma 2, and the conclusion is

r−1
z S(A, z +A; rzρ(θz))→ 0 in probability.

The L2 bound (4) extends this to

r−1
z ES(A, z +A; rzρ(θz))→ 0

which is enough to establish the L1 shape property.

2.1 The conjectured a.s. shape theorem

Implicit in the underlying picture of route-lengths in spatial networks is that
route-lengths are at least as big as Euclidean distance:

d(ξ, ξ′) ≥ |ξ − ξ′|. (13)

This was not assumed for Theorem 1; assuming it here, we see ρ(θ) ≥ 1.
Using “triangle inequality” arguments as in the previous section, it is easy
to check that

B := {z = (r, θ) : r ≤ 1/ρ(θ)}
defines a convex subset of the unit disc. A natural informal statement of a
shape theorem is that, if we plant one Poisson point ξ0 at the origin, then for
large ` the set of points at route-length at most ` from ξ0 is approximately
the set of points within `B. So one can formalize the a.s. shape property as
follows, in the context of a planted point ξ0 at the origin. For each ε > 0
there exists random L(ε) <∞ such that for all ` > L(ε)

Ξ ∩ (1− ε)`B ⊆ {ξ ∈ Ξ : d(ξ, ξ0) ≤ `} ⊆ (1 + ε)`B.

This has been proved by direct methods in the two special models of section
1.3. Because our Theorem 1 conclusion involves L1 convergence instead of
a.s. convergence, it implies only a somewhat weaker result; and also our
‘‘L2 bounded” assumption is stronger than seems necessary. In other words,
the natural conjecture suggested by the analogy with the shape theorem for
first-passage percolation is as follows.
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Conjecture 3 Under the standing assumptions (A1 - A3), and (3) and
(13), there exists a convex set B such that the a.s. shape property holds.

And though we work throughout with an underlying Poison point process,
such a result might be expected to hold for any ergodic translation-invariant
point process.

2.2 A minor counter-example

Take a model to which Theorem 1 applies with ρ(θ) > 1. Choose rk ↑ ∞
fast and δk ↓ 0. Modify the model by putting a straight line link between
each pair of points whose distance apart is in ∪k[rk, rk + δk]. By making the
δk ↓ 0 sufficiently fast and appealing to the “minimum cost path” device of
section 1.3, the hypotheses and conclusion of Theorem 1 remain true with
the same limit ρ(θ) – the extra links make no difference to route-length
between typical pairs. But if we had attempted to formulate the theorem
using “D(r, θ) = distance between two points at distance r apart” then we
would not get a r →∞ limit, because of the exceptional r ∈ ∪k[rk, rk + δk].

3 A subadditive ergodic theorem with missing val-
ues

We develop a variation of Kingman’s subadditive ergodic theorem (see e.g.
[8]) in which the random variables (Xij , 0 ≤ i < j < ∞) are sometimes
undefined (in which case we will set the value to ∞, though that isn’t quite
the natural interpretation in our application). Consider a sequence (Gi, 0 ≤
i < ∞) of “good” events, and write Ii for the indicator 1Gi and write
Iij = IiIj = 1Gi∩Gj . Our assumptions are
(i) 0 ≤ Xij ≤ ∞; Xij <∞ on Gi ∩Gj .
(ii) For i < j < k, Xik ≤ Xij +Xjk on Gi ∩Gj ∩Gk .
(iii) The process (Ii, 0 ≤ i < ∞) is independent Bernoulli(δ) for fixed 0 <
δ < 1.
(iv) Setting Xi = (Ii, Xi,i+k, 1 ≤ k < ∞), the process (Xi, 0 ≤ i < ∞) is
stationary and ergodic.
(v) supn≥1 n

−2E[X2
0nI0n] <∞.

Mostly these are the obvious analogs of the usual assumptions [8]. Note
that in the usual setting we have a trivial implication

if EX01 <∞ then sup
n
n−1EX0n ≤ EX01 <∞
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whereas in our setting the implication:

if E[X01I01] <∞ then sup
n
n−1E[X0nI0n] <∞

is not trivial (we don’t know if it is true). The latter would be the natural
hypothesis in our setting, but to make our straightforward proof technique
work we make the stronger L2 assumption (v). Also to keep matters simple,
we assume ergodicity and seek only L1 convergence.

Proposition 4 Assume (i)-(v). Then there exists a constant 0 ≤ c < ∞
such that E

[
|X0n
n − c|I0n

]
→ 0.

Proof. We compare the given process with another process in which one is
allowed to use the “bad” indices, but with high penalty. Fix large K. Define

X̃ij = Xij on Gi ∩Gj
X̃i,i+1 = K on the complement (Gi ∩Gi+1)c of Gi ∩Gi+1

X̃ij undefined, otherwise.

Now define a process

Yij = min
(
X̃i0,i1 + X̃i1,i2 + . . .+ X̃im−1,im

)
,

the minimum over i = i0 < i1 < i2 < . . . < im = j such that each X̃iu−1,iu

is defined. Observe that Yij is always defined and finite, and is subadditive.
Also, because Y01 = X01I01+K(1−I01) we have EY01 <∞. So we can apply
Kingman’s subadditive ergodic theorem to deduce there exists a constant
0 ≤ c(K) <∞ such that

E

∣∣∣∣∣Y (K)
0n

n
− c(K)

∣∣∣∣∣→ 0 as N →∞ (14)

where we now write Y (K) to emphasize dependence on K.
Note that the L1 convergence in (14) implies

δ2c(K) = lim
n→∞

E[c(K)I0n] = lim
n→∞

E[
Y

(K)
0n
n I0n].

Now by assumption (v) we have

B1 := sup
n
n−1E[X0nI0n] <∞
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and from the definition

Y
(K)

0n ≤ X0n on G0 ∩Gn. (15)

So δ2c(K) ≤ B1. Also from the definition we see that Y
(K)

0n is non-decreasing
in K. Hence so is c(K), and so we can define the limit

c := lim
K→∞

c(K)

for which 0 ≤ c <∞.
The essential issue is to bound the difference in (15). Fix K and n. By

definition there is some path 0 = i0 < i1 < i2 < . . . < im = n for which

Y
(K)

0n = X̃i0,i1 + X̃i1,i2 + . . .+ X̃im−1,im . (16)

Some steps on the path are of the form (for some i)

(iu, iu+1) = (i, i+ 1) and Gi ∩Gi+1 fails, so X̃iu,iu+1 = K.

Write I for the random set of i for which this occurs (for some iu), and note
for later use

Y
(K)

0n ≥ K|I|. (17)

Now consider a maximal run [b, b′] of bad events; that is, Gi occurs for
i = b− 1 and i = b′ + 1 but not for b ≤ i ≤ b′. Then the path in (16) must
either use all the edges (b − 1, b), (b, b + 1), . . . , (b′ − 1, b′), (b′, b′ + 1) or
none of them. If it uses all of them, replace the path segment b− 1→ b→
. . .→ b′ → b′ + 1 by the single edge b− 1→ b′ + 1, that is replace the part
X̃b−1,b + . . .+ X̃b′,b′+1 of the sum (16) by Xb−1,b′+1. Make this replacement
for each bad run touched by the path, and assume we are on G0 ∩ Gn so
there are no endpoint issues. This converts (16) into a new sum

Z
(K)
0n = Xj0,j1 +Xj1,j2 + . . .+Xjq−1,jq (18)

where all the steps are between good indices, and so by the subadditivity
assumption (ii) we have

X0n ≤ Z(K)
0n on G0 ∩Gn.

The net effect of this conversion can be written precisely as

Z
(K)
0n − Y

(K)
0n =

∑
(b,b′)∈B

Xb−1,b′+1 −K|I| on G0 ∩Gn

13



where B is the set of bad runs touched by the path. So we can bound the
difference in (15) rather crudely as

E
[
(X0n − Y (K)

0n )I0n

]
≤ E

I0n

∑
(b,b′)∈B

Xb−1,b′+1

 . (19)

Recall hypothesis (v):

B2 := sup
m
m−2E[X2

0mI0m] <∞.

For 0 ≤ i, j ≤ n, j − i ≥ 2 write Λij for the event {(i + 1, j − 1) ∈ B} and
note Λij ⊂ Iij . Using the Cauchy-Schwarz inequality.

E[1ΛijXijI0n] ≤
√
P (Λij ∩ I0n)

√
E[X2

ijIij ]

≤
√
P (Λij ∩ I0n) (j − i)B1/2

2 (20)

the second inequality by the stationarity assumption (iv).
Set pij = P (Λij ∩ I0n) and note

pij ≤ P (Λij) ≤ P (Gci+1 ∩ . . . ∩Gcj−1) = (1− δ)j−i−1

by assumption (iii). Because the sum in (19) can be written as
∑

ij 1ΛijXij ,
we can combine (19) and (20) to get

E[(X0n − Y (K)
0n )I0n] ≤ B1/2

2

n−2∑
i=0

n∑
j=i+2

(j − i)p1/2
ij . (21)

Now consider the double sum above with p
1/2
ij replaced by pij . That is,

consider

n−2∑
i=0

n∑
j=i+2

(j − i)pij = EI0n

n−2∑
i=0

n∑
j=i+2

(j − i)1Λij (22)

= EI0n|I| for the random set I in (17)

≤ K−1EI0nY
(K)

0n by (17)

≤ K−1EI0nX0n by (15)

≤ B1n/K. (23)
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Now an elementary inequality (stated and proved as Lemma 5 below) bounds
the right side of (21) in terms of the left side of (22). Combining this
inequality with (21,23) gives: for any J ≥ 2,

B
1/2
2 n−1E[(X0n − Y (K)

0n )I0n] ≤
∞∑

j=J+1

j(1− δ)(j−1)/2 + J
√
B1/K.

Taking J = K1/2 we see

lim
K→∞

sup
n
n−1E[(X0n − Y (K)

0n )I0n] = 0

which by the L1 convergence (14) and the inequality (15) implies

lim
K→∞

lim sup
n

E[|n−1X0n − c(K)|I0n] = 0

establishing Proposition 4 for c = limK→∞ c
(K) which was previously shown

to be finite.

Lemma 5 Let 0 < η < 1 and let (pij , 0 ≤ i, j ≤ n, j − i ≥ 2) be constants
such that 0 ≤ pij ≤ ηj−i−1. Then for any J ≥ 2

n−1
n−2∑
i=0

n∑
j=i+2

(j − i)p1/2
ij ≤

∞∑
j=J+1

jη(j−1)/2 + Jn−1/2

√√√√n−2∑
i=0

n∑
j=i+2

(j − i)pij .

Proof. Fix i and set qj = pi,i+j for 2 ≤ j ≤ n− i. Then

n−i∑
j=2

jq
1/2
j ≤

∞∑
j=J+1

jη(j−1)/2 +
J∑
j=2

jq
1/2
j

≤
∞∑

j=J+1

jη(j−1)/2 + J

√√√√ J∑
j=2

jqj

by the Cauchy-Schwarz inequality. Setting di =
∑J

j=2 jqj , another use of
Cauchy-Schwarz gives

n−2∑
i=0

√
di ≤ n1/2

√√√√n−2∑
i=0

di

and the result follows.
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4 Shape Theorem

Assumptions:
for all bounded A,B,

sup
z

E
∑

ξ∈A
∑

ξ′∈z+B d
p(ξ, ξ′)

max(1, rpz)
<∞. (24)

For x ∈ R2, denote by x∗ the nearest point from x in the Poisson point
process, then define D∗(x, y) = d(x∗, y∗). Thus, D∗ is a random distance
which is defined on the whole plane. Also, for each z ∈ R2, the law of the
joint law (D∗(x+, y + z))x,y∈R2 does not depend on z, which allows to use
Kingman’s subadditive theorem as soon as the integrability assumptions are
satisfied.

We have the following results:

• if (24) holds for some p > 1, then there exists a semi-norm µ such that
for x ∈ R2, D∗(0, nx)/n almost surely converges to µ(x). D∗(0, nx)/n
also converges in Lp

′
to µ(x) for p′ < p.

• if (24) holds for some p > 5, then

lim
‖x‖→+∞

D∗(0, x)− µ(x)

‖x‖
= 0 a.s.

(This is the Shape Theorem.)

The scheme of the proof is as follows:

• Step 1: prove that for p′ < p, the family (D∗(0, x)/(1 + ‖x‖))x 6=0 is
bounded in Lp

′
.

• Step 2: Apply Kingman’s theorem for the existence of a directional
limit: µ(x) = limn→+∞D

∗(0, nx)/n.

• Step 3: Prove the Shape Theorem.

Proof.
For each R > 0, we have

P(D∗(0, x) ≥ θ(1 + ‖x‖)) ≤ P(‖0∗‖ > R) + P(‖x− x∗‖ > R)

+P(
∑
ξ∈BoR

∑
ξ′∈BxR

d(ξ, ξ′)p ≥ θp(1 + ‖x‖)p)

≤ 2 exp(−R2) + θ−p(1 + ‖x‖)−pE[
∑
ξ∈BoR

∑
ξ′∈BxR

d(ξ, ξ′)p]
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Bo
R and Bx

R can be covered by at most (2R + 1)2 copies of translations of
the unit square [0, 1] × [0, 1]. The distance between two copies is at most
‖x‖+ 2R+ 2, so

P(D∗(0, x) ≥ θ(1 +‖x‖)) ≤ 2 exp(−R2) +Cpθ
−p(2R+ 1)4

(
‖x‖+ 2R+ 2

1 + ‖x‖

)p
Taking for instance R = (p log θ)1/2, we get

P(D∗(0, x) ≥ θ(1 + ‖x‖)) ≤ D (1 + log θ)2

θp
,

which gives

E
(
D∗(0, x)

1 + ‖x‖

)p′
≤Mp = 1 +

∫ +∞

1
p′θp

′−1D
(1 + log θ)2

θp
dθ < +∞.

Particularly, D∗(0, x) is integrable for all x, and the existence of a limit
(say µ(x))for D∗(0, nx)/n immediately follows from Kingman’s subadditive
theorem. The fact that µ is a semi-norm easily follows from the subadditivity
property.

Let us now prove the shape theorem: For x ∈ Rd, note x̂ = x/‖x‖2. Fix
ε ∈ (0, 1) and consider a finite family (vi)1≤i≤N of unital vectors such that
for each x ∈ R2 we can find i with ‖x̂− vi‖ ≤ ε.

Now consider

Sn =

N∑
i=1

∑
ξ∈Bnvi

(n+2)ε

∑
ξ∈Bnvi

(n+2)ε

(
d(ξ, ξ′)

nε

)p
As previously Bnvi

(n+2)ε can be covered with O(n2) copies of [0, 1]× [0, 1],
so using translation invariance, ge get

E[Sn] ≤ Kε,pn
4−p.

If p > 5, then the Borel–Cantelli lemma ensures that Sn ≤ 1 for n large
enough.

By the Borel-Cantelli lemma, we have ‖x−x∗‖ <
√

2, 5 log ‖x‖ for large
x ∈ Zd. It follows that ‖x− x∗‖ <

√
3 log ‖x‖ holds for large x ∈ Rd.

Finally, we have a random M such that

• ‖x− x∗‖ <
√

3 log ‖x‖ for ‖x‖2 ≥M .

• Sn ≤ 1 for n ≥M
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• |D∗(0, nvi)− nµ(vi)| ≤ nε for n ≥M .

Let x with ‖x‖2 ≥M . Take i such that ‖x̂− vi‖2 ≤ ε and let n be smallest
integer larger than ‖x‖2.

(nvi)
∗ and x∗ are both inside Bnvi

(n+1)ε, so D∗(nvi, x) ≤ nε. Then,

|D∗(0, x)− µ(x)| = |D∗(0, x)− ‖x‖2µ(x̂)|
≤ |D∗(0, x)−D∗(0, nvi)|+ |D∗(0, nvi)− nµ(vi)|

+|nµ(vi)− ‖x‖µ(vi)|+ |‖x‖2µ(vi)− ‖x‖2µ(x̂)|
≤ nε+ nε+ µ(vi) + ‖x‖µ(vi − x̂)

≤ (2ε+M1) + ‖x‖(M1 + 2)ε

Then,

lim sup
‖x‖→+∞

|D∗(0, x)− µ(x)|
‖x‖

≤ (M1 + 2)ε a.s.

Since ε is arbitrary, we have

lim
‖x‖→+∞

D∗(0, x)− µ(x)

‖x‖
= 0 a.s.
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Random graphs, Vol. 2 (Poznań, 1989), Wiley-Intersci. Publ., pages
247–262. Wiley, New York, 1992.

19


