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Let �Bn� be an increasing sequence of regions in d-dimensional space
with volume n and with union �d. We prove a general central limit theorem
for functionals of point sets, obtained either by restricting a homogeneous
Poisson process to Bn, or by by taking n uniformly distributed points in
Bn. The sets Bn could be all cubes but a more general class of regions Bn is
considered. Using this general result we obtain central limit theorems for
specific functionals such as total edge length and number of components,
defined in terms of graphs such as the k-nearest neighbors graph, the
sphere of influence graph and the Voronoi graph.

1. Introduction. The purpose of this paper is to develop a general meth-
odology to establish central limit theorems (CLTs) for functionals of graphs
in computational geometry. Functionals of interest include total edge length,
total number of edges, total number of components and total number of ver-
tices of fixed degree. Graphs of interest include the k-nearest neighbors graph,
the Voronoi and Delaunay tessellations, the sphere of influence graph, the
Gabriel graph and the relative neighbor graph. These graphs are formally
defined later on. In each case, the graph or its dual graph (as with the Voronoi
graph) is constructed as follows: given a finite vertex set in �d� d ≥ 1, undi-
rected edges are drawn from each vertex to various nearby vertices, the choice
of edges to include being determined by the local point configuration according
to some specified rule. Sometimes such graphs are called proximity graphs; see
[3] for a precise definition.
Our graphs are random in the sense that the vertex set is a random point

set in �d� d ≥ 1. We establish CLTs for two related types of random point
sets: the homogeneous Poisson point process on a large region or “window” of
�d and the point set consisting of a large independent sample of nonrandom
sample size from the uniform distribution on such a region. By scaling, these
often yield a CLT for Poisson processes of high intensity on a fixed set such
as the unit cube �0�1�d, or for large independent samples of nonrandom size
from the uniform distribution on a fixed set. As a by-product, we also prove
the convergence of the (scaled) variance of our functionals of interest.
One of our more interesting new results is a CLT for the total number of

components of the k-nearest neighbors graph, either on a Poisson process or
on a sample of nonrandom size, and likewise for the sphere of influence graph.
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We also establish CLTs for the total edge length of the k-nearest neighbors
graph on a sample of nonrandom size, and likewise for the sphere of influence
graph and the Voronoi graph. These latter results add to existing results for
their Poisson counterparts [1, 8, 10]. We believe that the CLTs established
here, particularly those for nonrandom sample sizes, may have uses in the
statistical analysis of data and may lead to useful tests for clustering.
All of our CLTs follow from a general CLT which can be viewed as an

attempt to capture the essence of the martingale method developed by Kesten
and Lee [11], and extended by Lee [12, 13], in their deep study of the random
Euclidean minimal spanning tree. The martingale method is developed into a
general CLT for functionals of lattice-indexed white noise in [19]. Using the
method of [19], we find a general CLT for functionals of graphs over Poisson
point sets. To obtain CLTs on nonrandom sample sizes, we de-Poissonize by
using a coupling lemma and some key ideas of Kesten and Lee [11].
An important earlier paper developing general CLTs of this type is that

of Avram and Bertsimas [1], and a brief comparison is in order. First, the
martingale method used here achieves CLTs for some functionals for which it
is not apparent how to use the dependency graph method of [1]. Second, our
method yields convergence of variances, an issue not addressed in [1]. Third,
nonrandom sample sizes are considered here, but not in [1]. Fourth, we prove
CLTs for functionals of point sets defined on rather general regions, not just on
cubes of volume n. On the other hand, the method of [1], where applicable, can
yield error bounds providing useful information about the rate of convergence,
which is not given by our method.
Specific graphs of interest are defined in terms of distances between points.

We use the Euclidean norm, denoted � · �, throughout, but our results should
carry through to other norms. Let us now define the graphs of main interest.

k-nearest neighbors graph. The k-nearest neighbors graph on a point set
� ⊂ �d is obtained by including 	x�y
 as an edge whenever y is one of the k
nearest neighbors of x and/or x is one of the k nearest neighbors of y.
If the kth nearest neighbor of x is not well defined (i.e., if there is a “tie” in

the ordering of interpoint distances involving x), use the lexicographic order-
ing as a “tie-breaker” to determine the k nearest neighbors. Such a tie has zero
probability for the random point sets under consideration here. The k-nearest
neighbors graph is an example of a dependent random connection model in
percolation theory (see [16, 7]). This graph is also used in clustering methods
in statistics and computer science. See [8, 21, 23] for additional applications
and references.

Sphere of influence graph. Given a point set � ⊂ �d, the sphere of influ-
ence graph (SIG) is constructed as follows: for each x ∈ � , let �x denote the
closed ball centered at x with radius equal to the distance between x and its
nearest neighbor in � . This ball is often called the sphere of influence of x.
The sphere of influence graph puts an edge between x and y if and only if the
balls �x and �y overlap.



CLTS IN COMPUTATIONAL GEOMETRY 1007

In the language of continuum percolation [16], much as the k-nearest neigh-
bors graph can be viewed as a dependent random connection model, the sphere
of influence graph can be viewed as a dependent Boolean model. The sphere
of influence graph is used in pattern recognition and computer science and we
refer to the survey [17] for details. One of our new results is “uniqueness of
the infinite component” for the SIG on a homogeneous Poisson process on �d,
a result which is required for one of our CLTs. This adds to known uniqueness
results for other graphs [16, 9].

Voronoi tessellations. Given a point set � ⊂ �d and x ∈ � , consider the
locus of points closer to x than to any other point. This set of points is the
intersection of half planes and is a convex polyhedral cell. The cells partition
�d into a convex net which is variously called the Voronoi tessellation, Voronoi
graph, Voronoi diagram or Dirichlet tessellation of �d. Voronoi tessellations
have numerous applications and are used to model natural phenomena in
astrophysics, cell biology, crystallography, geology, metallography and other
applied fields. See the encyclopedic work, [18], for details and a thorough
treatment of the many applications.
This paper is organized as follows. Sections 2–5 contain the general results

and their proofs, and Sections 6–9 contain applications to particular function-
als of particular graphs.
Notational conventions: c denotes a generic finite positive constant whose

value may change from line to line. For any set � ⊂ �d and any y ∈ �d,
we denote by � − y the translated set 	x − y x ∈ � 
, and likewise set
� +y = 	x+y x ∈ � 
. Also, if a > 0, we let a� denote the set 	ax x ∈ � 
.
For x ∈ �d and r > 0, let Br�x� denote the Euclidean ball centered at x and
with radius r, and let Qr�x� denote the corresponding l∞ ball (a cube); that
is, Qr�x� = �−r� r�d + x. For F ⊂ �d let �F� denote the Lebesgue measure of
the set F, let ∂F denote the intersection of the closure of F with that of its
complement and for r > 0, set ∂rF = ∪x∈∂FQr�x�, the r-neighborhood of the
boundary of F. Let diam�F� = sup	�x− y� x�y ∈ F
, and let card�F� denote
its cardinality (when finite).
Let �−→ denote convergence in distribution, let P−→ denote convergence in

probability and let � �µ�σ2� denote a normally distributed random variable
with mean µ and variance σ2.

2. A general central limit theorem. Let d ≥ 1. Throughout the rest of
this paper, λ > 0 is a constant and �Bn�n≥1 denotes a sequence of bounded
Borel subsets (“regions” or “windows”) of �d, satisfying the following condi-
tions. First, �Bn� = n/λ for all n; second, Bn tends to �d, by which we mean
∪n≥1 ∩m≥n Bm = �d; third, limn→∞��∂rBn�/n� = 0 for all r > 0 (the vanishing
relative boundary condition) and fourth, there exists a constant β1 such that
diam�Bn� ≤ β1n

β1 for all n (the polynomial boundedness condition on Bn).
Subject to these conditions, the choice of �Bn�n≥1 is arbitrary.
Let U1� n�U2� n� � � � be independent identically distributed uniform variables

on Bn. Let �m�n = 	U1� n� � � � �Um�n
 (a binomial point process) and let �n be
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a homogeneous Poisson process on Bn of intensity λ. Also, let B0 be a fixed
bounded Borel set in �d satisfying �B0� = 1 and �∂B0� = 0 (for example, the
unit cube), and let �n = 	X1� � � � �Xn
, whereX1�X2�X3� � � � are independent
and uniformly distributed on B0. All of our results refer to the point processes
�n, �n�n and �n, defined in this way.
In the proof of our results, we shall need to consider translates of the regions

Bn. With this in mind, let � be the collection of all regions A ⊂ �d of the form
A = 	Bn + x x ∈ �d� n ≥ 1
. Likewise, let �0 be the collection of all regions
of the form A = aB0 + x with a ≥ 1 and x ∈ �d.
LetH be a real-valued functional defined for all finite subsets of �d. Assume

that H is translation-invariant, meaning that H�� + y� = H�� � for all
� ⊂ �d and all y ∈ �d. We derive central limit theorems for H��n��H��n�n�
and H��n�.
The conditions on H for our central limit theorems are defined in terms of

the “add one cost,” by which we mean the increment inH caused by inserting
a point at the origin into a finite point set � ⊂ �d, formally given by

��� � = H�� ∪ 	0
� −H�� ��
Let � be a homogeneous Poisson process of intensity λ on �d. Our first

condition onH develops a notion of stabilization having its origins in [12, 13].

Definition 2.1. The functional H is strongly stabilizing if there exist a.s.
finite random variables S (a radius of stabilization of H) and ��∞� such that
with probability 1, ���� ∩BS�0�� ∪	 � = ��∞� for all finite 	 ⊂ ��d\BS�0��.

Thus, S is a radius of stabilization if the add one cost for � is unaffected
by changes in the configuration outside the ball BS�0�.
Given A ∈ �, let �m�A be a point process consisting of m independent

uniform variables on A. Our second condition onH is a uniform bound on the
fourth moments of the add one cost for this point process. Our third condition
is a mild uniform bound on the size of H.

Definition 2.2. The functional H satisfies the uniform bounded moments
condition on � if

sup
A∈�0∈A

sup
m∈�λ�A�/2�3λ�A�/2�

	Ɛ����m�A�4�
 < ∞�

Definition 2.3. The functional H is polynomially bounded if there exists
a constant β2 such that for all finite sets � ⊂ �d,

�H�� �� ≤ β2�diam�� � + card�� ��β2 �

The following result is basic to this paper.

Theorem 2.1. Suppose thatH is strongly stabilizing, satisfies the uniform
bounded moments condition on �, and is polynomially bounded. Then there



CLTS IN COMPUTATIONAL GEOMETRY 1009

exist constants σ2� τ2, with 0 ≤ τ2 ≤ σ2, such that as n → ∞,

n−1 Var�H��n�� → σ2(2.1)

and

n−1/2�H��n� − ƐH��n�� �−→� �0� σ2��(2.2)

while

n−1 Var�H��n�n�� → τ2(2.3)

and

n−1/2�H��n�n� − ƐH��n�n�� �−→� �0� τ2��(2.4)

Also, given λ� σ2 and τ2 are independent of the choice of �Bn�.
If the distribution of ��∞� is nondegenerate, then τ2 > 0, and hence also

σ2 > 0.

The proof of Theorem 2.1 will show that τ2 = σ2 − �Ɛ��∞��2. In most of
our examples Ɛ��∞� will be strictly positive because adding a point tends to
increase the value of the functional and thus τ2 will be strictly less than σ2.
In other words, Poissonization contributes extra randomness which shows up
in the limiting variance.
In Theorem 2.1 the condition �Bn� =n/λ can be relaxed to

lim sup
n→∞

n−1/2��n− λ�Bn��� < ∞�

The proof under this weaker condition is essentially unchanged. Also, the
polynomial boundedness condition can be weakened to (2.6) and (2.7) below,
and the first two limits (2.1) and (2.2) remain true under somewhat weaker
forms of the moments and stabilization conditions (Theorem 3.1 below).
To deduce CLTs for functionals H on the point process �n of independent

uniform points in B0, we require one further scaling property for H. Given
γ ∈ �, we shall say H is homogeneous of order γ if for all � ⊂ �d on which
H is defined, and all a ∈ �,

H�a� � = aγH�� ��
IfH satisfies homogeneity, it is easy to deduce from the above theorems a CLT
for homogeneous Poisson processes of high intensity, or for a large sample of
nonrandom size from the uniform distribution, on B0. We just state such a
result for the sample �n of large nonrandom size on B0.

Corollary 2.1. Suppose H is strongly stabilizing, satisfies the uniform
bounded moments condition on �0, is polynomially bounded and is homo-
geneous of order γ. Then with τ2 the constant given in the case λ = 1 of
Theorem 2�1, n�2γ/d�−1 VarH��n� → τ2, and

n�γ/d�−1/2�H��n� − ƐH��n�� �−→� �0� τ2��
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Corollary 2.1 is easily proved by assuming the origin lies in the interior
of B0 (if not, consider a suitable translate), taking Bn = n1/dB0, applying
Theorem 2.1 and using homogeneity of H.
If H is homogeneous, the general case of Theorem 2.1 follows from the

special case λ = 1. All of the specific functionals considered in detail here
will be homogeneous for some γ, so we consider only the case λ = 1 for these
examples. For examples whereH is not homogeneous, see the last example in
Section 9 and also [20].
Kesten and Lee [11] essentially showed that the total edge length of the

power-weighted Euclidean minimal spanning tree satisfies all the conditions
of Theorem 2.1 and Corollary 2.1. In this way they proved a nontrivial CLT
for one of the archetypical problems of combinatorial optimization. The second
half of this paper shows that various functionals of proximity graphs also sat-
isfy the conditions of Theorem 2.1. Some of these applications involve some
intricate work. In a related paper [20], we generalize Theorem 2.1 to func-
tionals of marked point processes and thus central limit theorems for sphere
packing and related problems.
A long-standing open problem is to find convergence of the variance, and

a CLT, for the length of the optimal traveling salesman tour on �n (or on a
Poissonized point process). Other open problems of this kind concern the total
length of the minimal matching on random points and the total length of the
Steiner tree on random points. Our results show that one possible approach
involves showing strong stabilization for these functionals. Although a proof
of stabilization remains elusive, we believe that the approach here might be
useful in attacking such problems.
In many of our applications, the following condition on � will be used for

checking the bounded moments condition. Let us say � is regular if there
exists δ > 0 such that for all r ∈ �1�∞�, whenever A ∈ � and x�y ∈ A with
�x− y� = r, we have

�Br/4�x� ∩A� ≥ δrδ�(2.5)

By a box we shall mean a set B ⊂ �d of the form
∏d

i=1�ai� bi�, with bi ≥ ai + 1
for each i. It is not hard to show that the collection of all boxes is regular,
and therefore in applications that require regularity, taking the sets Bn to
be all boxes is sufficient to ensure that � is regular. Incidentally, if the sets
Bn are all boxes then the vanishing boundary and polynomial boundedness
conditions for Bn follow automatically from the assumptions that Bn → �d

and �Bn� = n/λ.
If instead of boxes, � is a set of balls or ellipsoids, then again it is regular.

It can be seen that a sufficient condition on B0 for �0 to be regular is that
B0 has a reasonably smooth boundary in the sense that r−d�Br�x� ∩ B0� is
bounded away from zero, uniformly over x ∈ B0 and r ∈ �0�1�.
The next three sections are devoted to the proofs of our main results. The

proofs make heavy use of the uniform fourth moment condition. It is likely
that this can be replaced by a 2 + ε moment condition, but since the weaker
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condition does not seem to increase the range of applications considered here,
we have used the fourth moment condition for technical ease. Our CLTs also
hold if the deterministic polynomial boundedness conditions onH and Bn are
replaced by the weaker moment bounds

max�Ɛ�H��n�n�4��Ɛ�H��n�4�� ≤ β3n
β3(2.6)

and for all A ∈ �,

E���� ∩A�8� ≤ β4�A�β4 �(2.7)

We will actually use only these weaker conditions in the proofs.

3. Proof of CLT: the Poisson case. In this section we prove a CLT for
H��n� only, under somewhat different conditions than those of Theorem 2.1.
These conditions are in fact weaker (see Lemma 4.1) and thus we actually
establish (2.1) and (2.2).

Definition 3.1. The functional H is weakly stabilizing on � if there is a
random variable ��∞� such that ��� ∩A� a�s�−→��∞� as A → �d through �,
by which we mean that for any �-valued sequence �An�n≥1 that tends to �d,
��� ∩An� → ��∞� as n → ∞, almost surely.

Observe that strong stabilization implies weak stabilization on �. In fact,
for all specific examples considered in this paper, strong stabilization holds.
We retain the distinction, first to emphasize which properties are used in
the proofs, and second, to allow for the possibility that in some cases not
considered here (see, e.g., [19]), it may be possible to prove weak stabilization
but not strong stabilization.
As shown in Section 4, the following moments condition is weaker than the

uniform moments condition. It is all we need in the Poisson setting.

Definition 3.2. The functional H satisfies the Poisson bounded moments
condition on � if

sup
A∈� 0∈A

	Ɛ���� ∩A�4�
 < ∞�

Theorem 3.1. Suppose thatH is weakly stabilizing on � and satisfies the
Poisson bounded moments condition on�. Then there exists σ2 ≥ 0 such that as
n → ∞, n−1 Var�H��n�� → σ2 and n−1/2�H��n� − ƐH��n�� �−→� �0� σ2��

Theorem 3.1 still holds if in Definition 3.1, almost sure convergence is
relaxed to convergence in probability. The proof under this weaker condition
is essentially the same as that given, but entails some extra subsequence
arguments.
The first step toward a proof of Theorem 3.1 is to show that the conditions in

Definitions 3.1 and 3.2 imply alternative stabilization and moment conditions,



1012 M. D. PENROSE AND J. E. YUKICH

referring to the modification of the homogeneous Poisson process � by replac-
ing those Poisson points lying in a unit cube with an independent Poisson
process on that unit cube, rather than inserting a single point. Formally, this
modification is defined as follows.
Let � ′ be an independent copy of the Poisson process � . For x ∈ �d, set

� ′′�x� = �� \Q1/2�x�� ∪ �� ′ ∩Q1/2�x���

Then, given a translation-invariant functional H of point sets in �d, define

�x�A� = H�� ′′�x� ∩A� −H�� ∩A��(3.1)

Lemma 3.1. Suppose H is weakly stabilizing on �. Then for all x ∈ �d,
there is a random variable �x�∞� such that for all x ∈ �d,

�x�A� a�s�−→�x�∞� as A → �d through ��(3.2)

Moreover, if H satisfies the Poisson bounded moments condition on �, then

sup
A∈�� x∈�d

Ɛ���x�A��4� < ∞�(3.3)

Proof. Set C0 = Q1/2�0�. To prove (3.2), by translation-invariance it suf-
fices to consider the case x = 0, and therefore suffices to prove that the vari-
ablesH�� ∩A�−H�� ∩A\C0� converge almost surely as A → �d through �.
The numberN of points of � in C0 is a Poisson variable with parameter λ.

LetV1�V2� � � � �VN be the points of � ∩C0, taken in an order chosen uniformly
at random from the N! possibilities. Then, provided C0 ⊆ A,

H�� ∩A� −H�� ∩A\C0� =
N−1∑
i=0

δi�A��

where

δi�A� = H��� ∩A\C0� ∪ 	V1� � � � �Vi+1
� −H��� ∩A\C0� ∪ 	V1� � � � �Vi
��
Since N is a.s. finite, it suffices to prove each δi�A� converges almost surely
as A → �d through �. Let U be a uniform variable on C0, independent of � .
The distribution of the translated point process �	V1� � � � �Vi
∪�� \C0��−Vi+1
is the same as the conditional distribution of the Poisson process � given
that the number of points of � in C0 − U is equal to i, an event of strictly
positive probability. By assumption, this satisfies weak stabilization, which
proves (3.2).
Next we prove (3.3) under the Poisson bounded moments assertion. If

Q1/2�x� ∩A = � then �x�A� is zero, a.s. By translation-invariance it suffices
to consider the case with x = 0, that is, to prove

sup
A∈� C0∩A �=�

Ɛ���0�A��4� < ∞�(3.4)
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LetN′ be the number of points of � in C0∩A; in cases with C0 ⊆ A this is the
same asN. In general,N′ has a Poisson distribution with mean µ = λ�C0∩A�.
Let V1� � � � �VN′ be the points of � ∩C0 ∩A, taken in random order. Then

H�� ∩A� −H�� ∩A\C0� =
N′−1∑
i=0

δi�A��

where δi�A� is defined above. Also, H�� ′′�0�∩A�−H�� ′′�0�∩A\C0� has the
same distribution as H�� ∩A� −H�� ∩A\C0�. Hence, it suffices to prove

sup
A∈� C0∩A �=�

Ɛ

[(N′−1∑
i=0

δi�A�
)4]

< ∞�

Set pk = P�N′ = k�. Then, writing simply δi for δi�A�, we have

Ɛ

[(N′−1∑
i=0

δi

)4]
=

∞∑
k=1

pkƐ

[(
δk−2 + δk−1 +

k−3∑
i=0

δi

)4]

≤
∞∑
k=1

pk3
3Ɛ

(
δ4k−2 + δ4k−1 + �k− 2�3

k−3∑
i=0

δ4i

)
�

(3.5)

where the last line is obtained using Cauchy–Schwarz, where we set δ−1 =
δ−2 = 0 and where the summation

∑k−3
i=0 is taken to be zero when k ≤ 2.

Consider the final sum. Rearranging, we have

∞∑
k=3

pk�k− 2�3
k−3∑
i=0

Ɛδ4i =
∞∑
i=0

qiƐδ
4
i �

with qi =
∑

k≥i+3�k− 2�3pk. Then

qi
pi

= ∑
k≥i+3

i!µk−i�k− 2�3
k!

≤ ∑
k≥i+3

i!µk−i

�k− 3�!

= ∑
j≥0

µj+3i!
�i+ j�! ≤ µ3 ∑

j≥0

µj

j!
= µ3eµ�

Hence,
∑∞

i=0 qiƐδ
4
i ≤ µ3eµ

∑∞
i=0piƐδ

4
i �

Similarly, since pi+2/pi = µ2/��i+ 2��i+ 1�� ≤ µ2, we have

∞∑
k=2

pkƐδ
4
k−2 =

∞∑
i=0

pi+2Ɛδ
4
i ≤ µ2

∞∑
i=0

piƐδ
4
i �

One obtains a similar bound (this time with a factor of µ) in the case of Ɛδ4k−1.
Combining all these estimates in (3.5), and setting c�µ� = 27�µ3eµ + µ2 + µ�,



1014 M. D. PENROSE AND J. E. YUKICH

we have

Ɛ

[(N′−1∑
i=0

δi

)4]
≤ c�µ�

∞∑
i=0

piƐδ
4
i = c�µ�

∫
C0∩A

dx

�C0 ∩A�
∞∑
i=0

piƐ�δ4i �Vi+1 = x�

= c�µ�
∫
C0∩A

dx

�C0 ∩A�Ɛ��� ∩ �A− x��4�

By the Poisson bounded moments condition, and the fact that µ ≤ λ, this is
uniformly bounded, yielding (3.3). ✷

Proof of Theorem 3.1. The proof is similar to that of Theorem 2.1 of [19],
adapted to the continuum. Note that �n has the same distribution as � ∩Bn,
so for this proof without loss of generality we assume �n = � ∩Bn.

For x ∈ �d, let �x denote the σ-field generated by the points of � in
∪y�xQ1/2�y�, where y � x means y ∈ �d and y precedes or equals x in the
lexicographic ordering on �d. In other words, �x is the smallest σ-field, with
respect to which the number of Poisson points in any bounded Borel subset of
∪y�xQ1/2�y� is measurable.
Let B′

n be the set of lattice points x ∈ �d such that �Q1/2�x� ∩ Bn� �= �.
Let kn = card�B′

n�; then kn/n tends to λ−1 because of the vanishing relative
boundary condition and the fact that

Bn ⊆ ⋃
x∈B′

n

Q1/2�x� ⊆ Bn ∪ ∂1�Bn��

Define the filtration �0�1� � � � �kn
� as follows: let 0 be the trivial σ-field,

label the elements of B′
n in lexicographic order as x1� � � � � xkn and let i = �xi

for 1 ≤ i ≤ kn. Then H��n� − ƐH��n� =
∑kn

i=1Di where we set

Di = Ɛ�H��n��i� − Ɛ�H��n��i−1� = Ɛ��xi
�Bn���xi

��(3.6)

with �xi
�Bn� defined by (3.1). By orthogonality of martingale differences,

Var �H��n�� = Ɛ
∑kn

i=1D
2
i � By this fact, along with a CLT for martingale dif-

ferences (Theorem (2.3) of [15]), it suffices to prove the conditions

sup
n≥1

Ɛ
[
max
1≤i≤kn

(
k−1/2
n �Di�

)2]
< ∞�(3.7)

k−1/2
n max

1≤i≤kn
�Di� P−→0�(3.8)

and for some σ2 ≥ 0,

k−1
n

kn∑
i=1

D2
i

L1−→λσ2�(3.9)

The factor of λ is included in (3.9) to make σ2 consistently defined.
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Using the representation Di = Ɛ��xi
�Bn���xi

� we may easily check condi-
tions (3.7) and (3.8). Indeed, by the conditional Jensen’s inequality we have

k−1
n Ɛ

[
max
i≤kn

D2
i

]
≤ k−1

n

kn∑
i=1

Ɛ�D2
i � ≤ k−1

n

kn∑
i=1

Ɛ��xi
�Bn�2��

which isuniformlyboundedby thealternativeboundedmoments condition (3.3).
For the second condition (3.8), we use Boole’s and Markov’s inequalities to

obtain

P

[
max
1≤i≤kn

�Di� ≥ k1/2n ε

]
≤

kn∑
i=1

Ɛ�D4
i �

k2nε
4
�

which tends to zero, again by (3.3).
We now prove (3.9). By the alternative stabilization condition (3.2), for each

x ∈ �d the variables �x�A� converge almost surely to a limit, denoted �x�∞�,
as A → �d through �. For x ∈ �d and A ∈ �, let

Fx�A� = Ɛ��x�A���x�� Fx = Ɛ��x�∞���x��
Then �Fx�x ∈ �d� is a stationary family of random variables. Set σ2 =
Ɛ�F2

0�/λ. We claim that the pointwise ergodic theorem (see [4], Chapter 6)
implies

k−1
n

∑
x∈B′

n

F2
x

L1−→λσ2�(3.10)

To prove this, let e1 = �1�0� � � � �0� ∈ �d. The variables Fne1
, n ≥ 1, form

an ergodic sequence because they take the form f�Tn�V�� where T is a shift
operator on an i.i.d. sequence V = 	Vz� z ∈ �
. Given ε > 0, by the ergodic
theorem we can choose K > 0 such that for all n ≥ K, the average of
F2

e1
�F2

2e1
� � � � �F2

ne1
is within an L1 distance at most ε of λσ2. Divide B′

n into
one-dimensional intervals by which we mean maximal subsets of Bn of the
form �� ∩ �a� b�� × 	z2
 × · · · × 	zd
, with a� b� z2� � � � � zd in �. Let B∗

n be the
union of constituent intervals of length at least K. Let k∗

n = card�B∗
n�. Since

�Bn�n≥1 has vanishing relative boundary, limn→∞�k∗
n/kn� = 1. Writing � · �1

for the L1-norm of random variables, we have∥∥∥∥∥
(
k−1
n

∑
x∈B′

n

F2
x

)
− λσ2

∥∥∥∥∥
1

≤ k−1
n

∥∥∥∥∥
( ∑

x∈B∗
n

F2
x

)
− k∗

nλσ
2

∥∥∥∥∥
1

+k−1
n

∥∥∥∥∥
( ∑
x∈B′

n\B∗
n

F2
x

)
− �kn − k∗

n�λσ2

∥∥∥∥∥
1

�

(3.11)

By the choice of K and translation-invariance, for each interval I of length at
leastK the average ofF2

z� z ∈ I, is within an L1-distance ε of Ɛ�F2
0�. Therefore

the first term on the right-hand side of (3.11) is at most ε, while the second
term tends to zero because �k∗

n/kn� → 1. Therefore the left side of (3.11) is
less than 2ε for large n, and (3.10) follows.
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We need to show that Fx�Bn�2 approximates to F2
x. We consider x at the

origin 0. For any A ∈ �, by Cauchy–Schwarz,

Ɛ��F0�A�2 −F2
0�� ≤ �Ɛ��F0�A� +F0�2��1/2�Ɛ��F0�A� −F0�2��1/2�

By the definition of F0 and the conditional Jensen’s inequality,

Ɛ��F0�A� +F0�2� = Ɛ��Ɛ��0�A� + �0�∞���0��2�
≤ Ɛ�Ɛ���0�A� + �0�∞��2��0�� = Ɛ���0�A� + �0�∞��2�

which is uniformly bounded by the alternative stabilization and bounded
moments conditions (3.2) and (3.3). Similarly,

Ɛ��F0�A� −F0�2� ≤ Ɛ���0�A� − �0�∞��2��(3.12)

By (3.2) and (3.3) this is also uniformly bounded. For any �-valued sequence
�An�n≥1 tending to �d, the sequence ��0�An�−�0�∞��2 tends to 0 a.s. by (3.2),
and is uniformly integrable by (3.3), and therefore (see [4], Chapter 4, Theorem
5.2) the expression (3.12) tends to zero so that Ɛ��F0�An�2 −F2

0�� → 0.
Returning to the given sequence �Bn�, let ε > 0. By the vanishing rel-

ative boundary condition, we can choose Kn so that limn→∞ Kn = ∞ and
�∂Kn

�Bn�� ≤ εn for all n. Set B′′
n = B′

n\∂Kn
Bn. Using the conclusion of the

previous paragraph and translation-invariance, it is not hard to deduce that

lim
n→∞ sup

x∈B′′
n

Ɛ��Fx�Bn�2 −F2
x�� = 0�(3.13)

Using (3.13), the uniform boundedness of Ɛ��Fx�Bn�2 −F2
x�� and the fact that

ε can be taken arbitrarily small in the above argument, it is routine to deduce
that

k−1
n

∑
x∈Bn

�Fx�Bn�2 −F2
x� L1−→0�

and therefore (3.10) remains true with Fx replaced by Fx�Bn�; that is, (3.9)
holds and the proof of Theorem 2.1 is complete. ✷

4. Proof ofCLT: thenon-Poissoncase. In this sectionweproveTheorem
2.1, subject to showing that the limiting variance τ2 is nonzero. The first step
is to show that the conditions of Theorem 2.1 imply those of Theorem 3.1, as
follows.

Lemma 4.1. If H satisfies the uniform bounded moments condition and is
polynomially bounded, then H satisfies the Poisson bounded moments
condition.

Proof. SupposeA ∈ �. LetN be the number of Poisson points inA. Then

Ɛ��� ∩A�4 =
∞∑

m=0
P�N = m�Ɛ���m�A�4�
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Assuming the uniformboundedmoments condition, the restriction of the sum to
thosemwithλ�A�/2 ≤ m ≤ 3λ�A�/2 isuniformlybounded.ByCauchy–Schwarz,
the remainder of the sum is bounded by the square root of Ɛ���� ∩A�8�P���N−
λ�A��� > �A�/2�. By (2.7), this too is uniformly bounded. ✷

It follows from Lemma 4.1 that ifH satisfies the conditions of Theorem 2.1,
then Theorem 3.1 applies and we have (2.1) and (2.2). To de-Poissonize these
limits and obtain (2.3) and (2.4), we use a technique related to that used in
[11] and [12]. We make the definition

Rm�n = H��m+1� n� −H��m�n��(4.1)

and use the following coupling lemma.

Lemma 4.2. SupposeH is strongly stabilizing. Let ε > 0. Then there exists
δ > 0 and n0 ≥ 1 such that for all n ≥ n0 and all m�m′ ∈ ��1− δ�n� �1+ δ�n�
with m < m′, there exists a coupled family of variables D�D′�R�R′ with the
following properties:

(i) D and D′ each have the same distribution as ��∞�.
(ii) D and D′ are independent.
(iii) �R�R′� have the same joint distribution as �Rm�n�Rm′� n�.
(iv) P�	D �= R
 ∪ 	D′ �= R′
� < ε�

Proof. Suppose we are given n. On a suitable probability space, let �
and � ′ be independent homogeneous Poisson processes on �d of intensity λ;
let U�U′�V1�V2� � � � be independent variables uniformly distributed over Bn,
independent of � and � ′. The variables U and U′ will play the role of Um�n

and Um′� n.
Let � ′′ be the point process consisting of those points of � which lie closer

to U than to U′ (in the Euclidean norm), together with those points of � ′

which lie closer to U′ than to U. Clearly � ′′ is a Poisson process of rate λ on
�d, and moreover it is independent of U and of U′.
Let N denote the number of points of � ′′ lying in Bn (a Poisson variable

with mean n). Choose an ordering on the points of � ′′ lying inBn, uniformly at
random from allN! possible such orderings. Use this ordering to list the points
of � ′′ in Bn as W1�W2� � � � �WN. Also, set WN+1 = V1� WN+2 = V2� WN+3 =
V3 and so on.
Let R = H�	W1� � � � �Wm�U
� −H�	W1� � � � �Wm
�. Let R′ = H�	W1� � � � �

Wm′−1�U�U′
� − H�	W1� � � � �Wm′−1�U
�. The variables U� U′�W1� W2�
W3� � � � are independent uniformly distributed variables on Bn, and there-
fore the pairs �R�R′� and �Rm�n�Rm′� n� have the same joint distribution as
claimed.
Let �̃ be the translated point process � −U. Similarly, let �̃ ′ = � ′ −U′.

Clearly, �̃ and �̃ ′ are independent Poisson processes of rate λ on �d. Let S�S′
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be radii of stabilization for �̃ and �̃ ′, respectively, and define

D = ���̃ ∩BS�0��� D′ = ���̃ ′ ∩BS′ �0���
ThenD andD′ are independent, and each have the same distribution as ��∞�.
It remains to show that �D�D′� = �R�R′� with high probability. Choose K

such that P�S > K� < ε/9 and P�S′ > K� < ε/9. Using the vanishing relative
boundary condition, take n to be so large that except on an event (denoted E0)
of probability less than ε/9, the positions of U and U′ are sufficiently far from
∂Bn and from each other, that the cubes QK�U� and QK�U′� are contained
entirely within Bn and also are such that every point of QK�U� lies closer to
U than to U′ and every point of QK�U′� lies closer to U′ than to U.
Set δ = ε�2K�−d/�18λ�. We assume �m− n� ≤ δn and �m′ − n� ≤ δn. For n

large enough, except on an event (denoted E1) of probability at most ε/9, we
have �N−m� ≤ 2δn = ε�2K�−dn/�9λ�, and likewise �N−m′� ≤ ε�2K�−dn/�9λ�.
Let E be the event that the set of points of 	W1� � � � �Wm
 lying in QK�U�

is not the same as the set of points of � lying in QK�U�. This will happen
either if one or more of the �N−m�+ “discarded” points of � ′′ or one or more
of the �m−N�+ “added” points of 	V1�V2� � � �
 lies in QK�U�. For each added
or discarded point, the probability of lying in QK�U� is at most �2K�dλ/n,
and so the probability of E, given that E1 does not occur, is less than ε/9.
Similarly, with E′ denoting the event that the set of points of 	W1� � � � �Wm′ 

lying in QK�U′� is not the same as the set of points of � ′ lying in QK�U′�, we
have P�E′�Ec

1� ≤ ε/9.
Combining all these estimates, using the definition of the radius of (strong)

stabilization for � and � ′, and using Boole’s inequality, we obtain for large
enough n that

P��D�D′� �= �R�R′�� ≤ P�E0� +P�E1� +P�S > K� +P�S′ > K�
+P�E\E1� +P�E′\E1� ≤ ε� ✷

Lemma 4.3. Suppose H is strongly stabilizing and satisfies the uniform
bounded moments condition. Let �h�n��n≥1 be a sequence with h�n�/n → 0 as
n → ∞. Then

lim
n→∞ sup

n−h�n�≤m≤n+h�n�
�ƐRm�n − Ɛ��∞�� = 0�(4.2)

Also

lim
n→∞ sup

n−h�n�≤m<m′≤n+h�n�
�ƐRm�nRm′� n − �Ɛ��∞��2� = 0(4.3)

and

lim
n→∞ sup

n−h�n�≤m≤n+h�n�
�ƐR2

m�n� < ∞�(4.4)

Proof. Let m be an arbitrary integer satisfying n−h�n� ≤ m ≤ n+h�n�.
Let ε > 0. Provided n is large enough, by Lemma 4.2 we can find coupled



CLTS IN COMPUTATIONAL GEOMETRY 1019

variables D and R, with D having the same distribution as ��∞�, with R
having the same distribution as Rm�n and with P�D �= R� < ε. Then

ƐRm�n = ƐR = Ɛ�D� − Ɛ�D1	D �= R
� + Ɛ�R1	D �= R
��
By Cauchy–Schwarz and the Poisson and uniform moments conditions, there
is a constant c, independent of ε, such that �Ɛ�D1	D �= R
�� ≤ cε1/2 and
�Ɛ�R1	D �= R
�� ≤ cε1/2. Since ε is arbitrarily small, (4.2) follows. Moreover,
the proof of (4.4) is very similar and is omitted.
Next we consider m�m′ with n−h�n� ≤ m < m′ ≤ n+h�n�. By Lemma 4.2

we can find coupled variablesD�D′�R�R′ such thatD andD′ are independent
and each have the same distribution as ��∞�, �R�R′� have the same joint
distribution as �Rm�n�Rm′� n�, and P��D�D′� �= �R�R′�� < ε. Then

Ɛ�RR′� − Ɛ�DD′� = Ɛ�RR′1	�D�D′� �= �R�R′�
�
−Ɛ�DD′1	�D�D′� �= �R�R′�
��

and by Cauchy–Schwarz and the Poisson and uniform moment conditions, the
right-hand side has modulus bounded by a constant multiple of ε1/2. Since ε
is arbitrarily small, (4.3) follows. ✷

Proof of Theorem 2.1. We prove here the limits (2.3) and (2.4). We defer
showing the strict positivity of τ2 until the next section.
Let Hn = H��n�n� and H′

n = H��n�. For this proof, assume �n is coupled
to �n�n by setting �n = 	U1� n�U2� n� � � � �UNn�n


 with Nn an independent
Poisson variable with mean n. Let α = Ɛ��∞�. The first step is to prove that
as n → ∞,

Ɛ ��n−1/2�H′
n −Hn − �Nn − n�α��2� → 0�(4.5)

To prove this, note that the expectation in the left-hand side is equal to∑
m �m−n�≤n3/4

Ɛ �n−1�H��m�n� −H��n�n� − �m− n�α�2�P�Nn = m�

+n−1Ɛ ��H′
n −Hn − �Nn − n�α�21	�Nn − n� > n3/4
��

(4.6)

Let ε > 0. By (4.1) and Lemma 4.3, there exists c > 0 such that for large
enough n and all m with n ≤ m ≤ n+ n3/4,

Ɛ��H��m�n� −H��n�n� − �m− n�α�2�

= Ɛ

[(m−1∑
l=n

�Rl�n − α�
)2]

≤ ε�m− n�2 + c�m− n��

where the bound comes from expanding out the double sum arising from the
expectation of the squared sum. A similar argument applies when n− n3/4 ≤
m ≤ n, and hence the first term in (4.6) is bounded by

n−1Ɛ�ε�Nn − n�2 + c�Nn − n���
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which is bounded by 2ε for n large enough. By the estimate (2.6) and
Cauchy–Schwarz, there is a constant β5 such that the second term in (4.6)
is bounded by β5n

β5�P��Nn − n� > n3/4��1/2, which tends to zero. This com-
pletes the proof of (4.5).
We prove convergence of n−1 Var�Hn�. This follows from the identity

n−1/2H′
n = n−1/2Hn + n−1/2�Nn − n�α+ n−1/2�H′

n −Hn − �Nn − n�α��
In the right-hand side, the third term has variance tending to zero by (4.5),
while the second term has variance α2 and is independent of the first term. It
follows that with σ2 given by Theorem 3.1,

σ2 = lim
n→∞n−1 Var�H′

n� = lim
n→∞�n−1 Var�Hn�� + α2�

so that σ2 ≥ α2 and n−1 Var�Hn� → τ2, where we set τ2 = σ2 − α2. This gives
us (2.3).
Theorem 3.1 tells us that n−1/2�H′

n − ƐH′
n� �−→� �0� σ2�� Combined with

(4.5) this gives us

n−1/2�Hn − ƐH′
n + �Nn − n�α� �−→� �0� σ2��

and since n−1/2�Nn − n�α is independent of Hn and is asymptotically nor-
mal with mean zero and variance α2, it follows by considering characteristic
functions that

n−1/2�Hn − ƐH′
n� �−→� �0� σ2 − α2��(4.7)

By (4.5), the expectation of n−1/2�H′
n −Hn − �Nn − n�α� tends to zero, so in

(4.7) we can replace ƐH′
n by ƐHn, which gives us (2.4). Save for showing that

τ2 is strictly positive, this completes the proof of Theorem 2.1.

5. A lower bound for the limiting variance. In this section we com-
plete the proof of Theorem 2.1 by showing that the limiting variance τ2 of
n−1/2H��n�n� is nonzero whenever the distribution of ��∞� is nondegenerate.
Set α = Ɛ���∞��, and using nondegeneracy, take δ > 0 such that

P���∞� > α+ 4δ� > 4δ�

In the following we think of n as “fixed” but large enough for various esti-
mates to hold. We construct a martingale in a manner different from that
in Section 3. Let �0 be the trivial σ-field, let �i = σ�U1� n� � � � �Ui�n� and
write Ɛi for conditional expectation given �i. Define martingale differences
Di = ƐiH��n�n�−Ɛi−1H��n�n�� ThenH��n�n�−ƐH��n�n� =

∑n
i=1Di, and by

orthogonality of martingale differences,

Var H��n�n� =
n∑
i=1

E�D2
i ��(5.1)

We look for lower bounds for E�D2
i �. Given i ≤ m, let Gi�m = H��m�n� −

H��m�n\	Ui�n
�, the “contribution ofUi�n toH��m�n�”. Let G̃i�m = H��m+1� n\
	Ui�n
� −H��m�n\	Ui�n
�. Then Di = Ɛi�Gi�n − G̃i� n��
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We start by looking at Gi�n. We approximate it by Gi� i which is a good
approximation when i is close to n. By the coupling lemma (Lemma 4.2), we
can find ε1 > 0 such that if i > �1− ε1�n and n is sufficiently large, then

P�Gi� i > α+ 3δ� > 3δ�

Let η > 0 (to be given later on) and choose ε2 ∈ �0� ε1� so that if i > �1− ε2�n,
then P�Gi�n �= Gi� i� < η. Then for i > n�1− ε2�,

Ɛ��Gi�n −Gi�i�� ≤ η1/2Ɛ��Gi�n −Gi�i�2�1/2 ≤ cη1/2�

by the uniform bounded moments assumption. Provided η is small enough,
this is less than δ2. Then by Markov’s inequality,

P�Ɛi��Gi�n −Gi� i�� > δ� ≤ δ−1Ɛ��Gi�n −Gi� i�� ≤ δ�

Since ƐiGi�n = Gi� i + Ɛi�Gi�n −Gi� i�� it follows that
P�ƐiGi�n ≥ α+ 2δ� > 2δ�(5.2)

Define f � → � by f�x� = 0 for x ≤ α + δ and f�x� = 1 for x ≥ α + 2δ,
interpolating linearly between α + δ and α + 2δ. Set Yi = f�ƐiGi�n�. Then
(5.2) implies that

Ɛ��Gi�n − α�Yi� = Ɛ�YiƐi�Gi�n − α�� ≥ 4δ2�(5.3)

Next consider Ɛ��G̃i� n −α�Yi�, writing the second factor as the sum of f�Gi�i�
and f�ƐiGi�n� − f�Gi� i�. We claim that there exists ε3 ∈ �0� ε2� such that
provided n is sufficiently large and i > �1− ε3�n,

Ɛ��G̃i� n − α�f�Gi� i�� ≤ δ2�(5.4)

This is because the two factors G̃i� n−α and f�Gi� i� are almost independent and
the first of them has mean close to zero. More formally, it is proved as follows.
By the proof of our coupling lemma (Lemma 4.2), provided ε3 is sufficiently
small we can take coupled variables R�R′�D�D′ such that D and D′ are
independent and each have the same distribution as ��∞�, such that R and
R′ have the same joint distribution as G̃i� n andGi� i, and such thatP��R�R′� �=
�D�D′�� is small. Then
Ɛ��G̃i�n−α�f�Gi�i�� = Ɛ��R−α�f�R′��

= Ɛ��D−α�f�D′��−Ɛ��D−α�f�D′�1	�R�R′� �=�D�D′�
�
+Ɛ��R−α�f�R′�1	�R�R′� �=�D�D′�
��

the first of the three terms in the right side is zero, while by Cauchy–Schwarz
and the Poisson and uniform bounded moments conditions, the second and
third terms are bounded by a constant times the square root of P��R�R′� �=
�D�D′��. This is less than δ2 for an appropriate choice of ε3, justifying the
claim (5.4).
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Since f′ is bounded, and Gi�i is �i-measurable, there is a constant c such
that

�Ɛ��G̃i� n − α��f�ƐiGi�n� − f�Gi� i����
≤ Ɛ��G̃i� n − α�2�1/2Ɛ��f�ƐiGi�n� − f�Gi� i��2�1/2 ≤ cƐ��ƐiGi�n −Gi� i�2�1/2

= cƐ��Ɛi�Gi�n −Gi� i��2�1/2 ≤ cƐ��Gi�n −Gi� i�2�1/2�
However,

Ɛ��Gi�n −Gi� i�2� ≤ Ɛ��Gi�n −Gi� i�4�1/2P�Gi�n �= Gi� i�1/2 ≤ c′η1/2�

and provided η was well chosen it follows that

�Ɛ��G̃i� n − α��f�ƐiGi�n� − f�Gi� i���� ≤ δ2�

Combining this with (5.4), for n large, we have

Ɛ��G̃i� n − α�Yi� = Ɛ��G̃i� n − α�f�Gi� i��
+Ɛ��G̃i� n − α��f�ƐiGi�n� − f�Gi� i��� ≤ 2δ2�

Combined with (5.3) this implies that for large n and i ≥ �1− ε3�n, we have
Ɛ��Gi�n − G̃i� n�Yi� ≥ 2δ2�

Hence, using the fact that Yi is �i-measurable and lies in the range �0�1�, we
obtain

2δ2 ≤ Ɛ�YiƐi�Gi�n − G̃i� n�� ≤ Ɛ��Ɛi�Gi�n − G̃i� n��� = Ɛ��Di���
and hence, Ɛ�D2

i � ≥ Ɛ��Di��2 ≥ 4δ4. Thus, using (5.1), we have VarH��n�n� ≥
�ε3n− 1��4δ4�� and therefore τ2 > 0 by (2.3).

6. The k-nearest neighbors graph. Fix k ∈ � and d ≥ 1 and let NG�� �
denote the k-nearest neighbors graph on a point set � ⊂ �d. Here we show
that the total edge length and the number of components of the k-nearest
neighbors graph on points in �d satisfy strong stabilization as well as the
bounded moments conditions. Using similar methods one can show that other
functionals, such as the number of vertices of a fixed degree in the k-nearest
neighbors graph, the number of vertices which are the nearest neighbors of
exactly k other points and the number of vertices which are the lth near-
est neighbors to their own kth nearest neighbors all satisfy the central limit
behavior of Theorem 2.1 and Corollary 2.1. We will leave the details of these
other applications to the reader. Laws of large numbers for the latter two
functionals have been obtained by Henze [9].
A variant of NG�� � which has also been considered in the literature is the

directed graph NG′�� �, formed by inserting a directed edge �x�y� whenever
y is one of the k nearest neighbors of x. Thus, for example, the total length
of NG′�� � counts some of the edges of NG�� � twice. It should be possible to
modify proofs of our CLTs for NG�� � to give analogous CLTs for NG′�� �.
Throughout this section we assume λ = 1.
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6.1. Total edge length. In this section,H�� � denotes the total edge length
of NG�� �. Bickel and Breiman [2] prove, among other things, a CLT for the
total edge length of NG′��n�, in the case k = 1; Avram and Bertsimas [1]
prove a CLT for the total edge length of NG′��n�, in the case where all the
sets Bn are cubes, but do not address the convergence of the variance. The
following CLT extends these results.

Theorem 6.1 (CLT for total edge length of the k-nearest neighbors graph).
There exists σ2 > 0 such that provided � is regular in the sense of (2.5), as
n → ∞, n−1 Var�H��n�� → σ2 and

n−1/2�H��n� − ƐH��n�� �−→� �0� σ2��(6.1)

Additionally, there exists τ2 ∈ �0� σ2� such that as n → ∞, n−1 Var�H��n�n��
→ τ2, and

n−1/2�H��n�n� − ƐH��n�n�� �−→� �0� τ2��(6.2)

Moreover, if �0 is regular then n�2/d�−1 VarH��n� → τ2 and

n�1/d�−1/2�H��n� − ƐH��n�� �−→� �0� τ2��(6.3)

To prove Theorem 6.1 it suffices to verify the conditions of Theorem 2.1 and
Corollary 2.1. We do this in the remainder of this section. Note first that H
is homogeneous of order 1. Also, H is polynomially bounded because H�� � ≤
kdiam�� �card�� ��

Lemma 6.1. H is strongly stabilizing.

Proof. For simplicity we prove strong stabilization in dimension two, but
the argument is easily extended to higher dimensions by using cones instead
of triangles (for d = 1, take intervals instead of triangles). For each t > 0
construct six disjoint equilateral triangles Tj�t��1 ≤ j ≤ 6� such that the
origin is a vertex of each triangle, such that each triangle has edge length t
and such that Tj�t� ⊂ Tj�u� whenever t < u.
Given the homogeneous Poisson point process � of unit intensity on �2, let

the random variable R be the minimum t such that each triangle Tj�t��1 ≤
j ≤ 6� contains at least k + 1 points from � . Then R is a.s. finite, since
Tj�∞� = ∪t>0Tj�t� contains infinitely many Poisson points a.s.
Inserting the origin 	0
 into a point set can cause the addition of some

edges and the removal of others. We claim that given the configuration of
� in B4R�0�, the set of added edges or removed edges is insensitive to the
addition or removal of points outside B4R�0�, and therefore 4R is a radius of
stabilization for H.
To prove the claim, note first that the k nearest neighbors of the origin

all lie in ∪6
j=1Tj�R�. Moreover, if a point at x has the origin as one of its k

nearest neighbors, then x must lie in one of the six triangles Tj�R�; if not
it would lie in some trapezoid Tj�t�\Tj�R�, and there would be k points in
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Tj�R� lying closer to x than the origin does. Moreover, if x lies in Tj�R�
then its k nearest neighbors lie within a distance R and are unaffected by
changes outside B2R�0�. This shows that the set of added edges is insensitive
to changes outside B2R�0�.
Next consider removed edges. All edges removed as a result of the insertion

of a point at the origin are of the form 	x�y
 with x having 0 as one of
its k nearest neighbors and having y as its �k + 1�st nearest neighbor. As
already seen, x must lie in one of the sets Tj�R�, and �y − x� ≤ R so that
y ∈ B2R�0�. Then the edge 	x�y
 is indeed removed unless x is one of the k
nearest neighbors of y. However, y has at least k points within a distance 2R
of it, and so the decision on whether to remove edge 	x�y
 is unaffected by
changes outside B4R�0�, points outside B4R�0� all lying at a distance greater
than 2R from y. This proves the claim. ✷

Lemma 6.2. If� is regular, thenH satisfies the uniform bounded moments
condition on �.

Proof. Let A ∈ � with 0 ∈ A, and let �A�/2 ≤ m ≤ 3�A�/2. Let the
m independent random points comprising �m�A be denoted V1� � � � �Vm. Let
L�0� be the total length of the edges incident to 0 in NG��m�A ∪ 	0
�; this is
an upper bound for ���m�A�+, the positive part of ���m�A�. Let Lmax be the
maximum of these edge lengths, and let Deg�0� be the degree of the vertex at
the origin. Then

L�0�4 ≤ Deg�0�4L4
max ≤

m∑
i=1

W4
i �

where Wi denotes the product of �Vi� with the number of points of �m�A in
B�Vi��0� (including Vi itself ) times the indicator of the event that 	0�Vi
 is
an edge. Therefore,

Ɛ�L�0�4� ≤ mƐ�W4
1� = m

∫
A
�u�4Ɛ��Nu + 1�41	Eu
�

du

�A� �

where Nu is the number of points of �m−1�A in B�u��0� and where Eu is the
event that u is joined to 0 in the k-nearest neighbors graph on�m−1�A∪	0� u
.
By Cauchy–Schwarz and the fact that m ≤ 2�A� by assumption,

Ɛ�L�0�4� ≤ 2
∫
A
�u�4�Ɛ��Nu + 1�8��1/2P�Eu�1/2 du�

The mean ofNu is bounded by a constant times �u�d, so by a standard estimate
on the binomial distribution, its eighth moment is bounded by a constant times
�u�8d. Also, Eu happens only if the ball B�u��u� has at most k − 1 points or
B�u��0� has at most k − 1 points. Let θ denote the volume of the unit ball.
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For �A�/2 ≤ m ≤ 3�A�/2, and �u� ≥ 1, we have by regularity (2.5),

P�Eu� ≤ 2
k−1∑
j=0

(
m− 1
j

)(
θ�u�d
�A�

)j(
1− δ�u�δ

�A�
)m−1−j

≤ c�u�d�k−1� exp�−�δ/4��u�δ��
(6.4)

This shows that E�L�0�4� is uniformly bounded by a constant times∫
�d

�u�4+4d+d�k−1� exp�−�δ/4��u�δ�du�

which is finite. Hence ���m�A�+ has a uniformly bounded fourth moment.
Now consider the fourth moment of ���m�A�−. Write Vi → 0 if 0 is one of

the k nearest neighbors of Vi in the point process �m�A ∪ 	0
. Also, let Li be
the total length of all edges incident to Vi in NG��m�A�. Then ���m�A�− is
bounded by the total length of deleted edges, and so is at most

∑m
i=1Li1	Vi →

0
. Since the number of nonzero terms in this sum is bounded by a geometric
constant C�d�k� (see [23], page 102), it follows that there is a constant c such
that

����m�A�−�4 ≤ c
m∑
i=1

L4
i1	Vi → 0
�

Taking expectations and using Cauchy–Schwarz yields

Ɛ�����m�A�−�4� ≤ mc
∫
A
�ƐL�x�8�1/2P�x → 0�1/2

(
dx

�A�
)
�

Here L�x� is the total length of edges incident to x in NG�	x
 ∪ �m−1�A�,
which has a bounded eighth moment by a similar argument to the above
proof that L�0� has bounded fourth moment. Also, by the same argument as
for (6.4), there are constants c� δ such that P�x → 0� ≤ c�x�d�k−1� exp�−δ�x�δ�
for all x ∈ A. Hence, E�����m�A�−�4� is bounded uniformly in A�m. This
demonstrates the uniform moments condition.

Lemma 6.3. The distribution of ��∞� is nondegenerate.

Proof. LetC0 = Q1/2�0�, the unit cube centered at the origin. The annulus
Qd+1�0�\C0 will be called the moat. Partition the annulus Qd+2�0�\Qd+1�0�
into a finite collection 	 of unit cubes. Now define the following events. Let
E2 be the event that there are no points in � in the moat and there are at
least k+1 points in each of the unit subcubes in 	 . Let E1 be the intersection
of E2 and the event that there are k points in C0; let E0 be the intersection of
E2 and the event that there are no points in C0. Then E0 and E1 have strictly
positive probability.
Now we notice that if E0 occurs, then adding the origin creates k new edges

and has no other effect. It increases the total edge length by at least kW, where
W = d + 1/2 is the width of the moat. If E1 occurs, then before adding the
origin there are k edges crossing the moat. Adding the origin destroys these
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edges and reduces the total edge length by at least k�W−w�, where w = √
d

is the diameter of C0.
Thus E0 and E1 are events with strictly positive probability which give

rise to values of ��∞� which differ by at least k�W−w�, a fixed amount. This
demonstrates the nondegeneracy of ��∞�. ✷

Thus, H satisfies the conditions for Theorem 2.1 and Corollary 2.1, so
Theorem 6.1 is proved.

6.2. Number of components. In this section we let H�� � be the number
of components in NG�� �.

Theorem 6.2 (CLT for the number of components of the k-nearest neigh-
bors graph). There exists σ2 > 0 such that as n → ∞� n−1 Var�H��n�� → σ2

and

n−1/2�H��n� − ƐH��n�� �−→� �0� σ2��(6.5)

Additionally, there exists τ2 ∈ �0� σ2� such that as n → ∞, n−1Var�H��n�n�� →
τ2 and

n−1/2�H��n�n� − ƐH��n�n�� �−→� �0� τ2��(6.6)

Also, n−1 Var�H��n�� → τ2 and

n−1/2�H��n� − ƐH��n�� �−→� �0� τ2��(6.7)

Note that in this theorem, there is no requirement that � or �0 be reg-
ular. We prove it by showing that H satisfies the conditions of Theorem 2.1
and Corollary 2.1. First note that H is homogeneous of order 0, and H is
polynomially bounded because H�� � ≤ card�� �.
It is quite simple to see thatH satisfies the uniform bounded moments con-

dition. Recall first that the degree of the vertices of the k-nearest neighbors
graph is uniformly bounded by some constant C�d�k� [23]. Thus, inserting an
extra point into a given set of points causes the addition of at most C�d�k�
edges and cannot decrease the number of components by more than C�d�k�.
Moreover, the number of edges removed due to the insertion of an extra point
is at most one for each point having the inserted point as one of its k near-
est neighbors, and therefore is also bounded by C�d�k�. Each removed edge
increases the number of components by at most one, so inserting a point cannot
increase the number of components by more than C�d�k�. This demonstrates
the uniform moments condition, with no extra requirement on �.
The proof of strong stabilization is more involved than it was for the total

length. In particular, it requires a result of [7] on “uniqueness of the infinite
cluster” for the k-nearest neighbors graph on the infinite Poisson process � .
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Lemma 6.4. (a) With probability 1, NG�� � has at most one infinite com-
ponent.
(b) With probability 1, NG�� ∪ 	0
� has at most one infinite component.

Proof. Part (a) is Theorem 4.1 of [7]. For part (b), let Eε be the event that
there is a single point of � in Bε�0�. Let A be the event that there is at most
one infinite component in NG�� �. Then P�A�Eε� = 1 for all ε > 0, by part (a).
Letting ε tend to zero gives the result. ✷

We now want to show that H satisfies strong stabilization. As before, we
prove this only for the case d = 2. We prepare for the proof of stabilization
with one final lemma. Recall the definitions of the six triangles Tj�t� used in
the proof of Lemma 6.1. For each point X of � let R�X� be the minimum t
such that each of the translated triangles Tj�t� +X�1 ≤ j ≤ 6� contains at
least k+1 points (not countingX itself) of � . The significance of R�X� is that
changes in the configuration outside B2R�X��X� cannot have any effect on the
set of edges of the k-nearest neighbors graph incident to X. This is seen by a
similar argument to the proof of Lemma 6.1.

Lemma 6.5. With probability 1, the values of R�X� are finite for all points
X of � .

Proof. It suffices to prove the result for all points X ∈ � ∩Q1/2�0�. By
integrating out the respective positions of the points inQ1/2�0�, one sees that it
suffices to prove that for any finite subset 	x1� � � � � xm
 ofQ1/2�0�, the triangles
Tj�∞�+xi�1 ≤ i ≤ m�1 ≤ j ≤ 6, all have infinitely many points of � \Q1/2�0�
a.s. However, this is clearly true. ✷

Proposition 6.1. H satisfies strong stabilization and the distribution of
��∞� is nondegenerate.

Proof. The insertion of the origin causes the addition of certain edges
and the deletion of other edges. As seen in the proof of Lemma 6.1, all such
edges lie within B2R�0� and the set of added edges and the set of deleted edges
are insensitive to changes outside B4R�0�. We need to prove that the effect of
these additions and deletions on the number of components is insensitive to
changes in the configuration outside a certain range.
Let � be the set of components of NG�� � that include one or more vertices

lying in B4R�0�. At most one of these components is infinite, by Lemma 6.4.
Choose a finite L1 > 4R such that BL1

�0� contains all the finite components
in the collection � . For every pair of points X�Y of � ∩ B4R�0� which lie in
the infinite component of NG�� � (if there is one), there is a path in NG�� �
connecting X to Y. Since there are a.s. only finitely many points of � in
B4R�0�, we can a.s. find a finite L2 > L1 such that for every pair of points
X�Y in B4R�0� which are also in the infinite component of NG�� �, there is a
path from X to Y staying within the ball BL2

�0�.
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The upshot of the above argument is that for every pair X�Y of points of
� ∩ B4R�0�, either there is a path from X to Y in NG�� � that stays within
BL2

�0�, or at least one member of 	X�Y
 lies in a finite component of NG�� �
that is contained within BL2

�0� and does not include the other member of
	X�Y
.
Using part (b) of Lemma 6.4, we can similarly a.s. find a finite L3 > L2, such

that for every pair X�Y of points of �� ∪ 	0
� ∩B4R�0�, either there is a path
fromX to Y in NG�� ∪	0
� that stays within BL3

�0�, or at least one member
of 	X�Y
 lies in a finite component of NG�� ∪ 	0
� that is contained within
BL3

�0� and does not include the other member of 	X�Y
. Thus, whether there
is a path from X to Y is determined entirely by edges involving points in
BL3

�0�.
The number of Poisson points in BL3

�0� is a.s. finite. By Lemma 6.5, the
balls B2R�X��X�� X ∈ � ∩BL3

�0�� all have finite radius. Take a finite L4 > L3,
large enough for BL4

�0� to contain all of these balls. Our claim is that L4 is
a radius of stabilization for H. This is because changes outside BL4

�0� do not
create or destroy any edges having at least one endpoint within BL3

�0�, and
therefore do not affect the question of whether there is a path from X to Y,
for all X�Y in B4R�0�. Let us now explicitly justify the claim.
Let e1� � � � � ei be the set of added edges as a result of the insertion of the

origin. Let �1 be the set of components of NG�� � in the collection � which are
connected to the origin by one or more of the edges e1� � � � � ei. Then, regard-
less of what happens outside BL4

�0�, the increment in the number of compo-
nents, due to the addition of a vertex at 0 and edges e1� � � � � ei, is equal to
1− card��1�.
Let f1� � � � � fj be the set of edges deleted as a result of the insertion of the

origin. After deleting these edges, having previously added the edges e1� � � � � ei,
one ends up with the k-nearest neighbors graph on the point set with 	0

inserted. We consider instead the reverse process, in which we start with the
k-nearest neighbors graph on the point set with 	0
 inserted, and then remove
edges f1� � � � � fj.
Let � ′ be the set of components of NG�� ∪ 	0
� that include one or more

vertices lying in B4R�0�. The edges f1� � � � � fj (which are not edges of this
graph) induce an adjacency relation on the set � ′, two elements of � ′ being
deemed adjacent if one or more of the f1� � � � � fj connects them together. If ν1
denotes the cardinality of � ′, and ν2 denotes the number of components of the
graph with vertex set � ′ and adjacency as just described, then the increment
in the number of components due to adding edges f1� � � � � fj is precisely equal
to ν2 − ν1.
Combining the above arguments, we see that the increment in the number

of components, due to the insertion of 	0
, is equal to 1 − card�� � + ν1 − ν2,
regardless of what happens outside BL4

�0�. Thus we have established strong
stabilization, and ��∞� = 1− card�� � + ν1 − ν2.
Finally, let us check the distribution of ��∞�. It suffices to consider the

events E0 and E1 from Section 6.1 and to note that if E0 occurs then there
is no increase in the number of components, whereas if E1 occurs then the



CLTS IN COMPUTATIONAL GEOMETRY 1029

number of components increases by at least one. This completes the proof of
Proposition 6.1. ✷

The total number of components in the k-nearest neighbors graph thus
satisfies the conditions of Theorem 2.1 and Corollary 2.1, and Theorem 6.2 is
proved.

7. The sphere of influence graph. Fix d ≥ 1 and let SIG�� � denote
the SIG on a finite point set � ⊂ �d. We show that the total number of edges,
the total edge length, the number of vertices of fixed degree and the total
number of components of the SIG on points in �d all satisfy the CLT behavior
of Theorem 2.1. Along the way we show uniqueness of the infinite component
in the SIG on an infinite Poisson process, which is of interest in its own right.
Throughout this section we assume λ = 1.

7.1. Total number of edges. In this section, let H�� � denote the number
of edges in SIG�� �. Füredi [5] has shown that ƐH��n�/n converges to a limit
as n → ∞. We show thatH satisfies the following CLT. In this way we recover
most of the results of [10], we show a de-Poissonized version of their central
limit theorem and we show convergence of the variance of the total number
of edges.

Theorem 7.1 (CLT for the number of edges in the SIG). Suppose� is reg-
ular. There exists σ2 > 0 such that as n → ∞� n−1 Var�H��n�� → σ2 and

n−1/2�H��n� − ƐH��n�� �−→� �0� σ2��(7.1)

Additionally, there exists τ2 ∈ �0� σ2� such that as n → ∞� n−1 Var�H��n�n��→
τ2 and

n−1/2�H��n�n� − ƐH��n�n�� �−→� �0� τ2��(7.2)

Also, if �0 is regular, n
−1 Var�H��n�� → τ2, and

n−1/2�H��n� − ƐH��n�� �−→� �0� τ2��(7.3)

We will prove this result by showing that H satisfies the conditions of
Theorem 2.1. Since SIG�� � is a subgraph of the complete graph on � , it
follows that H satisfies the growth bound H�� � ≤ �card�� ��2� and so is
polynomially bounded. Also, H is homogeneous of order 0.

Lemma 7.1. H is strongly stabilizing.

Proof. Inserting a point at the origin creates new edges incident to the
origin and may remove edges between points, but cannot create any new edges
between two old points. Edges which are removed have a vertex which has
the origin as a nearest neighbor. We will show that there is a random ball
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centered at the origin such that the set of added edges is a.s. determined by
what happens inside the ball and likewise for the set of removed edges.
To see this, consider an infinite cone C with its vertex at the origin, sub-

tending an angle of π/6 radians [for d = 1, take C to be the interval �0�∞�].
Let R be the distance from 0 to its closest neighbor in � ∩ C, and let Y be
the point in C\B6R�0� closest to 0. Then Y exists a.s., because there are a.s.
infinitely many Poisson points in C (but only finitely many in any bounded
region).
Given x ∈ C\B�Y��0� let x′ = ��Y�/�x��x. By the triangle inequality and the

fact that sin�π/6� = 1/2,

�x−Y� ≤ �x− x′� + �x′ −Y� ≤ ��x� − �Y�� + ��Y�/2� ≤ �x� − 3R�(7.4)

Therefore, the sphere of influence of x does not reach the interior of B3R�0�.
Hence, no points in C at a distance more than �Y� from the origin will be
connected to 0. Therefore, the configuration of points outside B3�Y��0� has no
effect on the set of points in C connected to 0.
Now consider a finite number of cones C1� � � � � Cm congruent to C, each with

a vertex at 0 and with union �d. By the above, there is a.s. a finite random
number S1, which is equal to the maximum ofm identically distributed copies
of 3�Y�, such that adding or removing points further than S from 0 does not
affect the set of added edges. This gives strong stabilization of H for added
edges.
Now we show thatH is strongly stabilizing for deleted edges. We will follow

the cone argument described above. For 1 ≤ i ≤ m let xi be the closest Poisson
point in Ci to the origin. The set of vertices having the origin as a nearest
neighbor is a subset of 	x1� � � � � xm
. LetR′

i be the distance from 0 to its second
nearest neighbor in the cone Ci and let R′ = max�R1� � � � �Rm�. Note that for
1 ≤ i ≤ m, the sphere of influence of xi (before the addition of the origin) is
contained in B2R′ �0�.
Let Y′

i be the point in Ci\B6R′ �0� closest to 0. By a similar argument to
(7.4), for any point in Ci further out than Y′

i the sphere of influence does not
reachB3R′ �0�, and so does not meet any of the spheres of influence of the points
xj� 1 ≤ j ≤ m. Thus, if we set S2 = max1≤i≤m �Y′

i�, only edges involving points
inside BS2

�0� are possibly deleted as a result of inserting 	0
, and moreover
these points all lie within a distance at most S2 +R′ of the points xi, so their
spheres of influence are unaffected by changes outside B3S2

�0�. Therefore 3S2
serves as a radius of stabilization for deleted edges. Combined with the earlier
argument for added edges, this shows that H is strongly stabilizing. ✷

Lemma 7.2. If� is regular, thenH satisfies the uniform bounded moments
condition on �.

Proof. The proof is quite similar to that of Lemma 6.2. Let A ∈ � with
0 ∈ A, and assume �A�/2 ≤ m ≤ 3�A�/2. Let the independent random points
comprising �m�A be denoted V1� � � � �Vm.
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Consider first the positive part ���m�A�+ of ���m�A�. Let D�0� denote the
degree of zero in SIG��m�A∪ 	0
�. Inserting a point causes some of the existing
spheres of influence to shrink and leaves the others unchanged and so does
not create any new edges of the SIG except for those incident to the inserted
point itself. Therefore ���m�A�+ ≤ D�0�.
Since one of the points Vi must be the furthest out from the origin among

those adjacent to it in the SIG, we have D�0�4 ≤ ∑m
i=1W

4
i � where Wi denotes

the product of the number of points of �m�A in B�Vi��0� (including Vi itself),
and the indicator of the event that 	0�Vi
 is an edge. Therefore,

Ɛ�D�0�4� ≤ mƐ�W4
1� = m

∫
A
Ɛ��Nu + 1�41	Eu
�

du

�A� �(7.5)

where Nu is the number of points of �m−1�A in B�u��0� and where Eu is the
event that u is joined to 0 in the SIG on �m−1�A∪	0� u
. By Cauchy–Schwarz
and the fact that m ≤ 2�A� by assumption,

Ɛ�D�0�4� ≤ 2
∫
A
�Ɛ��Nu + 1�8��1/2P�Eu�1/2 du�

The eighth moment of Nu is bounded by a constant times �u�8d. Also, Eu

happens only if the ball B�u�/4�u� contains no points or B�u�/4�0� contains no
points. For �u� ≥ 1, regularity (2.5) yields

P�Eu� ≤ 2
(
1− �δ�u�/4�δ

�A�
)m−2

≤ c exp�−�δ/41+δ��u�δ��

Combining these estimates gives us a uniform bound for the fourth moment
of E�D�0�4� and hence for that of ���m�A�+.
Now consider the fourth moment of ���m�A�−. Write Vi → 0 if 0 is the

nearest neighbor of Vi in the point process �m�A ∪ 	0
, and let Di denote the
degree of Vi in SIG��m�A�.
Inserting a point at the origin causes the sphere of inference of Vi to shrink

only if Vi → 0, and therefore causes the possible deletion of an existing edge
	Vi�Vj
 of SIG��m�A� only if either Vi → 0 or Vj → 0 (or both). Therefore
���m�A�− ≤ ∑m

i=1Di1	Vi → 0
� Since the number of nonzero terms in this
sum is bounded by a geometric constant C�d�k� ([23], page 102), it follows that
there is a constant c such that ����m�A�−�4 ≤ c

∑m
i=1D

4
i1	Vi → 0
� Taking

expectations and using Cauchy–Schwarz yields

Ɛ�����m�A�−�4� ≤ mc
∫
A
�ƐD�x�8�1/2P�x → 0�1/2

(
dx

�A�
)
�

Here D�x� is degree of x in SIG�	x
 ∪�m−1�A�, which has a bounded eighth
moment by a similar argument to the above proof that D�0� has bounded
fourth moment. Also, by regularity, there are constants c� δ such that P�x →
0� ≤ c exp�−δ�x�δ� for all x ∈ A. Hence, E�����m�A�−�4� is bounded uniformly
in A. This shows the uniform moments condition. ✷

Lemma 7.3. The distribution of ��∞� is nondegenerate.
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Proof. We will use a construction similar to that used for the k-nearest
neighbors graph. LetE2 be the event that the moat is empty and that there are
two points of � in each of the unit subcubes in	 . LetE0 be the intersection of
E2 and the event that there is no point of � in C0. Let E1 be the intersection
of E2 and the event that there is one point of � in the ball B1/10�1/4�0� � � � �0�,
and there are no other points in C0.
Each of E0 and E1 have positive probability. Inserting the origin when E0

happens creates at least one additional edge across the moat and does not
destroy any edges. Inserting the origin when E1 happens creates a single new
edge inside C0 and destroys at least one edge across the moat. So the events
E0 and E1 have strictly positive probability and give rise to values of ��∞�
which differ by at least 1. This shows nondegeneracy of ��∞�. ✷

We have shown that H satisfies the conditions of Theorem 2.1 and
Corollary 2.1. Together, these results give us Theorem 7.1.

7.2. Total edge length. In this section,H�� � denotes the total edge length
of SIG�� �.

Theorem 7.2 (CLT for the total edge length in the SIG). Suppose that �
is regular. Then there exists σ2 > 0 such that as n → ∞� n−1 Var�H��n�� → σ2

and

n−1/2�H��n� − ƐH��n�� �−→� �0� σ2��(7.6)

Additionally, there exists τ2 ∈ �0� σ2� such that as n → ∞� n−1 Var�H��n�n�� →
τ2, and

n−1/2�H��n�n� − ƐH��n�n�� �−→� �0� τ2��(7.7)

Also, if �0 is regular, n
�2/d�−1 Var�H��n�� → τ2, and

n�1/d�−1/2�H��n� − ƐH��n�� �−→� �0� τ2��(7.8)

Proof. We verify the conditions of Theorem 2.1 and Corollary 2.1. Notice
first thatH is homogeneous of order 1. Also,H is polynomially bounded since
SIG�� � is a subgraph of the complete graph on � . Moreover, strong stabi-
lization follows exactly as in the proof of Lemma 7.1.
If� is regular, thenH satisfies the uniform bounded moments condition on

�. The proof of this is virtually identical to that of Lemma 7.2, except that the
degree D�0� in that argument should be replaced by the total length of edges
incident to the origin, and similarly for the degrees Di and D�x� appearing
later on in that proof. A factor of �Vi� needs to be introduced into the definition
of the variable Wi, and consequently a factor of �u�4 comes into the integral
in (7.5), but this does not invalidate the subsequent argument.
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Finally, by using the same arguments as in Section 7.1 and noting that
the event E0 produces an increase of at least 1 in the total edge length of
the SIG when the origin is added, while E1 produces a reduction in the total
edge length when the origin is added, we see that the distribution of ��∞� is
nondegenerate. ✷

7.3. Number of vertices of fixed degree. Let Hk�� � denote the number of
vertices of fixed degree k in SIG�� �. We may modify the above methods to
see that the number of vertices of a fixed degree is asymptotically normal. If
d = 1, then all vertices have degree 1�2 or 3, a.s. If d ≥ 2 then all degrees are
possible.
We assert that for each k ∈ � (for d ≥ 2) and for k ∈ 	1�2�3
 (for d = 1), the

distribution of ��∞� is nondegenerate. For simplicity we just consider d = 2.
All arguments below may be easily extended to the case of general d ≥ 2. We
leave the case d = 1 to the reader.
For k = 1�2� we may argue as follows. Let E2 be the event of the proof of

Lemma 6.3. Choose points x1� x2 on the unit circle �x� = 1 such that �x1−x2� =
1/2� Let E0 be the intersection of E2 and the event that there is exactly one
point in each of the balls B1/100�xi��1 ≤ i ≤ 2, and no other point inside
Qd+1�0�. Notice that on E0 the SIG does not put edges across the moat. Let
E1 be the intersection of E2 and the event that there is exactly one point in
each of the three balls B1/100�xi��1 ≤ i ≤ 2 and B1/100�0� and no other point
inside Qd+1�0�. Notice that on E0 the SIG does not put edges across the moat.
When E0 happens, notice that H1 decreases by 2, and H2 increases by 3.
However, when E1 happens, H1 increases by 4 and H2 decreases by 3. Since
E0 and E1 each have positive probability, we see that ��∞� is nondegenerate
for k = 1�2.
The arguments are similar for higher values of k. For example if k is even,

then consider a variation of the above, where now we place k points x1� � � � � xk
on �x� = 1 in such a way that there are k/2 pairs such that points within
each pair are within ε of each other but at least 100ε away from other points.
Then consider balls Bε/10�xi��1 ≤ i ≤ k� and let E0 be the intersection of E2
and the event that there is exactly one point from the Poisson process in each
ball. Let E1 be the intersection of E2 and the event that there is exactly one
point from the Poisson process in each ball and one point in Bε/10�0�. Then
on E0�Hk increases by 1 if the origin is added whereas on E1�Hk decreases
by 1 if the origin is added. When k is odd, then modify the above in the
following way. Put all points xi�1 ≤ i ≤ k − 1, on one hemisphere and put
the point xk at the pole of the other hemisphere. Consider the analogues of
E0 and E1 E0 is the intersection of E2 and the event that there is one point
in each ball Bε/10�xi��1 ≤ i ≤ k and no point in the ball Bε/10�0� whereas E1
is the intersection of E2 and the event that there is one point in each ball
Bε/10�xi��1 ≤ i ≤ k and one point in the ball Bε/10�0�. Then inserting the
origin on E0 means that Hk increases by 1 (no vertices had degree k prior to
the insertion of the origin), whereas inserting the origin on E1 means thatHk
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decreases by 1 (since now no points have degree k). So ��∞� is nondegenerate
for all values of k.

7.4. Uniqueness of the infinite component. To show strong stabilization for
the number of components of the sphere of influence graph, we need a result
on uniqueness of the infinite component, analogous to Lemma 6.4 in the case
of the k-nearest neighbors graph.

Theorem 7.3. SIG�� � has a.s. at most one infinite component.

For d = 1, a simple renewals argument shows that there is no infinite
component. So we need only a proof for d ≥ 2. This runs mostly along the
lines of the proof of Theorem 4.1 of [7]. The first step is analogous to Lemma
4.2 of [7].

Lemma 7.4. Let r > 0 and let E�r� be the event that Br�0� is intersected
by an infinite component C of SIG�� �, such that if all edges intersecting Br�0�
are removed from this component, three of the resulting components formed
from C are infinite. Then P�E�r�� = 0.

This can be proved by the same sort of standard argument used in the
proof of Lemma 4.2 of [7]; see, for example, [16], page 67. Therefore we omit
the argument here.

Lemma 7.5. SIG�� � has a.s. at most two infinite components.

Proof. This lemma is analogous to Lemma 4.3 of [7]. Define the point
process � ′

2r as follows. Take �
′ to be an independent copy of � , and let � ′

2r be
the union of the point process �� ′∪� �∩B2r�0�, thinned by selecting each point
randomly with probability 1/2, and the point process � \B2r�0�. Then � ′

2r is a
homogeneous Poisson process on �d of unit intensity. A similarly constructed
point process, there denoted X′

3r, is used in [16].
Define the event

E∗�r� = 	three infinite components of SIG �� � intersect Br�0�
�
As in [7], the aim is to prove P�E∗�r�� = 0 by showing that given E∗�r� occurs,
the conditional probability that the event E�r� occurs for � ′

2r is nonzero, and
then to appeal to Lemma 7.4.
Suppose E∗�r� occurs. Then there are three infinite components of SIG �� �

which intersect Br�0�; call them C1�C2�C3. In proving Lemma 4.3 of [7],
Häggström and Meester adopt a strategy of removing vertices from C1�C2�C3
until they become connected for the k-nearest neighbors graph, k ≥ 2. In our
setting, it is not clear that such a removal strategy works. Instead we adopt
a strategy of adding points in Br�0� to connect together C1�C2�C3.
For i = 1�2�3 let C∗

i be the union of the spheres of influence of the vertices
of Ci. Then by definition, C

∗
1�C

∗
2�C

∗
3 are disjoint connected subsets of �

d, all of
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them entering the set Br�0�. There may be other Poisson points too in Br�0�;
unlike in [7] we do not remove these other points.
Given ε > 0, let the ε-grid be the set ε�d = 	εz z ∈ �d
. By a path in

the ε-grid connecting C1 and C2 we mean a nonempty finite sequence γ =
�z1� z2� � � � � zm� of elements of ε�d, together with endpoints z0� zm+1 also in
ε�d, such that 	z1� � � � � zm
 ⊂ Br�0�\ ∪3

i=1 C
∗
i while z0 ∈ C1 and zm+1 ∈ C2,

such that for 1 ≤ i ≤ m + 1, ε−1zi and ε−1 zi−1 are nearest neighbors in the
integer lattice �d, and such that, moreover, none of the points zi in the path
is within a distance less than 2ε from any of the points of � . Define paths
connecting C1 and C3 or connecting C2 and C3, similarly.
Given that E∗�r� occurs, if ε is sufficiently small there will be two paths

γ� γ′, in the ε-grid, not necessarily disjoint, which together connect up C1, C2,
C3. We now show that γ� γ′ each induce a path in SIG �� ′

2r� which together
connect up the clusters C1�C2�C3.
Let F�r� ε� δ� be the event that (i) E∗�r� occurs; (ii) there exist two paths

γ� γ′ in the ε-grid which together connect up C1�C2�C3; (iii) the union of the
balls Bδε�z�� z ∈ γ∪γ′ is contained in Br�0�\∪3

i=1C
∗
i and (iv) the balls of radius

4δε centered at the endpoints of the paths γ� γ′ are each entirely contained in
one of the sets C∗

i .
If P�E∗�r�� > 0, there exists ε > 0 and δ ∈ �0�1/6� such that P�F�r� ε�

δ�� > 0. Choose such an ε and δ. If F�r� ε� δ� occurs, then there is a positive
probability that (i) no points of �� ∪� ′� ∩Br�0� are discarded in the thinning
process, (ii) a single point of � ′ is placed in each of the balls Bδε�z� for each
z ∈ γ ∪ γ′ and (iii) no points are placed anywhere else by � ′. If this hap-
pens, then the added points have no effect on previous spheres of influence
in C∗

1�C
∗
2�C

∗
3, since they lie outside the old spheres of influence. On the other

hand, given neighboring points z� z′ in one of the paths, for any added points
Y�Y′ in Bδε�z� or Bδε�z′�, the sphere of influence of Y has radius at least
ε�1−2δ�, and likewise for Y′, while �Y−Y′� ≤ ε�1+2δ�; therefore the spheres
of influence of Y and Y′ overlap, and thus the paths γ and γ′ each induce a
corresponding path in SIG�� ′

2r�. Finally, if z is in a path and w is an endpoint
of the path adjacent to z, and if Y ∈ Bδε�Z�, then �Y − w� ≤ ε�1 + δ� so the
sphere of influence of Y goes within a distance 3εδ of w, and therefore over-
laps the cluster C∗

i containing w. Thus the paths in SIG�� ′
2r�, created by the

added points, actually connect up the clusters C1�C2�C3 as desired. Hence,
if P�E∗�r�� > 0, then P�E′�r�� > 0, where E′�r� denotes the event that E�r�
occurs for the point process � ′

2r. This contradicts Lemma 7.4, so we must have
P�E∗�r�� = 0. ✷

The proof of Theorem 7.3 is completed by similar results to Lemmas 4.4
and 4.5 of [7], except that where [7] uses a technique of removal of vertices,
we use a method of adding vertices as in the proof of the preceding lemma,
in such a way as to create paths connecting these spheres of influence. Since
we always make sure we add vertices lying outside the spheres of influence
of existing infinite components, the added vertices do not affect these existing
infinite components, except to connect them together.
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7.5. Number of components. In this section, we letH�� � denote the num-
ber of components in SIG �� �.

Theorem 7.4 (CLT for the number of components of the SIG). Suppose�
is regular. There exists σ2 > 0 such that as n → ∞� n−1 Var�H��n�� → σ2 and

n−1/2�H��n� − ƐH��n�� �−→� �0� σ2��(7.9)

Additionally, there exists τ2 ∈ �0� σ2� such that as n → ∞, n−1Var�H��n�n�� →
τ2, and

n−1/2�H��n�n� − ƐH��n�n�� �−→� �0� τ2��(7.10)

Finally, if �0 is regular then n−1 Var�H��n�� → τ2, and

n−1/2�H��n� − ƐH��n�� �−→� �0� τ2��(7.11)

Proof. It is clear that H�� � ≤ card�� �, so H is polynomially bounded.
Also, H is homogeneous of order 0.
Let us prove the uniform bounded moments condition. Given a finite set � ,

let M+�� �, respectively M−�� �, be the number of edges added to the SIG,
respectively removed from the SIG, when 	0
 is added to the set � . Since
adding or removing an edge to a graph changes the number of components by
at most 1,

���� �� ≤ M+�� � +M−�� � + 1�(7.12)

By the proof of Lemma 7.2, both M+��m�A� and M−��m�A� have fourth
moments bounded uniformly in A ∈ � and in m ∈ ��A�/2�3�A�/2�. Thus by
(7.12) we obtain the uniform bounded moments property.
The proof of strong stabilization proceeds in the same way as in the case of

the number of components of the k-nearest neighbors graph (Proposition 6.1),
this time using Theorem 7.3. Since the argument is almost the same as for
Proposition 6.1, we omit it.
Together, the above remarks show that H satisfies the conditions for

Theorem 2.1 and Corollary 2.1, so the result is proved. ✷

8. The Voronoi graph. In this section we assume throughout that d =
2� λ = 1, the sets Bn are all boxes and that B0 = Q1/2�0�. We let Vor�� � denote
the Voronoi graph on a point set � ⊂ �2. We show that the total edge length
of the Voronoi tessellation satisfies the central limit behavior of Theorem 2.1.

8.1. Total edge length. In this section, we let H�� � denote the total edge
length of all of the finite edges in Vor �� �. The following CLT extends the
results of [1] and [8] which restrict attention to Voronoi tessellations over
Poisson samples. We also establish the convergence of the variance of H.
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Theorem 8.1 (CLT for the total edge length in the Voronoi graph). Sup-
pose the sets Bn are all boxes. There exists σ2 > 0 such that as n → ∞,
n−1Var�H��n�� → σ2 and

n−1/2�H��n� − ƐH��n�� �−→� �0� σ2��(8.1)

Additionally, there exists τ2 ∈ �0� σ2� such that as n → ∞, n−1Var�H��n�n�� →
τ2 and

n−1/2�H��n�n� − ƐH��n�n�� �−→� �0� τ2��(8.2)

Also, if B0 = Q1/2�0�� n�2/d�−1 Var�H��n�� → τ2 and

n�1/d�−1/2�H��n� − ƐH��n�� �−→� �0� τ2��(8.3)

We prove Theorem 8.1 by showing that H satisfies the conditions of
Theorem 2.1. Note that by Euler’s formula, for any finite � we have H�� � ≤
3diam�� �card�� � and thus the functional H is polynomially bounded. Also,
H is clearly homogeneous of order 1.
It is easy to see that H is strongly stabilizing. We follow [14] closely and

use a construction similar to that used for the k-nearest neighbors graph.
Instead of constructing six equilateral triangles, we now construct twelve dis-
joint congruent isosceles triangles Tj�t��1 ≤ j ≤ 12, where the origin is a
vertex of each triangle, where each triangle has two edges of length t, where
Tj�t� ⊂ Tj�u� whenever t < u, and where ∪t>0 ∪12

j=1 Tj�t� = �2. Let S denote
the minimum t such that each triangle Tj�t�� 1 ≤ j ≤ 12, contains at least
one point from the Poisson point process.
Then the insertion of the origin into the Poisson point process does not

affect the structure of the Voronoi diagram at distances farther than 3S from
the origin (see Section 4 of [14]). (The same is true for the Delaunay, relative
neighbor and Gabriel graphs, which are defined in the next section.) As in
Lemma 6.1, it is easy to see that the random variable S is a.s. finite, so H is
strongly stabilizing.

Lemma 8.1. H satisfies the uniform bounded moments condition.

Proof. We will make heavy use of the estimates in [14]. From inequalities
(4.7) and (4.9) of [14] we know that

��H�� �� ≤ E�0�� � +F�0�� ��
where E�0�� � denotes the combined lengths of the bounded edges of the cell
consisting of points closer to 0 than to any point of � , and where F�0�� �
denotes the combined lengths of the intersections of the bounded edges in
Vor�� � with the interior of the Voronoi cell around 0 in Vor�	0
 ∪� �. Thus
it is enough to show that there exists a constant c such that for all boxes B
and m ∈ ��B�/2�3�B�/2�,

max�Ɛ�E�0��m�B�4��Ɛ�F�0��m�B�4�� ≤ c�



1038 M. D. PENROSE AND J. E. YUKICH

If we follow the arguments of [14] then we see that we need only show

Ɛ�D�0��m�B�4K�0��m�B�4� ≤ c�(8.4)

where D = D�0��m�B� denotes the diameter of the intersection of B with
the Voronoi cell around 0 in the Voronoi diagram on 	0
 ∪ �m�B, and where
K = K�0��m�B� denotes the number of sides of the Voronoi cell around 0 in
the Voronoi diagram on 	0
 ∪�m�B. For each t > 0, construct twelve disjoint
congruent isosceles triangles Tj�t��1 ≤ j ≤ 12, having union �2, where the
point 0 is a vertex of each triangle, where each triangle has two edges of
length t and where Tj�t� ⊂ Tj�u� whenever 0 < t < u. For all 1 ≤ j ≤ 12,
let Sj be the minimum t such that the triangle Tj�t� contains at least one
point from �m�B, if such a t exists, or to be the diameter of Tj�t� ∩B, if not.
Let S = max�S1� � � � � S12�. As in [14], simple geometric considerations show
that for all boxes B including those with 0 near the boundary of B, we have
D ≤ 2S. Note that there is a constant c such that for all B and m of interest,

P�Sj > t� ≤ �1− ct/�B��m ≤ exp�−ct/2��
and therefore the tail of the distribution ofS decays exponentially, uniformly in
B andm. Then using the arguments of Section 4 of [14], we can obtain (8.4). ✷

Lemma 8.2. The distribution of ��∞� is nondegenerate.

Proof. Consider the construction used in the proof of Lemma 6.3. Let E2
be the event that there are no points of � in the moat and there is at least
one point in each of the subcubes in 	 . Fix ε small (<1/100). Choose points
x1� x2� x3 ∈ �2 forming an equilateral triangle of side length 1/2, centered at
the origin. Consider the balls of radius ε centered at the points x1� x2� x3. Let
A0 be the intersection of E2 and the event that there is exactly one point in
each of the three balls and no other point in the central “island” C0. Let A1
be the intersection of E2 and the event that there is exactly one point in each
of the balls of radius εδ centered at the points δx1� δx2� δx3, where δ ∈ �0�1�
will be chosen shortly, and no other point in the central island.
On the event A0, the insertion of the origin leads to three new edges,

namely the edges of a (nearly equilateral) triangular cell T around the origin.
It removes the parts of the three edges of the original Voronoi graph which
intersect T. The difference between the sum of the lengths of the added edges
and the sum of the lengths of the three removed edges exceeds some fixed
positive number α [the reason is this: given an equilateral triangle T, and a
point P inside it, the sum of the lengths of the three edges joining P to the
vertices of T is strictly less than the perimeter of T since the length of each of
the three edges is less than the common length of the side of T. If T is nearly
equilateral (our case) this is still true].
On the other hand, on the event A1, the insertion of the origin cannot

increase the total edge length by more than the total edge length of triangular
cell around the origin, and this increase is bounded by a constant multiple of
δ, which is less than α if δ is small enough. Thus if δ is small enough, the
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events A0 and A1 give rise to values of ��∞� which differ by at least some
fixed amount. This shows the nondegeneracy of ��∞�. ✷

ThusH satisfies all of the conditions of Theorem 2.1 and thus Theorem 8.1
is proved.

8.2. Total number of edges and vertices. The above discussion also applies
in part to other functionals of the Voronoi tessellation. For example, if H�� �
counts the number of edges in Vor�� �, then it can be checked that H is
strongly stabilizing, satisfies the uniform moment condition, is homogeneous
of order 0 and therefore satisfies the conclusions of Corollary 2.1 with γ =
0. However, this is one instance where the limiting variance τ2 is zero, and
therefore the “correct” scaling of the variance is not by n−1, so that our results
are not so relevant in this case.
The reason for this degeneracy is as follows. All vertices of Vor��n� a.s.

have degree 3 (see [21], Theorem 5.7). Therefore, if Vn denotes the number of
vertices, En the number of edges and In the number of infinite edges, we have
3Vn = 2En − In. On the other hand, by Euler’s formula, since the number
of faces is n, we have Vn − En + n = 1 (it is not the usual Euler’s formula
because we are not counting the “vertex at infinity”). Combining these two
simultaneous equations, we obtain En = 3n − 3 − In� Therefore Var�En� =
Var�In�.
The value of In is equal to the number of points of �n lying on the boundary

of the convex hull of �n, and therefore its variance is asymptotic to a constant
times log n [6]. This shows that τ2 = 0. Moreover, a similar discussion applies
when H is the number of vertices of the Voronoi graph.
It would be interesting to know if there is a way of adapting our method to

get nondegenerate CLTs for quantities such as the number of vertices in the
convex hull, whose variances do not grow in proportion to n. See [1] for an
adaptation of a method to the convex hull problem.

9. Other proximity graphs. The discussion in the preceding sections
applies to other graphs in computational geometry and, at a minimum, covers
the case when the sets Bn are all boxes and B0 = Q1/2�0�. In the examples
which follow, we see that functionals of such graphs (such as total edge length
and total number of edges) satisfy strong stabilization, the uniform bounded
moments condition and the nondegeneracy of ��∞�. Moreover, the proofs of
these facts are nearly exact replicas of the proofs above and we leave the
details to the reader. We now describe some of the graphs covered by the
above discussion. See [3, 22] for more details on these and related proximity
graphs.
Delaunay triangulation. The Delaunay triangulation of a point set� ⊂ �d

is the graph which is dual to the Voronoi tessellation; it puts an edge between
two points of � if and only if these points are centers of adjacent Voronoi cells.
The total edge length of the Delaunay triangulation satisfies a CLT analogous
to Theorem 8.1. The Delaunay triangulation on n points has at most n�n−1�/2
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edges and so the total edge length is polynomially bounded. The radius of sta-
bilization for the total edge length of the Delaunay triangulation is the same
as that for the Voronoi tessellation. By modifying Lemma 6.2 in a straight-
forward fashion, one can show that the total edge length of the Delaunay
triangulation satisfies the fourth moment condition and in this way avoid the
complications present in Lemma 8.1.
When d = 2, the number of edges of the Delaunay triangulation is the

same as the number of edges of the Voronoi tessellation, so the discussion in
Section 8.2 applies.
Gabriel graph. The Gabriel graph on a point set � puts an edge between

two points x�y of � if the ball centered at �x+y�/2 with x and y at opposite
poles does not contain any other points in � . The Gabriel graph is a subgraph
of the Delaunay triangulation. Strong stabilization for the Gabriel graph can
be established by an argument using cones or triangles in much the same way
as for the k-nearest neighbors graph or the Voronoi graph. Fourth moments
are handled as in Lemma 6.2.
Relative neighborhood graph. The relative neighborhood graph on � is

formed by joining all pairs of points whose loon is empty, where the loon
defined by a pair is the intersection of two spheres of equal radius, each hav-
ing one point as center and the other point on its surface. The relative neigh-
borhood graph is a subgraph of the Gabriel graph. Strong stabilization for
the relative neighborhood graph can be established in much the same way as
for the k-nearest neighbors graph or the Voronoi graph. Fourth moments are
handled as in Lemma 6.2.
Power weighted edges. Kesten and Lee [11] prove a central limit theorem

for the total edge length of the minimal spanning tree on a random sample
when the edges are power-weighted. All of the graphs described here admit
versions with power weighted edges and it is trivial to show that the total
edge length of such graphs satisfies all the conditions of our main theorems.
Percolation. One simple way to obtain a graph on � is to connect all pairs

of points which are at most unit distance apart. One can obtain a (nonhomoge-
neous) functionalHocc�� � by counting the components of the resulting graph.
This is equivalent to a basic model of continuum percolation [16], in which
one takes balls of unit diameter around each point and counts the connected
components of the union of the balls (occupied clusters). One can also consider
the number Hvac�� � of vacant clusters, by which we mean components of the
complement of the union of balls. Using results in [16] on uniqueness of the
infinite cluster, both Hocc and Hvac can be shown to satisfy strong stabiliza-
tion, and hence a CLT for the uniform sample �n�n. This adds to a result in
[19] on CLTs for occupied and vacant cluster counts (in a more general setting)
for Poisson samples.
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