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A love and respect of trees has been characteristic of mankind since
the beginning of human evolution. Instinctively, we understood the
importance of trees to our lives before we were able to ascribe reasons
for our dependence on them.

— America’s Garden Book, James and Louise Bush-Brown, rev.
ed. by The New York Botanical Garden, Charles Scribner’s
Sons, New York, 1980, p. 142.

The cover shows a sample from the wired uniform spanning forest on the edges
of the (2, 3, 7)-triangle tessellation of the hyperbolic plane.
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Preface

This book is concerned with certain aspects of discrete probability on infinite graphs
that are currently in vigorous development. Of course, finite graphs are analyzed as well,
but usually with the aim of understanding infinite graphs and networks. These areas
of discrete probability are full of interesting, beautiful, and surprising results, many of
which connect to other areas of mathematics and theoretical computer science. Numerous
fascinating questions are still open—some are profound mysteries.

Our major topics include random walks and their intimate connection to electrical
networks; uniform spanning trees, their limiting forests, and their marvelous relationships
with random walks and electrical networks; branching processes; percolation and the pow-
erful, elegant mass-transport technique; isoperimetric inequalities and how they relate to
both random walks and percolation; minimal spanning trees and forests, and their connec-
tions to percolation; Hausdorff dimension, capacity, and how to understand them via trees;
and random walks on Galton-Watson trees. Connections among our topics are pervasive
and rich, making for surprising and enjoyable proofs.

There are three main classes of graphs on which discrete probability is most interest-
ing, namely, trees, Cayley graphs of groups (or more generally, transitive, or even quasi-
transitive, graphs), and planar graphs. More classical discrete probability has tended to
focus on the special and important case of the Euclidean lattices Zd, which are prototypical
Cayley graphs. This book develops the general theory of various probabilistic processes on
graphs and then specializes to the three broad classes listed, always seeing what we can
say in the case of Zd.

Besides their intrinsic interest, there are several reasons for a special study of trees.
Since in most cases, analysis is easier on trees, analysis can be carried further. Then one
can often either apply the results from trees to other situations or can transfer to other
situations the techniques developed by working on trees. Trees also occur naturally in
many situations, either combinatorially or as descriptions of compact sets in Euclidean
space Rd.

In choosing our topics, we have been swayed by those results we find most striking,
as well as those that do not require extensive background. Thus, the only prerequisite is
basic knowledge of Markov chains and conditional expectation with respect to a σ-algebra.
For Chapter 16, basic knowledge of ergodic theory is also required, though we review it
there. Of course, we are highly biased by our own research interests and knowledge. We
include the best proofs available of recent as well as classic results.

Most exercises that appear in the text, as opposed to those at the ends of the chapters,
are ones that will be particularly helpful to do when they are reached. They either facilitate
one’s understanding or will be used later in the text. These in-text exercises are also
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collected at the end of each chapter for easy reference, just before additional exercises are
presented.

Some general notation we use is ⟨· · ·⟩ for a sequence (or, sometimes, more general
function), ↾ for the restriction of a function or measure to a set, E[X ; A] for the expectation
of X on the event A, and |•| for the cardinality of a set. Also, “decreasing” will mean
“non-increasing” unless we say “strictly decreasing”, and likewise for “increasing” and
“non-decreasing”. Defined terms are in bold italics. Some definitions are repeated in
different chapters to enable more selective reading.

A question labelled as Question m.n is one to which the answer is unknown, where
m and n are numbers. Unattributed results are usually not due to us. Items such as
theorems are numbered in this book as C.n, where C is the chapter number and n is the
item number in that chapter.

Major chapter dependencies are indicated in the figure below.

1: Intro

2: RW&EN

3: Spec Net4: UST 9: Dirich

10: USF 5: GW, 2nd Mom, Perc

6: Isop 12: GW Lim 13: Speed 14: Hdim

7: Perc Trans

8: MTP

11: MSF

15: Cap 16: RW GW

Different information is given in the next figure, where the thickness of an edge between
two chapters is proportional to the number of hyperlinked cross-references between those
two chapters, omitting all pairs where that number is at most 3.
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It is possible to choose only small parts of various chapters to make a coherent course
on specific subjects. For example, a judicious choice of material from the following sections
can be used for a one-semester course on relationships of probability to geometric group
theory: 3.4, 7.1, 6.1, 6.2, 6.3, 5.1, 6.7, 7.2–7.7, 8.1, 8.3, 8.4, 11.1–11.4, 11.6, 2.1–2.5, 6.6,
4.1, 4.2, 9.1, 9.3, 9.4, 10.1, 10.2, 10.9.

In the electronic version of this book, most symbols that are used with a fixed meaning
are hyperlinked to their definitions, although the fact that such hyperlinks exist is not made
visible.

This book began as lecture notes for an advanced graduate course called “Probability
on Trees” that Lyons gave in Spring 1993. We are grateful to Rabi Bhattacharya for
having suggested that he teach such a course. We have attempted to preserve the informal
flavor of lectures. Many exercises at varying levels of difficulty are included, with many
comments, hints, or solutions in the back of the book. A few of the authors’ results and
proofs appear here for the first time. At this point, almost all of the actual writing was
done by Lyons. We hope to have a more balanced co-authorship eventually.

Lyons is grateful to the Institute for Advanced Studies and the Institute of Mathe-
matics, both at the Hebrew University of Jerusalem, and to Microsoft Research for sup-
port during some of the writing. We are grateful to Brian Barker, Jochen Geiger, Janko
Gravner, Svante Janson, Tri Minh Lai, Steve Morrow, Peter Mörters, Perla Sousi, Jason
Schweinsberg, Jeff Steif, and Ádám Timár for noting several corrections to the manuscript.
In addition, Gábor Pete helped with editing a few sections and provided a careful reading
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and thoughtful comments throughout. Special thanks are due to Jacob Magnusson for
his very thorough and careful reading, which uncovered many small mistakes and possible
improvements.

Russell Lyons Yuval Peres
Indiana University Microsoft Corporation
rdlyons@indiana.edu peres@microsoft.com

http://mypage.iu.edu/~rdlyons/ http://research.microsoft.com/en-us/um/people/peres/
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1

Chapter 1

Some Highlights

This chapter surveys a few of the highlights to be encountered in this book, mainly,

Chapters 2, 3, 4, 5, 14, and 15. Several of the topics in the book do not appear at all here

since they are not as suitable to a quick overview. Also, we concentrate in this overview

on trees since it is easiest to use them to illustrate many of our themes.

§1.1. Graph Terminology.

For later reference, we introduce in this section the basic notation and terminology for

graphs. A graph is a pair G = (V,E), where V is a set of vertices and E is a symmetric

irreflexive subset of V × V, called the edge set. “Irreflexive” means that E contains no

element of the form (x, x). The word “symmetric” means that (x, y) ∈ E iff (y, x) ∈ E; here,

x and y are called the endpoints of (x, y). The symmetry assumption is usually phrased

by saying that the graph is undirected or that its edges are unoriented . Without this

symmetry assumption, the graph is called directed . If we need to distinguish the two, we

write an unoriented edge as [x, y], while an oriented edge is written as ⟨x, y⟩. An unoriented

edge can be thought of as the pair of oriented edges with the same endpoints. If (x, y) ∈ E,

then we call x and y adjacent or neighbors, and we write x ∼ y. The degree of a vertex

is the number of its neighbors. If this is finite for each vertex, we call the graph locally

finite . If the degree of every vertex is the same number d, then the graph is called regular

or d-regular . If x is an endpoint of an edge e, we also say that x and e are incident ,

while if two edges share an endpoint, then we call those edges adjacent . If we have more

than one graph under consideration, we distinguish the vertex and edge sets by writing

V(G) and E(G). A subgraph of a graph G is a graph whose vertex set is a subset of V(G)

and whose edge set is a subset of E(G).

A path* in a graph is a sequence of vertices where each successive pair of vertices

is an edge in the graph; it is said to join its first and last vertices. When a path does

* In graph theory, a “path” is necessarily self-avoiding. What we call a “path” is called in graph
theory a “walk”. However, to avoid confusion with random walks, we do not adopt that terminology.
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Chap. 1: Some Highlights 2

not pass through any vertex (resp., edge) more than once, we will call it vertex simple

(resp., edge simple). We’ll just say simple also to mean vertex simple, which implies

edge simple.A finite path with at least one edge and whose first and last vertices are the

same is called a cycle . A cycle is called simple if no pair of vertices are the same except

for its first and last ones. A graph is connected if for each pair x ̸= y of its vertices,

there is a path joining x to y. The distance between x and y is the minimum number of

edges among all paths joining x and y, denoted either d(x, y) or dist(x, y). A graph with

no cycles is called a forest ; a connected forest is a tree .

If there are numbers (weights) c(e) assigned to the edges e of a graph, the resulting

object is called a network . Given a network G = (V,E) with weights c(•) and a subset K

of its vertices, the induced subnetwork G↾K is the subnetwork with vertex set K, edge

set (K ×K) ∩ E, and weights c↾
(
(K ×K) ∩ E

)
.

Sometimes we work with more general objects than graphs, called multigraphs. A

multigraph is a pair of sets, V and E, together with a pair of maps E → V denoted

e 7→ e− and e 7→ e+. The images of e are called the endpoints of e, the former being

its tail and the latter its head . If e− = e+ = x, then e is a loop at x. Edges with the

same set of endpoints are called parallel or multiple . If the multigraph is undirected,

then for every edge e ∈ E, there is an edge −e ∈ E such that (−e)− = e+ and (−e)+ = e−.

Sometimes we use paths of edges, rather than of vertices; in this case the head of each

edge much equal the tail of the next edge. Given a subset K ⊆ V, the multigraph G/K

obtained by identifying K to a single vertex z /∈ V is the multigraph whose vertex set is

(V\K)∪{z} and whose edge set is obtained from E by replacing the tail and head maps so

that every tail or head that took a value in K now takes the value z. A similar operation

is contraction of an edge e, which is the result of first deleting e and then identifying e−

and e+; we denote this graph by G/e. A multigraph that is a graph is called a simple

graph .

Let G1 = (V1,E1) and G2 = (V2,E2) be two (multi)graphs. A homomorphism of

G1 to G2 is a map ϕ:G1 → G2 such that whenever x and e are incident in G1, then so are

ϕ(x) and ϕ(e) in G2. When the graph is directed, then ϕ must also preserve orientation

of edges, i.e., if the head and tail of e are x and y respectively, then the head and tail of

ϕ(e) must be ϕ(x) and ϕ(y) respectively. If in addition, these graphs come with weight

functions c1 and c2, so that they are networks, then a network homomorphism is a

graph homomorphism ϕ that satisfies c1(e) = c2
(
ϕ(e)

)
for all edges e ∈ E1. If ϕ induces

bijections of V1 to V2 and of E1 to E2, then ϕ is called an isomorphism . When the two

graphs (or networks) are the same, then an isomorphism is called an automorphism .
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§2. Branching Number 3

§1.2. Branching Number.

Our trees will usually be rooted , meaning that some vertex is designated as the root,

denoted o. We imagine the tree as growing (upwards) away from its root. Each vertex

then has branches leading to its children, which are its neighbors that are further from

the root. For the purposes of this chapter, we do not allow the possibility of leaves, i.e.,

vertices without children.

How do we assign an average branching number

to an arbitrary infinite locally finite tree? If the tree

is a binary tree, as in Figure 1.1, then clearly the

answer will be “2”. But in the general case, since

the tree is infinite, no straight average is available.

We must take some kind of limit or use some other

procedure, but we will be amply rewarded for our

efforts.
Figure 1.1. The binary tree.

One simple idea is as follows. Let Tn be the set of vertices at distance n from the

root, o, called the nth level of T . Define the lower (exponential) growth rate of the

tree to be

grT := lim inf
n→∞

|Tn|1/n .

This certainly will give the number “2” to the binary tree. One can also define the upper

(exponential) growth rate

grT := lim sup
n→∞

|Tn|1/n

and the (exponential) growth rate

grT := lim
n→∞

|Tn|1/n

when the limit exists. However, notice that these notions of growth barely account for

the structure of the tree: only |Tn| matters, not how the vertices at different levels are

connected to each other. Of course, if T is spherically symmetric, meaning that for

each n, every vertex at distance n from the root has the same number of children (which

may depend on n), then there is really no more information in the tree than that contained

in the sequence ⟨|Tn|⟩. For more general trees, however, we will use a different approach.

Consider the tree as a network of pipes and imagine water entering the network at

the root. However much water enters a pipe leaves at the other end and splits up among

the outgoing pipes (edges). Formally, this means that we consider a non-negative function

θ on the edges of T , called a flow , with the property that for every vertex x other than
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Chap. 1: Some Highlights 4

the root, if x has parent z and children y1, . . . , yd, then θ
(
(z, x)

)
=
∑d
i=1 θ

(
(x, yi)

)
. We

say that θ(e) is the amount of water flowing along e and that the total amount of water

flowing from the root to infinity is
∑k
j=1 θ

(
(o, xj)

)
, where the children of the root o are

x1, . . . , xk.

Consider the following sort of restriction on a flow: Given λ ≥ 1, suppose that the

amount of water that can flow through an edge at distance n from o is only λ−n. In other

words, if x ∈ Tn has parent z, then the restriction is that θ
(
(z, x)

)
≤ λ−n. If λ is too

big, then perhaps no positive amount of water can flow from the root to infinity. Indeed,

consider the binary tree. Then the equally splitting flow that sends an amount 2−n

through each edge at distance n from the root will satisfy the restriction imposed when

λ ≤ 2, but not for any λ > 2. In fact, it is intuitively clear that there is no way to get

any water to flow when λ > 2. Obviously, this critical value of 2 for λ is the same as

the branching number of the binary tree—if the tree were ternary, then the critical value

would be 3. So let us make a general definition: the branching number of a tree T is

the supremum of those λ that admit a positive total amount of water to flow through T ;

denote this critical value of λ by brT .

Let’s spend some time on this new concept. For a vertex x other than the root, let

e(x) denote the edge that joins x to its parent. The total amount of water flowing is, by

definition,
∑
x∈T1

θ
(
e(x)

)
. If we apply the flow condition to each x in T1, then we see that

this also equals
∑
x∈T2

θ
(
e(x)

)
. Induction shows, in fact, that it equals

∑
x∈Tn

θ
(
e(x)

)
for

every n ≥ 1. When the flow is constrained in the way we have specified, then this sum is

at most
∑
x∈Tn

λ−n = |Tn|λ−n. Now if we choose λ > grT , then lim infn→∞ |Tn|λ−n = 0,

whence for such λ, no water can flow. Conclusion:

brT ≤ grT . (1.1)

Often, as in the case of the binary tree, equality holds here. However, there are many

examples of strict inequality.

Before we give an example of strict inequality, here is another example where equality

holds in (1.1).

Example 1.1. If T is a tree such that vertices at even distances from o have 2 children

while the rest have 3 children, then brT = grT =
√
6. Why? It is easy to see that

grT =
√
6, whence by (1.1), it remains to show that brT ≥

√
6, i.e., given λ <

√
6,

to show that a positive amount of water can flow to infinity with the constraints given.

Indeed, we can use the water flow with amount 6−n/2 flowing on those edges at distance

n from the root when n is even and with amount 6−(n−1)/2/3 flowing on those edges at

distance n from the root when n is odd.
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§2. Branching Number 5

More generally, one can show (Exercise 1.2) that equality holds in (1.1) whenever T

is spherically symmetric.

Now we give an example where strict inequality holds in (1.1).

Example 1.2. (The 1–3 Tree) We’ll construct a tree

T embedded in the upper half plane with o at the origin.

We’ll have |Tn| = 2n, but we’ll connect them in a funny

way. List Tn in clockwise order as ⟨xn1 , . . . , xn2n⟩. Let

xnk have 1 child if k ≤ 2n−1 and 3 children otherwise;

see Figure 1.2. Define a ray in a tree to be an infinite

path from the root that doesn’t backtrack. If x is a

vertex of T that does not have the form xn2n , then there

are only finitely many rays that pass through x. This

means that water cannot flow to infinity through such

a vertex x when λ > 1. That leaves only the possibility

of water flowing along the single ray consisting of the

vertices xn2n , but that’s impossible too. Hence brT = 1,

yet grT = 2.

o

Figure 1.2. A tree with
branching number 1 and
growth rate 2.

Example 1.3. If T (1) and T (2) are trees, form a new

tree T (1) ∨ T (2) from disjoint copies of T (1) and T (2) by

joining their roots to a new point taken as the root of

T (1) ∨ T (2) (Figure 1.3). Then

br
(
T (1) ∨ T (2)

)
= brT (1) ∨ brT (2)

since water can flow in the join T (1) ∨T (2) iff water can

flow in one of the trees. Here, as usual in probability,

we use a ∨ b to mean max{a, b} when a and b are real

numbers.

T (1) T (2)

o

Figure 1.3. Joining two trees.

While grT is easy to compute, brT may not be. Nevertheless, it is the branching

number which is much more important. Theorems to be described shortly will bear out

this assertion. We will develop tools to compute brT in many common situations.
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Chap. 1: Some Highlights 6

§1.3. Electric Current.

We can ask another flow question on trees, this one concerning electrical current. All

electrical terms will be given precise mathematical definitions in Chapter 2, but for now,

we give some bare definitions in order to sketch the arc of some of the fascinating and

surprising connections that we’ll develop later. If positive numbers c(e) are assigned to the

edges e of a tree, we may call these numbers conductances and in that case, the energy

of a flow θ is defined to be
∑
e θ(e)

2/c(e). We say that electrical current flows from the

root to infinity if there is a non-0 flow with finite energy.

Here’s our new flow question: If λ−n is the conductance of edges at distance n from

the root of T , will current flow?

Example 1.4. Consider the binary tree. The equally splitting flow has finite energy for

every λ < 2, so in those cases, electrical current does flow. One can show that when λ ≥ 2,

not only does the equally splitting flow have infinite energy, but so does every non-0 flow

(Exercise 1.4). Thus, current flows in the infinite binary tree iff λ < 2. Note the slight

difference to water flow: when λ = 2, water can still flow on the binary tree.

In general, there will be a critical value of λ below which current flows and above

which it does not. In the example of the binary tree that we just analyzed, this critical

value was the same as that for water flow. Is this equality special to nice trees, or does it

hold for all trees? We have seen an example of a strange tree (another is in Exercise 1.3),

so we might doubt its generality. However, it is indeed a general fact (Lyons, 1990):

Theorem 1.5.* If λ < brT , then electrical current flows, but if λ > brT , then it does

not.

§1.4. Random Walks.

There is a striking, but easily established, correspondence between electrical networks

and random walks on graphs (or on networks). Namely, given a finite connected graph G

with conductances (i.e., positive numbers) assigned to the edges, we consider the random

walk that can go from a vertex only to an adjacent vertex and whose transition probabilities

from a vertex are proportional to the conductances along the edges to be taken. That is,

if x is a vertex with neighbors y1, . . . , yd and the conductance of the edge (x, yi) is ci,

then the transition probability from x to yj is p(x, yj) := cj/
∑d
i=1 ci. Now consider two

* This will follow from Theorem 3.5 and the discussion in Section 2.2.

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



§4. Random Walks 7

fixed vertices a0 and a1 of G. A voltage function on the vertices is then a function

v such that v(ai) = i for i = 0, 1 and for every other vertex x ̸= a0, a1, the equation

v(x)
∑d
i=1 ci =

∑d
i=1 civ(yi) holds, where the neighbors of x are y1, . . . , yd. In other words,

v(x) is a weighted average of the values at the neighbors of x. We will see in Section 2.1

that voltage functions exist and are unique. The following proposition provides the basic

connection between random walks and electrical networks:

Proposition 1.6. (Voltage as Probability) For any vertex x, the voltage at x equals

the probability that when the corresponding random walk starts at x, it will visit a1 before

it visits a0.

The proof of this proposition will be simple: In outline, there is a discrete Laplacian

(a difference operator) which will define a notion of harmonic function. Both the voltage

and the probability mentioned are harmonic functions of x. The two functions clearly

have the same values at ai (the “boundary” points) and the uniqueness principle holds for

this Laplacian, whence the functions agree at all vertices x. This is developed in detail in

Section 2.1.
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a1

Figure 1.4. Identifying a level to a vertex, a1.

What does this say about our trees? Given N , identify all the vertices of level N ,

i.e., TN , to one vertex, a1 (see Figure 1.4). Use the root as a0. Then according to

Proposition 1.6, the voltage at x is the probability that the random walk visits level N

before it visits the root when it starts from x. When N → ∞, the limiting voltages are all 0

iff the limiting probabilities are all 0, which is the same thing as saying that on the infinite

tree, the probability of visiting the root from any vertex is 1, i.e., the random walk is

recurrent. Although we have not yet defined current, we’ll see that no current flows across

edges whose endpoints have the same voltage. This will imply, then, that no electrical

current flows iff the random walk is recurrent. Contrapositively, electrical current flows iff

the random walk is transient. In this way, electrical networks will be a powerful tool to
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Chap. 1: Some Highlights 8

help us decide whether a random walk is recurrent or transient. These ideas are detailed

in Section 2.2.

Earlier we considered conductances λ−n on edges at

distance n from the root. In this case, the conductances

decrease by a factor of λ as the distance increases by 1,

so the relative weights at a vertex other than the root

are as shown in Figure 1.5. That is, the edge leading

back toward the root is λ times as likely to be taken

as each edge leading away from the root. Denoting the

dependence of the random walk on the parameter λ by

RWλ, we may translate Theorem 1.5 into a probabilistic

form (Lyons, 1990):

 

 

 

 

λ

1

1

1

Figure 1.5. The relative
weights at a vertex. The
tree is growing upwards.

Theorem 1.7.* If λ < brT , then RWλ is transient, while if λ > brT , then RWλ is

recurrent.

Is this form intuitive? Consider a vertex other than the root with, say, d children.

If we consider only the distance from o, which increases or decreases at each step of the

random walk, a balance at this vertex between increasing and decreasing occurs when

λ = d. If d is constant, then the distance from the root undergoes a random walk with a

constant bias (for a fixed λ), so it is easy to see that indeed d is the critical value separating

transience from recurrence. What Theorem 1.7 says is that this same heuristic can be used

in the general case, provided we substitute the “average” brT for d.

We will also see how to use electrical networks to prove Pólya’s wonderful, seminal

theorem that simple random walk on the hypercubic lattice Zd is recurrent for d ≤ 2 and

transient for d ≥ 3.

§1.5. Percolation.

Suppose that we remove edges at random from a tree, T . To be specific, keep each edge

with some fixed probability p and make these decisions independently for different edges.

This random process is called percolation . As we’ll see, by Kolmogorov’s 0-1 law, the

probability that an infinite connected component remains in the tree is either 0 or 1. On

the other hand, we’ll see that this probability is monotonic in p, whence there is a critical

value pc(T ) where it changes from 0 to 1. It is also intuitively clear that the “bigger” the

* This will be proved as Theorem 3.5.
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§6. Branching Processes 9

tree, the more likely it is that there will be an infinite component for a given p. That is,

the “bigger” the tree, the smaller the critical value pc. Thus, pc is vaguely inversely related

to a notion of average size or maybe average branching number. Surprisingly, this vague

heuristic is precise and general (Lyons, 1990):

Theorem 1.8.* For any tree, pc(T ) = 1/brT .

What is this telling us? If a vertex x has d children, then the expected number of

children remaining after percolation is dp. If dp is “usually” less than 1, one would not ex-

pect that an infinite component would remain, while if dp is “usually” greater than 1, then

one might guess that an infinite component would be present somewhere. Theorem 1.8

says that this intuition becomes correct when one replaces the “usual” d by brT . Both

Theorems 1.5 and 1.8 say that the branching number of a tree is a single number that

captures enough of the complexity of a general tree to give the critical value in a stochas-

tic process on the tree. There are other examples as well of this striking phenomenon.

Altogether, they make a convincing case that the branching number is indeed the most

important single number to attach to an infinite tree.

§1.6. Branching Processes.

In the preceding section, we looked at existence of infinite components after perco-

lation on a tree. While this event has probability 0 or 1, if we restrict attention to the

connected component of the root, its probability of being infinite is between 0 and 1. These

are equivalent ways to approach the issue, since, as we’ll see, there is an infinite compo-

nent somewhere with probability 1 iff the component of the root is infinite with positive

probability. But looking at the component of the root also suggests a different stochastic

process.

Percolation on a fixed tree produces random trees by random pruning, but there is

a way to grow trees randomly that was invented by Bienaymé in 1845. Given probabil-

ities pk adding to 1 (k = 0, 1, 2, . . .), we begin with one individual and let it reproduce

according to these probabilities, i.e., it has k children with probability pk. Each of these

children (if there are any) then reproduce independently with the same law, and so on

forever or until some generation goes extinct. The family trees produced by such a process

are called (Bienaymé)-Galton-Watson trees. A fundamental theorem in the subject

(Proposition 5.4) is that extinction is a.s. iff m ≤ 1 and p1 < 1, where m :=
∑
k kpk is

the mean number of offspring per individual. This provides further justification for our

* This will be proved as Theorem 5.15.
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Chap. 1: Some Highlights 10

intuitive understanding of Theorem 1.8. It also raises a natural question: Given that a

Galton-Watson family tree is nonextinct (infinite), what is its branching number? All the

intuition suggests that it is m a.s., and indeed it is. This was first proved by Hawkes

(1981). But here is the idea of a very simple proof (Lyons, 1990).

According to Theorem 1.8, to determine brT , we may determine pc(T ). Thus, let

T grow according to a Galton-Watson process, then perform percolation on T , i.e., keep

edges with probability p. Focus on the component of the root. Looked at as a random tree

in itself, this component appears simply as some other Galton-Watson tree; its mean is mp

by independence of the growing and the “pruning” (percolation). Hence, the component

of the root is infinite with positive probability iff mp > 1. This implies that pc = 1/m a.s.

on nonextinction, i.e., brT = m a.s. on nonextinction. We’ll flesh out the details of this

proof for Proposition 5.9.

Now let’s consider another way to measure the size of Galton-Watson trees. Let Zn

be the size of the nth generation in a Galton-Watson process. How quickly does Zn grow?

It will be easy to calculate that E[Zn] = mn. Moreover, a martingale argument will show

that the limit W := limn→∞ Zn/m
n always exists (and is finite). When 1 < m < ∞, do

we have that W > 0 a.s. on the event of nonextinction? When W > 0, the growth rate

of the tree is asymptotically Wmn; this implies the cruder asymptotic grT = m. It turns

out that indeed W > 0 a.s. on the event of nonextinction, under a very mild hypothesis:

The Kesten-Stigum Theorem (1966). When 1 < m < ∞, the following are equiva-

lent:

(i) W > 0 a.s. on the event of nonextinction;

(ii)
∑∞
k=1 pkk log k <∞.

This will be shown in Section 12.2. Although condition (ii) appears technical and

suggests some possibly unpleasant analysis, we will enjoy a conceptual proof of the theorem

that uses only extremely simple estimates.

§1.7. Random Spanning Trees.

The fertile and fascinating field of random spanning trees is one of the oldest areas to

be studied in this book, but one of the newest to be explored in depth. A spanning tree

of a (connected) graph is a subgraph that is connected, contains every vertex of the whole

graph, and contains no cycle: see Figure 1.6 for an example. These trees are usually not

rooted. The subject of random spanning trees of a graph goes back to Kirchhoff (1847),
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§7. Random Spanning Trees 11

who showed its surprising relation to electrical networks. (Actually, Kirchhoff did not think

probabilistically, but, rather, he considered quotients of the number of spanning trees with

a certain property divided by the total number of spanning trees. See Kirchhoff’s Effective

Resistance Formula in Section 4.2 and Exercise 4.31.) One of Kirchhoff’s results expresses

the probability that a uniformly chosen spanning tree will contain a given edge in terms

of electrical current in the graph.

Figure 1.6. A spanning tree in a graph, where
the edges of the graph not in the tree are dashed.

To get our feet wet, let’s begin with a very simple

finite graph. Namely, consider the ladder graph of Fig-

ure 1.7. Among all spanning trees of this graph, what

proportion contain the bottom rung (edge)? In other

words, if we were to choose uniformly at random a span-

ning tree, what is the chance that it would contain the

bottom rung? We have illustrated the entire probability

spaces for the smallest ladder graphs in Figure 1.8. 1

2

3

n− 2

n− 1

n

Figure 1.7. A ladder graph.
As shown, the probabilities in these cases are 1/1,

3/4, and 11/15. The next one is 41/56. Do you see

any pattern? One thing that is fairly evident is that these numbers are decreasing, but

hardly changing. Amusingly, these numbers are every other term of the continued fraction

expansion of
√
3−1 = 0.73+ and, in particular, converge to

√
3−1. In the limit, then, the

probability of using the bottom rung is
√
3−1 and, even before taking the limit, this gives
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Chap. 1: Some Highlights 12

1/1

3/4

11/15

Figure 1.8. The ladder graphs of heights 0, 1, and 2, together with their spanning trees.

an excellent approximation to the probability. How can we easily calculate such numbers?

In this case, there is a rather easy recursion to set up and solve, but we will use this

example to illustrate the more general theorem of Kirchhoff that we mentioned above. In

fact, Kirchhoff’s theorem will show us why these probabilities are decreasing even before

we calculate them.

For the next two paragraphs, we will assume some

familiarity with electrical networks; those who do not

know these terms will find precise mathematical defini-

tions in Sections 2.1 and 2.2. Suppose that each edge

of our graph (any graph, but, say, the ladder graph)

is an electric conductor of unit conductance. Hook up

a battery between the endpoints of any edge e, say the

bottom rung (Figure 1.9). Kirchhoff (1847) showed that

the proportion of current that flows directly along e is

then equal to the probability that e belongs to a ran-

domly chosen spanning tree!

e

Figure 1.9. A battery is
hooked up between the end-
points of e.Now current flows in two ways: some flows directly

across e and some flows through the rest of the network.

It is intuitively clear (and justified by Rayleigh’s Monotonicity Principle in Section 2.4)

that the higher the ladder, the greater the effective conductance of the ladder minus the
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§7. Random Spanning Trees 13

bottom rung, hence the less current proportionally will flow along e, whence by Kirchhoff’s

theorem, the less the chance that a random spanning tree contains the bottom rung. This

confirms our observations.

It turns out that generating spanning trees at random according to the uniform mea-

sure is of interest to computer scientists, who have developed various algorithms over the

years for random generation of spanning trees. In particular, this is closely connected to

generating a random state from any Markov chain. See Propp and Wilson (1998) for more

on this issue.

Early algorithms for generating a random spanning tree used the Matrix-Tree Theo-

rem, which counts the number of spanning trees in a graph via a determinant (Section 4.4).

A better algorithm than these early ones, especially for probabilists, was introduced by

Aldous (1990) and Broder (1989). It says that if you start a simple random walk at

any vertex of a finite (connected) graph G and draw every edge it traverses except when

it would complete a cycle (i.e., except when it arrives at a previously-visited vertex),

then when no more edges can be added without creating a cycle, what will be drawn—

amazingly—is a uniformly chosen spanning tree of G. (To be precise: if Xn (n ≥ 0)

is the path of the random walk, then the associated spanning tree is the set of edges{
[Xn, Xn+1] ; Xn+1 /∈ {X0, X1, . . . , Xn}

}
.) This beautiful algorithm is quite efficient and

useful for theoretical analysis, yet as a graduate student, Wilson (1996) found an even

better one that we’ll describe in Section 4.1.

Return for a moment to the ladder graphs. We saw that as the height of the ladder

tends to infinity, there is a limiting probability that the bottom rung of the ladder graph

belongs to a uniform spanning tree. What about uniform spanning trees in other sequences

of growing finite graphs? Suppose that G is an infinite graph. Let Gn be finite (connected)

subgraphs with G1 ⊂ G2 ⊂ G3 ⊂ · · · and
∪
Gn = G. Take the uniform spanning tree

probability measure on each Gn. This gives a sequence of probability measures on subsets

of edges of G. Does this sequence converge in a reasonable sense? Lyons conjectured that

it does, and Pemantle (1991) verified that the weak limit exists. (In other words, if µn

denotes the uniform spanning tree measure on Gn and B,B′ are finite sets of edges in G,

then limn µn[B ⊂ Tn, B
′ ∩ Tn = ∅] exists, where Tn denotes a random spanning tree in

Gn.) This limit is now called the free uniform spanning forest* on G, denoted FUSF

or just FSF. Considerations of electrical networks play the dominant role in Pemantle’s

proof. Pemantle (1991) discovered the astounding fact that on Zd, the uniform spanning

* In graph theory, “spanning forest” usually means a maximal subgraph without cycles, i.e., a span-
ning tree in each connected component. We mean, instead, a subgraph without cycles that contains every
vertex.
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Chap. 1: Some Highlights 14

forest is a single tree a.s. if d ≤ 4; but when d ≥ 5, there are infinitely many trees a.s.!

We’ll prove this as Theorem 10.30.

§1.8. Hausdorff Dimension.

We’ve used water flow on trees to define the branching number, where the amount of

water that can flow through an edge at distance n from the root of a tree is constrained to

be at most λ−n. There is a useful way to reformulate this via what’s known as the Max-

Flow Min-Cut Theorem, proved in Section 3.1. Namely, consider a set Π of edges whose

removal leaves the root o in a finite component. We call such a set a cutset (separating o

from infinity). If θ is a flow from o to infinity, then all the water must flow through Π, so

one expects that an upper bound on the total that can flow is
∑
e(x)∈Π λ

−|x|, where e(x)

denotes the edge that joins x to its parent, as before, and |x| denotes the distance of a

vertex x to the root. This expectation turns out to be correct, so that the most that can

flow is

inf

{ ∑
e(x)∈Π

λ−|x| ; Π is a cutset

}
. (1.2)

Remarkably, this upper bound is always achievable, i.e., there is a flow with this amount

in total flowing from the root to infinity; this is the content (in a special case) of the Max-

Flow Min-Cut Theorem. We are going to use this now to understand Hausdorff dimension,

but a much more detailed and varied motivation of Hausdorff dimension will be given in

Chapter 14.

A vertex of degree 1 in a tree is called a leaf . By analogy with the leaves of a finite

tree, we call the set of rays of T the boundary (at infinity) of T , denoted ∂T . (Recall

that a ray is an infinite simple path from the root, so ∂T does not include any leaves of

T .) Now there is a natural metric on ∂T : if ξ, η ∈ ∂T have exactly n edges in common,

define their distance to be d(ξ, η) := e−n. Thus, if x ∈ T has more than one child with

infinitely many descendants, the set of rays going through x,

Bx := {ξ ∈ ∂T ; ξ|x| = x} , (1.3)

has diameter diamBx = e−|x|. We call a collection C of subsets of ∂T a cover if∪
B∈C

B = ∂T .

▷ Exercise 1.1.

Let T be an infinite locally finite tree.

(a) (Kőnig’s Lemma) Show that ∂T ̸= ∅.

(b) Show that ∂T is compact.
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§8. Hausdorff Dimension 15

Note that

Π is a cutset (separating o from ∞) iff {Bx ; e(x) ∈ Π} is a cover. (1.4)

The Hausdorff dimension of ∂T is defined to be

dim ∂T := sup

{
α ; inf

C a countable cover

∑
B∈C

(diamB)α > 0

}
.

This number is just a disguised version of the branching number.* Indeed,

brT = sup
{
λ ; water can flow through pipe capacities λ−|x|} .

Now use the condition (1.2) to write this as

sup

{
λ ; inf

Π a cutset

∑
e(x)∈Π

λ−|x| > 0

}
.

Replace λ by eα to rewrite it this as

exp sup

{
α ; inf

Π a cutset

∑
e(x)∈Π

e−α|x| > 0

}
,

and then use the correspondence (1.4) between cutsets and covers to write this as

exp sup

{
α ; inf

C a cover

∑
B∈C

(diamB)α > 0

}
.

Now we see that this is nothing but

brT = expdim ∂T .

Soon we’ll see how this helps us to analyze Hausdorff dimension in Euclidean space.

* Historically, the branching number was defined by Lyons (1990) only after Furstenberg (1970)
considered the Hausdorff dimension of the boundaries of trees, which served as the former’s inspiration.
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Chap. 1: Some Highlights 16

§1.9. Capacity.

We have made the definition

electrical current flows from the root of an infinite tree

⇐⇒ (1.5)

there is a flow with finite energy.

A unit flow on a tree T from the root to infinity is a flow where a total of 1 unit flows

from the root. By identifying vertices x with edges e(x), we may identify a unit flow with

a function θ on the vertices of T that is 1 at the root and has the property that for all

vertices x,

θ(x) =
∑
i

θ(yi) ,

where yi are the children of x. The energy of a flow for the conductances that we’ve been

using as our basic example is then ∑
x∈T

θ(x)2λ|x| ,

whence we may write Theorem 1.5 as

brT = sup

{
λ ; there exists a unit flow θ

∑
x∈T

θ(x)2λ|x| <∞
}
. (1.6)

We can also identify unit flows θ on T with Borel probability measures µ on ∂T via

µ(Bx) = θ(x)

(see Section 14.4). A bit of algebra (Proposition 15.1) will show that (1.6) is equivalent to

brT = exp sup

{
α ; ∃ a probability measure µ on ∂T

∫ ∫
dµ(ξ) dµ(η)

d(ξ, η)α
<∞

}
.

For α > 0, define the α-capacity of ∂T to be the reciprocal of the minimum energy of a

unit flow for λ = eα. When we express this purely in terms of probability measures on the

boundary, this will turn out to be the same as the following definition:

capα(∂T )
−1 := inf

{∫ ∫
dµ(ξ) dµ(η)

d(ξ, η)α
; µ a probability measure on ∂T

}
.

Then statement (1.5) says that for α > 0,

random walk with parameter λ = eα is transient ⇐⇒ capα(∂T ) > 0 . (1.7)
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§10. Embedding Trees into Euclidean Space 17

It follows from Theorem 1.7 that

the critical value of α for positivity of capα(∂T ) is dim ∂T . (1.8)

Theorem 1.8 told us that these same critical values for random walk, electrical net-

works, Hausdorff dimension, or capacity are also critical for percolation. But it did not

tell us what happens at the critical value, unlike, say, (1.7) does for random walk. This is

more subtle to analyze for percolation, but is also known (Lyons, 1992):

Theorem 1.9.* (Tree Percolation and Capacity) For α > 0, percolation with

parameter p = e−α yields an infinite component a.s. iff capα(∂T ) > 0. Moreover,

capα(∂T ) ≤ P[the component of the root is infinite] ≤ 2 capα(∂T ) .

Although this appears rather abstract, it is very useful. First of all, when T is spher-

ically symmetric and p = e−α, we can calculate the capacities easily (Exercise 15.1):

capα(∂T ) =

(
1 + (1− p)

∞∑
n=1

1

pn|Tn|

)−1

.

Second, one can use this theorem in combination with (1.7); this allows us to translate

problems freely between the domains of random walks and percolation (Lyons, 1992).

Third, we’ll describe how it can be used to analyze Brownian motion in the next section.

§1.10. Embedding Trees into Euclidean Space.

The results described above, especially those concerning percolation, can be translated

to give interesting results on closed sets in Euclidean space. We will describe only the

simplest such correspondence here.† Let b ≥ 2 be an integer. An interval of the form

[k/bn, (k+1)/bn] for integers k and n is called b-adic of order n. For a closed nonempty

set E ⊆ [0, 1], consider the system of b-adic subintervals of [0, 1]. We’ll associate a tree to

E as follows: Those intervals whose intersection with E is non-empty will form the vertices

of the tree. Two such intervals are connected by an edge iff one contains the other and

the ratio of their lengths is b. The root of this tree is [0, 1]. Denote this tree by T[b](E).

An example is illustrated in Figure 1.10 with b = 4. Were it not for the fact that certain

* This will be proved as Theorem 15.3. The case of the first part of this theorem where all the degrees
are uniformly bounded was shown earlier by Fan (1989, 1990).

† This correspondence was part of Furstenberg’s motivation in 1970 for looking at the dimension of
the boundary of tree.
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Chap. 1: Some Highlights 18

numbers have two representations in base b, we could

identify ∂T[b](E) with E. Because of this multiplicity of

representation, there are other trees whose boundary we

could identify with E. That is, given a tree T , suppose

that we associate to each x ∈ Tn a b-adic interval Ix ⊆
[0, 1] of order n in such a way that |Ix ∩ Iy| ≤ 1 for

|x| = |y|, x ̸= y, and that Ix is contained in Iz when z

is the parent of x. Then the tree T codes the closed

set E :=
∩
n≥0

∪
x∈Tn

Ix. The difference between ∂T

and ∂T[b](E) is at most countable. As we will see, this

implies, e.g., that these two boundaries have the same

Hausdorff dimension.

  0 1

Figure 1.10.

Hausdorff dimension is defined for subsets of [0, 1] just as we defined it for ∂T : A

cover of E is a collection C of sets whose union contains E, and

dimE := sup

{
α ; inf

C a cover of E

∑
B∈C

(diamB)α > 0

}
,

where diamB denotes the (Euclidean) diameter of E. When T codes E, covers of ∂T

by sets of the form Bx (as in (1.3)) correspond to covers of E by b-adic intervals, but

of diameter b−|x|, rather than e−|x|. One can show that restricting to covers of E by

b-adic intervals does not change the computation of Hausdorff dimension, whence we may

conclude (compare the calculation at the end of Section 1.8) that

dimE =
dim ∂T

log b
= logb(brT ) . (1.9)

Example 1.10. Let E be the Cantor middle-thirds set. If b = 3, then the binary tree

codes E (when the obvious 3-adic intervals are associated to the binary tree), whence (1.9)

tells us that the Hausdorff dimension of E is log3 2 = log 2/ log 3. If we use a different

base, b, to code E by a tree T , we will have brT = blog3 2.

Capacity in Euclidean space is also defined as we defined it on the boundary of a tree:

(capαE)−1 := inf

{∫ ∫
dµ(x) dµ(y)

|x− y|α
; µ a probability measure on E

}
.

It was shown by Benjamini and Peres (1992) and Pemantle and Peres (1995b) (see Sec-

tion 15.3) that when T codes E,

1

2
capαE ≤ 1

1− b−α
capα log b∂T ≤ 3b capαE . (1.10)
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§12. Collected In-Text Exercises 19

This means that the percolation criterion Theorem 1.9 can be used in Euclidean space.

This, and similar extensions, will allow us in Section 15.4 to analyze Brownian motion

in Rd by replacing the path of Brownian motion by an “intersection-equivalent” random

fractal that is much easier to analyze, being an embedding of a Galton-Watson tree. This

will allow us to determine whether Brownian motion has double points, triple points, etc.,

in a very easy fashion.

§1.11. Notes.

Other recent books that cover material related to the topics of this book include Probability on
Graphs by Geoffrey Grimmett, Reversible Markov Chains and Random Walks on Graphs by David
Aldous and Jim Fill (preliminary version online), Markov Chains and Mixing Times by David A.
Levin, Yuval Peres, and Elizabeth L. Wilmer, Random Trees: An Interplay Between Combinatorics
and Probability by Michael Drmota, A Course on the Web Graph by Anthony Bonato, Random
Graph Dynamics by Rick Durrett, Complex Graphs and Networks by Fan Chung and Linyuan Lu,
The Random-Cluster Model by Geoffrey Grimmett, Superfractals by Michael Fielding Barnsley,
Introduction to Mathematical Methods in Bioinformatics by Alexander Isaev, Gaussian Markov
Random Fields by H̊avard Rue and Leonhard Held, Conformally Invariant Processes in the Plane
by Gregory F. Lawler, Random Networks in Communication by Massimo Franceschetti and Ronald
Meester, Percolation by Béla Bollobás and Oliver Riordan, Probability and Real Trees by Steven
Evans, Random Trees, Lévy Processes and Spatial Branching Processes by Thomas Duquesne and
Jean-François Le Gall, Combinatorial Stochastic Processes by Jim Pitman, Random Geometric
Graphs by Mathew Penrose, Random Graphs by Béla Bollobás, Random Graphs by Svante Janson,
Tomasz  Luczak, and Andrzej Ruciński, Phylogenetics by Charles Semple and Mike Steel, Stochastic
Networks and Queues by Philippe Robert, Random Walks on Infinite Graphs and Groups by
Wolfgang Woess, Random Walk: A Modern Introduction by Gregory F. Lawler and Vlada Limic,
Percolation by Geoffrey Grimmett, Stochastic Interacting Systems: Contact, Voter and Exclusion
Processes by Thomas M. Liggett, and Discrete Groups, Expanding Graphs and Invariant Measures
by Alexander Lubotzky.

§1.12. Collected In-Text Exercises.

1.1. Let T be an infinite locally finite tree.

(a) (Kőnig’s Lemma) Show that ∂T ̸= ∅.

(b) Show that ∂T is compact.
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Figure 1.11. A schematic representation of a tree
with branching number 1 and growth rate

√
2.

§1.13. Additional Exercises.

1.2. Show that brT = grT when T is a spherically symmetric tree.

1.3. Here we’ll look more closely at the joining construction of Example 1.3. We will put two trees
together such that br (T (1)∨T (2)) = 1, yet at the same time, gr (T (1)∨T (2)) > 1. Let nk ↑ ∞. Let

T (1) (resp., T (2)) be a tree such that x has 1 child (resp., 2 children) for n2k ≤ |x| ≤ n2k+1 and 2
(resp., 1) otherwise; this is shown schematically in Figure 1.11. If nk increases sufficiently rapidly,
then brT (1) = brT (2) = 1, so br (T (1)∨T (2)) = 1. Prove that if ⟨nk⟩ increases sufficiently rapidly,
then gr (T (1) ∨ T (2)) =

√
2. Furthermore, show that the set of possible values of gr (T (1) ∨ T (2))

over all sequences ⟨nk⟩ is [
√

2, 2].

1.4. Complete Example 1.4 by showing that when λ−n is the conductance of edges at distance n
from the root of a binary tree T , current does not flow for λ ≥ 2.
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Chapter 2

Random Walks and Electric Networks

The two topics of the title of this chapter do not sound related to each other, but,

in fact, they are intimately connected in several extraordinarily useful ways. This is a

discrete version of profound and detailed connections between continuous potential theory

and Brownian motion, which we describe briefly in Section 2.9. The next chapter applies

most of our work here to particularly interesting classes of networks. For example, we’ll

prove that the critical parameter λ separating transience from recurrence for the biased

random walk RWλ on a general tree is equal to the branching number of the tree (as

mentioned in Theorem 1.7). Then Chapter 4 explains a marvelous link to a third topic,

uniform spanning trees. Later, in Chapter 9, we examine some of the subtleties inherent in

infinite electrical networks. Those ideas are then combined in Chapter 10 with the web of

ideas in Chapter 4 to study the analogues of uniform spanning trees in infinite networks.

Our principal interest in this chapter centers around transience and recurrence of

irreducible reversible Markov chains, otherwise known as network-based random walks.

Although we develop mathematically rigorous tools from electrical network theory for this

purpose, these tools will have the added benefit of allowing us to estimate hitting and

cover times in finite networks. They also give variances for a field of Gaussian random

variables that is connected to the network; this field is known variously as the canonical

Gaussian field or the discrete Gaussian free field. Techniques from the linear algebra of

inner-product spaces give electrical network theory a rich structure, which will be extended

in Chapter 9. Many supplementary results are in the exercises at the end of the chapter.

§2.1. Circuit Basics and Harmonic Functions.

If a Markov chain starts at a state x, how can we determine whether it is bound to

visit another given state a, i.e., whether the chance that it ever visits a is 1 or is less than

1?

Our theory will apply only to reversible Markov chains, where we call a Markov chain

reversible if there is a positive function x 7→ π(x) on the state space such that the
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Chap. 2: Random Walks and Electric Networks 22

transition probabilities satisfy π(x)p(x, y) = π(y)p(y, x) for all pairs of states x, y. (Such

a function π(•) will then provide a stationary measure: see Exercise 2.1. Note that π(•) is

not generally a probability measure.) In this case, make a graph G (possibly with loops)

by taking the states of the Markov chain for the vertices of G and joining two vertices x,

y by an edge when p(x, y) > 0. Assign weight

c(x, y) := π(x)p(x, y) (2.1)

to that edge; note that the condition of reversibility ensures that this weight is the same

no matter in what order we take the endpoints of the edge. With this network in hand,

the Markov chain may be described as a random walk on G: when the walk is at a vertex

x, it chooses randomly among the vertices adjacent to x with transition probabilities

proportional to the weights of the edges incident to x. Conversely, every connected graph

with (positive) weights on the edges such that the sum of the weights incident to every

vertex is finite gives rise to a random walk with transition probabilities proportional to

the weights. Such a random walk is an irreducible reversible Markov chain: define π(x) to

be the sum of the weights incident to x.*

The most well-known example is gambler’s ruin. A gambler needs $n but has only

$k (1 ≤ k ≤ n − 1). He plays games that give him chance p of winning $1 and chance

q := 1 − p of losing $1 each time. When his fortune is either $n or 0, he stops. What is

his chance of ruin (i.e., of reaching 0 before n)? We will answer this in Example 2.4 by

using the following weighted graph. The vertices are {0, 1, 2, . . . , n}, the edges are between
consecutive integers, and the weights are c(i, i+ 1) = c(i+ 1, i) = (p/q)i.

▷ Exercise 2.1.

(Reversible Markov Chains) This exercise contains some background information and

facts that we will use about reversible Markov chains. Additional background on Markov

chains, not necessarily reversible, is in Exercises 2.40 and 2.41.

(a) Show that if a Markov chain is reversible, then ∀x1, x2, . . . , xn,

π(x1)

n−1∏
i=1

p(xi, xi+1) = π(xn)

n−1∏
i=1

p(xn+1−i, xn−i) ,

* Suppose that we consider an edge e of G to have length c(e)−1. Run a Brownian motion on G and
observe it only when it reaches a vertex different from the previous one. Then we see the random walk
on G just described (if we ignore the fact that the times between observations vary). There are several
equivalent ways to define rigorously Brownian motion on G; one way is described in Section 2.9. See
Georgakopoulos and Winkler (2011) for an interesting analysis of Brownian motion on finite networks.
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§1. Circuit Basics and Harmonic Functions 23

whence
∏n−1
i=1 p(xi, xi+1) =

∏n−1
i=1 p(xn+1−i, xn−i) if x1 = xn: the chance of traversing

a cycle is the same in either direction. This last equation also characterizes reversibil-

ity.

(b) Let ⟨Xn⟩ be a random walk on a network G and let x and y be two vertices in G. Let

P be a path from x to y and P ′ be its reversal, a path from y to x. Show that

Px

[
⟨Xn ; n ≤ τy⟩ = P

∣∣ τy < τ+x
]
= Py

[
⟨Xn ; n ≤ τx⟩ = P ′ ∣∣ τx < τ+y

]
,

where τw denotes the first time the random walk visits w, τ+w denotes the first time

after 0 that the random walk visits w, and Pu denotes the law of random walk started

at u. In words, paths between two states that don’t return to the starting point and

stop at the first visit to the endpoint have the same distribution in both directions of

time.

(c) Consider a random walk on a network G that is either transient or is stopped on the

first visit to a set of vertices Z. Let G (x, y) be the expected number of visits to y for

a random walk started at x; if the walk is stopped at Z, we count only those visits

that occur strictly before visiting Z. Show that for every pair of vertices x and y,

π(x)G (x, y) = π(y)G (y, x) .

(d) Show that random walk on a connected network G is positive recurrent (i.e., has a

stationary probability distribution, which is therefore unique) iff
∑
x,y c(x, y) <∞, in

which case the stationary probability distribution is proportional to π(•). Show that if

the random walk is not positive recurrent, then π(•) is a stationary infinite measure.

Although we are interested ultimately in recurrence or transience of infinite networks,

we begin by studying random walks on finite networks. LetG be a finite connected network,

x a vertex of G, and A, Z disjoint subsets of vertices of G. Let τA be the first time that

the random walk visits (“hits”) some vertex in A; if the random walk happens to start in

A, then τA = 0. Occasionally, we will use τ+A , which is the first time after 0 that the walk

visits A; this is different from τA only when the walk starts in A. Usually A and Z will

be singletons. Often, all the edge weights are equal; we call the random walk in this case

simple random walk . When a graph is given without weights, we take the weights to

be identically 1 as a default.

Consider the probability that the random walk visits A before it visits Z as a function

of its starting point x:

F (x) := Px[τA < τZ ] . (2.2)
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The key idea here is to let x vary, even if we are interested in a particular x. Recall that

↾ indicates the restriction of a function to a set. Clearly F ↾A ≡ 1, F ↾Z ≡ 0, and for

x ̸∈ A ∪ Z,

F (x) =
∑
y

Px[first step is to y]Px[τA < τZ | first step is to y]

=
∑
x∼y

p(x, y)F (y) =
1

π(x)

∑
x∼y

c(x, y)F (y) ,

where x ∼ y indicates that x, y are adjacent in G. In the special case of simple random

walk, this equation becomes

F (x) =
1

deg x

∑
x∼y

F (y) ,

where deg x is the degree of x, i.e., the number of edges incident to x. That is, F (x) is

the average of the values of F at the neighbors of x. In general, this is still true, but the

average is taken with weights.

This averaging property is so important that it has a name: a function f is harmonic

at x when

f(x) =
1

π(x)

∑
x∼y

c(x, y)f(y) .

If f is harmonic at each point of a set W , then we say that f is harmonic on W . Harmonic

functions satisfy a maximum principle. To state it, we use the following notation: For

W ⊆ V(G), write W for the set of vertices that are either in W or are adjacent to some

vertex in W .

Maximum Principle. Let G be a finite or infinite network. If H is a connected subgraph

of G, f :V(G) → R is a function that is harmonic on V(H), and the supremum of f on

V(G) is achieved at some vertex of H, then f is constant on V(H).

Proof. Let K := {y ∈ V(G) ; f(y) = sup f}. Note that if x ∈ V(H) ∩K, then {x} ⊆ K

because f is harmonic at x. Since H is connected and V(H) ∩ K ̸= ∅, it follows that

K ⊇ V(H) and therefore that K ⊇ V(H). ◀

This leads to the

Uniqueness Principle. Let G = (V,E) be a finite or infinite connected network. Let

W be a finite proper subset of V. If f, g:V → R are two functions that are both harmonic

on W and agree off W (i.e., f↾(V \W ) = g↾(V \W )), then f = g.

Proof. Let h := f − g. We claim that h ≤ 0. This suffices to establish the corollary since

then h ≥ 0 by symmetry, whence h ≡ 0.
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Now h = 0 off W , so if h ̸≤ 0, then h is positive somewhere on W . Since W is finite, h

achieves its overall supremum at some point x ∈W . Let H be the connected component of

the induced graph G↾W :=
(
W,E∩(W ×W )

)
that contains x. According to the Maximum

Principle, h is a positive constant on V(H). In particular, h > 0 on the non-empty set

V(H) \ V(H). However, V(H) \ V(H) ⊆ V \W , whence h = 0 on V(H) \ V(H). This is a

contradiction. ◀

Here are two consequences of the Uniqueness Principle: (1) The harmonicity of the

function x 7→ Px[τA < τZ ] on a finite network (together with its values where it is not

harmonic) characterizes this function. (2) If f , f1, and f2 are harmonic on some finite

proper subset W and a1, a2 ∈ R with f = a1f1 + a2f2 on V \W , then f = a1f1 + a2f2

everywhere. This is one form of the superposition principle .

Given a function defined on a subset of vertices of a network, the Dirichlet problem

asks whether the given function can be extended to all vertices of the network so as to be

harmonic wherever it was not originally defined. The answer is often yes:

Existence Principle. Let G = (V,E) be a finite or infinite network. If W ⊊ V and

f0:V \W → R is bounded, then ∃f :V → R such that f↾(V \W ) = f0 and f is harmonic

on W .

Proof. For any starting point x of the network random walk, let X be the first vertex in

V \W visited by the random walk if V \W is indeed visited. Let Y := f0(X) when V \W
is visited and Y := 0 otherwise. It is easily checked that f(x) := Ex[Y ] works, by using

the same method as we used to see that the function F of (2.2) is harmonic. ◀

An example is shown in Figure 2.1, where the function was specified to be 1 at two

vertices, 0.5 at another, and 0 at a fourth; the function is harmonic elsewhere.

The function F of (2.2) is the particular case of the Existence Principle where W =

V \ (A ∪ Z), f0↾A ≡ 1, and f0↾Z ≡ 0.

For finite networks, we could have immediately deduced the Existence Principle from

the Uniqueness Principle: The Dirichlet problem on a finite network consists of a finite

number of linear equations, one for each vertex in W . Since the number of unknowns is

equal to the number of equations, the Uniqueness Principle implies the Existence Principle.

In order to study the solution to the Dirichlet problem, especially for a sequence of

subgraphs of an infinite graph, we will discover that electrical networks are wonderfully

useful. Electrical networks, of course, have a physical meaning whose intuition is useful to

us, but also they can be used as a rigorous mathematical tool. We now spend the rest of

the chapter developing and exploiting this tool.
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Figure 2.1. A harmonic function on a 40×40 square
grid with 4 specified values where it is not harmonic.

Mathematically, an electrical network is just a weighted graph.* But now we call the

weights of the edges conductances; their reciprocals are called resistances. (Note that

later, we will encounter effective conductances and resistances; these are not the same.)

We denote c(x, y)−1 by r(x, y). The reason for this and more new terminology is that not

only does it match physics, but the physics can aid our intuition. We will carefully define

everything in pure mathematical terms, but also give a little of the physical background.

Whenever we speak of physics, we will use the symbol ℧℧ in the margin to indicate that it

is merely for intuition and is not used in any proofs whatsoever. Given two subsets A and

Z of vertices of a network, a voltage function is a function on the vertices of the network

that is harmonic at all x /∈ A∪Z. Usually, the voltage will be specified to be 1 on A and 0

on Z. For example, our hitting probability function F , defined in (2.2), is such a voltage

function. Given a voltage function v, we define the associated current function i on the

edges by

i(x, y) := c(x, y)
[
v(x)− v(y)

]
.

Notice that i(x, y) = −i(y, x) and that current flows in the direction of decreasing voltage,

by which we mean that i(x, y) > 0 iff v(x) > v(y). Notice also that whenever v is harmonic

* We are ignoring capacitors and inductors, whose usefulness to probability theory is not clear.
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§1. Circuit Basics and Harmonic Functions 27

at a vertex x, we have

0 = v(x)
∑
x∼y

c(x, y)−
∑
x∼y

c(x, y)v(y) =
∑
x∼y

i(x, y) .

This property is sufficiently important that it gets a name in a broader context. Namely,

a function θ on ordered pairs of neighboring vertices is called a flow between A and Z if

θ(x, y) = −θ(y, x) for all neighbors x, y and
∑
y∼x θ(x, y) = 0 for all x /∈ A ∪ Z.

This definition of current and this property of current are usually called “laws”,

namely, the following.

Ohm’s Law: If x ∼ y, the current i(x, y) from x to y satisfies

v(x)− v(y) = i(x, y)r(x, y) .

Kirchhoff’s Node Law: The current is a flow between A and Z.

Now if we sum the differences of a function, such as the voltage v, on the edges of a

cycle, we get 0. Thus, by Ohm’s law, we deduce

Kirchhoff’s Cycle Law: If x1 ∼ x2 ∼ · · · ∼ xn ∼ xn+1 = x1 is a cycle, then

n∑
k=1

i(xk, xk+1)r(xk, xk+1) = 0 .

One can also deduce Ohm’s law from Kirchhoff’s two laws, in other words, a flow that

satisfies Kirchhoff’s Cycle Law is a current. A somewhat more general statement is in the

following exercise.

▷ Exercise 2.2.

Suppose that an antisymmetric function j (meaning that j(x, y) = −j(y, x)) on the edges

of a finite connected network satisfies Kirchhoff’s cycle law and satisfies Kirchhoff’s node

law in the form
∑
x∼y j(x, y) = 0 for all x ∈W . Show that j is the current corresponding

to some voltage function whose values are specified off W and that the voltage function is

unique up to an additive constant.
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Chap. 2: Random Walks and Electric Networks 28

The remainder of this section gives some physical background for this terminology.℧℧
Edges of the network are made of conducting wires. We hook up a battery or batteries

between A and Z so that the voltage at every vertex in A is 1 and in Z is 0 (or more

generally, so that the voltages on V \ W are given by some function f0). Sometimes,

voltages are called potentials or potential differences. Voltages v are then established

at every vertex and current i runs through the edges. These functions are observed in

experiments to satisfy Ohm’s Law and Kirchhoff’s Law. Physically, Ohm’s law, which is

usually stated as v = ir in engineering, is an empirical statement about linear response

to voltage differences—certain components obey this law over a wide range of voltage

differences. Kirchhoff’s node law expresses the fact that charge does not build up at a

node (current being the passage rate of charge per unit time). If we count the currents in

the wires corresponding to the batteries, then the sum of the currents at every vertex is 0,

not merely at x /∈ A ∪ Z.

§2.2. More Probabilistic Interpretations.

Suppose that A = {a} is a singleton. What is the chance that a random walk starting

at a will hit Z before it returns to a? Write this as

P[a→ Z] := Pa[τZ < τ+a ] .

Impose a voltage of v(a) at a and 0 on Z. Since v(•) is linear in v(a) by the superposition

principle, we have that Px[τa < τZ ] = v(x)/v(a), whence

P[a→ Z] =
∑
x

p(a, x)
(
1−Px[τa < τZ ]

)
=
∑
x

c(a, x)

π(a)

[
1− v(x)

v(a)

]
=

1

v(a)π(a)

∑
x

c(a, x)[v(a)− v(x)] =
1

v(a)π(a)

∑
x

i(a, x) .

In other words,

v(a) =

∑
x i(a, x)

π(a)P[a→ Z]
. (2.3)

Since
∑
x i(a, x) is the total amount of current flowing into the circuit at a (by

definition), we may regard the entire circuit between a and Z as a single conductor of

effective conductance

Ceff := π(a)P[a→ Z] =: C (a↔ Z) , (2.4)
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where the last notation indicates the dependence on a and Z. (Recall that π(•) is not

generally a probability measure. If we need to indicate the dependence on G, we will write

C (a ↔ Z;G).) The similarity to (2.1) can provide a good mnemonic, but the analogy

should not be pushed too far. We define the effective resistance R(a ↔ Z) to be the

reciprocal of the effective conductance; in case a ∈ Z, then we also define R(a↔ Z) := 0.

One answer to our question above is thus P[a → Z] = C (a ↔ Z)/π(a). In Sections 2.3

and 2.4, we will see some ways to compute effective conductances.

Now the number of visits to a before hitting Z is a geometric random variable with

mean P[a → Z]−1 = π(a)R(a ↔ Z). According to (2.3), this can also be expressed as

π(a)v(a) when there is unit current flowing from a to Z and the voltage is 0 on Z. This

generalizes as follows. Let GZ(a, x) be the expected number of visits to x strictly before

hitting Z by a random walk started at a. Thus, GZ(a, x) = 0 for x ∈ Z and

GZ(a, a) = P[a→ Z]−1 = π(a)R(a↔ Z) . (2.5)

The function GZ(•, •) is the Green function for the random walk absorbed (or “killed”)

on Z. By definition of current, scaling the voltage by multiplying all values by a constant

also scales the current by the same factor. While in the preceding section, it was useful to

take the voltage to have values 0 and 1 at special vertices, here, it will be useful to scale

so that the total current flow is 1, i.e., the current is a unit flow .

Proposition 2.1. (Green Function as Voltage) Let G be a finite connected network.

When a voltage is imposed on {a} ∪ Z so that a unit current flows from a to Z and the

voltage is 0 on Z, then the voltage function satisfies v(x) = GZ(a, x)/π(x) for all x.

Proof. We have just shown that this is true for x ∈ {a} ∪Z, so it suffices to establish that

GZ(a, x)/π(x) is harmonic elsewhere. But by Exercise 2.1, we have that GZ(a, x)/π(x) =

GZ(x, a)/π(a) and the harmonicity of GZ(x, a) is established just as for the function of

(2.2). ◀

Given that we now have two probabilistic interpretations of voltage, we naturally

wonder whether current has a probabilistic interpretation. We might guess one by the℧℧
following unrealistic but simple model of electricity: positive particles enter the circuit at

a, they do Brownian motion on G (being less likely to pass through small conductors) and,

when they hit Z, they are removed. The net flow rate of particles across an edge would

then be the current on that edge. It turns out that in our mathematical model, this is

basically correct:

Proposition 2.2. (Current as Edge Crossings) Let G be a finite connected network.

Start a random walk at a and absorb it when it first visits Z. For x ∼ y, let Sxy be the
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number of transitions from x to y. Then E[Sxy] = GZ(a, x)p(x, y) and E[Sxy − Syx] =

i(x, y), where i is the current in G when a potential is applied between a and Z in such an

amount that unit current flows in at a.

Note that we count a transition from y to x when y ̸∈ Z but x ∈ Z, although we do

not count this as a visit to x in computing GZ(a, x).

Proof. We have

E[Sxy] = E

[ ∞∑
k=0

1[Xk=x,Xk+1=y]

]
=

∞∑
k=0

P[Xk = x, Xk+1 = y]

=

∞∑
k=0

P[Xk = x]p(x, y) = E

[ ∞∑
k=0

1[Xk=x]

]
p(x, y) = GZ(a, x)p(x, y) .

Hence by Proposition 2.1, we have

∀x, y E[Sxy − Syx] = GZ(a, x)p(x, y)− GZ(a, y)p(y, x)

= v(x)π(x)p(x, y)− v(y)π(y)p(y, x)

= [v(x)− v(y)]c(x, y) = i(x, y) . ◀

Effective conductance is a key quantity because of the following relationship to the

question of transience and recurrence when G is infinite. For an infinite network G, we

assume that

∀x
∑
x∼y

c(x, y) <∞ , (2.6)

so that the associated random walk is well defined. (Of course, this is true when G is

locally finite—i.e., the number of edges incident to every given vertex is finite.) It will

be convenient to allow more than one edge between a given pair of vertices: each such

edge has its own conductance. We’ll also allow loops (edges with only one endpoint), but

these may be ignored for our present purposes since they only delay the random walk.

Strictly speaking, then, G may be a multigraph , not a graph. When a random walk

moves from x to y in a multigraph that has several edges connecting x to y, then we think

of the walk as moving along one of those edges, chosen with probability proportional to its

conductance. Thus, the multigraph form of Proposition 2.2 is E[Se] = GZ(a, e−)p(e) and

E[Se − S−e] = i(e). However, we will usually ignore the extra notational complications

that arise for multigraphs. In fact, we have not yet used anywhere that G has only finitely

many edges:
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▷ Exercise 2.3.

Verify that Propositions 2.1 and 2.2 are valid when the number of edges is infinite but the

number of vertices is finite.

The way we approach infinite networks in this chapter is by taking large finite sub-

graphs. More precisely, for an infinite network G, let ⟨Gn⟩ be any sequence of finite

subgraphs of G that exhaust G, i.e., Gn ⊆ Gn+1 and G =
∪
Gn. Each edge in Gn is an

edge in G, so we simply give it the same conductance it has in G. We also assume that

Gn is the graph induced in G by V(Gn). Let Zn be the set of vertices in G \Gn. Let GW
n

be the graph obtained from G by identifying Zn to a single vertex, zn, and then removing

loops (but keeping multiple edges). This graph will have finitely many vertices but may

have infinitely many edges even when loops are deleted if some vertex of Gn has infinite

degree. Given a network random walk on G, if we stop it the first time it reaches Zn,

then we obtain a network random walk on GW
n until it reaches zn. Now for every a ∈ G,

the events [a → Zn] are decreasing in n, so the limit limnP[a → Zn] is the probability of

never returning to a in G—the escape probability from a. This is positive iff the random

walk on G is transient. Hence by (2.4), limn→∞ C (a ↔ zn;G
W
n ) > 0 iff the random walk

on G is transient. We call limn→∞ C (a ↔ zn) the effective conductance from a to ∞
in G and denote it by C (a ↔ ∞) or, if a is understood, by Ceff . Its reciprocal, effective

resistance , is denoted Reff . We have shown:

Theorem 2.3. (Transience and Effective Conductance) Random walk on an infinite

connected network is transient iff the effective conductance from any of its vertices to

infinity is positive.

▷ Exercise 2.4.

For a fixed vertex a in G, show that limn C (a↔ Zn) is the same for every sequence ⟨Gn⟩
of induced subgraphs that exhausts G.

▷ Exercise 2.5.

When G is finite but A is not a singleton, define C (A ↔ Z) to be C (a ↔ Z) if all the

vertices in A were to be identified to a single vertex, a. Show that if voltages are applied at

the vertices of A∪Z so that v↾A and v↾Z are constants, then v↾A−v↾Z = IAZR(A↔ Z),

where IAZ :=
∑
x∈A

∑
y i(x, y) is the total amount of current flowing from A to Z.
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§2.3. Network Reduction.

How do we calculate effective conductance of a network? Since we want to replace

a network by an equivalent single conductor, it is natural to attempt this by replacing

more and more of G through simple transformations. There are, in fact, three such simple

transformations, series, parallel, and star-triangle. Remarkably, these three transforma-

tions suffice to reduce all finite planar networks by a theorem of Epifanov; see Truemper

(1989).

I. Series Law. Two resistors* r1 and r2 in series are equivalent to a single resistor r1+r2.

In other words, if w ∈ V(G) \ (A ∪ Z) is a node of degree 2 with neighbors u1, u2 and we

replace the edges (ui, w) by a single edge (u1, u2) having resistance r(u1, w) + r(w, u2),

then all potentials and currents in G \ {w} are unchanged and the current that flows from

u1 to u2 equals i(u1, w).

     u1 w u2

Proof. It suffices to check that Ohm’s and Kirchhoff’s laws are satisfied on the new network

for the voltages and currents given. This is easy. ◀

▷ Exercise 2.6.

Give two harder but instructive proofs of the series equivalence: Since voltages determine

currents, it suffices to check that the voltages are as claimed on the new network G′. (1)

Show that v↾
(
V(G) \ {w}

)
is harmonic on V(G′) \ (A ∪ Z). (2) Use the “craps principle”

(Pitman (1993), p. 210) to show that Px[τA < τZ ] is unchanged for x ∈ V(G) \ {w}.

Example 2.4. Consider simple random walk on Z. Let 0 ≤ k ≤ n. What is Pk[τ0 < τn]?

It is the voltage at k when there is a unit voltage imposed at 0 and zero voltage at n. If

we replace the resistors in series from 0 to k by a single resistor with resistance k and the

resistors from k to n by a single resistor of resistance n− k, then the voltage at k does not

change. But now this voltage is simply the probability of taking a step to 0, which is thus

(n− k)/n.

For the more general gambler’s ruin, rather than simple random walk, we have the

conductances c(i, i + 1) = (p/q)i. The replacement of edges in series by single edges

now gives one edge from 0 to k of resistance
∑k−1
i=0 (q/p)

i and one edge from k to n of

* A resistor r is an edge with resistance r. We have drawn such edges using the squiggly notation
common to physics, but this only indicates that they have weights.
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resistance
∑n−1
i=k (q/p)

i. The probability of ruin is therefore
∑n−1
i=k (q/p)

i
/∑n−1

i=0 (q/p)
i =

[(p/q)n−k − 1]/[(p/q)n − 1].

II. Parallel Law. Two conductors† c1 and c2 in parallel are equivalent to one conductor

c1 + c2. In other words, if two edges e1 and e2 that both join vertices w1, w2 ∈ V(G) are

replaced by a single edge e joining w1, w2 of conductance c(e) := c(e1) + c(e2), then all

voltages and currents in G\{e1, e2} are unchanged and the current i(e) equals i(e1)+ i(e2)

(if e, e1 and e2 have the same orientations, i.e., same tail and head). This transformation

is valid even for an infinite number of edges in parallel.

 

 

 

 

 

 

 

 

w1 w2

e1

e2

Proof. Check Ohm’s and Kirchhoff’s laws with i(e) := i(e1) + i(e2). ◀

▷ Exercise 2.7.

Give two more proofs of the parallel equivalence as in Exercise 2.6.

Before explaining the star-triangle transformation, we give two amusing examples of

the series and parallel transformations, as well as a useful general consequence.

Example 2.5. Suppose that each edge in the following network has equal conductance.

What isP[a→ z]? We may assume that the edge conductances are all 1, since the probabil-

ity is not affected by a change in scale of the conductances. Following the transformations

indicated in the figure, we obtain C (a↔ z) = 7/12, so that

P[a→ z] =
C (a↔ z)

π(a)
=

7/12

3
=

7

36
.

† A conductor c is an edge with conductance c.

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



Chap. 2: Random Walks and Electric Networks 34

1

1
1

1
1

1

1/4

1/3

1

1

1

1

1
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1

1

1
1

1
1
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1

a z a
z

a za z

a z

1

7/12

1/2

1/2

1

1

1/2

1/2

1/2

1/2

1/2

Note that in any network G with voltage applied from a to z, if it happens that

v(x) = v(y), then we may identify x and y to a single vertex, obtaining a new network

G/{x, y} in which the voltages at all vertices are the same as in G.

Example 2.6. What is P[a→ z] in the following network?

1

1

1

1

1

1

1a z

There are 2 ways to deal with the vertical edge:

(1) Remove it: by symmetry, the voltages at its endpoints are equal, whence no current

flows on it.

(2) Contract it, i.e., remove it but combine its endpoints into one vertex (we could

also combine the other two unlabelled vertices with each other): the voltages are the same,

so they may be combined.

In either case, we get C (a↔ z) = 2/3, whence P[a→ z] = 1/3.
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▷ Exercise 2.8.

Let (G, c) be a network. A network automorphism of (G, c) is a map ϕ:G → G that

is a bijection of the vertex set with itself and a bijection of the edge set with itself such

that if x and e are incident, then so are ϕ(x) and ϕ(e) and such that c(e) = c
(
ϕ(e)

)
for all

edges e. Suppose that (G, c) is spherically symmetric about o, meaning that if x and y

are any two vertices at the same distance from o, then there is an automorphism of (G, c)

that leaves o fixed and that takes x to y. Let Cn be the sum of c(e) over all edges e with

d(e−, o) = n− 1 and d(e+, o) = n. Show that

R(o↔ ∞) =
∑
n≥1

1

Cn
,

whence the network random walk on G is transient iff∑
n≥1

1

Cn
<∞ .

III. Star-Triangle Law. The configurations below are equivalent when

∀i ∈ {1, 2, 3} c(w, ui)c(ui−1, ui+1) = γ ,

where indices are taken mod 3 and

γ :=

∏
i c(w, ui)∑
i c(w, ui)

=

∑
i r(ui−1, ui+1)∏
i r(ui−1, ui+1)

.

We won’t use this equivalence except in Example 2.7 and the exercises. This is also called

the “Y-∆” or “Wye-Delta” transformation.

 

 

 

 

 

 

 

 

 

 

 

 

 

w

u1 u2

u3

u1 u2

u3

▷ Exercise 2.9.

Give at least one proof of the star-triangle equivalence.
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Actually, there is a fourth trivial transformation: we may prune (or add) vertices of

degree 1 (and attendant edges) as well as loops.

▷ Exercise 2.10.

Find a (finite) graph that can’t be reduced to a single edge by the four transformations

pruning, series, parallel, and star-triangle.

Either of the transformations star-triangle or triangle-star can also be used to reduce

the network in Example 2.6.

Example 2.7. What is Px[τa < τz] in the following network? Following the transforma-

tions indicated in the figure, we obtain

Px[τa < τz] =
20/33

20/33 + 15/22
=

8

17
.

a

x

z a

z

x

z

x

az

x

a

1

1/11

1/3

2/11

1/2

1

1

1

1

1

1

1

1

1

1

20/33 15/22

1/11

3/11

1/2

1/3

1

1/3

1/2
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§2.4. Energy.

We now come to another extremely useful concept, energy.* We will begin with some

convenient notation and some facts about this notation. Unfortunately, there is actually a

fair bit of notation. But once we have it all in place, we will be able to quickly reap some

valuable consequences. In particular, we will prove a powerful monotonicity principle due

to Rayleigh: a transient network whose edge conductances are increased remains transient.

This should be contrasted with the lack of monotonicity of return probabilities pn(a, a),

for example, whose summability determines transience.

We will often contract some vertices in a graph, which may produce a multigraph.

When we say that a graph is finite , we mean that V and E are finite. In this section, we

consider only finite networks. Define ℓ2(V) to be the usual real Hilbert space of functions

on V with inner product

(f, g) :=
∑
x∈V

f(x)g(x) .

Since we are interested in flows on E, it is natural to consider that what flows one way

is the negative of what flows the other. From now on, each edge occurs with both

orientations. Thus, define ℓ2−(E) to be the space of antisymmetric functions θ on E

(i.e., θ(−e) = −θ(e) for each edge e) with the inner product

(θ, θ′) :=
1

2

∑
e∈E

θ(e)θ′(e) =
∑
e∈E1/2

θ(e)θ′(e) ,

where E1/2 ⊂ E is a set of edges containing exactly one of each pair e,−e. Since voltage

differences across edges lead to currents, define the coboundary operator d: ℓ2(V) →
ℓ2−(E) by

(df)(e) := f(e−)− f(e+) .

(Note that this is the negative of the more natural definition; but since current flows from

greater to lesser voltage, it is the more useful definition for us.) This operator is clearly

linear. Conversely, given an antisymmetric function on the edges, we are interested in the

net flow out of a vertex, whence we define the boundary operator d∗: ℓ2−(E) → ℓ2(V) by

(d∗θ)(x) :=
∑
e−=x

θ(e) .

This operator is also clearly linear. We use the superscript ∗ because these two operators

are adjoints of each other:

∀f ∈ ℓ2(V) ∀θ ∈ ℓ2−(E) (θ, df) = (d∗θ, f) .

* Although the term “energy” is used for mathematical reasons, the physical concept is actually℧℧
power dissipation.
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▷ Exercise 2.11.

Prove that d and d∗ are adjoints of each other.

One use of this notation is that the calculation left here for Exercise 2.11 need not be

repeated every time it arises—and it arises a lot. Another use is the following compact

forms of the network laws. Let i be a current.

Ohm’s Law: dv = ir, i.e., ∀e ∈ E dv(e) = i(e)r(e) .

Kirchhoff’s Node Law: d∗i(x) = 0 if x /∈ A ∪ Z .

It will be useful to study flows other than current in order to discover a special

property of the current flow. We can imagine water flowing through a network of pipes.

Let θ ∈ ℓ2−(E) be a function, which we think of as a flow. The amount of water flowing

into the network at a vertex a is d∗θ(a). Thus, we call θ ∈ ℓ2−(E) a flow between A to

Z if d∗θ is 0 off of A and Z; if it is non-negative on A and nonpositive on Z, then we say

that θ is a flow from A to Z. The total amount flowing into the network is then∑
a∈A d

∗θ(a); not surprisingly, this is also the total amount flowing out of the network, as

the next lemma shows. We call

Strength(θ) :=
∑
a∈A

d∗θ(a)

the strength of the flow θ. A flow of strength 1 is called a unit flow .

Lemma 2.8. (Flow Conservation) Let G be a finite graph and A and Z be two disjoint

subsets of its vertices. If θ is a flow between A and Z, then∑
a∈A

d∗θ(a) = −
∑
z∈Z

d∗θ(z) .

Proof. We have∑
x∈A

d∗θ(x) +
∑
x∈Z

d∗θ(x) =
∑

x∈A∪Z
d∗θ(x) = (d∗θ,1) = (θ, d1) = (θ,0) = 0

since d∗θ(x) = 0 for x ̸∈ A ∪ Z. ◀

The following consequence will be useful in a moment.

Lemma 2.9. Let G be a finite graph and A and Z be two disjoint subsets of its vertices.

If θ is a flow from A to Z and f↾A, f↾Z are constants α and ζ, respectively, then

(θ, df) = Strength(θ)(α− ζ) .

Proof. We have (θ, df) = (d∗θ, f) =
∑
a∈A d

∗θ(a)α+
∑
z∈Z d

∗θ(z)ζ. Now apply Lemma 2.8.

◀
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When a current i flows through a resistor of resistance r and voltage difference v,℧℧
energy is dissipated at rate P = iv = i2r = i2/c = v2c = v2/r. We are interested in the

total power (= energy per unit time) dissipated.

Notation. Write

(f, g)h := (fh, g) = (f, gh)

and

∥f∥h :=
√

(f, f)h .

Definition. For an antisymmetric function θ, define its energy to be

E (θ) := ∥θ∥2r ,

where r is the collection of resistances.

Thus E (i) = (i, i)r = (i, dv). If i is a unit current flow from A to Z with voltages vA

and vZ that are constant on A and on Z, respectively, then by Lemma 2.9 and Exercise 2.5,

E (i) = vA − vZ = R(A↔ Z) . (2.7)

This will be an important tool to estimate effective resistances.

The inner product (•, •)r is important not only for its squared norm E (•). For example,

we may express Kirchhoff’s laws as follows. Let χe := 1{e} − 1{−e} denote the unit

flow along e represented as an antisymmetric function in ℓ2−(E). Note that for every

antisymmetric function θ and every e, we have

(χe, θ)r = θ(e)r(e) ,

so that (∑
e−=x

c(e)χe, θ
)
r
= d∗θ(x) . (2.8)

Let i be any current.

Kirchhoff’s Node Law: For every vertex x /∈ A ∪ Z, we have(∑
e−=x

c(e)χe, i
)
r
= 0 .
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Kirchhoff’s Cycle Law: If e1, e2, . . . , en is an oriented cycle in G, then( n∑
k=1

χek , i
)
r
= 0 .

Now for our last bit of notation before everything comes into focus, let
∑
e−=x c(e)

χe

be the star at x and let ⋆ denote the subspace in ℓ2−(E) spanned by all the stars. Let

♢ denote the subspace spanned by the cycles
∑n
k=1

χek , where e1, e2, . . . , en forms an

oriented cycle. We call these subspaces the star space and the cycle space of G. These

subspaces are clearly orthogonal to each other; here and subsequently, orthogonality

refers to the inner product (•, •)r. To indicate that we use the inner product (•, •)r on

ℓ2−(E), we write the space as ℓ2−(E, r). Moreover, the sum of ⋆ and ♢ is all of ℓ2−(E, r),

which is the same as saying that only the zero vector is orthogonal to both ⋆ and ♢. To

see that this is the case, suppose that θ ∈ ℓ2−(E, r) is orthogonal to both ⋆ and ♢. Since θ

is orthogonal to ♢, there is a function F such that θ = c dF by Exercise 2.2 (use W := ∅
there). Since θ is orthogonal to ⋆, the function F is harmonic. Since G is finite, the

Uniqueness Principle implies that F is constant on each component of G, whence θ = 0,

as desired.

Thus, Kirchhoff’s Cycle Law says that i, being orthogonal to ♢, is in ⋆. Furthermore,

any i ∈ ⋆ is a current by Exercise 2.2 (let W := {x ; (d∗i)(x) = 0}). Now if θ is any flow

with the same sources and sinks as i, more precisely, if θ is any antisymmetric function

such that d∗θ = d∗i, then θ − i is a sourceless flow, i.e., by (2.8), is orthogonal to ⋆ and

thus is an element of ♢. Therefore, the expression

θ = i+ (θ − i)

is the orthogonal decomposition of θ relative to ℓ2−(E, r) = ⋆⊕ ♢. This hints that the or-

thogonal projection P⋆: ℓ2−(E, r) → ⋆ plays a crucial role in network theory. In particular,

i = P⋆θ (2.9)

and

∥θ∥2r = ∥i∥2r + ∥θ − i∥2r . (2.10)

This leads to the following all-important principle:

Thomson’s Principle. Let G be a finite network and A and Z be two disjoint subsets

of its vertices. Let θ be a flow from A to Z and i be the current flow from A to Z with

d∗i = d∗θ. Then E (θ) > E (i) unless θ = i.

Proof. The result is an immediate consequence of (2.10). ◀
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Note that given θ, the corresponding current i such that d∗i = d∗θ is unique (and

given by (2.9)).

Recall that E1/2 ⊂ E is a set of edges containing exactly one of each pair e,−e. This

gives a convenient orthogonal basis {χe ; e ∈ E1/2} of ℓ2−(E, r); these vectors are not

necessarily unit vectors, as ∥χe∥2r = r(e). What is the matrix of P⋆ in the orthogonal

basis {χe ; e ∈ E1/2}? We have

(P⋆χe, χe
′
)r = (ie, χe

′
)r = ie(e′)r(e′) , (2.11)

where ie is the unit current from e− to e+. Therefore, the matrix coefficient at (e′, e) equals

(P⋆χe, χe
′
)r/(χ

e′ , χe
′
)r = ie(e′) =: Y (e, e′), the current that flows across e′ when a unit

current is imposed between the endpoints of e. This matrix is called the transfer current

matrix . This matrix will be extremely useful for our study of random spanning trees and

forests in Chapters 4 and 10. Since P⋆, being an orthogonal projection, is self-adjoint, we

have (P⋆χe, χe
′
)r = (χe, P⋆χe

′
)r, whence

Y (e, e′)r(e′) = Y (e′, e)r(e) . (2.12)

This is called the reciprocity law .

Recall that the probabilities P[a→ Z] were important to determining whether a net-

work was recurrent or transient. Let’s use our new concepts to analyze these probabilities.

For example, how do they change when an edge is removed from G? when an edge is added?

when the conductance of an edge is changed? These questions are not easy to answer prob-

abilistically, but yield to the ideas we have developed. Since P[a→ Z] = C (a↔ Z)/π(a),

if no edge incident to a is affected, then we need analyze only the change in effective

conductance.

▷ Exercise 2.12.

Show that P[a→ Z] can increase in some situations and decrease in others when an edge

incident to a is removed.

The following powerful principle tells us how effective conductance changes. We use

subscripts to indicate the edge conductances used.

Rayleigh’s Monotonicity Principle. Let G be a connected graph with two assign-

ments, c and c′, of conductances on G with c ≤ c′ (everywhere).

(i) If G is finite and A and Z two disjoint subsets of its vertices, then Cc(A ↔ Z) ≤
Cc′(A↔ Z).

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



Chap. 2: Random Walks and Electric Networks 42

(ii) If G is infinite and a is one of its vertices, then Cc(a ↔ ∞) ≤ Cc′(a ↔ ∞). In

particular, if (G, c) is transient, then so is (G, c′).

Proof. Part (ii) is immediate from part (i), so we concentrate on part (i). By (2.7), we

have C (A↔ Z) = 1/E (i) for a unit current flow i from A to Z. Now

E c(ic) ≥ E c′(ic) ≥ E c′(ic′) ,

where the first inequality follows from the definition of energy and the second from Thom-

son’s Principle. Taking reciprocals gives the result. ◀

In particular, removing an edge decreases effective conductance, so if the edge is not

incident to a, then its removal decreases P[a→ Z]. In addition, contracting an edge (called

“shorting” in electrical network theory), i.e., identifying its two endpoints and removing

the resulting loop, increases the effective conductance between any sets of vertices. This

is intuitive from thinking of increasing to infinity the conductance on the edge to be

contracted, so we will still refer to it as part of Rayleigh’s Monotonicity Principle. To

prove it rigorously, let i be the unit current flow from A to Z. If the graph G with the edge

e contracted is denoted G/e, then the edge set of G/e may be identified with E(G) \ {e}.
If e does not connect A to Z, then the restriction θ of i to the edges of G/e is a unit flow

from A to Z, whence the effective resistance between A and Z in G/e is at most E (θ),

which is at most E (i), which equals the effective resistance in G.

▷ Exercise 2.13.

Given disjoint vertex sets A,Z in a finite network, we may express the effective resistance

between A and Z by Thomson’s Principle as

R(A↔ Z) = min

{ ∑
e∈E1/2

r(e)θ(e)2 ; θ is a unit flow from A to Z

}
.

Prove the following dual expression for the effective conductance, known as Dirichlet’s

Principle :

C (A↔ Z) = min

{ ∑
e∈E1/2

c(e)dF (e)2 ; F ↾A ≡ 1, F ↾Z ≡ 0

}
.
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§2.5. Transience and Recurrence.

We have seen that effective conductance from any vertex to ∞ is positive iff the

random walk is transient. Thus, a lower bound on the effective resistance between vertices

in a network can be useful to show recurrence. In order to use the energy formulation of

effective resistance, (2.7), we use the following notion. Let A and Z be two disjoint sets of

vertices. A set Π of edges separates A and Z if every path with one endpoint in A and

the other endpoint in Z must include an edge in Π; we also call Π a cutset .

The Nash-Williams Inequality. If a and z are distinct vertices in a finite network

that are separated by pairwise disjoint cutsets Π1, . . . ,Πn, then

R(a↔ z) ≥
n∑
k=1

(∑
e∈Πk

c(e)

)−1

. (2.13)

Proof. By (2.7), it suffices to show that the unit current flow i from a to z has energy at

least the right-hand side. Now given a finite cutset Π that separates a from z, let Z be

the set of endpoints of Π that are separated by Π from a. Let K denote the set of vertices

that are not separated from a by Π. Let H := G↾(K ∪Z) be the subnetwork of G induced

by K ∪ Z. Then i induces a unit flow iH from a to Z, whence Lemma 2.8 applied to H

gives 1 = −
∑
x∈Z d

∗iH(x) = −
∑
e−∈Z,e∈H i(e). If both the head and tail of e happen to

lie in Z, then i(e) occurs together with i(−e) in that sum, so they cancel. Also, all edges

in H with only one endpoint in Z must lie in Π. Therefore,
∑
e∈Π |i(e)| ≥ 1, and so the

Cauchy-Schwarz inequality gives

∑
e∈Π

i(e)2r(e)
∑
e∈Π

c(e) ≥

(∑
e∈Π

|i(e)|

)2

≥ 1 .

In other words, ∑
e∈Π

i(e)2r(e) ≥

(∑
e∈Π

c(e)

)−1

.

Substitute Π = Πk and add for k = 1, . . . , n. ◀

To apply this to infinite networks, say that a set Π of edges separates a and ∞ if

every infinite simple path from a must include an edge in Π; we also call Π a cutset .

The Nash-Williams Criterion. If ⟨Πn⟩ is a sequence of pairwise disjoint finite cutsets

in a locally finite network G, each of which separates a from ∞, then

R(a↔ ∞) ≥
∑
n

(∑
e∈Πn

c(e)

)−1

. (2.14)
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In particular, if the right-hand side is infinite, then G is recurrent.

Proof. For n ≥ 1, choose a finite subnetwork Gn that contains
∪n
k=1 Πk and identify its

complementary set of vertices to a single vertex, zn, as usual, to form the finite network

GW
n . Then R(a↔ ∞) = limn→∞ R(a↔ zn), so (2.13) gives the conclusion. ◀

Remark 2.10. If the cutsets can be ordered so that Π1 separates a from Π2 and for n > 1,

Πn separates Πn−1 from Πn+1, then the sum appearing in the statement of this Criterion

has a natural interpretation: Short together (i.e., join by edges of infinite conductance, or,

in other words, identify) all the vertices between Πn and Πn+1 into one vertex Un. Short

all the vertices that Π1 separates from ∞ into one vertex U0. Then only parallel edges of

Πn join Un−1 to Un. Replace these edges by a single edge of resistance
(∑

e∈Πn
c(e)

)−1
.

This new network is a series network with effective resistance from U0 to ∞ equal to the

right-hand side of (2.14). Thus, Rayleigh’s Monotonicity Principle shows that the effective

resistance from a to ∞ in G is at least the right-hand side of (2.14).

The Nash-Williams Criterion allows us to prove the first part of Pólya’s famous and

beautiful theorem concerning random walk on the integer lattices.

Pólya’s Theorem (first part). Simple random walk on the nearest-neighbor graph of

Zd is recurrent for d = 1, 2.

Proof. For d = 1, 2, we can use the Nash-Williams Criterion with cutsets

Πn :=
{
e ; d(0, e−) = n− 1, d(0, e+) = n

}
,

where 0 is the origin and d(•, •) is the graph distance. ◀

In order to show that simple random walk on Zd is transient for d ≥ 3, we need

another technique. It is more involved than the very simple technique we just used to

prove recurrence, but it is also very powerful. In fact, it involves a condition that is both

necessary and sufficient for transience.

If G = (V,E) is a denumerable network, let

ℓ2(V) :=
{
f :V → R ;

∑
x∈V

f(x)2 <∞
}

with the inner product (f, g) :=
∑
x∈V f(x)g(x). Define the Hilbert space

ℓ2−(E, r) :=
{
θ:E → R ; ∀e θ(−e) = −θ(e) and

∑
e∈E

θ(e)2r(e) <∞
}
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with the inner product (θ, θ′)r :=
∑
e∈E1/2

θ(e)θ′(e)r(e) and E (θ) := (θ, θ)r. Define

df(e) := f(e−) − f(e+) as before. If
∑
e−=x |θ(e)| < ∞, then we also define (d∗θ)(x) :=∑

e−=x θ(e).

Suppose now that V is finite and
∑
e |θ(e)| <∞. Then the calculation of Exercise 2.11

shows that we still have (θ, df) = (d∗θ, f) for all f . Likewise, under these hypotheses, we

have Lemma 2.8 and Lemma 2.9 still holding. The remainder of Section 2.4 also then holds

because of the following consequence of the Cauchy-Schwarz inequality:

∀x ∈ V
∑
e−=x

|θ(e)| ≤
√∑
e−=x

θ(e)2/c(e) ·
∑
e−=x

c(e) ≤
√

E (θ)π(x) . (2.15)

In particular, if E (θ) <∞, then d∗θ is defined.

▷ Exercise 2.14.

Let G = (V,E) be denumerable and θn ∈ ℓ2−(E, r) be such that E (θn) ≤ M < ∞ and

θn → θ edgewise, i.e., θn(e) → θ(e) for each e ∈ E. Show that θ is antisymmetric,

E (θ) ≤ lim infn E (θn) ≤M , and ∀x ∈ V d∗θn(x) → d∗θ(x).

Call an antisymmetric function θ on the edges E of a possibly infinite graph a flow if

∀x ∈ V
∑
e−=x

|θ(e)| <∞ .

If in addition, θ satisfies (d∗θ)(x) = 1{a}(x), then θ is a unit flow from a ∈ V to ∞.

Our main theorem is the following criterion for transience due to T. Lyons (1983). It

is adapted from a theorem of Royden (1952).

Theorem 2.11. (Energy and Transience) Let G be a denumerable connected network.

Random walk on G is transient iff there is a unit flow on G of finite energy from some

(every) vertex to ∞.

Proof. Let Gn be finite induced subgraphs that exhaust G. Recall that GW
n is the graph

obtained from G by identifying the vertices outside Gn to a single vertex, zn, and then

removing loops (but keeping multiple edges). Fix any vertex a ∈ G, which, without loss

of generality, belongs to each Gn. We have, by definition, R(a ↔ ∞) = limR(a ↔ zn).

Let in be the unit current flow in GW
n from a to zn and vn be the corresponding voltage.

Then E (in) = R(a↔ zn), so R(a↔ ∞) <∞ ⇔ limE (in) <∞.

Note that each edge of GW
n comes from an edge in G and may be identified with it,

even though one endpoint may be different.
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If θ is a unit flow on G from a to ∞ that has finite energy, then the restriction θ↾GW
n

of θ to GW
n is a unit flow from a to zn, whence Thomson’s Principle gives

E (in) ≤ E
(
θ↾GW

n

)
≤ E (θ) <∞ .

In particular, limE (in) <∞ and so the random walk is transient.

Conversely, suppose that G is transient. Then there is some M < ∞ such that

E (in) ≤ M for all n. Start a random walk at a. Let Yn(x) be the number of visits to x

before hitting G \ Gn and Y (x) be the total number of visits to x. Then Yn(x) increases

to Y (x), whence the Monotone Convergence Theorem and Proposition 2.1 imply that

E[Y (x)] = limn→∞ E[Yn(x)] = limn→∞ π(x)vn(x) =: π(x)v(x). By transience, we know

that E[Y (x)] < ∞, whence v(x) < ∞. Hence i := c · dv = limn→∞ c · dvn = limn→∞ in

exists and is a unit flow from a to infinity of energy at most M by Exercise 2.14. ◀

This allows us to carry over the remainder of the electrical apparatus to infinite

networks:

Proposition 2.12. Let G be a transient connected network and Gn be finite induced

subnetworks that contain a vertex a and that exhaust G. Identify the vertices outside Gn

to zn, forming GW
n . Let in be the unit current flow in GW

n from a to zn. Then ⟨in⟩ has

a pointwise limit i on G, which is the unique unit flow on G from a to ∞ of minimum

energy. Let vn be the voltages on GW
n corresponding to in and with vn(zn) := 0. Then

v := lim vn exists on G and has the following properties:

dv = ir ,

v(a) = E (i) = R(a↔ ∞) ,

∀x v(x)/v(a) = Px[τa <∞] .

Start a random walk at a. For all vertices x, the expected number of visits to x is G (a, x) =

π(x)v(x). For all edges e, the expected signed number of crossings of e is i(e).

Proof. We saw in the proof of Theorem 2.11 that v and i exist, that dv = ir, and that

G (a, x) = π(x)v(x). The proof of Proposition 2.2 now applies as written for the last claim

of the proposition. Since the events [τa < τG\Gn
] are increasing in n with union [τa <∞],

we have (with superscript indicating on which network the random walk takes place)

v(x)/v(a) = lim vn(x)/vn(a) = lim
n

P
GW

n
x [τa < τzn ] = lim

n
PG
x [τa < τG\Gn

] = PG
x [τa <∞] .

Now v(a) = lim vn(a) = limE (in) = limR(a ↔ zn) = R(a ↔ ∞). By Exercise 2.14,

E (i) ≤ lim inf E (in). Since E (in) ≤ E (i) as in the proof of Theorem 2.11, we have E (i) =
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limE (in) = v(a). Likewise, E (in) ≤ E (θ) for every unit flow from a to infinity, whence i

has minimum energy.

Finally, we establish uniqueness of a unit flow (from a to ∞) with minimum energy.

Note that ∀θ, θ′
E (θ) + E (θ′)

2
= E

(
θ + θ′

2

)
+ E

(
θ − θ′

2

)
. (2.16)

Therefore, if θ and θ′ both have minimum energy, so does (θ + θ′)/2 and hence E
(
(θ −

θ′)/2
)
= 0, which gives θ = θ′. ◀

Thus, we may call i the unit current flow and v the voltage on G. We may think of

G as grounded (i.e., has 0 voltage) at infinity.

By Theorem 2.11 and Rayleigh’s Monotonicity Principle, the type of a random walk,

i.e., whether it is transient or recurrent, does not change when the conductances are

changed by bounded factors. This fact is by no means clear probabilistically. An ex-

tensive generalization of this is given in Theorem 2.17.

The question now arises: How do we determine whether there is a flow from a to ∞ of

finite energy? There is no recipe, but a very useful technique involves flows created from

random paths. Suppose that P is a probability measure on paths ⟨en ; n ≥ 0⟩ from a to z

on a finite graph or from a to ∞ on an infinite graph. (An infinite path is said to go to

∞ when no vertex is visited infinitely many times.) Define

θ(e) :=
∑
n≥0

(
P[en = e]−P[en = −e]

)
(2.17)

provided ∑
n≥0

(
P[en = e] +P[en = −e]

)
<∞ . (2.18)

For example, the summability condition (2.18) holds when the paths are edge-simple, since

the sum on the left in (2.18) equals the expected number of times that e is traversed in

any direction. Each path ⟨en ; n ≥ 0⟩ determines a unit flow ψ from a to z (or to ∞) by

sending 1 along each edge in the path:

ψ :=
∑
n≥0

χen .

If (2.18) holds for all e, then θ is defined everywhere. Now θ is an expectation of a random

unit flow, so that θ is a unit flow itself. We saw in Propositions 2.2 and 2.12 that this is

precisely how network random walks and unit electric current are related (where the walk
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⟨Xn ; n ≥ 0⟩ gives rise to the path ⟨en ; n ≥ 0⟩ with en := ⟨Xn, Xn+1⟩). However, there

are other useful pairs of random paths and their expected flows as well.

We now illustrate the preceding techniques. First, we complete Pólya’s theorem by

the random path method. The resulting flow is essentially the same as the one used by

T. Lyons in his 1983 proof (which also occurs on p. 173 of Mori (1954)).

Pólya’s Theorem (second part). Simple random walk on the nearest-neighbor graph of

Zd is transient for all d ≥ 3.

Proof. By Rayleigh’s Monotonicity Principle, it suffices to do d = 3. Let L be a random

uniformly distributed ray from the origin 0 of R3 to ∞ (i.e., a straight halfline with uniform

intersection on the unit sphere). Let P(L) be a simple path in Z3 from 0 to ∞ that stays

within distance 4 of L; choose P(L) measurably, such as the (almost surely unique) closest

path to L in the Hausdorff metric. Define the flow θ from the law of P(L) via (2.17).

Then θ is a unit flow from 0 to ∞; we claim it has finite energy. There is some constant

A such that if e is an edge whose midpoint is at Euclidean distance R from 0, then

P[e ∈ P(L)] ≤ A/R2. Since all edge centers are separated from each other by Euclidean

distance at least 1, there is also a constant B such that there are at most Bn2 edge centers

whose distance from the origin is between n and n + 1. It follows that the energy of θ is

at most
∑
nA

2Bn2n−4, which is finite. Now transience follows from Theorem 2.11. ◀

Remark 2.13. The continuous case, i.e., Brownian motion in R3, is easier to handle (after

establishing a similar relationship to an electrical framework) because of the spherical

symmetry; see Section 2.9, the notes to this chapter. Here, we are approximating this

continuous case in our solution. One can in fact use the transience of the continuous case

to deduce that of the discrete case (or vice versa); see Theorem 2.26 in the notes.

The difference between 2 and 3 dimensions is illustrated in Figure 2.2. For information

on the asymptotic behavior of these figures in dimension 2, see Dembo, Peres, Rosen, and

Zeitouni (2001).

Since simple random walk on Z2 is recurrent, the effective resistance from the origin to

distance n tends to infinity—but how quickly? Our techniques are good enough to answer

this within a constant factor.

Proposition 2.14. There are positive constants C1, C2 such that if one identifies to a

single vertex zn all vertices of Z2 that are at distance more than n from 0, then

C1 log n ≤ R(0 ↔ zn) ≤ C2 log n .

Proof. The lower bound is an immediate consequence of (2.13) applied to the cutsets Πk

used in our proof of Pólya’s theorem. The upper bound follows from the estimate of the
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Figure 2.2. Random walk until it goes distance 200 from its starting point, colored
according to the number of visits at a vertex. The histogram shows the time spent at
vertices that were visited n times for each n ≥ 1, with the same color coding. For 3
dimensions, only the histogram is shown, which is approximately a geometric distribution.

energy of the unit flow analogous to that used for the transience of Z3. That is, θ(e) is

defined via (2.17) from a uniform ray emanating from the origin. Then θ defines a unit

flow from 0 to zn and its energy is bounded by C2 log n. ◀

We can extend Proposition 2.14 as follows.

Proposition 2.15. For d ≥ 2, there is a positive constant Cd such that if Gn is the

subnetwork of Zd induced on the vertices in a box of side length n, then for any pair of
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vertices x, y in Gn at mutual distance k,

R(x↔ y;Gn) ∈
{
(C−1

d log k,Cd log k) if d = 2,
(C−1

d , Cd) if d ≥ 3.

Proof. The lower bounds follow from (2.13). For the upper bounds, we give the details for

d = 2 only. There is a straight-line segment L of length k inside the portion of R2 that

corresponds to Gn such that L meets the straight line M joining x and y at the midpoint

of M in a right angle; see Figure 2.3. Let Q be a random uniform point on L. Write L(Q)

for the union of two straight-line segments, one from x to Q and the other from Q to y.

Let P(Q) be a path in Gn from x to y that is closest to L(Q). Use the law P of P(Q) to

define the unit flow θ as in (2.17). Then E (θ) ≤ C2 log k for some C2, as in the proof of

Proposition 2.14. ◀

x

y

M

L

Q

L(Q)P(Q)

Figure 2.3.

Since the harmonic series, which arises in the recurrence of Z2, just barely diverges,

it seems that the change from recurrence to transience occurs “just after” dimension 2,

rather than somewhere else in [2, 3]. One way to explore this is to ask about the type of

spaces intermediate between Z2 and Z3. For example, consider the wedge

Wf :=
{
(x, y, z) ; |z| ≤ f

(
|x|
)}
,

where f :N → N is an increasing function. The number of edges that leaveWf∩{(x, y, z) ; |x|∨
|y| ≤ n} is of the order n

(
f(n) + 1

)
, so that according to the Nash-Williams Criterion,∑

n≥1

1

n
(
f(n) + 1

) = ∞ (2.19)

is sufficient for recurrence.
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▷ Exercise 2.15.

Show that (2.19) is also necessary for recurrence if f(n+ 1) ≤ f(n) + 1 for all n.

§2.6. Rough Isometries and Hyperbolic Graphs.

The most direct proof of Pólya’s theorem goes by calculation of the Green function and

is not hard; see Exercise 2.97. However, that calculation depends on the precise structure

of the graph. The proof in the preceding section begins to show that the type doesn’t

change when fairly drastic changes are made in the lattice graph. Suppose, for example,

that diagonal edges are added to the square lattice in the plane. Then clearly we can still

use Nash-Williams’ Criterion to show recurrence. Of course, a similar addition of edges in

higher dimensions preserves transience simply by Rayleigh’s Monotonicity Principle. But

suppose that in Z3, we remove each edge [(x, y, z), (x, y, z + 1)] with x + y odd. Is the

resulting graph H still transient? If so, by how much has the effective resistance to infinity

changed?

Notice that graph distances haven’t changed much after these edges are removed. In

fact, if we define the k-fuzz of a graph G by adjoining to the edges of G a new edge

between every pair of vertices whose distance in G lies between 2 and k, then the graph

H above has a 3-fuzz that includes the original graph on Z3. Thus, we can solve problems

like those above by the following theorem:

Theorem 2.16. Let G be a connected graph and k a positive integer. Then G and the

k-fuzz of G have the same type, i.e., both are transient or both are recurrent.

We will establish an even more powerful result. To motivate an extension of the above

from graphs to networks, think of the resistance r(e) as the length of the edge e.

Given two networks G and G′ with resistances r and r′, we say that a map ϕ from the

vertices of G to the vertices of G′ is a rough embedding if there are constants α, β <∞
and a map Φ defined on the edges of G such that

(i) for every edge ⟨x, y⟩ ∈ G, Φ
(
⟨x, y⟩

)
is a non-empty simple oriented path of edges in

G′ from ϕ(x) to ϕ(y) with ∑
e′∈Φ(⟨x,y⟩)

r′(e′) ≤ αr(x, y)

and Φ
(
⟨y, x⟩

)
is the reverse of Φ

(
⟨x, y⟩

)
;

(ii) for every edge e′ ∈ G′, there are no more than β edges in G whose image under Φ

contains e′.
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If we need to refer to the constants, we call such a map (α, β)-rough . We call two networks

roughly equivalent if there are rough embeddings in both directions. For example, every

two Euclidean lattices of the same dimension are roughly equivalent. Also, for every graph

G of bounded degree and every k, the graph G and its k-fuzz are roughly equivalent. Kanai

(1986) showed that rough embeddings preserve transience:

Theorem 2.17. (Rough Embeddings and Transience) If G and G′ are roughly

equivalent connected networks, then G is transient iff G′ is transient. In fact, if there is

a rough embedding from G to G′ and G is transient, then G′ is transient.

Proof. Suppose that G is transient and ϕ is an (α, β)-rough embedding from G to G′. Let

θ be a unit flow on G of finite energy from a to infinity. We will use Φ to carry the flow θ

to a unit flow θ′ on G′ that will have finite energy. Namely, define

θ′(e′) :=
∑

e′∈Φ(e)

θ(e) .

(The sum goes over all edges, not merely those in E1/2.) It is easy to see that θ is anti-

symmetric and d∗θ′(x′) =
∑
x∈ϕ−1({x′}) d

∗θ(x) for all x′ ∈ G′. Thus, θ′ is a unit flow from

ϕ(a) to infinity.

Now

θ′(e′)2 ≤ β
∑

e′∈Φ(e)

θ(e)2

by the Cauchy-Schwarz inequality and the condition (ii). Therefore,∑
e′∈E′

θ′(e′)2r′(e′) ≤ β
∑
e′∈E′

∑
e′∈Φ(e)

θ(e)2r′(e′) = β
∑
e∈E

∑
e′∈Φ(e)

θ(e)2r′(e′)

≤ αβ
∑
e∈E

θ(e)2r(e) <∞ . ◀

▷ Exercise 2.16.

Show that if we remove each edge [(x, y, z), (x, y, z + 1)] with x + y odd in Z3, then we

obtain a transient graph with effective resistance to infinity at most 6 times what it was

before removal.

A closely related notion is that of rough isometry, also called quasi-isometry. Given

two graphs G = (V,E) and G′ = (V′,E′), call a function ϕ:V → V′ a rough isometry if

there are positive constants α and β such that for all x, y ∈ V,

α−1d(x, y)− β ≤ d′
(
ϕ(x), ϕ(y)

)
≤ αd(x, y) + β (2.20)
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and such that every vertex in G′ is within distance β of the image of V. Here, d and d′

denote the usual graph distances on G and G′. The function ϕ need not be a bijection.

In fact, the same definition applies to metric spaces, with “vertex” replaced by “point”.

Thus, Zd is roughly isometric to Rd.

▷ Exercise 2.17.

Show that being roughly isometric is an equivalence relation.

For example, if G and G′ are both the usual graph on Z and ϕ(x) := 4x, then ϕ is

a rough isometry; similarly if ϕ(x) := ⌊x/4⌋. Also, if G is any graph and H is any finite

graph, then G and G×H are roughly isometric for any reasonable notion of product graph.

▷ Exercise 2.18.

Show that Z and Z2 are not roughly isometric graphs.

Proposition 2.18. (Rough Isometry and Rough Equivalence) Let G and G′ be

two infinite roughly isometric graphs with conductances c and c′. If c, c′, c−1, c′−1 are all

bounded and the degrees in G and G′ are all bounded, then G is roughly equivalent to G′.

▷ Exercise 2.19.

Prove Proposition 2.18.

Not only can we also use rough isometries and Theorem 2.17 to understand lots of

perturbations of the regular graph Zd, but we can also use them to give a very simple

proof of Pólya’s theorem itself. First, consider simple random walk in one dimension. The

probability of return to the origin after 2n steps is exactly
(
2n
n

)
2−2n. Stirling’s formula

shows that this is asymptotic to 1/
√
πn. Since this series is not summable, the random

walk is recurrent. If we consider random walk in d dimensions where each coordinate is

independent of the other coordinates and does simple random walk in 1 dimension, then the

return probability after 2n steps is
((

2n
n

)
2−2n

)d ∼ (πn)−d/2. This is summable precisely

when d ≥ 3. On the other hand, this independent-coordinate walk is simple random walk

on another graph whose vertices are a subset of Zd, and this other graph is clearly roughly

isometric to the usual graph on Zd. Thus, we deduce Pólya’s theorem.

We now go beyond Euclidean space to examine another very nice family of graphs that

will serve as useful examples throughout the rest of the text. These graphs are roughly

isometric to hyperbolic spaces, whose geometry we explain briefly. Let Hd denote the

standard hyperbolic space of dimension d ≥ 2; it has scalar curvature −1 everywhere.
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Figure 2.4. A graph in the hyperbolic disc formed from congruent regular hyperbolic
pentagons of interior angle 2π/5. This was drawn by a program created by Don Hatch.

See Figure 2.4 for one graph roughly isometric to H2. This drawing uses the Poincaré

disc model of H2, in which the unit disc {z ∈ C ; |z| < 1} is given the arc-length metric

2|dz|/
(
1− |z|2

)
. The corresponding ball model of Hd uses the unit ball {x ∈ Rd ; |x| < 1}

with the arc-length metric 2|dx|/
(
1 − |x|2

)
. Here, we write |x| for the Euclidean norm

usually written as ∥x∥. The length of a smooth curve t 7→ x(t) parametrized by t ∈ [0, 1]

is ∫ 1

0

2|dx(t)/dt|
1− |x(t)|2

dt .

The minimum of such lengths among curves joining x1, x2 ∈ Hd is the hyperbolic distance

between x1 and x2. A curve that achieves the minimum is called a geodesic. For example,

if x1 is the origin and |x2| = R ∈ (0, 1), then a geodesic between x1 and x2 is a Euclidean

straight line segment. To see this, note that |dx(t)| ≥ |dρ(t)|, where ρ(t) := |x(t)|, whence
the integral above is at least∫ 1

0

2|dρ(t)/dt|
1− ρ(t)2

dt ≥
∫ R

0

2ds

1− s2
= log

1 +R

1−R

and this distance is achieved by the Euclidean line segment.
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For each point a in the unit ball, there is a hyperbolic isometry that takes a to the

origin, namely,

x 7→ a∗ +
|a∗|2 − 1

|x− a∗|2
(x− a∗) ,

where a∗ := a/|a|2; see, e.g., Matsuzaki and Taniguchi (1998) for the calculation. Such

a map preserves Euclidean angles and the class of Euclidean circular arcs, including Eu-

clidean straight lines as a special case. Therefore, infinite geodesics, which are curves

minimizing hyperbolic distance locally, are images of Euclidean diameters of the ball and

hence are Euclidean circular arcs perpendicular to the Euclidean unit sphere.

A key difference to Euclidean space is that for each point o ∈ Hd, the sphere of

hyperbolic radius r about o has hyperbolic surface area asymptotic to αer(d−1) for some

positive constant α depending on d.* Indeed, if |x| = R, then the hyperbolic distance

between the origin and x was seen above to be

r = log
1 +R

1−R
,

so that

R =
er − 1

er + 1
.

The hyperbolic surface area of this sphere centered at the origin is therefore∫
|x|=R

2d−1dS(
1− |x|2

)d−1
,

where dS is the element of Euclidean surface area in Rd. Integrating gives the value

C

(
R

1−R2

)d−1

= C(er − e−r)d−1

for some constant C, as we claimed. Therefore there is a positive constant A such that the

following hold for any fixed point o ∈ Hd:
(1) the hyperbolic volume of the shell of points whose distance from o is between r and

r + 1 is at most Aer(d−1);

(2) the solid angle subtended at o by a spherical cap of hyperbolic area δ on the sphere

centered at o of radius r is at most Aδe−r(d−1).

For more background on hyperbolic space, see, e.g., Ratcliffe (2006) or Benedetti and

Petronio (1992). Graphs that are roughly isometric to Hd often arise as Cayley graphs of

groups (see Section 3.4) or, more generally, as nets. Here, a graph G is called an ϵ-net of

a metric space M if the vertices of G form a maximal ϵ-separated subset of M and edges

join distinct vertices iff their distance in M is at most 3ϵ.

* Therefore, the hyperbolic volume of the ball of hyperbolic radius r is asymptotic to (d−1)−1αer(d−1).
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Theorem 2.19. (Transience of Hyperbolic Space) If G is roughly isometric to a

hyperbolic space Hd with d ≥ 2, then simple random walk on G is transient.

Proof. By Theorem 2.17, given d ≥ 2, it suffices to show transience for one such G. Our

proof is quite like our first proof of Pólya’s theorem. Let G be a 1-net of Hd. We take the

edges of G to be geodesic segments. Let L be a random uniformly distributed geodesic ray

from some point o ∈ G to ∞. (In the ball model of Hd, if o is at the origin, then a geodesic

ray is simply a Euclidean ray of Euclidean length 1 starting at the origin.) Let P(L) be

a simple path in G from o to ∞ whose vertices stay within distance 1 of L; choose P(L)

measurably. (By choice of G, for all p ∈ L, there is a vertex x ∈ G within distance 1 of

p.) Define the flow θ from the law of P(L) via (2.17). Then θ is a unit flow from o to ∞;

we claim it has finite energy. There is some constant C such that if e is an edge whose

midpoint is at hyperbolic distance r from o, then P[e ∈ P(L)] ≤ Ce−r(d−1). Given an edge

center s, there is a bound on the number of edge centers whose hyperbolic distance from

s is at most 1. Therefore, there is also a constant D such that there are at most Den(d−1)

edge centers whose hyperbolic distance from the origin is between n and n+ 1. It follows

that the energy of θ is at most
∑
n C

2De−2n(d−1)en(d−1), which is finite. Now transience

follows from Theorem 2.11. ◀

§2.7. Hitting and Cover Times.

The remaining two (main) sections of the chapter concern topics other than recurrence

and transience, but they use some of the tools we have developed. How can we calculate

the expected time it takes for a random walk to hit some set of vertices? The following

answer is due to Tetali (1991). (Recall that π(•) is not generally a probability measure.)

Proposition 2.20. (Hitting-Time Identity) Given a finite network with a vertex a

and a disjoint subset of vertices Z, let v(•) be the voltage when a unit current flows from

a to Z. We have Ea[τZ ] =
∑
x∈V π(x)v(x).

Proof. By Proposition 2.1, we have Ea[τZ ] =
∑
x GZ(a, x) =

∑
x π(x)v(x) . ◀

The expected time for a random walk started at a to visit z and then return to a, i.e.,

Ea[τz] + Ez[τa], is called the commute time between a and z. This turns out to have a

particularly pleasant expression, as shown by Chandra, Raghavan, Ruzzo, Smolensky, and

Tiwari (1996/1997):

Corollary 2.21. (Commute-Time Identity) Let G be a finite network and γ :=∑
e∈E c(e), where in the sum, each edge with two endpoints occurs twice and each loop
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occurs once. Let a and z be two vertices of G. The commute time between a and z is

γR(a↔ z).

Proof. The time Ea[τz] is expressed via Proposition 2.20 using voltages v(x). Now the

voltage at x for a unit-current flow from z to a is equal to v(a) − v(x). Thus, Ez[τa] =∑
x∈V π(x)

[
v(a) − v(x)

]
. Adding these two hitting times, we get that the commute time

is v(a)
∑
x π(x) = γv(a). Finally, we use that v(a) = R(a↔ z). ◀

Another interesting quantity is the cover time Cov of a finite-state Markov chain

⟨Xj ; j ≥ 0⟩, which is the first (random) time the process visits all states V, i.e.,

Cov := min{t ; ∀x ∈ V ∃j ≤ t Xj = x} .

For the complete graph, the cover time is studied in the coupon-collector problem; in

particular, its expectation in the case of n vertices is exactly (n − 1)
∑n−1
k=1 1/k. (It takes

no time to visit the starting vertex, which is why n − 1 appears in place of the usual n.)

What is its expectation for general networks? It turns out that this is hard to calculate,

but it can be estimated by hitting times (even without reversibility), as shown with a

beautiful argument by Matthews (1988). Remarkably, his upper bound is sharp in view of

the case of the complete graph.

Theorem 2.22. (Cover-Time Upper Bound) Given an irreducible finite Markov

chain whose state space V has size n, we have

E[Cov] ≤
(
max
a,b∈V

Eaτb

)(
1 +

1

2
+ · · ·+ 1

n− 1

)
.

Proof. It takes no time to visit the starting state, so order all of V except for the starting

state according to a random permutation, ⟨j1, . . . , jn−1⟩. Let tk be the first time by which

all {j1, . . . , jk} were visited, and let Lk := Xtk be the state the chain is in at time tk.

In other words, Lk is the last state visited among the states {j1, . . . , jk}. In particular,

P[Lk = jk] = 1/k because of the random permutation. Considering the two cases Lk = jk

and Lk ̸= jk, we can make the following somewhat unusual calculation:

E[tk − tk−1 | X0, X1, . . . , Xtk−1
, Xtk , j1, . . . , jk] = ELk−1

[τjk | j1, . . . , jk]1{Lk=jk} .

Taking unconditional expectations, we conclude that

E[tk − tk−1] ≤
(
max
a,b∈V

Eaτb

)
1

k
,

and summing over k yields the result. ◀
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The same technique leads to lower bounds as well. For A ⊆ {1, . . . , n}, consider the

cover time ofA, denoted by CovA. ClearlyE[Cov] ≥ E[CovA]. Let t
A
min := mina,b∈A,a ̸=bEaτb.

Then similarly to the last proof, we have

E[CovA] ≥ tAmin

(
1 +

1

2
+ · · ·+ 1

|A| − 1

)
,

which gives the following result of Matthews (1988). Again, the case of the complete graph

shows that this is sharp.

Theorem 2.23. (Cover-Time Lower Bound) For any irreducible finite Markov chain

on a state space V,

E[Cov] ≥ max
A⊆V

tAmin

(
1 +

1

2
+ · · ·+ 1

|A| − 1

)
.

▷ Exercise 2.20.

Prove Theorem 2.23.

§2.8. The Canonical Gaussian Field.

This section concerns a model that represents an electrical network via Gaussian ran-

dom variables. It is known variously as the canonical Gaussian field , the Gaussian

network , the discrete Gaussian free (or massless) field , random network po-

tentials, or in some contexts, the harmonic crystal .* More information on it is in the

exercises at the end of this chapter, and in Exercises 4.18, 4.36, and 10.28–10.31. Some

examples of its use are given in Section 2.9.

The canonical Gaussian field arose first in a statistics problem. We explain this

origin to motivate the model. Suppose we want to measure the altitudes at a finite set of

locations V on land. Assume we know the altitude at some location o ∈ V. We find the

other altitudes by measuring the differences in altitudes between certain pairs E of them.

However, each measurement Y has an error that is normally distributed. To be precise,

if Y (e) is a measurement of the difference in the altitudes from x ∈ V to y ∈ V, then

Y (e) ∼ N
(
α(x)− α(y), σ2

e

)
, where α(x) is the true altitude at x and the variances σ2

e are

assumed known. The numbers α(x) are simply constants; the case where all α(x) = 0 is

* The term “discrete Gaussian free field” is the one most commonly used in mathematics. However,
the variant where there are masses (Exercise 2.126) is no longer “free”, and on infinite networks, it would
be awkward to refer to the wired and free versions (Exercise 10.28) if we adopted that terminology.
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already interesting. We assume all measurements are independent. Let G = (V,E) be the

multigraph associated to the measurements. (There are multiple edges between vertices

when multiple measurements are made of the same difference, but there are no loops.)

Assume G is connected. Make this into a network by assigning the resistances r(e) := σ2
e .

The maximum likelihood estimate of the altitudes given these measurements is the

function α̂:V → R with α̂(o) = α(o) that maximizes the likelihood

1∏
e∈E1/2

√
2πr(e)

exp
{
− 1

2

∑
e∈E1/2

[
Y (e)− (dα̂)(e)

]2
/r(e)

}
,

which is what the joint density would be at the observed values Y if the true altitudes were

α̂. The random variables α̂ form the canonical Gaussian field ; they are functions of

the random variables Y . Of course, maximizing the likelihood is the same as minimizing

the sum of squares in the exponent. Since Y (e)− (dα̂)(e) = [Y (e)− dα(e)]− (dα̂− dα)(e),

and α is a non-random field, Z := α̂ − α minimizes
∑
e∈E[X(e) − (dZ)(e)]2/r(e), where

X(e) := Y (e)−dα(e). Therefore, we will henceforth work with X and Z in place of Y and

α̂; equivalently, we take α ≡ 0.

We restate the definition now of the canonical Gaussian field, shorn of the

statistical motivation: Given a network (G, c) and a fixed vertex o ∈ V, let X(e) (e ∈ E)

be independent normal random variables with mean 0 and variance r(e). Define the random

variables Z(x) (x ∈ V) by the condition that they minimize
∑
e∈E[X(e) − (dZ)(e)]2/r(e)

and that Z(o) = 0. The joint distribution of Z(x) (x ∈ V) is the canonical Gaussian

field .

For example, suppose that G is the usual nearest-neighbor graph on the integers

{0, 1, . . . , n} and that all resistances are 1. Also, take o = 0. Then X(e) ∼ N(0, 1) for

all edges e and dZ = X, whence Z is just n steps of random walk with each step a

standard normal random variable. Similarly, if G is a tree rooted at o, then Z is a random

walk indexed by the tree in the sense that when two paths starting at the root branch

off from each other, then the random walks along those paths, which were identical, have

independent (normal) increments thereafter.

One of the striking properties of the canonical Gaussian field is that

Var
(
Z(x)− Z(y)

)
= R(x↔ y) (2.21)

for all x, y ∈ V. Proving this will be relatively easy once we calculate the joint distribution

of dZ, which we proceed to do.

Given a network, define the gradient of a function f on V to be the antisymmetric

function

(∇f)(e) := (df)(e)

r(e)
, i.e., ∇f := c df

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



Chap. 2: Random Walks and Electric Networks 60

on E. Thinking of resistance of an edge as its length makes this a natural name.

In this notation, Z is the function β with β(o) = 0 that minimizes ∥X/r − ∇β∥r.
Since ∇1{x} is the star at x ∈ V, it follows that the set of all functions of the form ∇β
for some function β equals ⋆, whence we are looking for the element of ⋆ closest to X/r.

Such a minimization is achieved through orthogonal projection, so that ∇Z = P⋆(X/r).

Since X/r =
∑
e∈E1/2

χeX(e)/r(e), applying P⋆ to both sides yields

∇Z =
∑
e∈E1/2

ieX(e)/r(e) . (2.22)

In particular, the random variables ∇Z are linear combinations of independent normal

random variables, so themselves are jointly normal. This explains the name “Gaussian”.

Since all X(e) have mean 0, so do all ∇Z(e).
Another way to look at this orthogonal projection is as follows. An orthonormal basis

for the space ℓ2−(E, r) is ⟨χe/
√
r(e) ; e ∈ E1/2⟩. If (Ω,P) is a probability space on which

the random variables X(e) are defined, then ⟨X(e)/
√
r(e) ; e ∈ E1/2⟩ are orthonormal

in L2(Ω,P). Thus, if H denotes the linear span of the random variables X(e), then

Φ:χe 7→ X(e) is an isometric isomorphism from ℓ2−(E, r) to H . From (2.22), we have

dZ(e) = r(e)∇Z(e) =
∑

e′∈E1/2

r(e)Y (e′, e)X(e′)/r(e′) =
∑

e′∈E1/2

Y (e, e′)X(e′) (2.23)

using the definition Y (e, e′) := ie(e′) from Section 2.4 and then the reciprocity law (2.12).

On the other hand, we have trivially that

ie =
∑

e′∈E1/2

Y (e, e′)χe
′
. (2.24)

Comparing (2.23) with (2.24) shows that Φ takes ie to dZ(e). In particular,

Cov
(
dZ(e), dZ(e′)

)
= E

[
dZ(e)dZ(e′)

]
= (ie, ie

′
)r = (ie, χe

′
)r = Y (e, e′)r(e′) .

This is the same as the voltage difference across e′ when unit current flows from e− to

e+. (The matrix of such (e, e′) entries is called the transfer impedance matrix .) Since

the means and covariances determine the distribution uniquely for jointly normal random

variables, we could regard this as a definition of dZ; since dZ determines Z because Z(o) =

0, this could also be used as a definition of Z. Other properties that could be used as

definitions follow.
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The isomorphism Φ takes the subspace ⋆ to a subspace that we will denote ⋆(H ).

This latter subspace is simply the linear span of
∑
e−=xX(e)/r(e) over x ∈ V. Further-

more, since ie = P⋆χe, it follows from the isomorphism that dZ(e) = P⋆(H )X(e). Since

Z(o) = 0, we may write Z(x) for x ∈ V by summing dZ along a path ψ from o to x; this

gives Z(x) =
∑
e∈ψ dZ(e) = Φ

(∑
e∈ψ i

e
)
= Φ(∇vo,x), where vo,x is the voltage function

corresponding to a unit current flow io,x from o to x. Therefore,

Z(x) =
∑
e∈E1/2

io,x(e)X(e) . (2.25)

Proposition 2.24. Let Z be the canonical Gaussian field above.

(i) The random variables Z are jointly normal with

Z(x)− Z(y) ∼ N
(
0,R(x↔ y)

)
for x ̸= y ∈ V.

(ii) The covariance of Z(x) − Z(y) and Z(z) − Z(w) equals v(z) − v(w) when v is the

voltage associated to a unit current flow from x to y (with x ̸= y).

(iii) We have Cov
(
Z(x), Z(z)

)
= Go(x, z)/π(z), where Go(x, z) is the expected number of

visits to z of the network random walk started at x, counting only visits that occur

before visiting o.

Proof. Part (iii) follows from (ii) by putting y := w := o and using Proposition 2.1. Part

(ii) extends (i), so we prove only (ii). Let vx,y be the voltage function corresponding to

a unit current flow from x to y. Let ψ ∈ ℓ2−(E, r) represent a path from w to z, i.e.,

ψ =
∑
e
χe, where the sum ranges over the edges in a path from w to z, oriented in the

direction of this path. Then as above, we have that Z(x)− Z(y) = Φ(∇vy,x), whence

Cov
(
Z(x)− Z(y), Z(z)− Z(w)

)
= (∇vy,x,∇vw,z)r = (∇vy,x, P⋆ψ)r

= (∇vy,x, ψ)r = vy,x(w)− vy,x(z) ,

which equals the desired quantity. ◀

Since the random vector X/r is a standard normal vector in ℓ2−(E, r), i.e., in (any)

orthonormal coordinates its components are independent standard normal random vari-

ables, its image ∇Z under the orthogonal projection P⋆ is a standard normal vector in

⋆. Using the change of notation ∥∇Z∥2r = ∥dZ∥2c , it follows that the joint density of the

random variables ⟨Z(x) ; x ̸= o⟩ is

C exp
{
− 1

2
∥dZ∥2c

}
(2.26)
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for some constant C. The constant C is evaluated in Exercise 4.18.

This result could also be used as the definition of the field Z. Finally, one can also

define Z by the requirement that dZ has the distribution of X conditioned to sum to zero

along every cycle; see Janson (1997), Section 9.4.

§2.9. Notes.

A superb elementary introduction to the ideas of the first five sections of this chapter is given
by Doyle and Snell (1984). For detailed study of simple random walk in Zd, see Révész (2005)
and Dembo (2005).

One way to define Brownian motion on a graph is the following. If x is a vertex and the
lengths of the d edges incident to x are ℓ1 ≤ · · · ≤ ℓd with ℓ1 = · · · = ℓm < ℓm+1 (or m = d), then
define Brownian motion starting at x as follows: Let B(t) be standard Brownian motion on R for
t ≥ 0 with B(0) = 0. Let τ := min{t ; |B(t)| = ℓ1} and σ := max{t < τ ; B(t) = 0}. Consider
the excursions up to time τ , i.e., the open intervals I ⊂ [0, τ) on which B(t) ̸= 0 for t ∈ I, but
for which B(t) = 0 at the endpoints of I. Assign each excursion independently and uniformly
to one of the d edges incident to x by letting |B(t)| be the distance from x along that edge for
t ∈ I. Also, assign the bridge {|B(t)| ; σ ≤ t ≤ τ} independently and uniformly to one of the d
edges in the same way. If it happens that the bridge is assigned to one of the m shortest edges,
then the motion is at the other endpoint of that edge at time τ . Otherwise, it is in the middle of
the ith edge for some i > m, and we continue Brownian motion on R until the first time after τ
that B(t) = 0 or |B(t)| = ℓi, at which time we are either back at x to start again without having
reached a new vertex, or we are at the other endpoint of the ith edge.

The continuous classical analogue of harmonic functions, the Dirichlet problem, and its solu-
tion via Brownian motion are as follows. Let D be an open subset of Rd. If f :D → R is Lebesgue
integrable on each ball contained in D and for all x in D, f(x) is equal to the average value of f
on each ball in D centered at x, then f is called harmonic in D. If f is locally bounded, then
this is equivalent to f(x) being equal to its average on each sphere in D centered at x. Harmonic
functions are always infinitely differentiable and satisfy ∆f = 0. Conversely, if f has two con-
tinuous partial deriviatives and ∆f = 0 in D, then f is harmonic in D. If D is bounded and
connected and f is harmonic on D and continuous on its closure, D, then maxD f = max∂D f .
The Dirichlet problem is the following. Given a bounded connected open set D and a continuous
function f on ∂D, is there a continuous extension of f to D that is harmonic in D? The answer
is yes when D satisfies certain regularity conditions. In this case, the solution can be given via
Brownian motion Xt in D as f(x) := Ex[f(Xτ )], where τ := inf{t ≥ 0 ; Xt /∈ D}. See, e.g., Bass
(1995), pp. 83–90 for details or Doob (1984) for a comprehensive treatment.

Brownian motion in Rd is analogous to simple random walk in Zd. The electrical analogue to
a discrete graph is a uniformly conducting material. The analogue of a flow is a vector field whose
divergence is 0 off of some specified part, while the analogue of a current is such a vector field
whose curl is 0. There is a similar relationship to an electrical framework for reversible diffusions,
even on Riemannian manifolds: Let M be a complete Riemannian manifold. Given a function σ(x)
which is Borel-measurable, locally bounded and locally bounded below, called the (scalar) con-

ductivity , we associate the diffusion whose generator is
(

2σ(x)
√
g(x)

)−1∑
∂iσ(x)

√
g(x)gij(x)∂j

in coordinates, where the metric is gij with inverse gij and determinant g. In coordinate-free no-
tation, this is (1/2)∆ + (1/2)∇ log σ. In other words, the diffusion is Brownian motion with drift
equal to half the gradient of the log of the conductivity. The main result of Ichihara (1978) [see
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also the exposition by Durrett (1986), p. 75; Fukushima (1980), Theorem 1.5.1, and Fukushima
(1985); or Grigor’yan (1985)] gives the following test for transience, an analogue to Exercise 2.90.

Theorem 2.25. On a complete connected Riemannian manifold M , the diffusion corresponding
to the scalar conductivity σ(x) is transient iff

inf

{∫
M

|∇u(x)|2σ(x) dx ; u ∈ C∞
0 (M), u↾B1(o) ≡ 1

}
> 0 ,

where dx is the volume form and o ∈M is any fixed point.

One can use networks to decide the recurrence or transience of a Riemannian manifold, and
vice versa. Recall that a graph G is called an ϵ-net of M if the vertices of G form a maximal
ϵ-separated subset of M and edges join distinct vertices iff their distance in M is at most 3ϵ.
When a conductivity σ is given on M , we assign conductances c to the edges of G by

c(u,w) :=

∫
Bϵ(u)

σ(x) dx+

∫
Bϵ(w)

σ(x) dx .

An evident modification of the proof of Theorem 2 of Kanai (1986) shows the following analogue
to Theorem 2.17. A manifold M is said to have bounded geometry if its Ricci curvature is
bounded below and the injectivity radius is positive. If the Ricci curvature is bounded below,
then nets have bounded degree (Kanai (1985), Lemma 2.3). We say that σ is ϵ-slowly varying
if

sup {σ(x)/σ(y) ; dist(x, y) ≤ ϵ} <∞ .

Theorem 2.26. Suppose thatM is a complete connected Riemannian manifold of bounded geome-
try, that ϵ is at most half the injectivity radius ofM , that σ is an ϵ-slowly varying Borel-measurable
conductivity on M , and that G is an ϵ-net in M . Then the associated diffusion on M is transient
iff the associated random walk on G is transient.

The transformations of a network described in Section 2.3 can be used for several other
purposes as well. As we will see (Chapter 4), spanning trees are intimately connected to electrical
networks, so it will not be surprising that such network reductions can be used to count the
number of spanning trees of a graph. See Colbourn, Provan, and Vertigan (1995) for this, as well
as for applications to the Ising model and perfect matchings (also known as domino tilings). For
a connection to knot theory, see Goldman and Kauffman (1993).

The precise asymptotics for the effective resistance in Proposition 2.14 are given in Exer-
cise 2.96, while similar asymptotics for Proposition 2.15 are given in Exercise 4.49.

The statistical model of Section 2.8 and its connection to random walks (which is equivalent
to electrical networks) is due to Borre and Meissl (1974); see Tjur (1991). The maximum likelihood
estimate is also the best linear unbiased estimate, a general fact about linear Gaussian models.
See Constantine (2003) for some additional information on unbiased estimates in this model.
This model is similar to Dynkin’s isomorphism, which is for continuous-time Markov processes;
see Dynkin (1980). A different connection of networks to Gaussian fields, obtained by using the
network Laplacian (defined in Exercise 2.61) as covariance matrix, is due to Diaconis and Evans
(2002). A relationship of the canonical Gaussian field to the expected cover time was shown by
Ding, Lee, and Peres (2010), which resolved several open questions on cover times. Scaling limits
of canonical Gaussian fields and other models sometimes give what’s known as the (continuum)
Gaussian free field; e.g., see Kenyon (2001, 2008), Rider and Virág (2007), and Sheffield (2007).
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-7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8

Figure 2.5. The net turns of the paths from a fixed vertex in a
uniform spanning tree in a 200×200 grid on the left, with a key on
the right showing the correspondence of visual colors to numbers.

For one such example, consider a spanning tree T in an n× n square grid. Associate to the path
from the lower left corner to a vertex x its net number h(x) of turns (also called its winding
number), i.e., the number of times it turns left minus the number of times it turns right. Let hT
be the mean value of h(x) for x ∈ V(T ). When T is chosen uniformly at random (the topic of
Chapter 4), the scaling limit of the distribution of x 7→ (

√
π/4)(h(x) − hT ) is the Gaussian free

field, as shown by Kenyon (2001) (and conjectured in looser form by Itai Benjamini); a picture
for n = 200 appears in Figure 2.5, where in this sample, the mean winding number hT is about
0.917. The canonical Gaussian field was also introduced in molecular biology by Bahar, Atilgan,
and Erman (1997), where it facilitates very useful computation. Here, the edges are regarded as
springs. Because the correlations are positive, the random variables Z(x) of Exercise 2.126 are
positively associated (see Section 5.8 for the definition) by the main result of Pitt (1982); see
Joag-Dev, Perlman, and Pitt (1983) for a simpler proof of this implication for normal random
variables.

Problems about random walks that sound similar to those we have analyzed, yet to which
the tools of electrical network theory do not apply, can be very vexing and can often behave
contrary to what our intuition tells us. For example, Rayleigh’s Monotonicity Principle tells us
that subgraphs of recurrent graphs are themselves recurrent. This would suggest that if we do
simple random walk in Z2, except that at certain times determined in advance, we step either
to the right or left only, with equal probability, then the resulting (time-inhomogeneous) Markov
chain would still be recurrent. However, this is false!
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▷ Exercise 2.21.

Find a sequence of times S ⊂ N such that if ⟨Xn ; n ∈ N⟩ is the Markov chain on Z2 with
increments that are uniformly distributed on {(1, 0), (−1, 0), (0, 1), (0,−1)} at times n /∈ S and
uniformly distributed on {(1, 0), (−1, 0)} at times n ∈ S, then the chain is transient. Hint: Let S
consist of very long intervals separated by long intervals.

The following recent variant is still open:

Question 2.27. Define the non-Markovian process ⟨Xn⟩ taking values in Z2 as follows. Put
X0 := (0, 0). For n ≥ 1, let Xn − Xn−1 be either (1, 0) or (−1, 0) with equal probability if
Xn /∈ {X0, . . . , Xn−1}, while Xn −Xn−1 is either (0, 1) or (0,−1) with equal probability if Xn ∈
{X0, . . . , Xn−1}. Does ⟨Xn⟩ visit any site infinitely often with positive probability? This question
is due to Benjamini, Kozma, and Schapira (2011), who analyze a version of this in 4 dimensions.

A notoriously difficult, though innocent-sounding, variation on random walk on graphs, due
to Coppersmith and Diaconis, is the following. Let G be a graph. To model the idea that a
random walker may prefer to traverse edges previously visited, we will allow the edge weights to
change with time. Thus, define a non-Markovian process ⟨Xn ; n ≥ 0⟩ as follows. Start with
a fixed vertex X0 and some constant a > 0. Let Ln(e) be the number of traversals of e by
⟨Xk ; 0 ≤ k ≤ n⟩. When choosing Xn+1, use edge weights cn(e) := a + Ln(e). This is called
edge-reinforced random walk . It is not hard to show that if G = Z, then Xn ̸→ ∞ a.s., but
when G = Zd for d ≥ 2, this is open. The best current result on this is that when the edges of
Z2 are subdivided (stretched) by a sufficiently large number of vertices and a is sufficiently small,
then the walk visits every vertex infinitely often a.s.: see Merkl and Rolles (2009). It turns out
that a similar-sounding process, where one uses vertex weights instead of edge weights, but again,
the weight of a vertex is increased every time a vertex is visited, behaves quite differently and is
much better understood: see Volkov (2001). This process is called vertex-reinforced random
walk .

On the other hand, when G is a tree, then there is an alternative representation of edge-
reinforced random walk that allows it to be analyzed, as done first by Pemantle (1988). A
surprising result is that when a is small, the random walk is recurrent, while when a is large, it is
transient. The precise critical value of a is known, even for general trees: see Lyons and Pemantle
(1992) (and Lyons and Pemantle (2003)). To see this alternative representation, consider first a
directed graph, G, and only increase the weights of directed edges when traversed. Let Cn(x) be
the vector of weights on the outgoing edges from x at the nth visit to x. We could define this
for all n regardless of how many times x is visited. In fact, these sequences ⟨Cn(x) ; n ≥ 0⟩ are
independent for different x ∈ V(G) and are the same as choosing from a Pólya urn that starts
with weight a on each outgoing edge from x. Since the draws from a Pólya urn are exchangeable,
they could equally well be represented as a mixture of i.i.d. choices by de Finetti’s theorem;
it turns out that the mixture is a Dirichlet distribution. Thus, one can alternatively describe
the directed edge-reinforced random walk as follows: First pick a random transition probability
distribution for each vertex in an i.i.d. way from a certain Dirichlet distribution. Then do a
Markovian random walk according to these transition probabilities. This is known as a random
walk in a random environment (RWRE). When G is a tree, we do not need to use directed
edges for this representation, since each edge is traversed twice when returning to a vertex before
any other incident edge is traversed.

The topic of RWRE, with any i.i.d. transition probabilities, is quite natural and extensive,
but also still very poorly understood, except on trees.
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▷ Exercise 2.22.
Let ⟨Ak ; k ∈ Z⟩ be i.i.d. random variables with values in (0, 1). Let ⟨Xn⟩ be the RWRE on Z
with transition probability at k given by stepping to k+ 1 with probability Ak and to k− 1 with
probability 1−Ak. Show that this walk tends to ∞ a.s. when E[logA0− log(1−A0)] > 0, tends to
−∞ a.s. when E[logA0 − log(1−A0)] < 0, and is a.s. recurrent when E[logA0 − log(1−A0)] = 0
(when these expectations are defined). Hint: Use a random electrical network.

To see how little is understood of RWRE in Zd, d ≥ 2, consider symmetric random environ-
ments. Only in very special cases is it known whether the RWRE is recurrent or transient. Even
when the environment is not symmetric but has a non-0 drift in some direction, transience is not
always established. See Zeitouni (2004) and Sznitman (2004) for surveys of RWRE.

§2.10. Collected In-Text Exercises.

2.1. (Reversible Markov Chains) This exercise contains some background information and
facts that we will use about reversible Markov chains. Additional background on Markov chains,
not necessarily reversible, is in Exercises 2.40 and 2.41.
(a) Show that if a Markov chain is reversible, then ∀x1, x2, . . . , xn,

π(x1)

n−1∏
i=1

p(xi, xi+1) = π(xn)

n−1∏
i=1

p(xn+1−i, xn−i) ,

whence
∏n−1
i=1 p(xi, xi+1) =

∏n−1
i=1 p(xn+1−i, xn−i) if x1 = xn: the chance of traversing a cycle

is the same in either direction. This last equation also characterizes reversibility.
(b) Let ⟨Xn⟩ be a random walk on a network G and let x and y be two vertices in G. Let P be

a path from x to y and P ′ be its reversal, a path from y to x. Show that

Px[⟨Xn ; n ≤ τy⟩ = P | τy < τ+x ] = Py[⟨Xn ; n ≤ τx⟩ = P ′ | τx < τ+y ] ,

where τw denotes the first time the random walk visits w, τ+w denotes the first time after
0 that the random walk visits w, and Pu denotes the law of random walk started at u. In
words, paths between two states that don’t return to the starting point and stop at the first
visit to the endpoint have the same distribution in both directions of time.

(c) Consider a random walk on a network G that is either transient or is stopped on the first
visit to a set of vertices Z. Let G (x, y) be the expected number of visits to y for a random
walk started at x; if the walk is stopped at Z, we count only those visits that occur strictly
before visiting Z. Show that for every pair of vertices x and y,

π(x)G (x, y) = π(y)G (y, x) .

(d) Show that random walk on a connected network G is positive recurrent (i.e., has a stationary
probability distribution, which is therefore unique) iff

∑
x,y c(x, y) < ∞, in which case the

stationary probability distribution is proportional to π(•). Show that if the random walk is
not positive recurrent, then π(•) is a stationary infinite measure.

2.2. Suppose that an antisymmetric function j (meaning that j(x, y) = −j(y, x)) on the edges of
a finite connected network satisfies Kirchhoff’s cycle law and satisfies Kirchhoff’s node law in the
form

∑
x∼y j(x, y) = 0 for all x ∈ W . Show that j is the current corresponding to some voltage

function whose values are specified off W and that the voltage function is unique up to an additive
constant.
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2.3. Verify that Propositions 2.1 and 2.2 are valid when the number of edges is infinite but the
number of vertices is finite.

2.4. For a fixed vertex a in G, show that limn C (a↔ Zn) is the same for every sequence ⟨Gn⟩ of
induced subgraphs that exhausts G.

2.5. When G is finite but A is not a singleton, define C (A ↔ Z) to be C (a ↔ Z) if all the
vertices in A were to be identified to a single vertex, a. Show that if voltages are applied at the
vertices of A ∪ Z so that v↾A and v↾Z are constants, then v↾A − v↾Z = IAZR(A ↔ Z), where
IAZ :=

∑
x∈A

∑
y i(x, y) is the total amount of current flowing from A to Z.

2.6. Give two harder but instructive proofs of the series equivalence: Since voltages determine
currents, it suffices to check that the voltages are as claimed on the new network G′. (1) Show
that v↾(V(G)\{w}) is harmonic on V(G′)\(A∪Z). (2) Use the “craps principle” (Pitman (1993),
p. 210) to show that Px[τA < τZ ] is unchanged for x ∈ V(G) \ {w}.

2.7. Give two more proofs of the parallel equivalence as in Exercise 2.6.

2.8. Let (G, c) be a network. A network automorphism of (G, c) is a map ϕ:G→ G that is a
bijection of the vertex set with itself and a bijection of the edge set with itself such that if x and
e are incident, then so are ϕ(x) and ϕ(e) and such that c(e) = c(ϕ(e)) for all edges e. Suppose
that (G, c) is spherically symmetric about o, meaning that if x and y are any two vertices at
the same distance from o, then there is an automorphism of (G, c) that leaves o fixed and that
takes x to y. Let Cn be the sum of c(e) over all edges e with d(e−, o) = n − 1 and d(e+, o) = n.
Show that

R(o↔ ∞) =
∑
n≥1

1

Cn
,

whence the network random walk on G is transient iff∑
n≥1

1

Cn
<∞ .

2.9. Give at least one proof of the star-triangle equivalence.

2.10. Find a (finite) graph that can’t be reduced to a single edge by the four transformations
pruning, series, parallel, and star-triangle.

2.11. Prove that d and d∗ are adjoints of each other.

2.12. Show that P[a → Z] can increase in some situations and decrease in others when an edge
incident to a is removed.

2.13. Given disjoint vertex sets A,Z in a finite network, we may express the effective resistance
between A and Z by Thomson’s Principle as

R(A↔ Z) = min

{ ∑
e∈E1/2

r(e)θ(e)2 ; θ is a unit flow from A to Z

}
.

Prove the following dual expression for the effective conductance, known as Dirichlet’s Princi-
ple:

C (A↔ Z) = min

{ ∑
e∈E1/2

c(e)dF (e)2 ; F ↾A ≡ 1, F ↾Z ≡ 0

}
.

2.14. Let G = (V,E) be denumerable and θn ∈ ℓ2−(E, r) be such that E (θn) ≤ M < ∞ and
θn → θ edgewise, i.e., θn(e) → θ(e) for each e ∈ E. Show that θ is antisymmetric, E (θ) ≤
lim infn E (θn) ≤M , and ∀x ∈ V d∗θn(x) → d∗θ(x).
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2.15. Show that (2.19) is also necessary for recurrence if f(n+ 1) ≤ f(n) + 1 for all n.

2.16. Show that if we remove each edge [(x, y, z), (x, y, z + 1)] with x + y odd in Z3, then we
obtain a transient graph with effective resistance to infinity at most 6 times what it was before
removal.

2.17. Show that being roughly isometric is an equivalence relation.

2.18. Show that Z and Z2 are not roughly isometric graphs.

2.19. Prove Proposition 2.18.

2.20. Prove Theorem 2.23.

2.21. Find a sequence of times S ⊂ N such that if ⟨Xn ; n ∈ N⟩ is the Markov chain on Z2 with
increments that are uniformly distributed on {(1, 0), (−1, 0), (0, 1), (0,−1)} at times n /∈ S and
uniformly distributed on {(1, 0), (−1, 0)} at times n ∈ S, then the chain is transient. Hint: Let S
consist of very long intervals separated by long intervals.

2.22. Let ⟨Ak ; k ∈ Z⟩ be i.i.d. random variables with values in (0, 1). Let ⟨Xn⟩ be the RWRE on
Z with transition probability at k given by stepping to k+1 with probability Ak and to k−1 with
probability 1−Ak. Show that this walk tends to ∞ a.s. when E[logA0− log(1−A0)] > 0, tends to
−∞ a.s. when E[logA0 − log(1−A0)] < 0, and is a.s. recurrent when E[logA0 − log(1−A0)] = 0
(when these expectations are defined). Hint: Use a random electrical network.

§2.11. Additional Exercises.

In all the exercises, assume the networks are connected. Recall that π(•) is not
generally a probability measure.

2.23. Let G be a transient network and x, y ∈ V. Show that

π(x)Px[τy <∞]G (y, y) = π(y)Py[τx <∞]G (x, x) .

2.24. Let G be a transient network and f :V → R satisfy
∑
y G (x, y)|f(y)| <∞ for every x. Define

(G f)(x) :=
∑
y G (x, y)f(y). Let I be the identity operator and P be the transition operator

(i.e., (Pg)(x) :=
∑
y p(x, y)g(y)). Show that (I − P )(G f) = f .

2.25. Suppose that ⟨Xn⟩ is a stationary sequence with values in some measurable space. Let the
distribution of X0 be µ. Fix a measurable set A of possible values and let τ+A := inf{n ≥ 1 ; Xn ∈
A}. Write µA for the distribution of X0 given that X0 ∈ A.
(a) Show that the conditional distribution of X

τ+
A

given that X0 ∈ A is also µA.

(b) (Kac lemma) Show that E[τ+A | X0 ∈ A] = 1/µ(A).

2.26. A function f on the vertices of a network is called subharmonic at x if

f(x) ≤ π(x)−1
∑
y∼x

c(x, y)f(y)

and superharmonic if the opposite inequality holds. Show that the Maximum Principle extends
to subharmonic functions and that there is a corresponding Minimum Principle for superharmonic
functions.
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2.27. Let G be transient and u be a non-negative superharmonic function. Show that there exist
unique functions f and h such that f ≥ 0, h is harmonic, and u = G f +h, where G f is defined in
Exercise 2.24. Show that also f = (I −P )u, h ≥ 0, and h ≥ g whenever g ≤ u is harmonic, where
I and P are defined in Exercise 2.24. Hint: Define h := limn P

nu and f := (I − P )u.

2.28. Give another proof of the Existence Principle along the following lines. Given f0 off W ,
let f(x) := inf g(x) over all functions g that are superharmonic on W , that agree with f0 off W ,
and such that g ≥ inf f0. (See Exercise 2.26 for the definition of “superharmonic”.) Then f is
harmonic and agrees with f0 off W .

2.29. Given a finite graph G and two of its vertices a and z, let ic(•) be the unit current flow from
a to z when conductances c(•) are assigned to the edges. Show that ic is a continuous function of
c(•).

2.30. Let G be a network. If h:V → [0,∞) is harmonic at every vertex of W ⊆ V, while h(x) > 0
iff x ∈W , there is a Markov chain on W associated to h called Doob’s h-transform ; its transition
probabilities are defined to be ph(x, y) := p(x, y)h(y)/h(x) for x, y ∈ W . Check that these are
indeed transition probabilities for a reversible Markov chain. Find corresponding conductances.

2.31. Let G be a finite network and W ⊊ V. At every visit to a vertex x ∈W , a random walker
collects a payment of g(x). When reaching a vertex y /∈W , the walker receives a final retirement
package of h(y) and stops moving. Let f(x) denote the expected total payment the walker receives
starting from x.
(a) Write a set of linear equations that the values f(x) for x ∈W must satisfy (one equation for

each such vertex x).
(b) Uniqueness: Show that these equations specify f .
(c) Existence: Without using the probabilistic interpretation, prove there is a solution to this

set of equations.
(d) Let i be the current associated to the voltage function f , that is, i(x, y) := c(x, y)[f(x)−f(y)].

Show that the amount of current flowing into the network at x, i.e.,
∑
y i(x, y), equals

π(x)g(x) for x ∈ W . Thus, currents can be specified by giving voltages h on one set of
vertices and giving flow amounts π(x)g(x) on the complementary set of vertices. (Recall
that π(•) is not generally a probability measure.)

2.32. If voltages are given at vertices a and z of a finite network and thus are harmonic elsewhere,
must the voltages of the vertices be monotone along every shortest path between a and z?

2.33. Let x, y, z ∈ V. Show that

C (x↔ {y, z}) ≤ C (x↔ y) + C (x↔ z) .

2.34. Let A and Z be two sets of vertices in a finite network. Show that for any vertex x /∈ A∪Z,
we have

Px[τA < τZ ] ≤ C (x↔ A)

C (x↔ A ∪ Z)
.

2.35. Show that on every finite network, |E[Sxy] − E[Syx]| ≤ 1 for all x, y, where Sxy is defined
as in Proposition 2.2.

2.36. When a voltage is imposed so that a unit current flows from a to Z in a finite network and
v↾Z ≡ 0, show that the expected total number of times an edge [x, y] is crossed by a random walk
starting at a and absorbed at Z equals c(x, y)[v(x) + v(y)].
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2.37. Define Sxy as in Proposition 2.2. Show that E[Sxy] is monotone increasing in c(x, y).

2.38. Show that every transient network contains a locally finite transient subnetwork.

2.39. Let G be a network such that γ :=
∑
e∈E c(e) <∞ (for example, G could be finite). Here,

the sum counts each edge with two endpoints twice and each loop once. For every vertex a ∈ G,
show that the expected time for a random walk started at a to return to a is γ/π(a).

2.40. Let ⟨Xn⟩ be a recurrent irreducible Markov chain, not necessarily reversible. Let τ > 0 be

a stopping time such that Pa[Xτ = a] = 1 for some state a. Let Gτ (x, y) := Ex
[∑

0≤n<τ 1[Xn=y]

]
.

Assume that Gτ (a, a) <∞; for example, we could use τ = τ+a .
(a) Show x 7→ Gτ (a, x) is finite for each x and gives a stationary measure.
(b) Assume in addition that ⟨Xn⟩ is positive recurrent, that is, it has a stationary probability

measure π(•), not necessarily reversible. Show that for all states x, we have Ea[τ ] < ∞ and
π(x) = Gτ (a, x)/Ea[τ ]. In particular, Ea[τ+a ] = 1/π(a). Give another proof of the formula of
Exercise 2.39 from this.

(c) Show that if Ea[τ+a ] <∞, then ⟨Xn⟩ is positive recurrent.

2.41. Let ⟨Xn⟩ be an irreducible Markov chain. A function f on the state space is called har-
monic if f(x) =

∑
p(x, y)f(y) for every state x. Suppose that the Markov chain is recurrent.

(a) Show that there are no bounded harmonic functions other than the constants.
(b) Show that there are no non-negative harmonic functions other than the constants.
(c) Existence of a stationary measure was shown in Exercise 2.40. Show that the stationary

measure is unique up to a multiplicative constant.

2.42. Let ⟨Xn⟩ be an irreducible Markov chain. A function f on the state space is called super-
harmonic if f(x) ≥

∑
p(x, y)f(y) for every state x. Show that the Markov chain is recurrent iff

every non-negative superharmonic function is constant.

2.43. Let ⟨Xn⟩ be a positive recurrent irreducible aperiodic Markov chain with stationary prob-
ability measure π(•), not necessarily reversible. Write Pπ for the law of the chain when the
distribution of X0 is π. Show that for all states x, we have

π(x)Eπ[τx] =
∑
n≥0

[pn(x, x) − π(x)] .

2.44. Let G be a network such that
∑
e∈E c(e) = ∞. For every vertex a ∈ G, show that the

expected time for a random walk started at a to return to a is ∞.

2.45. Let G be a finite network and A and Z be two disjoint subsets of vertices in G. Show that

C (A↔ Z) =
∑
x∈A

π(x)Px[τZ < τ+A ] .

(Recall that π(•) is not generally a probability measure.)

2.46. Let ⟨Xn⟩ be a positive recurrent irreducible Markov chain with stationary probability mea-
sure π(•), not necessarily reversible. Show that the expected hitting time of a random π-distributed
target does not depend on the starting state. That is, show that if

f(x) :=
∑
y

π(y)Ex[τy] ,
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then f(x) is the same for all x. In case the state space is finite, show that

f(x) =
∑
i

1

1 − λi
,

where the sum is over the eigenvalues λi of the transition matrix P (with multiplicity) other than
1.

2.47. Suppose that a tree T is transient for simple random walk ⟨Xn⟩. If we iteratively erase
backtracking from the path of the walk, then we obtain a.s. a ray ξ ∈ ∂T that intersects the path
infinitely often. We say that ⟨Xn⟩ converges to ξ. Prove that if ⟨Xn⟩ and ⟨X ′

n⟩ are independent
simple random walks on T , then a.s. they converge to distinct rays.

2.48. Let ⟨Xn⟩ be a Markov chain and A be a set of states such that τA <∞ a.s. The distribution
of XτA is called harmonic measure on A. In the case that ⟨Xn⟩ is a random walk on a network
G = (V,E) starting from a vertex z and A ⊆ V is finite, let µ be harmonic measure and define

ν(x) := Px[τz < τ+A ]

for x ∈ A.
(a) Show that

µ(x) = Pz[τx < τA\{x} | τA < τ+z ]

for all x ∈ A.
(b) Show that

µ(x) = R(A↔ z)π(x)ν(x)

for all x ∈ A. (Recall that π(•) is not generally a probability measure.)

(c) Let G be a transient network and ⟨Gn⟩ be an exhaustion of G by finite induced subnetworks.
Let GW

n be the network obtained from G by identifying the vertices outside Gn to a single
vertex, zn, and removing loops at zn. Fix a finite set A ⊂ V. Let µn be harmonic measure
on A for the network GW

n from zn. Show that wired harmonic measure from infinity
µ := limn→∞ µn exists and satisfies

µ(x) = R(A↔ ∞)π(x)Px[τ+A = ∞]

for all x ∈ A.

2.49. Let G be a finite network with a fixed vertex, a. Fix s ∈ (0, 1). Add a new vertex, ∆, which
is joined to each vertex x with an edge of conductance w(x) chosen so that at x, the probability
of taking a step to ∆ is equal to 1 − s. Call the new network G′. Prove that∑

k≥0

pks
k = π(a)R(a↔ ∆;G′)/s ,

where pk is the probability that the network random walk on G (not on G′) starting from a is
back at a at time k. The series above is the generating function for the return probabilities and
is sometimes called the “Green function”, despite the other notion of Green function defined in
this chapter.
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2.50. Let G be a transient network with a fixed vertex, a. Fix s ∈ (0, 1). Add a new vertex,
∆, which is joined to each vertex x with an edge of conductance w(x) chosen so that at x,
the probability of taking a step to ∆ is equal to 1 − s. Call the new network G′. Define the
effective resistance between a and {∆,∞} to be the limit of the effective resistance between a and
V(G′) \ V(Gn), where Gn is an exhaustion of G (not of G′) by induced subnetworks. Prove that
the limit defining the effective resistance between a and {∆,∞} exists and that

∑
k≥0

pks
k = π(a)R(a↔ ∆,∞;G′)/s ,

where pk is the probability that the network random walk on G (not on G′) starting from a is
back at a at time k.

2.51. Give an example of two graphs Gi = (V,Ei) on the same vertex set (i = 1, 2) such that
both graphs are connected and recurrent, yet their union (V,E1 ∪ E2) is transient.

2.52. Consider nearest-neighbor random walk on N that steps +1 with probability 3/4 and −1
with probability 1/4 unless the walker is at a multiple of 3, in which case the transition probabilities
are 1/10 and 9/10, respectively. (Of course, at 0, the walker always moves to 1.) Show that the
walk is recurrent. On the other hand, show that if before taking a step, a fair coin is tossed and
one uses the transition probabilities of this biased walk when the coin shows heads and moves
right or left with equal probability when the coin shows tails, then the walk is transient. In this
latter case, show that the walk tends to infinity at a positive linear rate.

2.53. In the following networks, each edge has unit conductance. (More such exercises can be
found in Doyle and Snell (1984).)

a x

z

a z

a z

(a) (b) (c)

(a) What are Px[τa < τz], Pa[τx < τz], and Pz[τx < τa]?
(b) What is C (a↔ z)? (Or: show a sequence of transformations that could be used to calculate

C (a↔ z).)
(c) What is C (a↔ z)? (Or: show a sequence of transformations that could be used to calculate

C (a↔ z).)

2.54. The star-triangle equivalence can be extended as follows. Suppose that (G, c) and (G′, c′)
are two finite networks with a common subset W of vertices that has the property that for all
x, y ∈W , the effective resistance between x and y is the same in each network. Then say that G
and G′ are W -equivalent .
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(a) Let G and G′ be W -equivalent. Show that specifying voltages on W leads to the same
current flows out of W in each of the two networks. More precisely, let f0:W → R and let
f , f ′ be the extensions of f0 to G and G′, respectively, that are harmonic off W . Show that
d∗cdf = d∗c′df ′ on W .

(b) Let G and G′ be W -equivalent. Suppose that H is another network with subset W of
vertices, but otherwise disjoint from G and G′. Form two new networks G∪H and G′∪H by
identifying the copies of W . Show that if the same voltages are established at some vertices
of H in each of these two networks, then the same voltages and currents will be present in
each of these two copies of H.

(c) Given G and a vertex subset W with |W | = 3, show that there is a 4-vertex network G′ with
underlying graph a tree that is W -equivalent to G.

(d) For x, y ∈ W , let pW (x, y) be the probability that the network random walk on G starting
at x is at y when it first returns to W ; possibly x = y. Define the network G′ := (W, c′) with
c′(x, y) := π(x)pW (x, y) for all x ̸= y ∈ W . Show that c′(x, y) = c′(y, x) for all x ̸= y ∈ W
and that G and G′ are W -equivalent. Hint: Consider adding loops to G′.

(e) (The star-clique transformation) Let z ∈ V(G) and N be the set of the neighbors of
z. Form the network G′ from G by deleting z and adding an edge between each pair of
distinct vertices x, y ∈ N of conductance c(z, x)c(z, y)/π(z). Show that G and G′ are V(G′)-
equivalent. Note that when |N | = 1, this is the same as pruning vertices of degree 1; when
|N | = 2, this is the same as the series transformation; and when |N | = 3, this is the same as
the star-triangle transformation.

2.55. Suppose that G is a finite network and a voltages are given to be 1 at a vertex a and 0 at
a vertex z. Let x and y be two other vertices of G and let G′ := G/{x, y} be the graph obtained
by shorting x and y, i.e., identifying them. Show that the voltage at the shorted vertex in G′ lies
between the original voltages at x and y in G.

2.56. Let W be a set of vertices in a finite network G. Let j ∈ ℓ2−(E) satisfy
∑n
i=1 j(ei)r(ei) = 0

whenever ⟨e1, e2, . . . , en⟩ is a cycle; and d∗j↾(V \W ) = 0. According to Exercise 2.2, the values
of d∗j↾W determine j uniquely. Show that the map d∗j↾W 7→ j is linear. This is another form of
the superposition principle.

2.57. Let (G, c) be a finite network, z ∈ V(G), and A ⊆ V(G) \ {z}. Consider two voltage
functions v, v′ on G specified to be 0 at z and arbitrary on A, with the property that v(a) ≤ v′(a)
for each a ∈ A. Let i, i′ be the corresponding currents. Show that d∗i(z) ≥ d∗i′(z).

2.58. Let A and Z be subsets of vertices in a finite network. Show that

2

|A||Z|
∑

a∈A,z∈Z

R(a↔ z) ≥ 1

|A|2
∑
a,b∈A

R(a↔ b) +
1

|Z|2
∑
y,z∈Z

R(y ↔ z) .

2.59. Let G be a finite network and f :V → R satisfy
∑
x f(x) = 0. Pick z ∈ V. Let Gz(•, •)

be the Green function for the random walk on G absorbed at z. Consider the voltage function
v(x) :=

∑
y Gz(x, y)f(y)/π(y). Show that the current i = c · dv satisfies d∗i = f and E (i) =∑

x,y Gz(x, y)f(x)f(y)/π(y).

2.60. A cut in a graph G is a set of edges of the form {(x, y) ; x ∈ A, y /∈ A} for some
proper non-empty vertex set A of G. Show that for every finite network G, the linear span of{∑

e∈Π c(e)
χe ; Π is a cut of G

}
equals the star space.
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2.61. Let G be a finite connected network. The network Laplacian is the V × V matrix ∆G

whose (x, y) entry is −c(x, y) if x ̸= y and is π(x) if x = y. Thus, ∆G is symmetric and all its
row sums are 0. Write ∆G[a] for the matrix obtained from ∆G by deleting the row and column
indexed by a. Let va(x, y) be the voltage at x when a unit current iy,a flows from y to a (so that
the voltage at a is 0) if y ̸= a and be 0 otherwise. (By Proposition 2.1, va(x, y) = Ga(x, y)/π(y)
for the random walk killed at a.) Prove the following statements:
(a) if x, y ̸= a, then va(x, y) is the (x, y)-entry of ∆G[a]−1;
(b) va(x, y) = va(y, x);
(c) va(x, x) = vx(a, a);
(d) for all a, x, y ∈ V, we have R(x↔ y) = va(x, x) − 2va(x, y) + va(y, y);
(e) if x, y ̸= a, then va(x, y) = (ix,a, iy,a)r;
(f) for all f ∈ ℓ2(V), we have (f,∆Gf) = ∥df∥2c ;
(g) for all x, y ∈ V, we have R(x↔ y) = (1{x}−1{y}, (∆G+J)−1(1{x}−1{y})) for any non-zero

matrix J with all entries equal.

2.62. Let G be a finite connected network. Show that ⟨R(x ↔ y) ; x, y ∈ V(G)⟩ determines
⟨c(x, y) ; x, y ∈ V(G)⟩, even if one does not know E(G).

2.63. Let G be a finite network. Show that if a voltage is 1 at a and 0 at z, then the corresponding
current flow from a to z is the projection of the star at a on the orthocomplement of the span of
all the other stars except that at z.

2.64. (Foster’s Theorem) Show that if G has n vertices, then
∑
e∈E1/2

ie(e) = n − 1, where

ie denotes the unit current flow from e− to e+.

2.65. Let G be a graph with unit conductances and e, e′ ∈ E(G). Show that ie(e) ≥ ie(e′).

2.66. Show that Reff is a concave function of the collection of resistances ⟨r(e)⟩.

2.67. Show that Ceff is a concave function of the collection of conductances ⟨c(e)⟩.

2.68. Show that in every finite network, for every three vertices u, x and w, we have

R(u↔ x) + R(x↔ w) ≥ R(u↔ w) .

2.69. Show that in every finite network, for every three vertices a, x, z, we have

Px[τz < τa] =
R(a↔ x) − R(x↔ z) + R(a↔ z)

2R(a↔ z)
.

2.70. Show the following quantitative forms of Rayleigh’s Monotonicity Principle in every finite
network:
(a) If r(e) denotes the resistance of the edge e and i is the unit current flow from a to z, then

∂

∂r(e)
R(a↔ z) = i(e)2 .

(b) If c(e) denotes the conductance of the edge e and v is the unit voltage from a to z, then

∂

∂c(e)
C (a↔ z) = (dv(e))

2
.

2.71. Show that if a unit voltage is imposed between two vertices of a finite network, then for
each fixed edge e, we have that |dv(e)| is a decreasing function of c(e).
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2.72. Give another proof of Rayleigh’s Monotonicity Principle by using Exercise 2.13.

2.73. Let G be a recurrent network with an exhaustion by induced subnetworks ⟨Gn⟩. Suppose
that a, z ∈ V(Gn) for all n. Let vn be the voltage function on Gn that arises from a unit voltage
at a and 0 voltage at z. Let in be the unit current flow on Gn from a to z. Let Gz(•, •;Gn) be
the Green function on Gn for random walk absorbed at z.

(a) Show that v := limn vn exists pointwise and that v(x) = Px[τa < τz] for all x ∈ V.

(b) Show that i := limn in exists pointwise.

(c) Show that E (i)dv = ir.

(d) Show that the effective resistance between a and z in Gn is monotone decreasing with limit
E (i). We define R(a↔ z) := E (i).

(e) Show that Gz(a, x;Gn) → Gz(a, x) = E (i)π(x)v(x) for all x ∈ V.

(f) Show that i(e) is the expected number of signed crossings of e.

2.74. With all the notation of Exercise 2.73, also let GW
n be the graph obtained from G by

identifying the vertices outside Gn to a single vertex, zn. Let vWn and iWn be the associated unit
voltage and unit current from a to z.

(a) Show that vWn and iWn have the same limits v and i as vn and in.

(b) Show that the effective resistance between a and z in GW
n is monotone increasing with limit

E (i).

2.75. Let G be a recurrent network. Define ⋆ to be the closure of the linear span of the stars
and ♢ to be the closure of the linear span of the cycles. Show that ℓ2−(E, r) = ⋆⊕♢.

2.76. (Extremal length) Given disjoint vertex sets A,Z in a finite network, prove that

C (A↔ Z) = min

{ ∑
e∈E1/2

c(e)ℓ(e)2
}
,

where ℓ is an assignment of non-negative lengths so that the minimum distance from every point
in A to every point in Z is 1.

2.77. Extend Exercise 2.13 to the full form of Dirichlet’s Principle in the finite setting: Let A ⊂ V
and let F0:A→ R be given. Let F :V → R be the extension of F0 that is harmonic at each vertex
not in A. Then F is the unique extension of F0 that minimizes E (c dF ).

2.78. Let H be a proper subnetwork of G. Let ⟨Xn⟩ be the network random walk on G. Show
that if H is recurrent, then P[∀n Xn ∈ H] = 0.

2.79. Prove that (2.14) holds even when the network is not locally finite and the cutsets Πn may
be infinite.

2.80. Find a counterexample to the converse of the Nash-Williams Criterion. More specifically,
find a tree of bounded degree on which simple random walk is recurrent, yet every sequence ⟨Πn⟩
of pairwise disjoint cutsets separating the root and ∞ satisfies

∑
n |Πn|−1 ≤ C for some constant

C <∞.

2.81. Show that if ⟨Πn⟩ is a sequence of pairwise disjoint cutsets separating the root and ∞ of a
tree T without leaves, then

∑
n |Πn|−1 ≤

∑
n |Tn|

−1.
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2.82. Give a probabilistic proof as follows of the Nash-Williams Criterion in case the cutsets are
nested as in Remark 2.10.

(a) Show that it suffices to prove the Criterion for all networks but only for cutsets that consist
of all edges incident to some set of vertices.

(b) Let Πn be the set of edges incident to the set of vertices Wn. Let An be the event that
a random walk starting at a visits Wn exactly once before returning to a. Let µn be the
distribution of the first vertex of Wn visited by a random walk started at a. Show that

P[An] ≥ G (a, a)−1
∑
x∈Wn

π(x)−1µn(x)2

≥ G (a, a)−1

( ∑
x∈Wn

π(x)

)−1

= G (a, a)−1

(∑
e∈Πn

c(e)

)−1

.

(c) Conclude by Borel-Cantelli.

2.83. Show that if G is a graph such that for some o ∈ V(G) and some constant C <∞, the ball
of radius n about o contains at most Cn2 edges, then G is recurrent.

2.84. Show that if θ ∈ ℓ2−(E, r), then
∑
x π(x)−1d∗θ(x)2 ≤ E (θ).

2.85. It follows from (2.16) that the function θ 7→ E (θ) is convex. Show the stronger statement
that θ 7→ E (θ)1/2 is a convex function. Why is this a stronger inequality?

2.86. Let i be the unit current flow from a to z on a finite network or from a to ∞ on a transient
infinite network. Consider the random walk started at a and, if the network is finite, stopped at
z. Let Se be the number of times the edge e is traversed (in the same direction as e).
(a) Show that i(e) = E[Se − S−e | τ+a = ∞].
(b) Show that if e− = a, then i(e) is the probability that e is traversed following the last visit to

a.

2.87. Show that the current i of Exercise 2.73 is the unique unit flow from a to z of minimum
energy.

2.88. Let G be a transient network and ⟨Xn⟩ the corresponding random walk. Show that if v is
the unit voltage between a and ∞ (with v(a) = 1), then v(Xn) → 0 a.s.

2.89. Let G be a transient network with supx π(x) < ∞. Show that Pa[τx < ∞] → 0 as
d(a, x) → ∞. (To avoid an incorrect solution, think about the case of N attached to Z3.)

2.90. Show that if (G, c) is an infinite network and A is a finite subset of vertices, then

inf

{ ∑
e∈E1/2

dF (e)2c(e) ; F ↾A ≡ 1 and F has finite support

}
= C (A↔ ∞) .

2.91. Let (G, c) be an infinite network and o ∈ V(G). For f :V(G) → R, we say that limx→∞ f(x) =
∞ if for all s ∈ R, there are only finitely many vertices x where f(x) < s. Show that (G, c) is
recurrent iff there is some f :V(G) → R with limx→∞ f(x) = ∞ and

∑
e∈E df(e)2c(e) <∞.

2.92. Let (G, c) be an infinite network and o ∈ V(G). Show that (G, c) is recurrent iff there is
an assignment ℓ of positive lengths to the edges so that the corresponding distance function dℓ
satisfies limx→∞ dℓ(o, x) = ∞ (in the sense of Exercise 2.91) and

∑
e∈E c(e)ℓ(e)

2 <∞.
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2.93. Suppose that G is a graph with random resistances R(e) having finite means r(e) :=
E[R(e)]. Show that if (G, r) is transient, then (G,R) is a.s. transient.

2.94. Suppose that G is a graph with random conductances C(e) having finite means c(e) :=
E[C(e)]. Show that if (G, c) is recurrent, then (G,C) is a.s. recurrent.

2.95. Let (G, c) be a transient network and o ∈ V(G). Consider the voltage function v when the
voltage is 1 at o and 0 at infinity. For t ∈ (0, 1), let At := {x ∈ V ; v(x) > t}. Normally, At is
finite. Show that even if At is infinite, the subnetwork it induces is recurrent.

2.96. Sharpen Proposition 2.14 to show that if one identifies to a single vertex zn all vertices of
Z2 that are at distance more than n from 0, then as n→ ∞,

R(0 ↔ zn) ∼ 1

2π
logn .

2.97. Complete the following outline of a calculational proof of Pólya’s theorem. Define ψ(α) :=
d−1∑d

k=1 cos 2παk for α = (α1, . . . , αd) ∈ Td := (R/Z)d. For all n ∈ N, we have pn(0,0) =∫
Td ψ(α)n dα. Therefore

∑
n pn(0,0) =

∫
Td 1/(1 − ψ(α)) dα <∞ iff d ≥ 3. Use the same method

for a random walk on Zd that has mean-0 bounded jumps.

2.98. Consider an urn with three balls of different colors. Pick a ball uniformly at random, and
return it to the urn together with another ball of the same color. Repeating this indefinitely yields
a process known as Pólya’s urn .
(a) Model this process as a random path ⟨Sn ; n ≥ 0⟩ in the lattice Z3 starting from S0 :=

(1, 1, 1). Show that Sn is uniformly distributed over {(x, y, z) ∈ Z3 ; x+y+z = n+3, x, y, z >
0} for every n ≥ 0.

(b) Deduce that θ(e) := P[⟨Sn, Sn+1⟩ = e] defines a unit flow of finite energy in Z3.
(c) Use the same method to show that for every n ≥ 1, the effective resistance from (0, 0) to

(n, n) in Z2 is at most C logn for some universal constant C, as in Proposition 2.15.

2.99. Give another proof of Theorem 2.17 by using Exercise 2.90.

2.100. Let (G, r) and (G′, r′) be two finite networks. Let ϕ: (G, r) → (G′, r′) be an (α, β)-rough
embedding. Show that for all vertices x, y ∈ G, we have R(ϕ(x) ↔ ϕ(y)) ≤ αβR(x↔ y).

2.101. Show that all regular trees of degree at least 3 are roughly isometric.

2.102. Let Br(G, o) denote the set of vertices within distance r of o in the graph G. Suppose
that G and G′ are roughly isometric infinite connected graphs.
(a) Show thatG andG′ have the same polynomial growth rates, i.e., if limr→∞ log |Br(G, o)|/ log r =

α, then limr→∞ log |Br(G′, o′)|/ log r = α.
(b) Show if G has exponential growth, then so does G′, i.e., if lim infr→∞ r−1 log |Br(G, o)| > 1,

then lim infr→∞ r−1 log |Br(G′, o′)| > 1.

2.103. Show that if G is a graph that is roughly isometric to hyperbolic space, then the number
of vertices within distance n of a fixed vertex of G grows exponentially fast in n.

2.104. Show that in every finite network,

Ea[τz] =
1

2

∑
x∈V

π(x)[R(a↔ z) + R(z ↔ x) − R(x↔ a)] .

(Recall that π(•) is not generally a probability measure.)
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2.105. Let G be a network. Suppose that x and y are two fixed vertices such that there is an
automorphism of G that takes x to y (though it might not take y to x). Show that for every k,
we have Px[τy = k] = Py[τx = k]. Hint: Show the equality with “≤ k” in place of “= k”.

2.106. Let G be a network such that γ :=
∑
e∈E c(e) < ∞ (for example, G could be finite).

Here, the sum counts each edge with two endpoints twice and each loop once. Let x, y, z be three
distinct vertices in G. Write τx,y,z for the first time that the network random walk trajectory
contains the vertices x, y, z in that order. Show that

Px[τy,z,x ≤ τ+x ] = Px[τz,y,x ≤ τ+x ] (2.27)

and

Ex[τy,z,x] = Ex[τz,y,x] =
γ

2
[R(x↔ y) + R(y ↔ z) + R(z ↔ x)] . (2.28)

2.107. Let G be a finite network and x, y be two distinct vertices in G. Write τx,y for the first
time that the network random walk trajectory contains the vertices x, y in that order. Let π be
the stationary probability measure. Write Pπ(A) :=

∑
x π(x)P(A) for events A.

(a) Show that

Pπ[τx,y = k] = Pπ[τy,x = k]

for all k.

(b) Define f(w, z) := Ew[τz] −Eπ[τz]. Show that f(w, z) = f(z, w) for all vertices w, z.

(c) Suppose that independent random walks X and Y start from x and y, respectively. However,
you are allowed to decide which of the walks to move at each time step. At time n, you are
allowed to look at all the steps that have been made up to time n. Thus, if by time n, the
walk X has made sn steps and Y has made tn steps, where sn + tn = n, then the choice
whether sn+1 = sn + 1 or tn+1 = tn + 1 can depend on ⟨Xk ; k ≤ sn⟩ and ⟨Yk ; k ≤ tn⟩.
Let τ := inf{n ; Xsn = Ytn} be the first time the controlled random walks collide. Define
Mn := f(Xsn , Ytn) + n. Show that ⟨Mn∧τ ; n ≥ 0⟩ is a martingale.

(d) Show that E[τ ] ≤ 2 maxw,z Ew[τz].

2.108. Let G be a network and x, y, z be three distinct vertices in G. Write τx,y,z for the first time
that the network random walk trajectory contains the vertices x, y, z in that order. Strengthen
and generalize the first equality of (2.28) by showing that

Px[τy,z,x = k] = Px[τz,y,x = k]

for all k.

2.109. Consider a Markov chain that is not necessarily reversible. Let a, x, and z be three of its
states. Show that

Px[τz < τa] =
Ex[τa] + Ea[τz] −Ex[τz]

Ez[τa] + Ea[τz]
(2.29)

Use this in combination with (2.28) and Corollary 2.21 to give another solution to Exercise 2.69.
Hint: Consider whether the chain visits z on the way to a or not.

2.110. Let T be a tree and x and y be two of its vertices. For a vertex z on the path from x to
y, including x but not y, let Ay(z) be the number of edges that are separated from y by z. Show
that Ex[τy] = 2

∑
z Ay(z).
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2.111. Let G be a finite graph and x and y be two of its vertices such that there is a unique
simple path in G that joins these particular vertices; e.g., G could be a tree (possibly with loops)
and then x and y could be any of its vertices. Show that Ex[τy] ∈ N. In the case that G is a tree
possibly with loops, show that Ex[

(
τy
k

)
] ∈ N for all k ∈ N.

2.112. Let G be a transient network and Rn := |{X0,X1, . . . , Xn}| be the number of vertices
visited by time n. Show that for all n and all o ∈ V(G),

Eo[Rn]

n+ 1
≥ inf
x∈V(G)

C (x↔ ∞)/π(x) .

2.113. Let G be a finite network and let a and z be two vertices of G. Let x ∼ y in G. Show
that the expected number of transitions from x to y for a random walk started at a and stopped
at the first return to a that occurs after visiting z is c(x, y)R(a ↔ z). Give another proof of
Corollary 2.21 by using this formula.

2.114. Show that Corollary 2.21 and Exercises 2.113, 2.69, and 2.104 hold for all recurrent net-
works.

2.115. Consider an irreducible Markov chain on a state space V of size n, not necessarily re-
versible. Let π be the stationary probability distribution. Show that

∑
x,y∈V π(x)p(x, y)Ey[τx] =

n− 1. Give another proof of Foster’s Theorem (Exercise 2.64) from this.

2.116. Let G be a network with n vertices and consider two of its vertices, a and z. Consider a
random walk ⟨Xk ; 0 ≤ k ≤ τ⟩ that starts at a, visits z, and is then stopped at its first return τ
to a after visiting z. Show that E

[∑τ−1
k=0 R(Xk ↔ Xk+1)

]
= 2(n− 1)R(a↔ z).

2.117. Given two vertices a and z of a finite network (G, c), show that the commute time between
a and z is at least twice the square of the graph distance between a and z. Hint: Consider the
cutsets between a and z that are determined by spherical shells.

2.118. Show that the expected cover time of a graph G = (V,E) is at most 2|E| · |V|.

2.119. Show that the expected cover time of an edge-transitive graph G = (V,E) is at most 2|V|2.

2.120. Let G be a connected simple graph on n vertices. Define δ(e) := R(e− ↔ e+)− (deg e− +
1)−1 − (deg e+ + 1)−1. For a spanning tree T , define R(T ) :=

∑
e∈T R(e− ↔ e+).

(a) Show that δ(e) ≥ 0 for all e ∈ E.
(b) Show that

∑
e∈E1/2

δ(e) =
∑
x∈V(deg x+ 1)−1 − 1.

(c) Show that if G is d-regular, then

2(n− 1)

d+ 1
≤ R(T ) ≤ 3(n− 1)

d+ 1

for all spanning trees T of G.
(d) Show that the commute time between any pair of vertices in G is less than 6|E|

∑
x∈V(deg x+

1)−1.
(e) Show that there exist ϵn → 0 such that for all connected simple graphs G on n vertices, the

commute time between any pair of vertices in G is less than (4/27 + ϵn)n3.

2.121. The hypercube of dimension n is the subgraph induced on the set {0, 1}n in the usual
nearest-neighbor graph on Zn. Find the first-order asymptotics of the effective resistance between
opposite corners (0, 0, . . . , 0) and (1, 1, . . . , 1) and the first-order asymptotics of the commute time
between them. Also find the first-order asymptotics of the cover time.
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2.122. Let (G, c) be a finite network and o ∈ V(G). Let X(e) be independent normal random
variables with variance r(e) for e ∈ E1/2; put X(−e) := −X(e) for e /∈ E1/2. Given random walks
starting at each x ∈ V(G) with each one stopped when it reaches o, define S(x) to be the sum of
X(e) over the edges e traversed by the random walk starting at x. Show that x 7→ E[S(x) | X]
has the law of the canonical Gaussian field.

2.123. Let (G, c) be a finite network with o ∈ V(G); let Z be the associated canonical Gaussian
field. Let W be a non-empty proper subset of vertices that includes o. Show that the squared
distance in L2(P) from Z(x) to the linear span of Z(w) (w ∈W ) equals R(x↔W ).

2.124. Let (G, c) be a finite network with o ∈ V(G); let Z be the associated canonical Gaussian
field. Show that if bx are constants such that

∑
x∈V bxZ(x) is constant a.s., then bx = 0 for all

x ̸= o.

2.125. Let (G, c) be a finite network. Fix a non-empty proper subset W ⊊ V and a function
u:W → R. Let Z:V → R be the jointly normal random variables such that Z = u on W and the
joint density of Z↾(V \W ) is

C exp

{
− 1

2
∥dZ∥2c

}
for some constant C. These random variables are called the canonical Gaussian field pinned
on W . Let v be the harmonic extension of u to V.
(a) Show that ∥dZ∥2c = ∥d(Z − v)∥2c + ∥dv∥2c . Deduce that the law of Z − v on G/W is that of

the usual canonical Gaussian field on G/W , where G/W is the network obtained from G by
identifying W to a single vertex, where the field is 0.

(b) Show that E[Z(x)] = v(x) for all x.
(c) Show that

Z(x) − Z(y) ∼ N(v(x) − v(y),R(x↔ y;G/W ))

for x ̸= y ∈ V, as long as x and y are not both in W .
(d) Show that the covariance of Z(x) − Z(y) and Z(z) − Z(w) equals v′(z) − v′(w) when v′ is

the voltage associated to a unit current flow from x to y in the network G/W (with x ̸= y).

2.126. Let (G, c) be a finite network and m > 0. Fix a non-empty proper subset W ⊊ V and a
function u:W → R. Let Z:V → R be the jointly normal random variables such that Z = u on W
and the joint density is

C exp

{
− 1

2

(
∥dZ∥2c +m

∑
x∈V

Z(x)2
)}

for some constant C. These random variables are called the canonical Gaussian field pinned on
W with mass m. Calculate E[Z(x)−Z(y)] and Cov(Z(x)−Z(y), Z(z)−Z(w)) for x, y, z, w ∈ V.

2.127. Use results on canonical Gaussian fields to solve Exercises 2.58, 2.61(b)–(e), and 2.68.
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Chapter 3

Special Networks

In this chapter, we will use our tools from Chapter 2 to analyze transience and recur-

rence of networks on trees and on Cayley graphs of groups. First, we study flows that are

not necessarily current flows. This involves some tools that are very general and useful.

In particular, the surprising Max Flow-Min Cut Theorem has a wealth of specializations

and applications, some of which are in the exercises to this chapter and some of which will

be in other chapters. After applying these to trees, we will define Cayley graphs and give

several examples. When we analyze the type of certain biased random walks on Cayley

graphs, trees will actually be a key tool to show that in a certain sense, Cayley graphs are

like spherically symmetric graphs, even though they are rarely truly spherically symmetric

and can even be quite far from spherically symmetric. Other special networks, planar and

hyperbolic, will be studied in Section 9.4.

§3.1. Flows, Cutsets, and Random Paths.

Notice that if there is a flow from a to ∞ of finite energy on some network with

conductances c(•) and if i is the unit current flow with corresponding voltage function v,

then |i(e)| = |c(e) ·(dv)(e)| ≤ v(a)c(e) = R(a↔ ∞)c(e) for all edges e. In particular, there

is a non-0 flow bounded on each edge by c(•) (namely, i/v(a)).* The existence of flows that

are bounded by some given numbers on the edges is an interesting and valuable property

in itself. We call such flows admissible . To determine whether there is a non-0 admissible

flow, we turn to the powerful Max-Flow Min-Cut Theorem of Ford and Fulkerson (1962).

For finite networks, the theorem reads as follows. We call a set Π of edges a cutset

separating A and Z if every path that starts in A and ends in Z must include an edge in

Π. We call c(e) the capacity of e in this context. Think of water flowing through pipes.

The vertices in A are called sources, while those in Z are called sinks. A flow between

A and Z is an antisymmetric function θ such that d∗θ equals 0 off A ∪ Z. Recall from

Section 2.4 that the strength of a flow between A and Z, i.e., the total amount flowing

* This also follows from the Nash-Williams Criterion and the Max-Flow Min-Cut Theorem below.
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into the network at vertices in A (and out at Z) is Strength(θ) :=
∑
a∈A d

∗θ(a). Since

all the water must flow through every cutset Π, it is intuitively clear that the strength of

every admissible flow is at most infΠ
∑
e∈Π c(e). Remarkably, this upper bound is always

achieved. This is the content of the Max-Flow Min-Cut Theorem.

It will be useful for the proof of this theorem, as well as later, to establish a more

general statement about flows in directed networks. In a directed network, the capacity

function c on edges is not necessarily symmetric, even if both orientations of an edge occur.

Define the vertex-edge incidence function

ϕ(x, e) := 1{e−=x} − 1{e+=x} .

A non-negative function θ on the edges is now called a flow if for all x other than the source

and sink vertices,
∑
e ϕ(x, e)θ(e) = 0. In particular, flows are not necessarily antisymmetric

(nor symmetric) functions. Now a flow θ is called admissible if θ(e) ≤ c(e) for every edge

e. The strength of a flow with source set A is

Strength(θ) :=
∑
x∈A

∑
e

ϕ(x, e)θ(e) .

Cutsets separating a source set A from a sink set Z are required to intersect every directed

path from A to Z. To reduce the study of undirected networks to that of directed ones,

we simply replace each undirected edge by a pair of parallel directed edges with opposite

orientations and the same capacity. A flow on the undirected network is replaced by a

flow on the directed network that is nonzero on only one edge of each new parallel pair,

while a flow on the resulting directed network yields a flow on the undirected network by

subtracting the values on each parallel oppositely oriented pair of edges.

The Max-Flow Min-Cut Theorem. Let A and Z be disjoint sets of vertices in a

(directed or undirected) finite network G. The maximum strength of an admissible flow

between A and Z equals the minimum cutset sum of the capacities. In other words, in the

directed case,

max
{
Strength(θ) ; θ flows from A to Z satisfying ∀e 0 ≤ θ(e) ≤ c(e)

}
= min

{∑
e∈Π

c(e) ; Π separates A and Z
}
,

while in the undirected case,

max
{
Strength(θ) ; θ flows from A to Z satisfying ∀e |θ(e)| ≤ c(e)

}
= min

{∑
e∈Π

c(e) ; Π separates A and Z
}
.
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Proof. It suffices to establish the case of directed networks. Because the network is finite,

the set of flows from A to Z bounded by c on each edge is a compact set in RE, whence

there is a flow of maximum strength. Let θ be a flow of maximum strength. If Π is any

cutset separating A from Z, let A′ denote the set of vertices that are not separated from

A by Π. Since A ⊆ A′ and A′ ∩ Z = ∅, we have

Strength(θ) =
∑
x∈A

∑
e∈E

ϕ(x, e)θ(e) =
∑
x∈A′

∑
e∈E

ϕ(x, e)θ(e)

=
∑
e∈E

θ(e)
∑
x∈A′

ϕ(x, e) ≤
∑
e∈Π

θ(e) ≤
∑
e∈Π

c(e) ,
(3.1)

since
∑
x∈A′ ϕ(x, e) is 0 when e joins two vertices in A′, is 1 when e leads out of A′, and

is −1 when e leads into A′. This proves the intuitive half of the desired equality.

For the more surprising reverse inequality, given an admissible flow θ, call a sequence

of vertices x0, x1, . . . , xk an augmentable path if x0 ∈ A and for all i = 1, . . . , k, either

there is an edge e from xi−1 to xi with θ(e) < c(e) or there is an edge e′ from xi to xi−1

with θ(e′) > 0. Let B denote the set of vertices x such that there exists an augmentable

path (possibly just one vertex) from a vertex of A to x. If there were an augmentable path

x0, x1, . . . , xk with xk ∈ Z, then we could obtain from θ a stronger flow bounded by c as

follows: For each i = 1, . . . , k where there is an edge e from xi−1 to xi, let θ
∗(e) = θ(e)+ ϵ,

while if there is an edge e′ from xi to xi−1, let θ
∗(e′) = θ(e′)−ϵ. By taking ϵ > 0 sufficiently

small, we would contradict maximality of θ. Therefore Z ⊂ Bc. Let Π be the set of edges

connecting B to Bc. Then Π is a cutset separating A from Z. For every edge e leading

from B to Bc, necessarily θ(e) = c(e), while θ must vanish on every edge from Bc to B.

Therefore a calculation as in (3.1) shows that

Strength(θ) =
∑
e∈E

θ(e)
∑
x∈B

ϕ(x, e) =
∑
e∈Π

θ(e) =
∑
e∈Π

c(e) .

In conjunction with (3.1), this completes the proof. ◀

Suppose now that G = (V,E) is a countable directed or undirected network and a is

one of its vertices. As usual, we assume that ∀x
∑
e−=x c(e) <∞. We want to extend the

Max-Flow Min-Cut Theorem to G for flows from a to ∞. Recall that a cutset Π separates

a and ∞ if every infinite simple path from a must include an edge in Π. A flow of maximum

strength exists since a maximizing sequence of flows has an edgewise limit point which is

a maximizing flow bounded by c in light of the dominated convergence theorem. We claim

that this maximum strength is equal to the infimum of the cutset sums:
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Theorem 3.1. If a is a vertex in a countable directed network G, then

max
{
Strength(θ) ; θ flows from a to ∞ satisfying ∀e 0 ≤ θ(e) ≤ c(e)

}
= inf

{∑
e∈Π

c(e) ; Π separates a and ∞
}
.

Proof. In the proof, “cutset” will always mean “cutset separating a and ∞”. Let θ be

a flow of maximum strength among flows from a to ∞ that are bounded by c(•). Given

ϵ > 0, let D be a possibly empty set of edges such that
∑
e∈D c(e) < ϵ and G′ := (V,E\D)

is locally finite. Let P be the set of simple paths in G′ from a to ∞. Define the distance

between two elements ⟨en⟩, ⟨e′n⟩ of P to be inf{1/(n + 1) ; ek = e′k for 1 ≤ k ≤ n}. The

important aspect of this is that the set P is compact: given paths Pm = ⟨em,n⟩, we may

choose a subsequence ⟨mk⟩ such that emk,1 is the same for all k because G′ is locally finite.

Then we may choose a further subsequence where the second edge is constant. Continuing

this way, a diagonal argument provides a limit path of the original sequence of paths.

If we associate to an edge e the set of paths in P that pass through e, then a cutset

becomes associated to a cover of P. Compactness of P therefore means that for any

cutset Π in G, there is a finite cutset Π′ ⊆ Π in G′. Also, Π′ separates only finitely many

vertices A′ from ∞ in G′. Therefore,

Strength(θ) =
∑
e∈E

ϕ(a, e)θ(e) =
∑
x∈A′

∑
e∈E

ϕ(x, e)θ(e)

=
∑
x∈A′

∑
e∈E\D

ϕ(x, e)θ(e) +
∑
x∈A′

∑
e∈D

ϕ(x, e)θ(e)

=
∑
e∈E\D

θ(e)
∑
x∈A′

ϕ(x, e) +
∑
x∈A′

∑
e∈D

ϕ(x, e)θ(e)

[since the first sum is finite]

≤
∑
e∈Π′

θ(e) + ϵ ≤
∑
e∈Π′

c(e) + ϵ ≤
∑
e∈Π

c(e) + ϵ .

Since this holds for all ϵ > 0, we obtain one inequality of the desired equality.

For the inequality in the other direction, let C(H) denote the infimum cutset sum in

any network H. Given ϵ > 0, let D and G′ be as before. Then C(G) ≤ C(G′) + ϵ since

we may adjoin D to any cutset of G′ to obtain a cutset of G. Let ⟨G′
n⟩ be an exhaustion

of G′ by finite connected induced networks with a ∈ G′
n for all n. Identify the vertices

outside G′
n to a single vertex zn and remove loops at zn to form the finite network GW

n

from G. Then C(G′) = infn C(G
W
n ) since every minimal cutset of G′ is finite (it separates

only finitely many vertices from ∞), where minimal means with respect to inclusion. Let
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θn be a flow on GW
n of maximum strength among flows from a to zn that are bounded by

c↾GW
n . Then Strength(θn) = C(GW

n ) ≥ C(G′). Let θ be a limit point of ⟨θn⟩. Then θ is a

flow on G′ with Strength(θ) ≥ C(G′) ≥ C(G)− ϵ. ◀

In Section 2.5, we constructed a unit flow from a random path. The reverse is also

useful; we show how to do this now. We return to undirected graphs for this, so that a

flow θ satisfies θ(−e) = −θ(e) for all edges e. Suppose that

θ is a unit flow from a to z on a finite graph or from a to ∞ on an

infinite graph such that if e− = a, then θ(e) ≥ 0 and, in the finite

case, if e+ = z, then θ(e) ≥ 0.

(3.2)

Use θ to define a random path as the trajectory of a Markov chain ⟨Yn⟩ as follows. The

initial state is Y0 := a and z is an absorbing state. For a vertex x ̸= z, set

θout(x) :=
∑
e−=x
θ(e)>0

θ(e) ,

the amount flowing out of x. The transition probability from x to w is then (θ(x,w) ∨
0)/θout(x). This gives us our random path. Now go back and construct a unit flow from

this random path as in Section 2.5, that is, define

θ′(e) :=
∑
n≥0

{
P[⟨Yn, Yn+1⟩ = e]−P[⟨Yn+1, Yn⟩ = e]

}
.

How is θ′ related to θ? We call θ acyclic if there is no cycle of oriented edges on each

of which θ > 0. For example, current flows are acyclic because they minimize energy (or

because they equal c dv).

Proposition 3.2. Suppose that θ is an acyclic unit flow satisfying the above conditions

(3.2). With the above notation, for every edge e with θ(e) > 0, we have

0 ≤ θ′(e) ≤ θ(e) (3.3)

with equality on the right if G is finite or if θ is the unit current flow from a to ∞.

Proof. Since the Markov chain travels only in the direction of θ, it clear that θ′(e) ≥ 0

when θ(e) > 0.

For edges e with θ(e) > 0, set

pN (e) := P[∃n ≤ N ⟨Yn, Yn+1⟩ = e] .
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Because θ is acyclic, pN (e) → θ′(e). Thus, in order to show that θ′(e) ≤ θ(e), it suffices

to show that pN (e) ≤ θ(e) for all N . We proceed by induction on N . This is clear for

N = 0. For vertices x, define pN (x) := P[∃n ≤ N Yn = x]. Suppose that pN (e) ≤ θ(e)

for all edges e with θ(e) > 0. Then also pN+1(x) ≤
∑
e+=x,θ(e)>0 θ(e) = θout(x) for all

vertices x ̸= a. Hence pN+1(x) ≤ θout(x) for all vertices x. Therefore, for every edge e

with θ(e) > 0, if we put x := e−, then we get pN+1(e) = pN+1(x)θ(e)/θout(x) ≤ θ(e). This

completes the induction and proves (3.3).

If G is finite, then θ′′ := θ − θ′ is a sourceless acyclic flow since it is positive only

where θ is positive. If there were an edge e1 where θ′′(e1) > 0, then there would exist an

edge e2 whose head is the tail of e1 where also θ′′(e2) > 0, and so on. Eventually, this

would close a cycle, which is impossible. Thus, θ′ = θ.

If θ is the unit current flow from a to ∞, then θ has minimum energy among all unit

flows from a to ∞. Thus, (3.3) implies that θ′ = θ. ◀

Remark. Of course, other random paths or other rules for transporting mass through the

network according to the flow θ will lead to the same result.

▷ Exercise 3.1.

Show that if equality holds on the right-hand side of (3.3), then for all x, we have∑
e+=x,
θ(e)>0

θ(e) ≤ 1 .

▷ Exercise 3.2.

Suppose that simple random walk is transient on G and a ∈ V. Show that there is a

random edge-simple path from a to ∞ such that the expected number of edges common

to two such independent paths is equal to R(a↔ ∞) (for unit conductances on G).

Here is one use of these random paths:

Corollary 3.3. (Monotone-Voltage Paths) Let G be a transient connected network

and v the voltage function from the unit current flow i from a vertex a to ∞ with v(∞) = 0.

For every vertex x, there is a path of vertices from a to x along which v is monotone. If x

is incident to some edge e with i(e) > 0, then there is such a path along which v is strictly

monotone.

Proof. Let W be the set of vertices incident to some edge e with i(e) > 0. By Proposi-

tion 3.2, if i(e) > 0, then a path ⟨Yn⟩ chosen at random (as defined above) will cross e
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with positive probability. Thus, each vertex in W has a positive chance of being visited

by ⟨Yn⟩. Clearly v is strictly monotone along every path ⟨Yn⟩. Thus, there is a path from

a to any vertex in W along which v is strictly monotone. Now any vertex x not in W can

be connected to some w ∈ W by edges along which i = 0. Extending the path from a to

w by such a path from w to x gives the required path from a to x. ◀

Curiously, we do not know a deterministic construction of a path satisfying the con-

clusion of Corollary 3.3.

§3.2. Trees.

Flows and electrical networks on trees can be analyzed with greater precision than on

general graphs. One easy reason for this is that we know which direction the flow goes,

by which we mean the following. Fix a root o in a tree T and denote by |e| the distance

from an edge e ∈ T to o, i.e., the number of edges on the smallest path that includes both

o and e. Choose a unique orientation for each edge, namely, the one leading away from o.

Given any network on T , we claim that there is a flow of maximal strength from the root

to infinity that does not have negative flow on any edge (with this orientation). Indeed, it

suffices to prove this for flows on finite trees from the root to the leaves (when the leaves

are identified to a single vertex). In such a case, consider a flow of maximal strength that

has the minimum number of edges with negative flow. If there is an edge with negative

flow, then by “following the flow”, we can find either a path from the root to the leaves

along which the flow is negative or a path from one leaf to another along which the flow

goes in the direction of the path. In the first case, we can easily increase the strength of

the flow, while in the second case, we can easily reduce the number of edges with negative

flow. Both cases therefore lead to a contradiction, which establishes our claim. Likewise,

if the tree network is transient, then the unit current flow does not have negative flow on

any edge. The proof is similar; in both cases of the preceding proof, we may obtain a flow

of strength at least 1 whose energy is reduced, leading to a contradiction. For this reason,

in our considerations, we may restrict to flows that are non-negative.

▷ Exercise 3.3.

Let T be a locally finite tree and Π be a minimal finite cutset separating o from ∞. Let θ

be a flow from o to ∞. Show that

Strength(θ) =
∑
e∈Π

θ(e) .
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The Nash-Williams Criterion gave a condition sufficient for recurrence, but it was not

necessary for recurrence. However, a useful partial converse to the Nash-Williams Criterion

for trees can be stated as follows.

Proposition 3.4. Let c be conductances on a locally finite infinite tree T and wn be

positive numbers with
∑
n≥1 wn < ∞. Every flow θ on T satisfying 0 ≤ θ(e) ≤ w|e|c(e)

for all edges e has finite energy.

Proof. Apply Exercise 3.3 to the cutset formed by the edges at distance n from o to obtain∑
e∈T

θ(e)2r(e) =
∑
n≥1

∑
|e|=n

θ(e)[θ(e)r(e)] ≤
∑
n≥1

wn
∑
|e|=n

θ(e) =
∑
n≥1

wnStrength(θ) <∞ .

(This special case of Exercise 3.3 was also shown by induction in Section 1.2.) ◀

Let’s consider some particular conductances. Since trees tend to grow exponentially,

let the conductance of an edge decrease exponentially with distance from o, say, c(e) :=

λ−|e|, where λ > 1. Let λc = λc(T ) denote the critical λ for non-0 admissible flow from

o to ∞, in other words, “water” can flow for λ < λc but not for λ > λc. What is the

critical λ for current flow? We saw at the start of Section 3.1 that if current flows for

a certain value of λ (i.e., the associated random walk is transient), then so does water,

whence λ ≤ λc. Conversely, for λ < λc, we claim that current flows: choose λ′ ∈ (λ, λc)

and set wn := (λ/λ′)n. Of course,
∑
n wn < ∞; by definition of λc, there is a non-zero

flow θ satisfying 0 ≤ θ(e) ≤ (λ′)−|e| = w|e|λ
−|e|, whence Proposition 3.4 shows that this

flow has finite energy and so current indeed flows. Thus, the same λc is the critical value

for current flow. Since λc balances the growth of T while taking into account the structure

of the tree, we call it the branching number of T :

brT := sup
{
λ ; ∃ a non-zero flow θ on T with ∀e ∈ T 0 ≤ θ(e) ≤ λ−|e|

}
.

Of course, the Max-Flow Min-Cut Theorem gives an equivalent formulation as

brT = sup

{
λ ; inf

Π

∑
e∈Π

λ−|e| > 0

}
, (3.4)

where the inf is over cutsets Π separating o from ∞. Denote by RWλ the random walk

associated to the conductances e 7→ λ−|e|. We may summarize some of our work in the

following theorem of Lyons (1990).

Theorem 3.5. (Branching Number and Random Walk) If T is a locally finite

infinite tree, then λ < brT ⇒ RWλ is transient and λ > brT ⇒ RWλ is recurrent.

In particular, we see that for simple random walk to be transient, it is sufficient that

brT > 1.
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▷ Exercise 3.4.

For simple random walk on T to be transient, is it necessary that brT > 1?

We might call RWλ homesick random walk for λ > 1 since the random walker has

a tendency to walk towards its starting place, the root.

▷ Exercise 3.5.

Find an example where RWbrT is transient and an example where it is recurrent.

▷ Exercise 3.6.

Show that brT is independent of which vertex in T is the root.

Let’s try to understand the significance of brT , which will turn out to be a very

important number. If T is an n-ary tree (i.e., every vertex has n children), then the

distance of RWλ from o is simply a biased random walk on N. It follows that brT = n.

▷ Exercise 3.7.

Show directly from the definition that brT = n for an n-ary tree T . Show that if every

vertex of T has between n1 and n2 children, then brT is between n1 and n2.

Since λc balances the number of edges leading away from a vertex over all of T , it is

reasonable to think of brT as an average number of branches per vertex.

§3.3. Growth of Trees.

In this section, we again consider only locally finite infinite trees. In order to under-

stand better their branching number, we will look at the simpler notion of growth. For a

vertex x ∈ T , let |x| denote its distance from o. Define the lower (exponential) growth

rate of a tree T by

grT := lim inf
n→∞

|Tn|1/n,

where Tn := {x ∈ T ; |x| = n} is level n of T . Similarly, the upper (exponential)

growth rate of T is grT := lim sup |Tn|1/n. If grT = grT , then the common value is

called the (exponential) growth rate of T and denoted grT .

In most of the examples of trees so far, the branching number was equal to the lower

growth rate. In general, we have the inequality

brT ≤ grT ,

as we showed in Section 1.2. There are various ways to construct a tree whose branching

number is different from its growth: see Section 1.2 and Exercise 1.3.
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▷ Exercise 3.8.

We have seen that if brT > 1, then simple random walk on T is transient. Is grT > 1

sufficient for transience?

We call T spherically symmetric if deg x depends only on |x|. Recall from Exer-

cise 1.2 that brT = grT when T is spherically symmetric.

Notation. Write x ≤ y if x is on the shortest path from o to y; x < y if x ≤ y and x ̸= y;

x → y if x ≤ y and |y| = |x| + 1 (i.e., y is a child of x); and T x for the subtree of T

containing the vertices y ≥ x.

There is an important class of trees whose structure is “periodic” in a certain sense.

To exhibit these trees, we review some elementary notions from combinatorial topology.

Let G be a finite connected graph and x0 be any vertex in G. Define a tree T in the

following way: its vertices are the finite paths ⟨x0, x1, x2, . . . , xn⟩ that never backtrack,

i.e., xi ̸= xi+2 for 0 ≤ i ≤ n − 2. Join two vertices in T by an edge when one path is an

extension by one vertex of the other. The tree T is called the universal cover (based at

x0) of G. See Figure 3.1 for an example.

x0
Figure 3.1. A graph and part of its universal cover.

This idea can be extended. Suppose that G is a finite directed multigraph and x0 is

any vertex in G. That is, edges are not required to appear with both orientations and two

vertices can have many edges joining them. Loops are also allowed. Define the directed

cover (based at x0) of G to be the tree T whose vertices are the finite paths of edges

⟨e1, e2, . . . , en⟩ in G that start at x0 (we use paths of edges rather than of vertices in case

there are multiple edges). The root is the empty path. We join two vertices in T as we

did before. See Figure 3.2 for an example.

The periodic aspect of these trees can be formalized as follows.
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x0

Figure 3.2. A graph and part of its directed cover. This tree is also called the Fibonacci tree.

Definition. Let N ≥ 0. An infinite tree T is called N-periodic (resp., N-subperiodic)

if ∀x ∈ T there exists an adjacency-preserving bijection (resp., injection) f :T x → T f(x)

with |f(x)| ≤ N . A tree is periodic (resp., subperiodic) if there is some N for which it

is N -periodic (resp., N -subperiodic).

All universal and directed covers are periodic. Conversely, every periodic tree is a

directed cover of a finite graph, G: If T is an N -periodic tree, take {x ∈ T ; |x| ≤ N} for

the vertex set of G. For |x| ≤ N , let fx be the identity map and for x ∈ TN+1, let fx

be a bijection as guaranteed by the definition. Let the edges of G be
{
⟨x, fy(y)⟩ ; |x| ≤

N and y is a child of x
}
. Then T is the directed cover of G based at the root.

If two (sub)periodic trees are joined as in Example 1.3, then clearly the resulting

tree is also (sub)periodic. We now present some examples where subperiodic trees arise

naturally.

Example 3.6. Consider the finite paths in the lattice Z2 starting at the origin that

go through no vertex more than once. These paths are called self-avoiding and are of

substantial interest to mathematical physicists. Form a tree T whose vertices are the finite

self-avoiding paths and with two such vertices joined when one path is an extension by one

step of the other. Then T is 0-subperiodic and has infinitely many leaves. Its growth rate

has been estimated at about 2.64; see Madras and Slade (1993). For the hexagonal lattice

in the plane, the growth rate is exactly
√
2 +

√
2 = 2 cos(π/8). This was conjectured by

Nienhuis (1982) based on ideas from physics and proved by Duminil-Copin and Smirnov

(2012), who were also inspired by ideas from physics to find some subtle and beautiful

symmetries in the problem.

Example 3.7. Suppose that E is a closed set in [0, 1] and T[b](E) is the associated tree
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that represents E in base b, as in Section 1.10. Then T[b](E) is 0-subperiodic iff E is

invariant under the map x 7→ bx (mod 1), i.e., iff the fractional part of bx lies in E for

every x ∈ E.

How can we calculate the growth rate of a periodic tree? If T is a periodic tree, let G

be a finite directed graph of which T is the directed cover based at x0. We may assume that

G contains only vertices that can be reached from x0, since the others do not contribute to

T . The key to analysis is the directed adjacency matrix A of G, i.e., the square matrix

indexed by the vertices of G with the (x, y)-entry equal to the number of edges from x to

y. Since all entries of A are non-negative, the Perron-Frobenius Theorem (Minc (1988),

Theorem 4.2) says that the spectral radius of A is equal to its largest positive eigenvalue,

λ∗, and that there is a λ∗-eigenvector v∗ all of whose entries are non-negative. We call

λ∗ the Perron eigenvalue of A and v∗ a Perron eigenvector of A. To see how these

are useful, let 1 denote a column vector all of whose entries are 1, 1x denote the column

vector that is 1 at x and 0 elsewhere, and 1′
x denote its transpose. Then the number of

paths in G with n edges, which is |Tn|, is 1′
x0
An1. Since the spectral radius of A equals

limn→∞ ∥An∥1/n, it follows that lim supn→∞ |Tn|1/n ≤ λ∗. On the other hand, let x be

any vertex such that v∗(x) > 0, let j be such that Aj(x0, x) > 0, and let c > 0 be such

that 1 ≥ cv∗. Then

|Tj+n| ≥ 1′
xA

n1 ≥ c1′
xA

nv∗ = cλn∗1
′
xv∗ = cv∗(x)λ

n
∗ .

Therefore lim infn→∞ |Tn|1/n ≥ λ∗. We conclude that grT = λ∗.

The “regularity” of periodic trees leads us to expect that their growth rate equals

their branching number. One very nice feature of subperiodic trees is that this equality

also holds for them! This fact, as well as its proof, is analogous to a classical fact about

sequences of reals, known as Fekete’s Lemma (Exercise 3.9). A sequence ⟨an⟩ of real

numbers is called subadditive if

∀m,n ≥ 1 am+n ≤ am + an .

A simple example is an := ⌈βn⌉ for some real β > 0.

▷ Exercise 3.9.

(a) (Fekete’s Lemma) Show that for every subadditive sequence ⟨an⟩, the sequence

⟨an/n⟩ converges to its infimum:

lim
n→∞

an
n

= inf
an
n
.

(b) Show that Fekete’s Lemma holds even if a finite number of the an are infinite.

(c) Show that for every 0-subperiodic tree T , the limit limn→∞ |Tn|1/n exists.
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The equality brT = grT for subperiodic trees T is due to Furstenberg (1967). To

prove it, we use the following notation: Given λ > 0 and a cutset Π in a tree T , denote

∥Π∥λ :=
∑

e(x)∈Π

λ−|x| ,

where e(x) is the edge from the parent of x to x. Note |e(x)| = |x|. Of course, the parent

of a vertex x ̸= o is the neighbor of x that is closer to o.

Theorem 3.8. (Subperiodicity and Branching Number) For every subperiodic in-

finite tree T , the growth rate of T exists and brT = grT . Moreover,

inf
Π

∥Π∥brT > 0 ;

in particular,

inf
n

|Tn|(brT )−n > 0 .

Proof. First, suppose that T has no leaves and is 0-subperiodic. We will show that if for

some cutset Π and some λ1 > 0, we have

∥Π∥λ1 < 1 , (3.5)

then

lim sup
n→∞

|Tn|1/n < λ1 . (3.6)

Since infΠ ∥Π∥λ1 = 0 for all λ1 > brT , this implies that

brT = grT and inf
Π

∥Π∥brT ≥ 1 . (3.7)

So suppose that (3.5) holds. We may assume that Π is finite and minimal with respect

to inclusion by Exercise 3.23. In order to get strict inequality in (3.6), we’ll need a little

wiggle room, so choose λ ∈ (0, λ1) such that

∥Π∥λ < 1 . (3.8)

Let d := maxe(x)∈Π |x| denote the maximal level of Π. By 0-subperiodicity, for each

e(x) in Π, there is a cutset Π(x) of T x such that
∑
e(w)∈Π(x) λ

−|w−x| ≤ ∥Π∥λ < 1 and

maxe(w)∈Π(x) |w − x| ≤ d. Thus, ∥Π(x)∥λ =
∑
e(w)∈Π(x) λ

−|w| < λ−|x|. (Note that |w|
always denotes the distance from w to the root of T .) This allows us to replace the cutset

Π by another in several ways while preserving (3.5): For any given A ⊆ Π, if we replace
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those edges e(x) in A by the edges of the corresponding Π(x), then we obtain a cutset

Π̃ := (Π \A) ∪
∪
e(x)∈AΠ(x) that satisfies

∥Π̃∥λ =
∑

e(x)∈Π\A

λ−|x| +
∑

e(x)∈A

∥Π(x)∥λ ≤ ∥Π∥λ < 1 .

Given n > d, we may iterate this process for all edges e(x) in the cutset with |x| < n

until we obtain a cutset Π∗ lying between levels n and n + d with ∥Π∗∥λ < 1. Therefore

|Tn|λ−(n+d) ≤ ∥Π∗∥λ < 1, so that lim sup |Tn|1/n ≤ lim supλ1+d/n = λ < λ1. This

establishes (3.6).

Now let T be N -subperiodic, but still without leaves. Let T̂ be the union of disjoint

copies of the descendant trees {T x: |x| ≤ N} with their roots identified (which is not exactly

the same as Example 1.3). It is easy to check that T̂ is 0-subperiodic and gr T̂ ≥ grT .

Moreover, for every cutset Π of T with mine(x)∈Π |x| ≥ N , there is a corresponding cutset

Π′ of T̂ such that

∀λ > 0 ∥Π′∥λ ≤ (1 + λ+ . . .+ λN )∥Π∥λ ,

whence br T̂ = brT . In conjunction with (3.7) for T̂ , this completes the proof.

Finally, if T has leaves, consider the tree T ′ obtained from T by adding to each leaf

of T an infinite ray. Then T ′ is subperiodic, so

lim sup |Tn|1/n ≥ brT = brT ′ = lim sup |T ′
n|1/n ≥ lim sup |Tn|1/n

and every cutset Π of T can be extended to a cutset Π′ of T ′ with ∥Π′∥brT arbitrarily close

to ∥Π∥brT . ◀

For another proof of Theorem 3.8, see Section 14.5.

Next, we consider a notion dual to subperiodicity. Although it sounds just as natural,

it actually does not arise very often. However, they behave similarly to subperiodic trees,

which will be easy to prove.

Definition. Let N ≥ 0. A tree T is called N-superperiodic if ∀x ∈ T there is an

adjacency-preserving injection f :T → T f(o) with f(o) ∈ T x and |f(o)| − |x| ≤ N .

For example, every 0-periodic tree is 0-superperiodic, although 1-periodic trees are not

necessarily 1-superperiodic. For another example, consider the finite paths in the lattice

Z2 starting at the origin that stay in the right half-plane. Form the tree T whose vertices

are the finite paths of this type and with two such vertices joined when one path is an

extension by one step of the other. Then T is 0-superperiodic. For more examples, see

Exercise 3.33.
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Theorem 3.9. Let N ≥ 0. Any N -superperiodic tree T with grT < ∞ satisfies brT =

grT and |Tn| ≤ (grT )n+N for all n.

Proof. Consider the case N = 0. In this case, |Tn+m| ≥ |Tn| · |Tm|. By Exercise 3.9, grT

exists and |Tn| ≤ (grT )n for all n. Fix any positive integer k. Let θ be the unit flow

from o to Tk that is uniform on Tk. By 0-superperiodicity, we can extend θ in a periodic

fashion to a flow from o to infinity that satisfies θ
(
e(x)

)
≤ |Tk|−⌊|x|/k⌋ for all vertices x.

Consequently, brT ≥ |Tk|1/k. Letting k → ∞ completes the proof for N = 0. ◀

▷ Exercise 3.10.

Prove the case N > 0 of Theorem 3.9.

§3.4. Cayley Graphs.

Suppose we investigate RWλ on graphs other than trees. What does RWλ mean in

this context? Fix a vertex o in a graph G. If e is an edge at distance n from o, let the

conductance of e be λ−n. Again, by Rayleigh’s Monotonicity Principle, there is a critical

value of λ, denoted λc(G), that separates the transient regime from the recurrent regime.

In order to understand what λc(G) measures, consider the class of spherically symmetric

graphs, where we call G spherically symmetric about o if for all pairs of vertices x, y

at the same distance from o, there is an automorphism of G fixing o that takes x to y. Let

M̃n be the number of edges that lead from a vertex at distance n − 1 from o to a vertex

at distance n. Then the critical value of λ is the growth rate of G:

λc(G) = lim inf
n→∞

M̃1/n
n .

In fact, we have the following more precise criterion for transience:

▷ Exercise 3.11.

Show that if G is spherically symmetric about o, then RWλ is transient iff
∑
n λ

n/M̃n <

∞.

Next, consider the Cayley graphs of finitely generated groups: We say that a group

Γ is generated by a subset S of its elements if the smallest subgroup containing S is all

of Γ. In other words, every element of Γ can be written as a product of elements of the

form s or s−1 with s ∈ S. If Γ is generated by S, then we form the associated Cayley

graph G with vertices Γ and (unoriented) edges
{
[x, xs] ; x ∈ G, s ∈ S

}
=
{
(x, y) ∈
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Γ2 ; x−1y ∈ S ∪ S−1
}
. Because S generates Γ, the graph is connected. Cayley graphs are

highly symmetric: they look the same from every vertex since left multiplication by yx−1

is an automorphism of G that carries x to y. These automorphisms, left multiplication by

a group element, are called translations of the Cayley graph.

▷ Exercise 3.12.

Show that different Cayley graphs of the same finitely generated group are roughly iso-

metric.

The Euclidean lattices are the most well-known Cayley graphs. It is useful to keep in

mind other Cayley graphs as well, so we will look at some constructions of groups. First

recall the cartesian or direct product of two groups Γ and Γ′, where the multiplication

on Γ× Γ′ is defined coordinatewise: (γ1, γ
′
1)(γ2, γ

′
2) := (γ1γ2, γ

′
1γ

′
2). A similar definition is

made for the direct product of any sequence of groups. It is convenient to rephrase this

definition in terms of presentations.

First, recall that the free group generated by a set S is the set of all finite words in s

and s−1 for s ∈ S with the empty word as the identity and concatenation as multiplication,

with the further stipulation that if a word contains either ss−1 or s−1s, then the pair is

eliminated from the word. The group defined by the presentation ⟨S | R⟩ is the quotient
of the free group generated by the set S by the normal subgroup generated by the set R,

where R consists of finite words, called relators, in the elements of S. (We think of R as

giving a list of products that must equal the identity; other identities are consequences of

these ones and of the definition of a group.) For example, the free group on two letters F2

is ⟨{a, b} | ∅⟩, usually written ⟨a, b | ⟩, while Z2 is (isomorphic to) ⟨{a, b} | {aba−1b−1}⟩,
usually written ⟨a, b | aba−1b−1⟩, also known as the free abelian group on two letters

(or of rank 2). In this notation, if Γ = ⟨S | R⟩ and Γ′ = ⟨S′ | R′⟩ with S ∩ S′ = ∅, then

Γ × Γ′ = ⟨S ∪ S′ | R ∪ R′ ∪ [S, S′]⟩, where [S, S′] := {ss′s−1s′−1 ; s ∈ S, s′ ∈ S′}. On

the other hand, the free product of Γ and Γ′ is Γ ∗ Γ′ := ⟨S ∪ S′ | R ∪ R′⟩. A similar

definition is made for the free product of any sequence of groups. Interesting free products

to keep in mind as we examine various phenomena are Z∗Z (the free group on two letters),

Z2∗Z2∗Z2, Z∗Z2 (whose Cayley graph is isomorphic to that of Z2∗Z2∗Z2, i.e., a 3-regular

tree, when the usual generators are used), Z2 ∗Z3, Z2 ∗Z, and Z2 ∗Z2. Write Tb+1 for the

regular tree of degree b+1 (so it has branching number b). It is a Cayley graph of the free

product of b+ 1 copies of Z2. Its cartesian product with Zd is another interesting graph.

Some examples of Cayley graphs with respect to natural generating sets appear in Figure

3.3.
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Figure 3.3. The Cayley graphs of the free group on 2 letters; the free product of
Z2 with itself 3 times, Z2 ∗ Z2 ∗ Z2; and the free product Z2 ∗ Z3. These are drawn
without vertices in the hyperbolic disc by a program created by Don Hatch. The
infinite faces have infinite area, but there is a fundamental domain of finite measure
for the group of isometries acting on the hyperbolic disc. Consequently, it is possible
to consider an invariant random embedding of any of these Cayley graphs.

A presentation is called finite when it uses only finite sets of generators and relators.

For example, Z2 ∗Z3 has the presentation ⟨a, b | a2, b3⟩. Another Cayley graph was shown

in Figure 2.4, which corresponds to the presentation ⟨a, b, c, d, e | a2, b2, c2, d2, e2, abcde⟩
(see Chaboud and Kenyon (1996)).

Finitely presentable groups arise often “in practice”: For example, fundamental groups

of compact topological manifolds are finitely presentable, and each finitely presentable

group is the fundamental group of a compact 4-manifold (see, e.g., Massey (1991), pp. 114–

115). The fundamental group of a compact manifold is roughly isometric to the universal

cover of the manifold.

Despite the beautiful symmetry of Cayley graphs, they are rarely spherically sym-

metric. Still, if Mn denotes the number of vertices at distance n from the identity, then

limM
1/n
n exists since Mm+n ≤MmMn; thus, we may apply Fekete’s lemma (Exercise 3.9)

to ⟨logMn⟩. Note that this also implies that the exponential growth rate of the balls in

G equals limM
1/n
n ; we refer to this common number as the (exponential) growth rate

of G. When the growth rate is 1, we say that the Cayley graph has subexponential

growth , and otherwise that it has exponential growth . Our analysis of spherically sym-

metric graphs, though it does not apply to Cayley graphs, may still suggest the question:

Is λc(G) = limM
1/n
n ?

First of all, if λ > limM
1/n
n , then RWλ is positive recurrent since for such λ,∑

e∈E1/2

c(e) < d
∑
x∈G

λ−|x| = d
∑
n≥0

Mnλ
−n <∞ ,

where d is the degree of G and |x| denotes the distance of x to the identity. (One could also
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use the Nash-Williams Criterion to get merely recurrence.) Second, to prove transience

for a given λ, it suffices, by Rayleigh’s Monotonicity Principle, to prove that a subgraph

is transient. The easiest subgraph to analyze would be a subtree of G, while in order

to have the greatest likelihood of being transient, it should be as big as possible, i.e., a

spanning tree (one that includes every vertex). Here is one: Assume that the inverse of

each generator is also in the generating set. Order the generating set S = ⟨s1, s2, . . . , sd⟩.
For each x ∈ G, there is a unique word (si1 , si2 , . . . , sin) in the generators such that

x = si1si2 · · · sin , n = |x|, and (si1 , . . . , sin) is lexicographically minimal with these

properties, i.e., if (si′1 , . . . , si′n) is another word whose product is x and m is the first j such

that ij ̸= i′j , then im < i′m. Call this lexicographically minimal word wx. Let T be the

subgraph of G containing all vertices and with y adjacent to x when either |y| + 1 = |x|
and wy is an initial segment of wx or vice versa.

▷ Exercise 3.13.

Show that T is a subperiodic tree when rooted at the identity.

Since T is spanning and since distances to the identity in T are the same as in G, we

have grT = limM
1/n
n . Since T is subperiodic, we have brT = limM

1/n
n by Theorem 3.8.

Hence RWλ is transient on T for λ < limM
1/n
n by Theorem 3.5, whence on G as well. We

have proved the following theorem of Lyons (1995):

Theorem 3.10. (Group Growth and Random Walk) RWλ on an infinite Cayley

graph has critical value λc equal to the exponential growth rate of the graph.

Of course, this theorem makes Cayley graphs look spherically symmetric from a prob-

abilistic point of view. Such a conclusion, however, should not be pushed too far, for there

are Cayley graphs with the following very surprising properties; the lamplighter group

defined in Section 7.1 is one such. Define the speed (or rate of escape) of RWλ as the

limit of the distance from the identity at time n divided by n as n → ∞, if the limit

exists. The speed is monotonically decreasing in λ on spherically symmetric graphs and is

positive for any positive λ less than the growth rate. However, there are Cayley graphs of

exponential growth for which the speed of simple random walk is 0. This already shows

that such a Cayley graph is far from spherically symmetric. Even more surprisingly, on

the lamplighter group, which has growth rate (1 +
√
5)/2, the speed is 0 at λ = 1,* yet is

strictly positive when 1 < λ < (1 +
√
5)/2 (Lyons, Pemantle, and Peres, 1996b). Perhaps

this surprising example is actually part of a general phenomenon in one aspect:

* This part is easy to see: after n steps, the marker has visited only locations within distance roughly√
n from 0.
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Question 3.11. If G is a Cayley graph of growth rate b and 1 < λ < b, must the speed

of RWλ exist and be positive?

Question 3.12. If T is a spanning tree of a graph G rooted at some vertex o, we call

T a geodesic subtree if dist(o, x) is the same in T as in G for all vertices x. If T is a

geodesic spanning tree of the Cayley graph of a finitely generated group G of growth rate

b, is brT = b? We saw that this is the case for the lexicographically minimal spanning

tree constructed above.

Denote the growth rate of a group Γ with respect to a finite generating set S by grS Γ.

By Exercise 3.12, every pair of Cayley graphs of the same group are roughly isometric to

each other, whence if grS Γ > 1 for some generating set, then grS Γ > 1 for every generating

set. In this case, is infS grS Γ > 1? This question was posed by Gromov (1981b) (see also

Gromov (1999) for a revised version in English) and for a long time, it remained open. It

is known to hold for certain classes of groups, but finally a counterexample was found by

Wilson (2004b); see also Bartholdi (2003) and Wilson (2004c). In Theorem 10.13, we will

use random spanning forests to give examples of groups with uniform exponential growth.

See Mann (2012) for more on growth of groups.

We have begun to see how the behavior of some probabilistic processes on Cayley

graphs is related to geometric properties of the underlying groups. This is a fascinating

theme in contemporary research. We will see some more examples in Chapters 6, 7, 8, 10,

and 11. In particular, we will see in Theorem 6.27 that simple random walk is transient

on Cayley graphs whose volume growth is at least cubic. See Section 13.8 for a discussion

of the speed of simple random walk on Cayley graphs.

§3.5. Notes.

A Cayley graph is spherically symmetric iff it is 2-point homogeneous, i.e., given vertices
u, v, w, x such that d(u, v) = d(w, x), there is an automorphism taking u to w and v to x. These
graphs are characterized by Macpherson (1982).

§3.6. Collected In-Text Exercises.

3.1. Show that if equality holds on the right-hand side of (3.3), then for all x, we have∑
e+=x,
θ(e)>0

θ(e) ≤ 1 .

3.2. Suppose that simple random walk is transient on G and a ∈ V. Show that there is a random
edge-simple path from a to ∞ such that the expected number of edges common to two such
independent paths is equal to R(a↔ ∞) (for unit conductances on G).
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3.3. Let T be a locally finite tree and Π be a minimal finite cutset separating o from ∞. Let θ
be a flow from o to ∞. Show that

Strength(θ) =
∑
e∈Π

θ(e) .

3.4. For simple random walk on T to be transient, is it necessary that brT > 1?

3.5. Find an example where RWbrT is transient and an example where it is recurrent.

3.6. Show that brT is independent of which vertex in T is the root.

3.7. Show directly from the definition that brT = n for an n-ary tree T . Show that if every
vertex of T has between n1 and n2 children, then brT is between n1 and n2.

3.8. We have seen that if brT > 1, then simple random walk on T is transient. Is grT > 1
sufficient for transience?

3.9. (a) (Fekete’s Lemma) Show that for every subadditive sequence ⟨an⟩, the sequence
⟨an/n⟩ converges to its infimum:

lim
n→∞

an
n

= inf
an
n
.

(b) Show that Fekete’s Lemma holds even if a finite number of the an are infinite.
(c) Show that for every 0-subperiodic tree T , the limit limn→∞ |Tn|1/n exists.

3.10. Prove the case N > 0 of Theorem 3.9.

3.11. Show that if G is spherically symmetric about o, then RWλ is transient iff
∑
n λ

n/M̃n <∞.

3.12. Show that different Cayley graphs of the same finitely generated group are roughly isomet-
ric.

3.13. Show that the lexicographically minimal spanning tree T of a Cayley graph is a subperiodic
tree when rooted at the identity.

§3.7. Additional Exercises.

3.14. There are two other versions of the Max-Flow Min-Cut Theorem that are useful. We
state them for directed finite networks using the notation of our proof of the Max-Flow Min-Cut
Theorem.
(a) Suppose that each vertex x is given a capacity c(x), meaning that an admissible flow θ is

required to satisfy (i) θ(e) ≥ 0 for all edges e and (ii) for all x other than the sources A and
sinks Z,

∑
e∈E ϕ(x, e)θ(e) = 0 and

∑
e+=x θ(e) ≤ c(x), where ϕ is the vertex-edge incidence

function defined in Section 3.1. A cutset now consists of vertices that intersect every directed
path from A to Z. Show that the maximum strength of an admissible flow from A to Z equals
the minimum cutset sum of the capacities.

(b) Suppose that each edge and each vertex has a capacity, with the restrictions that each of
these imply. A cutset now may consist of both vertices and edges. Again, show that the
maximum strength of an admissible flow from A to Z equals the minimum cutset sum of the
capacities.
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3.15. Show that if all the edge capacities c(e) in a directed finite network are integers, then among
the admissible flows θ of maximal strength, there is one such that all θ(e) are also integers. Show
the same for networks with capacities assigned to the vertices or to both edges and vertices, as in
Exercise 3.14.

3.16. (Menger’s Theorem)
(a) Let a and z be vertices in a graph that are not adjacent. Show that the maximum number

of paths from a to z that are pairwise disjoint (except at a and z) is equal to the minimum
cardinality of a set W of vertices such that W is disjoint from a and z, but every path from
a to z passes through W .

(b) Let a be a vertex in an infinite graph. Show that the maximum number of paths from a to
∞ that are pairwise disjoint (except at a) is equal to the minimum cardinality of a set W of
vertices such that W is disjoint from a, but every path from a to ∞ passes through W .

3.17. A perfect matching of a graph G is a subset M of its edges such that each vertex of G
belongs to exactly one edge in M . Let G be a finite bipartite graph, i.e., its vertex set can be
partitioned into two parts, A and Z, such that all edges of G have one endpoint in A and one in
Z.
(a) (Kőnig’s Theorem) Show that if G is regular, then it has a perfect matching.
(b) (Hall’s Theorem) Show that if |A| = |Z| and for each K ⊆ A, the number of vertices

adjacent to some vertex of K is at least |K|, then G has a perfect matching.

3.18. Show that the maximum strength of an admissible flow from A to Z (in a finite undirected
network) also equals

min

{ ∑
e∈E1/2

c(e)ℓ(e)

}
,

where ℓ is an assignment of non-negative lengths to the edges so that the minimum distance from
every point in A to every point in Z is 1.

3.19. Suppose that θ is a flow from A to Z in a finite undirected network. Show that if Π is a cutset
separating A from Z that is minimal with respect to inclusion, then Strength(θ) =

∑
e∈Π θ(e).

3.20. Let G be a finite network and a and z be two of its vertices. Show that R(a ↔ z) is the
minimum of

∑
e∈E1/2

r(e)P[e ∈ P or − e ∈ P]2 over all probability measures P on paths P from

a to z.

3.21. Let G be an undirected graph and o ∈ V. Recall that E consists of both orientations of
each edge. Suppose that q:E → [0,∞) satisfies the following three conditions:

(i) For every vertex x ̸= o, we have∑
{u ; (u,x)∈E}

q(u, x) ≤
∑

{w ; (x,w)∈E}

q(x,w) ;

(ii) ∑
{u ; (u,o)∈E}

q(u, o) = 0 and
∑

{w ; (o,w)∈E}

q(o, w) > 0 ; and

(iii) there exists K < ∞ such that for every directed path (u0, u1, . . .) in G starting at u0 = o,
we have

∞∑
i=0

q(ui, ui+1) ≤ K .

Show that simple random walk on (the undirected graph) G starting at o is transient.
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3.22. Let G be a finite graph and a, z be two vertices of G. Let the edges be labelled by positive
resistances r(•). Two players, a passenger and a troll, simultaneously pick edge-simple paths from
a to z. The passenger then pays the troll the sum of ±r(e) for all the edges e common to both
paths; if e is traversed in the same direction by the two paths, then the + sign is used, otherwise
the − sign is used. Show that the troll has a strategy of picking a random path in such a way
that no matter what path is picked by the passenger, the troll’s gain has expectation equal to the
effective resistance between a to z. Show further that the passenger has a similar strategy that
has expected loss equal to R(a↔ z) no matter what the troll does.

3.23. Let T be a locally finite tree and Π be a cutset separating o from ∞. Show that there is a
finite cutset Π′ ⊆ Π separating o from ∞ that does not properly contain any other cutset.

3.24. Show that a network (T, c) on a tree is transient iff there exists a function F on the vertices
of T such that F ≥ 0, ∀e dF (e) ≥ 0, and infΠ

∑
e∈Π dF (e)c(e) > 0. Here, edges are oriented

away from the root; the infimum is over cutsets separating the root from infinity.

3.25. Given a tree T and k ≥ 1, form the tree T [k] by taking the vertices x of T for which |x| is
a multiple of k and joining x and y by an edge in T [k] when their distance is k in T . Show that
brT [k] = (brT )k.

3.26. Show that RWλ is positive recurrent on a tree T if λ > grT , but not if λ < grT .

3.27. Let U(T ) be the set of unit flows on a tree T (from o to ∞). For θ ∈ U(T ), define its
Frostman exponent to be

Frost(θ) := lim inf
|x|→∞

θ(x)−1/|x| .

Show that
brT = sup

θ∈U(T )

Frost(θ) .

3.28. Let k ≥ 1. Show that if T is a 0-periodic (resp., 0-subperiodic) tree, then for all vertices
x with |x| ≥ k, there is an adjacency-preserving bijection (resp., injection) f :T x → T f(x) with
|f(x)| = k.

3.29. Given a finite directed multigraph G, one can also define another covering tree by using
as vertices all directed paths of the form ⟨x0, x1, . . . , xn⟩ or ⟨x−n, . . . , x−1, x0⟩, with the former a
child of ⟨x0, x1, . . . , xn−1⟩ and the latter a child of ⟨x−(n−1), . . . , x−1, x0⟩. Show that this tree is
also periodic.

3.30. Given an integer k ≥ 0, construct a periodic tree T with |Tn| approximately equal to nk

for all n.

3.31. Show that critical homesick random walk (i.e., RWbrT ) is recurrent on each periodic tree.

3.32. Construct a subperiodic tree for which critical homesick random walk (i.e., RWbrT ) is
transient.

3.33. Let N ≥ 0 and 0 < α < 1. Identify the binary tree with the set of all finite sequences
of 0s and 1s. Let T be the subtree of the binary tree that contains the vertex corresponding to
(x1, . . . , xn) iff ∀k ≤ n

∑k
i=1 xi ≤ α(k + N). Show that T is N -superperiodic but not (N − 1)-

superperiodic. Also, determine brT .

3.34. Roth’s theorem says that a subset of N that contains no 3-term arithmetic progression
must have density 0. Identify the binary tree with the set of all finite sequences of 0s and 1s.
Let T be the subtree of the binary tree that contains the vertex corresponding to (x1, . . . , xn) iff
xixi+jxi+2j = 0 whenever 1 ≤ i < i+ 2j ≤ n. Show that grT = 1.
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3.35. Let T (1) and T (2) be two trees rooted at o1 and o2, respectively. Define their product tree
T (1) · T (2) to be the tree with vertex set {(x1, x2) ; x1 ∈ T (1), x2 ∈ T (2), |x1| = |x2|}, rooted
at (o1, o2), and such that (x1, x2) → (y1, y2) iff x1 → y1 and x2 → y2. For example, if T (i) is a
bi-ary tree, then their product tree is a b1b2-ary tree.
(a) Show that br (T (1) · T (2)) ≤ brT (1) · T (2).
(b) Show that if T (i) are subperiodic, then so is their product tree.
(c) Identify the binary tree with the set of all finite sequences of 0s and 1s. For a subset S ⊆ N,

define the spherically symmetric tree T (S) be the subtree of the binary tree that contains
the vertex corresponding to (x1, . . . , xn) iff xk ≤ 1S(k) for all k ≤ n. That is, S is the set of
heights where there is branching. Show that if both S and N \ S have upper density 0, then
brT (S) = brT (N \ S) = 1 and br (T (S) · T (N \ S)) = 2.

3.36. Suppose that S generates the group Γ and that Γ′ is a subgroup of Γ. The Schreier graph
of the coset space Γ′\Γ with respect to S has as vertices the right cosets Γ′γ for γ ∈ Γ and as
edges [Γ′γ,Γ′γs] for s ∈ S. When Γ′ is normal in Γ, this is a Cayley graph of the quotient group.
Show that different finite generating sets of Γ give roughly isometric Schreier graphs of the same
coset space.

3.37. We have defined the right Cayley graph of a finitely generated group and noted that left
multiplication is a graph automorphism. The left Cayley graph is defined similarly. Show that
the right and left Cayley graphs are isomorphic.

3.38. Extend Theorem 3.10 to all infinite transitive graphs.
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Chapter 4

Uniform Spanning Trees

One lesson of Chapter 2 is that in many ways, electrical networks and random walks

are two faces of the same underlying object. Here we discover an appealing third face,

which will appear at first to be completely unrelated.

Every connected graph has a spanning tree , i.e., a subgraph that is a tree and that

includes every vertex. Special spanning trees of Cayley graphs were used in Section 3.4.

Here, we consider finite and, more generally, recurrent graphs and properties of their

spanning trees when such trees are chosen randomly. We will exhibit an amazing way to

generate spanning trees uniformly at random. In Chapter 10, we will look at how to extend

these notions to transient graphs, where the connections to random walks and geometric

group theory flourish. Other natural ways of choosing random spanning trees and forests

will be studied in Chapter 11, but those ways will be connected to percolation rather than

to random walks.

Notation. In an undirected graph, a spanning tree is also composed of undirected edges.

However, we will be using the ideas and notations of Chapter 2 concerning random walks

and electrical networks, so that we will be making use of directed edges as well. Sometimes,

e will even denote an undirected edge on one side of an equation and a directed edge on

the other side; see, e.g., Kirchhoff’s Effective Resistance Formula. This abuse of notation,

we hope, will be easier for the reader than would the use of different notations for directed

and undirected edges.

§4.1. Generating Uniform Spanning Trees.

A graph typically has an enormous number of spanning trees. Because of this, it is not

obvious how to choose one uniformly at random in a reasonable amount of time. We are

going to present an algorithm that works quickly by exploiting some hidden independence

in Markov chains. This algorithm is of enormous theoretical importance for us. Although

we are interested in spanning trees of undirected graphs, it turns out that for this algorithm,
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§1. Generating Uniform Spanning Trees 105

it is just as easy, and somewhat more clear, to work with directed graphs coming from

Markov chains.

Let p(•, •) be the transition probability function of a finite-state irreducible Markov

chain. The directed graph associated to this chain has for vertices the states and for edges

all ⟨x, y⟩ for which p(x, y) > 0. Edges e are oriented from tail e− to head e+. We call a

connected subgraph a spanning tree* if it includes every vertex, there is no cycle, and

there is one vertex, the root , such that every vertex other than the root is the tail of

exactly one edge in the tree. Thus, the edges in a spanning tree point towards its root.

For any vertex r, there is at least one spanning tree rooted at r: Pick some vertex other

than r and draw a path from it to r that does not contain any cycles. Such a path exists

by irreducibility. This starts the tree. Then continue with another vertex not on the part

of the tree already drawn, draw a cycle-free path from it to the partial tree, and so on.

Remarkably, with a little care, this naive method of drawing spanning trees leads to a very

powerful algorithm.

We are going to choose spanning trees at random according not only to uniform

measure, but, in general, proportional to their weights, where, for a spanning tree T , we

define its weight to be

Ψ(T ) :=
∏
e∈T

p(e) .

In case the original Markov chain is reversible, let us see what the weights Ψ(T )

are. Given conductances c(e) with π(x) =
∑
e−=x c(e), the transition probabilities are

p(e) := c(e)/π(e−), so the weight of a spanning tree T is

Ψ(T ) =
∏
e∈T

p(e) =
∏
e∈T

c(e)

/ ∏
x∈G

x ̸=root(T )

π(x) .

Since the root is fixed, a tree T is picked with probability proportional to Ψ(T )/π
(
root(T )

)
,

which is proportional to

Ξ(T ) :=
∏
e∈T

c(e) .

Note that Ξ(T ) is independent of the root of T . This new expression, Ξ(T ), has a nice

interpretation. If c = 1, then all spanning trees are equally likely. If all the weights c(e) are

positive integers, then we could replace each edge e by c(e) parallel copies of e and interpret

the uniform spanning tree measure in the resulting multigraph as the probability measure

above with the probability of T proportional to Ξ(T ). If all weights are divided by the same

* For directed graphs, these are usually called spanning arborescences.
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constant, then the probability measures does not change, so the case of rational weights can

still be thought of as corresponding to a uniform spanning tree. Since the case of general

weights is a limit of rational weights, we use the term weighted uniform spanning tree

for these probability measures. Similar comments apply to the non-reversible case.

Now suppose we have some method of choosing a rooted spanning tree at random

proportionally to the weights Ψ(•) for a reversible Markov chain. Consider any vertex

u on a weighted undirected graph. If we choose a random spanning tree rooted at u

proportionally to the weights Ψ(•) and forget about the orientation of its edges and also

about the root, then we obtain an unrooted spanning tree of the undirected graph, chosen

proportionally to the weights Ξ(•). In particular, if the conductances are all equal, which

corresponds to the Markov chain being simple random walk, then we get a uniformly

chosen spanning tree.

The method we now describe for generating random spanning trees is the fastest

method known. It is due to Wilson (1996) (see also Propp and Wilson (1998)).

To describe Wilson’s method, we define the important idea of loop erasure* of a path,

due to Lawler (1980). If P is any finite path ⟨x0, x1, . . . , xl⟩ in a directed or undirected

graph G, we define the loop erasure of P, denoted LE(P) = ⟨u0, u1, . . . , um⟩, by erasing

cycles in P in the order they appear. More precisely, set u0 := x0. If xl = x0, we set

m = 0 and terminate; otherwise, let u1 be the first vertex in P after the last visit to x0,

i.e., u1 := xi+1, where i := max{j ; xj = x0}. If xl = u1, then we setm = 1 and terminate;

otherwise, let u2 be the first vertex in P after the last visit to u1, and so on. For example,

the loop erasure of the planar path shown in Figure 2.2 appears in Figure 4.1. In the case

of a multigraph, one cannot notate a path merely by the vertices it visits. However, the

notion of loop erasure should still be clear.

Now in order to generate a random spanning tree with a given root r with probability

proportional to the weights Ψ(•) for a given Markov chain, create a growing sequence of

trees T (i) (i ≥ 0) as follows. Choose any ordering of the vertices V \ {r}. Let T (0) := {r}.
Suppose that T (i) is known. If T (i) spans G, we are done. Otherwise, pick the first vertex

x in our ordering of V that is not in T (i) and take an independent sample from the Markov

chain beginning at x until it hits T (i). Now create T (i + 1) by adding to T (i) the loop

erasure of this path from x to T (i). Marvellously, the final tree in this growing sequence has

the desired distribution. We call this Wilson’s method of generating random spanning

trees.

Theorem 4.1. Given any finite-state irreducible Markov chain and any state r, Wilson’s

* This ought to be called “cycle erasure”, but we will keep to the name already given to this concept.
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Figure 4.1. A loop-erased simple random walk in Z2

until it reaches distance 200 from its starting point.

method yields a random spanning tree rooted at r with distribution proportional to Ψ(•).

Therefore, for any finite connected undirected graph, Wilson’s method yields a random

spanning tree that, when the orientation and root are forgotten, has distribution propor-

tional to Ξ(•).

In particular, this says that the distribution of the spanning tree resulting from Wil-

son’s method does not depend on the choice made in ordering V. Actually, you need not

order V in advance; you can choose where to start the next loop-erased path depending

on what you have already constructed, but you still cannot change the distribution of the

spanning tree! In fact, we’ll see that in some sense, the tree itself cannot be changed.

In order to state this precisely, we construct the Markov chain in a special way. Every

time we are at a state x, the next state will have a given probability distribution; and the

choices of which states follow the visits to x are independent of each other. This, of course,

is just part of the definition of a Markov chain. Constructively, however, we implement

this as follows. Let ⟨Sxi ; x is a state and i ≥ 1⟩ be independent with each Sxi being a state

chosen according to the transition probability distribution from x. When we make the ith

visit to x (if ever), then the Markov chain will move next to Sxi .

It is useful to use the following image. For each x, think of ⟨Sxi ; i ≥ 1⟩ as a stack lying

under the state x with Sx1 being on top, then Sx2 , etc. To run the Markov chain starting

from state x0, we simply “pop off” (i.e., remove) the top state of the stack lying under x0

and move there, then repeat the same procedure from the new state as long as we want
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to run the chain. In other words, from the current state at any time, the next state is the

first state in the stack under the current state. This state is then removed from that stack

and we repeat with the next state as the current state.

Now, our aim is not to generate the Markov chain, but a random spanning tree rooted

at r. Thus, we make one small variation: give r an empty stack. We use the stacks

as follows. Observe that at any time, the top items of the stacks determine a directed

graph, namely, the directed graph whose vertices are the states and whose edges are the

pairs (x, y) where y is the top item of the stack under x. Call this the visible graph at

that time. If it happens that the visible graph contains no (directed) cycles, then it is a

spanning tree rooted at r. In that case, we do nothing more. Otherwise, we pop a cycle,

meaning that we remove the top items of the stacks under the vertices of a cycle. Then

we pop a remaining cycle, if any, and so on. We claim that this process will stop with

probability 1 at a spanning tree and that this spanning tree has the desired distribution.

Note that we do not pop the top of a stack unless it belongs to a cycle. We will also show

that this way of generating a random spanning tree is the same as Wilson’s method.

To prove these statements, we will keep track of the locations in the stacks of edges

that are popped, which we will call colors. That is, say that an edge (x, Sxi ) has color i.

A colored cycle is simply a cycle all of whose edges are colored like this (the colors of the

edges in a cycle do not have to be the same as each other). Thus, the initial visible graph

has all edges colored 1, whereas later visible graphs will not generally have all their edges

the same color. While a cycle of vertices might be popped many times, a colored cycle can

be popped at most once. See Figure 4.2.
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Figure 4.2. This Markov chain has 6 states, one called r, which is the root.
The first 5 elements of each stack are listed under the corresponding states.
Colored cycles are popped as shown clockwise, leaving the colored spanning
tree shown.

We begin with a deterministic lemma, which is the heart of this algorithm.
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Lemma 4.2. Given any stacks under the states, the order in which cycles are popped is

irrelevant in the sense that every order pops an infinite number of cycles or every order

pops the same (finite set of) colored cycles, thus leaving the same colored spanning tree on

top in the latter case.

Proof. We will show that if C is any colored cycle that can be popped, i.e., there is some

sequence C1, C2, . . . , Cn = C that may be popped in that order, but some colored cycle

C ′ ̸= C1 happens to be the first colored cycle popped, then C = C ′ or else C can still be

popped from the stacks after C ′ is popped. Once we show this, we are done, since if there

are an infinite number of colored cycles that can be popped, the popping can never stop;

while in the alternative case, every colored cycle that can be popped will be popped.

Now if all the vertices of C ′ are disjoint from those of C1, C2, . . . , Cn, then of course

C can still be popped. Otherwise, let Ck be the first cycle that has a vertex in common

with C ′. Now, all the edges of C ′ have color 1. Consider any vertex x in C ′ ∩ Ck. Since

x ̸∈ C1 ∪ C2 ∪ · · · ∪ Ck−1, the edge in Ck leading out of x also has color 1, so it leads to

the same vertex as it does in C ′. We can repeat the argument for this successor vertex of

x, then for its successor, and so on, until we arrive at the conclusion that C ′ = Ck. Thus,

C ′ = C or we can pop C in the order C ′, C1, C2, . . . , Ck−1, Ck+1, . . . , Cn. ◀

Proof of Theorem 4.1. Wilson’s method certainly stops with probability 1 at a spanning

tree. Using stacks to run the Markov chain and noting that loop erasure in order of cycle

creation is one way of popping cycles, we see that Wilson’s method pops all the cycles

lying over a spanning tree. Because of Lemma 4.2, popping cycles in any other manner

also stops with probability 1 and with the same distribution. Furthermore, if we think

of the stacks as given in advance, then we see that all our choices inherent in Wilson’s

method have no effect whatsoever on the resulting spanning tree.

Now to show that the distribution is the desired one, think of a given set of stacks as

defining a finite set O of colored cycles lying over a noncolored spanning tree T . We don’t

need to keep track of the colors in the spanning tree since they are easily recovered from

the colors in the cycles over it. Let X be the set of all pairs (O, T ) that can arise from

stacks corresponding to our given Markov chain. If (O, T ) ∈ X, then also (O, T ′) ∈ X

for any other spanning tree T ′: indeed, anything at all can be in the stacks under any

finite set O of colored cycles. That is, X = X1 × X2, where X1 is a certain collection

of sets of colored cycles and X2 is the set of all noncolored spanning trees. Extend our

definition of Ψ(•) to colored cycles C by Ψ(C) :=
∏
e∈C p(e) and to sets O of colored

cycles by Ψ(O) :=
∏
C∈O Ψ(C). What is the chance of seeing a given set O of colored

cycles lying over a given spanning tree T? It is simply the probability of seeing all the
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Chap. 4: Uniform Spanning Trees 110

arrows in
∪
O ∪ T in their respective places, which is simply the product of p(e) for all

e ∈
∪
O∪T , i.e., Ψ(O)Ψ(T ). Letting P be the law of (O, T ), we get P = µ1×µ2, where µi

are probability measures proportional to Ψ(•) on Xi. Therefore, the set of colored cycles

seen is independent of the colored spanning tree and the probability of seeing the tree T

is proportional to Ψ(T ). This shows that Wilson’s method does what we claimed it does.

◀

10 20 30 40 50 60

Figure 4.3. A colored uniform spanning tree in a 40 × 40 grid on the left, with a
key on the right showing the correspondence of visual colors to numbered colors.

An actual example of Wilson’s algorithm showing the colored uniform spanning tree

on a 40 × 40 grid is shown in Figure 4.3. Since the colors are determined by the popped

cycles, which are independent of the spanning tree, it follows that if we attach the colors

to the vertices instead of to the edges, then the colors are independent of the spanning tree

(the colors are naturally attached to the vertices since the stacks correspond to vertices).

Just the colors are shown for a uniform spanning tree on a 200 × 200 grid in Figure 4.4.

There appears to be an interesting fractal nature in the limit of decreasing mesh size, but

no one has yet explained this. In Figure 4.5, we show the distances in the tree to the

lower left vertex, together with the path from the upper right vertex. This seems to be the

best way of viewing a large spanning tree. Although the distances do not determine the

tree, all spanning trees consistent with the given distances are, of course, equally likely.
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Furthermore, given the distances, one can easily sample from the consistent spanning trees

by working one’s way out from the root: The vertices at distance 1 from the root must be

attached to the root, while the vertices at distance 2 can be attached uniformly at random

to their neighbors at distance 1, etc. The distance in the tree from the root to the opposite

corner, say, grows like n5/4 in an n × n square: This was first conjectured by Guttmann

and Bursill (1990) from numerical simulations, then calculated by Duplantier (1992) and

Majumdar (1992) by using nonrigorous conformal field theory. Kenyon (2000a) proved a

form of this using domino tilings associated to spanning trees. It was extended to other

planar lattices by Masson (2009) and strengthened by Barlow and Masson (2010). An

alternative view is given in Figure 4.6, where the distances in the tree to the path between

the corners is shown.

10 20 30 40 50 60 70

Figure 4.4. The colors of a uniform spanning tree in a 200×200 grid on the left, with
a key on the right showing the correspondence of visual colors to numbered colors.

We will see here and in Chapter 10 some of the far-reaching consequences of Wilson’s

method. First, we record the following obvious consequence of Wilson’s algorithm:

Corollary 4.3. Given vertices x, y in a finite network, the distribution of the path in the

weighted uniform spanning tree from x to y equals the distribution of loop-erased random

walk from x to y. ◀
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Figure 4.5. The distances to the root in a uniform spanning tree in a
200 × 200 grid, together with the path from the opposite corner.

This corollary was first proved by Pemantle (1991) by using a different method that

relies on an algorithm of Aldous and Broder (see Corollary 4.9). By conditioning on the

path in the tree and then contracting it, one can immediately deduce Wilson’s algorithm

for the whole tree. This was observed by Wilson (1996) and Propp and Wilson (1998).

Of course, another immediate corollary is the invariance of loop-erased random walk

under time reversal, which was known already to Lawler (1983):

Corollary 4.4. Given vertices x, y in a finite network, the distribution of loop-erased

random walk from x to y equals the distribution of the reversal of loop-erased random walk

from y to x. ◀
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Figure 4.6. The distances in the tree to the path between opposite
corners in a uniform spanning tree in a 200 × 200 grid.

Next, we use Wilson’s algorithm give a new proof of Cayley’s formula for the number

of spanning trees on a complete graph , i.e., a graph in which every pair of distinct vertices

is joined by an edge. A number of proofs are known of this result; for a collection of them,

see Moon (1967). The following proof is inspired by the one of Aldous (1990), Prop. 19.

Corollary 4.5. (Cayley, 1889) The number of labelled unrooted trees with n vertices

is nn−2. Here, a labelled tree is one whose vertices are labelled 1 through n.

To prove this, we use the result of the following exercise.
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▷ Exercise 4.1.

Suppose that Z is a set of states in a Markov chain and that x0 is a state not in Z. Assume

that when the Markov chain is started in x0, then it visits Z with probability 1. Define

the random path Y0, Y1, . . . by Y0 := x0 and then recursively by letting Yn+1 have the

distribution of one step of the Markov chain starting from Yn given that the chain will

visit Z before visiting any of Y0, Y1, . . . , Yn again. However, if Yn ∈ Z, then the path is

stopped and Yn+1 is not defined. Show that ⟨Yn⟩ has the same distribution as loop-erasing

a sample of the Markov chain started from x0 and stopped when it reaches Z. In the case

of a random walk, the conditioned path ⟨Yn⟩ is called the Laplacian random walk from

x0 to Z.

Proof of Corollary 4.5. We show that the uniform probability of a specific spanning tree of

the complete graph on {1, 2, . . . , n} is 1/nn−2. Take the tree to be the path ⟨1, 2, 3, . . . , n⟩.
We will calculate the probability of this tree by using Wilson’s algorithm started at 1 and

rooted at n. Since the root is n and the tree is a path from 1 to n, this tree probability

is just the chance that loop-erased random walk from 1 to n is this particular path. By

Exercise 4.1, we must show that the Laplacian random walk ⟨Yn⟩ from 1 to n is precisely

this path with probability 1/nn−2. Recall the following notation from Chapter 2: Pi

denotes simple random walk started at state i; the first time ≥ 0 that the walk visits state

k is denoted τk; and the first time ≥ 1 that the walk visits state k is denoted τ+k . Let ⟨Xn⟩
be the usual simple random walk.

Consider first the distribution of Y1. The definition of Y1 gives that for all i ∈ [2, n],

P[Y1 = i] = P1[X1 = i | τn < τ+1 ] =
P1[X1 = i, τn < τ+1 ]

P1[τn < τ+1 ]

=
P1[X1 = i]Pi[τn < τ1]

P1[τn < τ+1 ]
=

Pi[τn < τ1]

(n− 1)P1[τn < τ+1 ]
. (4.1)

Now

Pi[τn < τ1] =
{
1/2 if i ̸= n,
1 if i = n.

(4.2)

Since the probabilities for Y1 add to 1, combining (4.1) and (4.2) yields that P1[τn <

τ+1 ] = n/[2(n − 1)], whence by (4.1) again, P[Y1 = i] = 1/n for 1 < i < n. Similarly, for

j ∈ [1, n− 2] and i ∈ [j + 1, n], we have

P[Yj = i
∣∣ Y1 = 2, . . . , Yj−1 = j] = Pj [X1 = i | τn < τ1 ∧ τ2 ∧ · · · ∧ τj−1 ∧ τ+j ]

=
Pj [X1 = i, τn < τ1 ∧ τ2 ∧ · · · ∧ τj−1 ∧ τ+j ]

Pj [τn < τ1 ∧ τ2 ∧ · · · ∧ τj−1 ∧ τ+j ]

=
Pj [X1 = i]Pi[τn < τ1 ∧ τ2 ∧ · · · ∧ τj−1 ∧ τj ]

Pj [τn < τ1 ∧ τ2 ∧ · · · ∧ τj−1 ∧ τ+j ]
.
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Now the minimum of τ1, . . . , τj , τn for simple random walk starting at i ∈ (j, n) is equally

likely to be any one of these. Therefore,

Pi[τn < τ1 ∧ τ2 ∧ · · · ∧ τj−1 ∧ τj ] =
{
1/(j + 1) if j < i < n,
1 if i = n.

Since Pj [X1 = i] = 1/(n−1), we obtain Pj [τn < τ1∧τ2∧· · ·∧τj−1∧τ+j ] = n/[(j+1)(n−1)]

and thus

P[Yj = j + 1
∣∣ Y1 = 2, . . . , Yj−1 = j] = 1/n

for all j ∈ [1, n− 2]. Of course,

P[Yn−1 = n
∣∣ Y1 = 2, . . . , Yn−2 = n− 1] = 1 .

Multiplying together these conditional probabilities gives the result. ◀

§4.2. Electrical Interpretations.

We return now to undirected graphs and networks, except for occasional parenthetical

remarks about more general Markov chains. We don’t have to restrict ourselves to finite

networks: Wilson’s method for generating spanning trees will also give a random spanning

tree (a.s.) on any recurrent network (or for any recurrent irreducible Markov chain). Can

we interpret it in terms of uniform spanning trees when the network is infinite? Suppose

that G′ is a finite connected subnetwork of G and consider TG and TG′ , random spanning

trees generated by Wilson’s method on G and G′, respectively. After describing a connec-

tion to electrical networks, we will show that for any event B depending on only finitely

many edges, we can make |P[TG ∈ B] − P[TG′ ∈ B]| arbitrarily small by choosing G′

sufficiently large*. Thus, the random spanning tree of G looks locally like a tree chosen

with probability proportional to Ξ(•). Also, these local probabilities determine the distri-

bution of TG uniquely. In particular, when simple random walk is recurrent, such as on Z2,

we may regard TG as a “uniform” random spanning tree of G. Moreover, this will show

that Wilson’s method on a recurrent network generates a random spanning tree whose

distribution again does not depend on the choice of root nor on the ordering of vertices†.

We will study uniform spanning trees on recurrent networks further and also “uniform”

spanning forests on transient networks in Chapter 10. For now, though, we will deduce

some important theoretical consequences of the connection between random walk and

* This can also be proved by coupling the constructions using Wilson’s method.
† This can also be shown directly for any recurrent irreducible Markov chain.
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spanning trees on finite and recurrent networks. For recurrent networks, the definitions

and relations among random walks and electrical networks appear in Exercises 2.73, 2.74

and 2.75; some are also covered in Section 9.1 and Corollary 9.6, but we won’t need any

material from Chapter 9 here.

Kirchhoff’s Effective Resistance Formula. Let T be an unrooted weighted uniform

spanning tree of a recurrent network G and e be an edge of G. Then

P[e ∈ T ] = Pe− [1st hit e
+ via traveling along e] = i(e) = c(e)R(e− ↔ e+) ,

where i is the unit current from e− to e+.

Remark. That P[e ∈ T ] = i(e) in finite networks is due to Kirchhoff (1847); he didn’t

say anything about random walks.

Proof. The first equality follows by taking the vertex e+ as the root of T and then starting

the construction of Wilson’s method at e−. The second equality then follows from the

probabilistic interpretation (Proposition 2.2 and its extension Exercise 2.73 to infinite

recurrent networks) of i as the expected number of crossings of e minus the expected

number of crossings of the reversed edge −e for a random walk started at e− and stopped

at e+: e is crossed once or not at all and −e is never crossed. The third equality comes

from the definition of effective resistance. ◀

▷ Exercise 4.2.

Consider the ladder graph Ln of height n shown in Figure 1.7. Choose a spanning

tree T (n) of Ln uniformly. Use Kirchhoff’s Effective Resistance Formula to determine

P[rung 1 is in T (n)] and its limiting behavior as n→ ∞.

Kirchhoff’s fundamental result tells us the single-edge marginals of uniform spanning

trees. What about the marginals for several edges? Suppose e and f are two distinct edges

of a finite graph G. If T is a random spanning tree chosen uniformly from all spanning trees

of G, then we might expect that the events [e ∈ T ] and [f ∈ T ] are negatively correlated,

i.e., the probability that both happen is at most the product of the probabilities that each

happens: Intuitively, the presence of f would make e less needed for connecting everything

and more likely to create a cycle. Furthermore, since the number of edges in a spanning

tree is constant, namely, one fewer than the number of vertices in the graph, the negative

correlation is certainly true “on average”. We will now prove this negative correlation by

using Kirchhoff’s Effective Resistance Formula. Interestingly, no direct proof is known,
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although a combinatorial version of the electrical proof was given by Feder and Mihail

(1992).

In fact, we can use Kirchhoff’s Effective Resistance Formula to compute the chance

that certain edges are in T and certain others are not. To see this, denote the dependence

of T on G by TG. The contraction G/e of a graph G along an edge e is obtained by

removing the edge e and identifying its endpoints. Note that this may give a multigraph

even if G is a simple graph. Deleting e without identifying its endpoints gives the graph

denoted G\e. In both cases, we may identify the edges of G other than e with the edges

of G/e and of G\e. We think of a spanning tree primarily as a set of edges. Now the

distribution of TG/e (the contraction of TG along e) given that e ∈ TG is the same as that

of TG/e and the distribution of TG given e ̸∈ T is the same as that of TG\e. This gives

a recursive method to compute P[e1, . . . , ek ∈ T, ek+1, . . . , el ̸∈ T ]: for example, if e ̸= f ,

then

P[e, f ∈ TG] = P[e ∈ TG]P[f ∈ TG | e ∈ TG] = P[e ∈ TG]P[f ∈ TG/e]

and

P[e /∈ TG,f ∈ TG] = P[e /∈ TG]P[f ∈ TG\e] .

Thus, we may deduce that the events e ∈ T and f ∈ T are negatively correlated:

▷ Exercise 4.3.

By using Kirchhoff’s Effective Resistance Formula, show that if e ̸= f , then the events

e ∈ T and f ∈ T are negatively correlated.

We can now also establish our claim at the beginning of this section that on a re-

current graph, the random spanning tree looks locally like that of large finite connected

subnetworks. For example, given an edge e and a subnetwork G′ of G, the current in G′

flowing along e arising from a unit current between the endpoints of e will be very close to

the corresponding current along e in G, provided G′ is sufficiently large, by Exercise 2.73.

That means that P[e ∈ TG′ ] will be very close to P[e ∈ TG].

▷ Exercise 4.4.

Write out the rest of the proof that for any event B depending on only finitely many edges,

|P[TG′ ∈ B]−P[TG ∈ B]| is arbitrarily small for sufficiently large G′.

What does contraction of some edges do to a current in the setting of the inner-product

space ℓ2−(E, r)? Let ie denote the unit current from the tail of e to the head of e in a finite

network G. Contract the edges f ∈ F to obtain the graph G/F and let îe be the unit

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



Chap. 4: Uniform Spanning Trees 118

current flowing in G/F , where e /∈ F and, moreover, e does not form any undirected cycle

with the edges of F , so that e does not become a loop when the edges of F are contracted.

Note that the restriction of any θ ∈ ℓ2−(E, r) to E \ F yields an antisymmetric function on

the edges of the contracted graph G/F . Let Z be the linear span of {if ; f ∈ F}. We

claim that

îe = (P⊥
Z i

e)↾(E \ F ) (4.3)

and

(P⊥
Z i

e)↾F = 0 , (4.4)

where P⊥
Z denotes the orthogonal projection onto the orthocomplement of Z in ℓ2−(E, r).

These equations may look a little forbidding at first, but a second or third look ought

to reveal their inner simplicity. In fact, if instead of removing the edges in F when we

contract them, we leave them as loops, then these equations say that îe = P⊥
Z i

e.

To prove these equations, note that since Z ⊆ ⋆ and ie ∈ ⋆, also P⊥
Z i

e = ie−PZie ∈
⋆. Recall from (2.9) or (2.11) that P⋆χf = if . Therefore, for f ∈ F ,

(P⊥
Z i

e, χf )r = (P⋆P⊥
Z i

e, χf )r = (P⊥
Z i

e, P⋆χf )r = (P⊥
Z i

e, if )r = 0 .

That is, there is no flow across any edge in F for P⊥
Z i

e, which is (4.4). Since P⊥
Z i

e ∈ ⋆
satisfies the cycle law in G, it follows from this that (P⊥

Z i
e)↾(E \ F ) satisfies the cycle law

in G/F . To finish the proof, we verify Kirchhoff’s Node Law, that is, we show that the

right-hand side of (4.3) is orthogonal to all the stars in G/F except those at the endpoints

of e, where the inner products are ±1. To see this, write

P⊥
Z i

e = ie −
∑
f∈F

αf i
f

for some constants αf . Note that the stars ψ in G/F are sums θ of stars in G such that

θ(f) = 0 for all f ∈ F . Since ie is orthogonal to all the stars in G except those at the

endpoints of e, it follows that ie↾(E\F ) ⊥ ψ if ψ is a star in G/F other than at an endpoint

of e. Likewise, the restrictions to E \ F of if for all f ∈ F are orthogonal to all the stars

in G/F : the only case where this is not obvious is where e and f share an endpoint. In

that case, let ψ be the star in G/F that corresponds to the shared endpoint of e and f .

Since f is contracted, the inner product of ⊂f with ψ equals 1− 1 = 0, both endpoints of

f contributing to the inner product. Therefore, ie −
∑
f∈F αf i

f is orthogonal to all the

stars in G/F except those at the endpoints of e, where the inner products are ±1. This

proves (4.3).
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Although we have indicated that successive contractions can be used for computing

P[e1, . . . , ek ∈ T ], this requires computations of effective resistance on k different graphs.

The formula we just gave allows us to replace the different graphs with computations of

orthogonal projections for the original graph, but this is not necessarily pleasant, either.

However, it turns out that these computations can be organized in a marvellous way,

as shown by the following wonderful theorem of Burton and Pemantle (1993) and its

extension, Exercise 4.41:

The Transfer-Current Theorem. For any distinct edges e1, . . . , ek ∈ G,

P[e1, . . . , ek ∈ T ] = det[Y (ei, ej)]1≤i,j≤k . (4.5)

Recall that Y (e, f) = ie(f). Note that, in particular, we get a quantitative version of

the negative correlation between {e ∈ T} and {f ∈ T}: for distinct edges e, f , we have

P[e, f ∈ T ]−P[e ∈ T ]P[f ∈ T ] = −Y (e, f)Y (f, e) = −c(e)r(f)Y (e, f)2

by the reciprocity law (2.12).

Proof. It suffices to show the result for finite G, since taking limits of this result implies it

holds for infinite recurrent G by Exercise 2.73.

We first show that if some cycle can be formed from the edges e1, . . . , ek, then a linear

combination of the corresponding columns of [Y (ei, ej)] is zero: suppose that such a cycle

is
∑
j ajχ

ej , where aj ∈ {−1, 0, 1}. Then for 1 ≤ m ≤ k, we have∑
j

ajr(ej)Y (em, ej) =
∑
j

ajr(ej)i
em(ej) = 0

by the cycle law applied to the current iem . Therefore, both sides of (4.5) are 0. For the

remainder of the proof, then, we may assume that there are no such cycles.

We next proceed by induction. When k = 1, (4.5) is the same as Kirchhoff’s Effective

Resistance Formula. For 1 ≤ m ≤ k, let

Ym := [Y (ei, ej)]1≤i,j≤m . (4.6)

To carry the induction from m = k − 1 to m = k, we must show that

detYk = P[ek ∈ T | e1, . . . , ek−1 ∈ T ] detYk−1 . (4.7)

Now we know that

P[ek ∈ T | e1, . . . , ek−1 ∈ T ] = îek(ek) (4.8)
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for the current îek in the graph G/{e1, . . . , ek−1}. In addition,

P⊥
Z i

ek = iek −
k−1∑
m=1

ami
em

for some constants am, where Z is the linear span of {ie1 , . . . , iek−1}. Subtracting these

same multiples of the first k − 1 rows from the last row of Yk leads to a matrix Ŷ whose

(m, j)-entry is that of Yk−1 for m, j < k and whose (k, j)-entry is

iek(ej)−
k−1∑
m=1

ami
em(ej) =

(
P⊥
Z i

ek
)
(ej) =

{
0 if j < k,

îek(ek) if j = k

by (4.4) and (4.3). Therefore expansion of det Ŷ along the kth row is very simple and gives

that

detYk = det Ŷ = îek(ek) detYk−1 .

Combining this with (4.8), we obtain (4.7). [At bottom, we are using (or proving) the fact

that the determinant of a Gram matrix is the square of the volume of the parallelepiped

determined by the vectors whose inner products give the entries.] ◀

It turns out that there is a more general negative correlation than that between the

presence of two given edges. Regard a spanning tree as simply a set of edges. We may

extend our probability measure P on the set of spanning trees to the product σ-field on

2E(G) by defining the probability to be 0 of the event that the set of edges do not form

a spanning tree. This may sound unhelpful, but surprisingly, it is useful. Call an event

A ⊆ 2E(G) increasing (also called upwardly closed) if the addition of any edge to any

set in A results in another set in A , that is, A ∪ {e} ∈ A for all A ∈ A and all e ∈ E.

For example, A could be the collection of all subsets of E(G) that contain at least two of

the edges {e1, e2, e3}. We say that an event A ignores an edge e if A ∪ {e} ∈ A and

A \ {e} ∈ A for all A ∈ A . In the prior example, e is ignored provided e ̸∈ {e1, e2, e3}.
We also say that A depends (only) on a set F ⊆ E(G) if for every pair ω1, ω2 ∈ 2E

that agree on F , we have either both ω1, ω2 are in A or neither are in A .

▷ Exercise 4.5.

Suppose that A is an increasing event on a graph G and e ∈ E. Note that E(G/e) =

E(G\e) = E(G) \ {e}. Define A /e := {F ⊆ E(G/e) ; F ∪ {e} ∈ A } and A \e := {F ⊆
E(G\e) ; F ∈ A }. Show that these are increasing events on G/e and G\e, respectively.
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Pemantle conjectured (personal communication, 1990) that A and [e ∈ T ] are neg-

atively correlated when A is an increasing event that ignores e. Though unaware that

Pemantle had conjectured this, Feder and Mihail (1992) proved it:

Theorem 4.6. Let G be a finite network. If A is an increasing event that ignores some

edge e, then P[A | e ∈ T ] ≤ P[A ].

As we will see in Chapter 10, this result is quite useful.

Proof. We induct on the number of edges in G. The case of exactly one (undirected) edge

is trivial. Now assume that the number of (undirected) edges is m ≥ 2 and that we know

the result for graphs with m − 1 edges. Let G have m edges. If P[f ∈ T ] = 1 for some

f ∈ E, then we could contract f and reduce to the case of m− 1 edges by Exercise 4.5, so

assume this is not the case. If |V| = 2 and G has parallel edges, then the result also follows

without using induction, so assume that |V| ≥ 3. Fix an increasing event A and an edge

e ignored by A . We may assume that P[A | e ∈ T ] > 0 in order to prove our inequality.

The graph G/e has only m − 1 edges and every spanning tree of G/e has |V| − 2 edges.

This latter simple fact leads to the key equation:∑
f∈E\{e}

P[A , f ∈ T | e ∈ T ] =
(
|V|−2

)
P[A | e ∈ T ] = P[A | e ∈ T ]

∑
f∈E\{e}

P[f ∈ T | e ∈ T ] .

Therefore there is some f ∈ E \ {e} with P[f ∈ T | e ∈ T ] > 0 such that

P[A , f ∈ T | e ∈ T ] ≥ P[A | e ∈ T ]P[f ∈ T | e ∈ T ] ,

which is the same as P[A | f, e ∈ T ] ≥ P[A | e ∈ T ]. This also means that

P[A | f, e ∈ T ] ≥ P[A | f /∈ T, e ∈ T ] ; (4.9)

in case this is not evident, one can deduce it from

P[A | e ∈ T ] = P[f ∈ T | e ∈ T ]P[A | f, e ∈ T ] +P[f /∈ T | e ∈ T ]P[A | f /∈ T, e ∈ T ] .

(4.10)

Now we also have

P[f ∈ T | e ∈ T ] ≤ P[f ∈ T ]

by Exercise 4.3. Because of (4.9), it follows that

P[A | e ∈ T ] ≤ P[f ∈ T ]P[A | f, e ∈ T ] +P[f /∈ T ]P[A | f /∈ T, e ∈ T ] : (4.11)
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we have replaced a convex combination in (4.10) by another in (4.11) that puts more weight

on the larger term. We also have

P[A | f, e ∈ T ] ≤ P[A | f ∈ T ] (4.12)

by the induction hypothesis applied to the event A /f on the network G/f (see Exer-

cise 4.5), and

P[A | f /∈ T, e ∈ T ] ≤ P[A | f /∈ T ] (4.13)

by the induction hypothesis applied to the event A \f on the network G\f . By (4.12) and

(4.13), we have that the right-hand side of (4.11) is

≤ P[f ∈ T ]P[A | f ∈ T ] +P[f /∈ T ]P[A | f /∈ T ] = P[A ] . ◀

▷ Exercise 4.6.

(Negative Association) Let G be a finite network. Extend Theorem 4.6 to show that if

A and B are both increasing events and they depend on disjoint sets of edges, then they

are negatively correlated. Still more generally, show the following. Say that a random

variable X:E(G) → R depends on a set F ⊆ E(G) if X is measurable with respect

to the σ-field consisting of events that depend on F . Say also that X is increasing if

X(H) ≤ X(H ′) whenever H ⊂ H ′. If X and Y are increasing random variables with finite

second moments that depend on disjoint sets of edges, then E[XY ] ≤ E[X]E[Y ]. This

property of P is called negative association .

§4.3. The Square Lattice Z2.

Uniform spanning trees on the nearest-neighbor graph on the square lattice Z2 are

particularly appealing. A portion of one is shown in Figure 4.7. This can be thought of as

an infinite maze. In Section 10.6, we will show that there is exactly one way to get from

any square to any other square without backtracking and exactly one way to get from any

square to infinity without backtracking. Thus, if escaping the maze means finding a path

to infinity from a given starting square, then there is exactly one way to do it without

backtracking and it is also possible to get lost anywhere else. For now, though, we will

consider only the “walls” of the maze, i.e., the actual spanning tree.

What is the distribution of the degree of a vertex with respect to a uniform spanning

tree in Z2? It turns out that while the distribution is not so easy to calculate, the expected

degree is easy to calculate and is part of a quite general result. This uses the amenability of
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Figure 4.7. A portion of a uniformly chosen spanning tree on Z2, drawn by David Wilson.

Z2. What’s that? If G is a graph and K ⊂ V, the edge boundary of K is the set ∂EK of

(unoriented) edges that connect K to its complement. We say that G is edge amenable

if there are finite Vn ⊂ V with

lim
n→∞

|∂EVn|/|Vn| = 0 .

▷ Exercise 4.7.

Let G be an edge-amenable infinite graph as witnessed by the sequence ⟨Vn⟩. Show that

the average degree of vertices in any spanning tree of G is 2. That is, if degT (x) denotes

the degree of x in a spanning tree T of G, then

lim
n→∞

|Vn|−1
∑
x∈Vn

degT (x) = 2 .

Every infinite recurrent graph can be shown to be edge-amenable by various results from

Chapter 6 that we’ll look at later, such as Theorems 6.5, 6.7, or 6.23. Deduce that for the

uniform spanning tree measure on a recurrent graph,

lim
n→∞

|Vn|−1
∑
x∈Vn

E[degT (x)] = 2 .
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In particular, if G is also transitive, such as Z2, meaning that for every pair of vertices x

and y, there is a bijection of V with itself that preserves adjacency and takes x to y, then

every vertex has expected degree 2.

By symmetry, each edge of Z2 has the same probability to be in a uniform spanning

tree of Z2. Since the expected degree of a vertex is 2 by Exercise 4.7, it follows that

P[e ∈ T ] = 1/2 (4.14)

for each e ∈ Z2. By Kirchhoff’s Effective Resistance Formula, this means that if unit

current flows from the tail to the head of e, then 1/2 of the current flows directly across

e and that the effective resistance between two adjacent vertices is 1/2. These electrical

facts are classic engineering puzzles.

To calculate the distribution of the degree, we will use the Transfer-Current Theorem.

The result is rather surprising. Namely, the degree has the following distribution:

Degree Probability

1
8

π2

(
1− 2

π

)
= .294+

2
4

π

(
2− 9

π
+

12

π2

)
= .447−

3 2

(
1− 2

π

)(
1− 6

π
+

12

π2

)
= .222+

4

(
4

π
− 1

)(
1− 2

π

)2

= .036+

(4.15)

In order to find the transfer currents Y (e1, e2), we will first find voltages, then use

i = dv. (We assume unit conductances on the edges.) When i is a unit flow from x to y,

we have d∗i = 1{x} − 1{y}. Hence the voltages satisfy ∆v := d∗dv = 1{x} − 1{y}; here, ∆

is called the graph Laplacian . We are interested in solving this equation when x := e−1 ,

y := e+1 ; then we compute v(e−2 )−v(e
+
2 ). Our method is to use Fourier analysis. We begin

with a formal (i.e., heuristic) derivation of the solution, then prove that the formula we

get is correct.

Let T2 := (R/Z)2 be the 2-dimensional torus. For (x1, x2) ∈ Z2 and (α1, α2) ∈ T2,

write (x1, x2) · (α1, α2) := x1α1 +x2α2 ∈ R/Z. For a function f on Z2, define the function
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f̂ on T2 by

f̂(α) :=
∑
x∈Z2

f(x)e−2πix·α .

We are not worrying here about whether this converges in any sense, but certainly 1̂{x}(α) =

e−2πix·α. Now a formal calculation shows that for a function f on Z2, we have

∆̂f(α) = φ(α)f̂(α) ,

where

φ
(
(α1, α2)

)
:= 4−

(
e2πiα1 + e−2πiα1 + e2πiα2 + e−2πiα2

)
= 4− 2 (cos 2πα1 + cos 2πα2) .

Hence, to solve ∆f = g, we may try to solve ∆̂f = ĝ by using f̂ := ĝ/φ and then finding

f . In fact, a formal calculation shows that we may recover f from f̂ by the formula

f(x) =

∫
T2

f̂(α)e2πix·α dα ,

where the integration is with respect to Lebesgue measure. This is the approach we will

follow. Note that we need to be careful about the nonuniqueness of solutions to ∆f = g

since there are non-zero functions f with ∆f = 0.

▷ Exercise 4.8.

Show that (1̂{x} − 1̂{y})/φ ∈ L1(T2) for all x, y ∈ Z2.

▷ Exercise 4.9.

Show that if F ∈ L1(T2) and f(x) =
∫
T2 F (α)e

2πix·α dα, then

(∆f)(x) =

∫
T2

F (α)e2πix·αφ(α) dα .

Proposition 4.7. (Voltage on Z2) The voltage at u when a unit current flows from x

to y in Z2 and when v(y) = 0 is

v(u) = v′(u)− v′(y) ,

where

v′(z) :=

∫
T2

e−2πix·α − e−2πiy·α

φ(α)
e2πiz·α dα .
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Proof. By Exercises 4.8 and 4.9, we have

∆v′(u) =

∫
T2

(
e−2πix·α − e−2πiy·α) e2πiu·α dα = 1{x}(u)− 1{y}(u) .

That is, ∆v′ = 1{x} − 1{y}. Since v satisfies the same equation, we have ∆(v′ − v) = 0.

In other words, v′ − v is harmonic at every point in Z2. Furthermore, v′ is bounded in

absolute value by the L1 norm of (1̂{x} − 1̂{y})/φ. Since v is also bounded (by v(x)), it

follows that v′ − v is bounded. Since the only bounded harmonic functions on Z2 are the

constants (by, say, Exercise 2.41), this means that v′ − v is constant. Since v(y) = 0, we

obtain v = v′ − v′(y), as desired. ◀

We now need to find a good method to compute the integral v′. Set

H(u) := 4

∫
T2

1− e2πiu·α

φ(α)
dα .

Note that the integrand is integrable by Exercise 4.8 applied to x := (0, 0) and y := −u.
The integral H is useful because v′(u) =

[
H(u − y) − H(u − x)

]
/4. (The factor of 4 is

introduced in H only in order to conform to the usage of other authors.) Putting x := e−

and y := e+, we get

Y (e1, e2) = v(e−2 )− v(e+2 )

=
1

4

[
H(e−2 − e+1 )−H(e−2 − e−1 )−H(e+2 − e+1 ) +H(e+2 − e−1 )

]
. (4.16)

Thus, we concentrate on calculating H. Now H(0, 0) = 0 and a direct calculation as

in Exercise 4.9 shows that ∆H = −4 · 1{(0,0)}. Furthermore, the symmetries of φ show

that H is invariant under reflection in the axes and in the 45◦ line. Therefore, all the

values of H can be computed from those on the 45◦ line by computing values at gradually

increasing distance from the origin and from the 45◦ line. (For example, we first compute

H(1, 0) = 1 from the equations H(0, 0) = 0 and (∆H)(0, 0) = 4H(0, 0) − H(0, 1) −
H(1, 0) − H(0,−1) − H(−1, 0) = −4, then H(2, 1) from the value of H(1, 1) and the

equation (∆H)(1, 1) = 4H(1, 1)−H(1, 0)−H(0, 1)−H(1, 2)−H(2, 1) = 0, then H(2, 0)

from (∆H)(1, 0) = 0, then H(3, 2), etc.)

The reflection symmetries we observed for H imply that H(u) = H(−u), whence H
is real. Thus, we can write the diagonal values as

H(n, n) = 4

∫
T2

1− cos 2πn(α1 + α2)

φ(α)
dα

=

∫ 1

0

∫ 1

0

1− cos 2πn(α1 + α2)

1− cos (π(α1 + α2)) cos (π(α1 − α2))
dα1 dα2
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α1

α2

θ2

θ1

I

I II

II

II

Figure 4.8. The integrals over the regions labelled
I are all equal, as are those labelled II.

for n ≥ 1. This new integrand has various symmetries shown in Figure 4.8. These sym-

metries imply that if we change variables to θ1 := π(α1 + α2) and θ2 := π(α1 − α2),

then

H(n, n) =
1

π2

∫ π

0

∫ π

0

1− cos 2nθ1
1− cos θ1 cos θ2

dθ1 dθ2 . (4.17)

Only a little bit of calculus remains before we have our answer. Now for 0 < a < 1, we

have ∫ π

0

dθ

1− a cos θ
=

2√
1− a2

tan−1

√
1− a2 tan(θ/2)

1− a

∣∣∣∣∣
π

0

=
π√

1− a2
.

Therefore integration on θ2 in (4.17) gives

H(n, n) =
1

π

∫ π

0

1− cos 2nθ1
sin θ1

dθ1 .

Note that (1 − cos 2nθ1)/ sin θ1 = 2
∑n
k=1 sin(2k − 1)θ1, as can be seen by using complex

exponentials. Therefore

H(n, n) =
2

π

∫ π

0

n∑
k=1

sin(2k − 1)θ1 dθ1 =
4

π

n∑
k=1

1

2k − 1
. (4.18)

▷ Exercise 4.10.

Deduce the distribution of the degree of a vertex in the uniform spanning tree of Z2, i.e.,

the table (4.15).
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We may also make use of the above work, without the actual values being needed,

to prove the following remarkable fact. Edges of the uniform spanning tree in Z2 along

diagonals are like fair coin flips! We have seen in (4.14) that each edge has 50% chance to

be in the tree. The independence we are now asserting is the following theorem.

Theorem 4.8. (Independence on Diagonals) Let e be any edge of Z2. For n ∈ Z, let
Xn be the indicator that e + (n, n) lies in the spanning tree. Then Xn are i.i.d. Likewise

for e+ (n,−n).

Proof. By symmetry, it suffices to prove the first part. We may also assume that e is the

edge from the origin to (1, 0). By the Transfer-Current Theorem, it suffices to show that

Y
(
e, e+ (n, n)

)
= 0 for all n ̸= 0. The formula (4.16) shows that

4Y
(
e, e+ (n, n)

)
= H(n+ 1, n)−H(n, n)−H(n, n) +H(n− 1, n) .

Now the symmetries we have noted already of the function H(•, •) show that H(n, n+1) =

H(n + 1, n) and H(n, n − 1) = H(n − 1, n). Since H(n, n) is the average of these four

numbers for n ̸= 0, it follows that H(n + 1, n) −H(n, n) = H(n, n) −H(n − 1, n). This

proves the result. ◀

§4.4. Notes.

There is another important connection of spanning trees to Markov chains:

The Markov Chain Tree Theorem. The stationary distribution of a finite-state irreducible
Markov chain is proportional to the measure that assigns the state x the measure∑

root(T )=x

Ψ(T ) .

It is for this reason that generating spanning trees at random is very closely tied to generating
a state of a Markov chain at random according to its stationary distribution. This latter topic is
especially interesting in computer science. See Propp and Wilson (1998) for more details. Some of
the history of the Markov Chain Tree Theorem can be found in Anantharam and Tsoucas (1989).

To prove the Markov Chain Tree Theorem, we associate to the original Markov chain a new
Markov chain on spanning trees. Given a spanning tree T and an edge e with e− = root(T ),
define two new spanning trees:

“forward procedure” This creates a new spanning tree denoted F (T, e). First, add e
to T . This creates a cycle. Delete the edge f ∈ T out of e+ that breaks the cycle. See
Figure 4.9.

“backward procedure” This creates a new spanning tree denoted B(T, e). Again, first
add e to T . This creates a cycle. Break it by removing the appropriate edge g ∈ T that
leads into e−. See Figure 4.9.
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Figure 4.9.

Note that in both procedures, it is possible that f = −e or g = −e. Also, note that

B(F (T, e), f) = F (B(T, e), g) = T ,

where f and g are as specified in the definitions of the forward and backward procedures.
Now define transition probabilities on the set of spanning trees by

p(T, F (T, e)) := p(e) = p

(
root(T ), root(F (T, e))

)
. (4.19)

Thus p(T, T̃ ) > 0 ⇐⇒ ∃e T̃ = F (T, e) ⇐⇒ ∃g T = B(T̃ , g).

▷ Exercise 4.11.
Prove that the Markov chain on trees given by (4.19) is irreducible.

▷ Exercise 4.12.
(a) Show that the weight Ψ(•) is a stationary measure for the Markov chain on trees given by

(4.19).
(b) Prove the Markov Chain Tree Theorem.

Another way to express the relationship between the original Markov chain and this asso-
ciated one on trees is as follows. Recall that one can create a stationary Markov chain ⟨Xn⟩∞−∞
indexed by Z with the original transition probabilities p(•, •) by, say, Kolmogorov’s existence
theorem. Set

Ln(w) := max{m < n ; Xm = w} .

This is well defined a.s. by recurrence. Let Yn be the tree formed by the edges

{⟨w,XLn(w)+1⟩ ; w ∈ V \ {Xn}}

Then Yn is rooted at Xn and ⟨Yn⟩ is a stationary Markov chain with the transition probabilities
(4.19).
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A method due to Aldous (1990) and Broder (1989) of generating weighted uniform spanning
trees comes from reversing these Markov chains; related ideas were in the air at that time and both
these authors thank Persi Diaconis for discussions. Let ⟨Xn⟩∞−∞ be a stationary Markov chain
on a finite state space. Then so is the reversed process ⟨X−n⟩: the definition of the Markov
property via independence of the past and the future given the present shows this immediately.
We can also find the transition probabilities p̃ for the reversed chain: Let π be the stationary
probability π(a) := P[X0 = a]. Then clearly π is also the stationary probability for the reversed
chain. Comparing the chance of seeing state a followed by state b for the forward chain with the
equal probability of seeing state b followed by state a for the reversed chain, we see that

π(a)p(a, b) = π(b)p̃(b, a) ,

whence

p̃(b, a) =
π(a)

π(b)
p(a, b) .

As discussed in Section 2.1, the chain is reversible iff p̃ = p.
If we reverse the above chains ⟨Xn⟩ and ⟨Yn⟩, then we find that Y−n can be expressed in

terms of X−n as follows: let

Hn(w) := min{m > n ; X−m = w}.

Then Y−n has edges {⟨w,X−[Hn(w)−1]⟩ ; w ∈ V \ {X−n}}.

▷ Exercise 4.13.
Prove that the transition probabilities of Y−n are

p̃(T,B(T, e)) = p(e) .

Since the stationary measure of ⟨Yn⟩ is still proportional to Ψ(•), we get the following al-
gorithm for generating a random spanning tree with distribution proportional to Ψ(•): find the
stationary probability π of the chain giving rise to the weights Ψ(•), run the reversed chain start-
ing at a state chosen according to π, and construct the tree via H0. That is, we draw an edge
from u to w the first time ≥ 1 that the reversed chain hits u, where w is the state preceding the
visit to u.

In case the chain is reversible, this construction simplifies. From the discussion in Section 4.1,
we have:

Corollary 4.9. (Aldous/Broder Algorithm) Let ⟨Xn⟩∞0 be a random walk on a finite con-
nected graph G with X0 arbitrary (not necessarily random). Let H(u) := min{m > 0 ; Xm = u}
and let T be the unrooted tree with edges {(u,XH(u)−1) ; X0 ̸= u ∈ G}. Then the distribution of
T is proportional to Ξ(•). In particular, simple random walk on a finite connected graph gives a
uniform unrooted random spanning tree.

Proof. We have seen that if X0 has the stationary distribution, then as a rooted spanning tree
with edges oriented towards the root, T has probability proportional to Ψ(T ). We also know that
as an unoriented unrooted tree, the conditional probability of T is proportional to Ξ(T ) given the
root. Hence the same holds when X0 is fixed, as desired. ◀

This method of generating uniform spanning trees can be and was used in place of Wilson’s
method for the purposes of this chapter. However, Wilson’s method is much better suited to the
study of uniform spanning forests, the topic of Chapter 10.
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▷ Exercise 4.14.
Let G be a cycle and x ∈ V. Start simple random walk at x and stop when all edges but one have
been traversed at least once. Show that the edge that has not been traversed is equally likely to
be any edge.

▷ Exercise 4.15.
Suppose that the graph G has a Hamiltonian path, ⟨xk ; 1 ≤ k ≤ n⟩, i.e., a path that is a spanning
tree. Let qk be Pxk [τ+xk < τxk+1,...,xn ] for simple random walk on G. Show that the number of
spanning trees of G equals

∏
k<n qk degG xk.

▷ Exercise 4.16.
Let ⟨Xn⟩ and ⟨Yn⟩ be the Markov chains defined above, so that Yn is a spanning tree rooted at
Xn. Show directly that Y0 has the same distribution as the one produced by Wilson’s method,
given that root(Y0) = X0.

The use of Wilson’s method for infinite recurrent networks was first made in Benjamini,
Lyons, Peres, and Schramm (2001), hereinafter referred to as BLPS (2001). The Transfer-Current
Theorem was shown for the case of two edges in Brooks, Smith, Stone, and Tutte (1940). The
proof here is due to BLPS (2001). The interest of Brooks, Smith, Stone, and Tutte (1940) was
elicited by their discovery of the connection of electrical networks to square tilings: see Section 9.6.

We are grateful to David Wilson for permission to include Figure 4.7. It was created using
the linear algebraic techniques of Wilson (1997) for generating domino tilings; the needed matrix
inversion was accomplished using the formulas of Kenyon (1997). The resulting tiling gives dual
spanning trees by the bijection of Temperley (see Kenyon, Propp, and Wilson (2000)). One of the
trees is Figure 4.7.

Theorem 4.8 is due to R. Lyons and is published here for the first time. Another way
to state this result is that if independent fair coin flips are used to decide which of the edges
{e+ (n, n) ; n ∈ Z} will be present, for some fixed edge e, then there exists a percolation on the
remaining edges of Z2 that will lead in the end to a percolation on all of Z2 with the distribution
of the uniform spanning tree. A related surprising result of Lyons and Steif (2003) says that
we can independently determine some of the horizontal edges and then decide the remaining
edges to get a uniform spanning tree. To be precise, fix a horizontal edge, e. Suppose that
⟨U(e+x) ; x ∈ Z2⟩ are i.i.d. uniform [0, 1] random variables. Let K0 := {e+x ; U(e+x) ≤ e−4G/π}
and K1 := {e+ x ; U(e+ x) ≥ 1 − e−4G/π}, where

G :=

∞∑
k=0

(−1)k

(2k + 1)2

is Catalan’s constant . (We have that e−4G/π = 0.3115+.) Then there exists a percolation ω on
Z2 such that (ω ∪K1) \K0 has the distribution of the uniform spanning tree.

Additional information on loop-erased random walk and another proof of Wilson’s algorithm
can be found in Marchal (2000).

Enumeration of spanning trees in graphs is an old topic. There are many proofs of Cayley’s
formula, Corollary 4.5. The shortest proof is due to Joyal (1981) and goes as follows. Denote
[n] := {1, . . . , n}. First note that because every permutation can be represented as a product
of disjoint directed cycles, it follows that for any finite set S the number of sets of cycles of
elements of S (each element appearing exactly once in some cycle) is equal to the number of
linear arrangements of the elements of S. The number of functions from [n] to [n] is clearly nn.
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To each such function f we may associate its functional digraph, which has a directed edge from
i to f(i) for each i in [n]. Every weakly connected component of the functional digraph can be
represented by a cycle of rooted trees. So nn is also the number of linear arrangements of rooted
trees on [n]. We claim now that nn = n2tn, where tn is the number of trees on [n].

It is clear that n2tn is the number of triples (x, y, T ), where x, y ∈ [n] and T is a tree on [n].
Given such a triple, we obtain a linear arrangement of rooted trees by removing all directed edges
on the unique path from x to y and taking the nodes on this path to be the roots of the trees that
remain. This correspondence is bijective, and thus tn = nn−2. ◀

The Matrix-Tree Theorem of graph theory gives a way to calculate the number of spanning
trees on any graph. Namely, it says that the number of spanning trees of a graph G equals
det ∆G[x] for each x ∈ V, where ∆G is the graph Laplacian defined in Exercise 2.61 and [x]
indicates striking the row and column indexed by x. More generally, the sum τ(G) of the weights∏
e∈T c(e) over spanning trees T in a network equals det ∆G[x]. There is also a version for directed

graphs. A proof that uses techniques from this book is given in the following exercise.

▷ Exercise 4.17.

Prove the Matrix-Tree Theorem by using Kirchhoff’s Effective Resistance Formula and Exer-
cise 2.61.

▷ Exercise 4.18.

Show that the constant C in (2.26) equals
√
τ(G)/(2π)|V|.

Asymptotics of the number of spanning trees is connected to mathematical physics. For
example, if one combines the entropy result for domino tilings proved by Montroll (1964) with the
Temperley (1974) bijection, then one gets that

lim
n→∞

1

n2
log (number of spanning trees of [1, n]2 in Z2)

=

∫ 1

0

∫ 1

0

log(4 − 2 cos 2πx− 2 cos 2πy) dx dy

=
4G

π
= 1.166+ ,

where G is Catalan’s constant, as above (see Kasteleyn (1961) or Montroll (1964) for the evaluation
of the integral). This result first appeared explicitly in Burton and Pemantle (1993). Thus,

e1.166
+

= 3.21− can be thought of as the average number of independent choices per vertex to
make a spanning tree of Z2. See, e.g., Burton and Pemantle (1993) and Shrock and Wu (2000)
and the references therein for this and several other such examples. Very general methods of
calculating and comparing asymptotics were given by Lyons (2005, 2010), where a key tool is the
rate of convergence of random walks on finite graphs to their stationary distribution.

▷ Exercise 4.19.

Consider simple random walk on Z2. Let A := {(x, y) ∈ Z2 ; y < 0 or (y = 0 and x < 0)}. Show
that P(0,0)[τ

+
(0,0) > τA] = e4G/π/4, where G is Catalan’s constant.
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Let T be the uniform spanning tree in Z2. The expected number of the four Z2-neighbors of
0 that lie on the ray in T that starts at 0 is 5/4, as shown by Poghosyan, Priezzhev, and Ruelle
(2011) and Kenyon and Wilson (2011).

One may consider the uniform spanning tree on Z2 embedded in R2. In fact, consider it on
ϵZ2 in R2 and let ϵ → 0. In appropriate senses, one can describe the limit and show that it has
a conformal invariance property. Partial results for this were first proved by Kenyon (2000b); for
example, he calculated the limiting distribution of the “meeting point” of the subtree determined
by three vertices on the boundary of a domain. The full result was proved by Lawler, Schramm,
and Werner (2004a). The stochastic Loewner evolution, SLE, introduced by Schramm (2000)
initially for this very purpose, plays the central role. For the uniform spanning tree, there are
two ways SLE enters the analysis: One is the scaling limit of loop-erased random walk, which is
the path between two vertices and fundamental to this chapter. The second is less obvious. If
we draw a curve around the spanning tree in a bounded region, as in Figure 4.10, we obtain a
cycle in another graph. That cycle visits every vertex and is very reminiscent of Peano’s space-
filling curve. It is called the UST Peano curve and it, too, has a scaling limit described by SLE.
Figure 4.11 shows the curve from a uniform spanning tree in a 99 × 99 square grid, where the
hue represents progress along the curve. SLE is also central to the study of scaling limits of other
planar processes, including percolation.

Figure 4.10. A uniform spanning tree in a 9 × 9 grid on the left,
with its surrounding Peano-like curve in an 18×18 grid on the right.

Lawler (1980) introduced loop-erased random walk originally as a model that was similar to
self-avoiding walk, but easier to understand because of its Markov property. Many basic aspects
of self-avoiding walk remain beyond proof, despite precise conjectures from physics. For example,
Nienhuis (1982) conjectured that for all 2-dimensional lattices, the number of self-avoiding paths
of length n starting at the origin is asymptotic to Aµnnγ−1, where γ = 43/32, and that the average
squared distance between the origin and the other endpoint of such a path is asymptotic to Dn2ν ,
where ν = 3/4; the other constants, A, µ, and D, depend on the lattice. If the scaling limit of
self-avoiding walk in the plane exists and is conformally invariant, as is believed to be the case,
then Lawler, Schramm, and Werner (2004b) proved that it must be SLE8/3. This would in turn
likely imply the above values of γ and ν. For lattices in dimensions 5 and higher, corresponding
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Figure 4.11. The Peano-like curve surrounding a uniform spanning
tree on a 99 × 99 grid, with hue showing progress along the curve.

statements have been proved by Hara and Slade (1990, 1992), with γ = 1 and ν = 1/2. See Slade
(2010) for a survey of current knowledge of self-avoiding walk.

It turns out that uniform spanning trees is a limiting case within a wide class of probability
measures on graphs. To say what this is, we first define Bernoulli percolation with parameter p ∈
[0, 1] as the product measure Pp on subsets of edges where each edge is retained with probability
p. A more general two-parameter model of random subgraphs, known as the random cluster
model, was introduced by Fortuin and Kasteleyn (1972) and Fortuin (1972a, 1972b). Random
cluster measures depend on two parameters, p ∈ [0, 1] and q > 0. Given a finite connected graph
G and ω ∈ 2E, write ∥ω∥ for the number of components of ω. The random cluster measure
with parameters (p, q) on G, denoted FRC(p, q) = FRCG(p, q), is the probability measure on E
proportional to q∥ω∥Pp(ω), i.e., the Bernoulli(p) percolation measure Pp biased by q∥ω∥ (and
renormalized). Thus, when q = 1, this is merely Pp. The limit FRC(p, 0) of FRC(p, q) as q → 0
exists and is concentrated on connected subgraphs of G. For example, FRC(1/2, 0) is the uniform
random connected subgraph. The limit limp→0 FRC(p, 0) is the uniform spanning tree. The limit
limp→0 FRC(p, p) is the uniform forest.

On infinite graphs G, there are several ways to define random cluster measures. We re-
strict ourselves to q ≥ 1 since the measures with q < 1 behave rather differently and are poorly
understood. Indeed, it is a major open problem to understand the case q < 1; for example, it
is unknown whether they have negative associations, as they do in the limiting case of uniform
spanning trees. This is unknown even for the special cases above of uniform random connected
subgraph and uniform forest. The advantage of q ≥ 1 is that then the measures have positive
associations (defined in Section 5.8). Let ⟨Gn⟩ be an exhaustion of an infinite connected graph
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G by connected finite subgraphs. Define FRCG(p, q) to be the weak∗ limit of FRCGn(p, q); this is
called the free random cluster measure on G. Define the wired random cluster measure
WRCG(p, q) to be the weak∗ limit of FRCG

∗
n(p, q). These limits always exist (see, e.g., Aizenman,

Chayes, Chayes, and Newman (1988)). Furthermore, they have positive associations and so the
free random cluster measure is stochastically dominated by the wired random cluster measure
(Aizenman, Chayes, Chayes, and Newman, 1988). When q is an integer, the random cluster mea-
sure can be used to construct the Potts model; when q = 2, the Potts model is called the Ising
model. See Grimmett (2006) for more details on random cluster measures, especially on Zd. In
the plane, scaling limits of Ising measures are known to exist and to have conformal invariance
properties: see Smirnov (2010).

The Transfer-Current Theorem shows that weighted uniform spanning tree measures have
their marginals given by simple determinants. This property leads to what are called determinantal
probability measures; see Lyons (2003) for their properties. In particular, the negative association
property holds for all determinantal probability measures.

A property that is even stronger than negative association, and which again holds for all
determinantal probability measures, is called strongly Rayleigh . Namely, if P is a probability
measure on subsets of a finite set E, then define the multivariate complex polynomial f(z) :=∑
F⊆E P(F )

∏
e∈F ze, where z := ⟨ze ; e ∈ E⟩. Borcea, Brändén, and Liggett (2009) call P

strongly Rayleigh if f(z) ̸= 0 when all ze have strictly positive imaginary parts. Borcea, Brändén,
and Liggett (2009) show that the strongly Rayleigh property is preserved under symmetrization
and under symmetric exclusion processes. The strongly Rayleigh property is also preserved under
conditioning on events such as |F ∩ A| = k, where A ⊆ E and k are fixed, as long as we restrict
attention to A: see Lemma 4.16 of Borcea, Brändén, and Liggett (2009). Thus, if we consider the
uniform spanning tree T on a graph G and condition on |T ∩ A| = k for some fixed A ⊂ E(G),
then T ∩A has negative associations.

Another type of negative correlation is as follows. It was conjectured to hold by BLPS (2001),
and is still open. We say that A ,B ⊂ 2E occur disjointly for F ⊂ E if there are disjoint sets
F1, F2 ⊂ E such that F ′ ∈ A for every F ′ with F ′ ∩ F1 = F ∩ F1 and F ′ ∈ B for every F ′ with
F ′ ∩ F2 = F ∩ F2. For example, A may be the event that x and y are joined by a path of length
at most 5, while B may be the event that z and w are joined by a path of length at most 6. If
there are disjoint paths of lengths at most 5 and 6 joining the first and second pair of vertices,
respectively, then A and B occur disjointly.

Conjecture 4.10. Let A ,B ⊂ 2E be increasing. Then the probability that A and B occur
disjointly for the weighted uniform spanning tree T is at most P[T ∈ A ]P[T ∈ B].

The BK inequality of van den Berg and Kesten (1985) says that this inequality holds when
T is a random subset of E chosen according to any product measure on 2E; it was extended by
Reimer (2000) to allow A and B to be any events, confirming a conjecture of van den Berg and
Kesten (1985). However, we cannot allow arbitrary events for uniform spanning trees: consider
the case where A := {e ∈ T} and B := {f /∈ T}, where e ̸= f .

There is a basic connection of uniform spanning trees to the sandpile model on finite graphs;
see Holroyd, Levine, Mészáros, Peres, Propp, and Wilson (2008) for a survey.
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§4.5. Collected In-Text Exercises.

4.1. Suppose that Z is a set of states in a Markov chain and that x0 is a state not in Z. Assume
that when the Markov chain is started in x0, then it visits Z with probability 1. Define the
random path Y0, Y1, . . . by Y0 := x0 and then recursively by letting Yn+1 have the distribution of
one step of the Markov chain starting from Yn given that the chain will visit Z before visiting any
of Y0, Y1, . . . , Yn again. However, if Yn ∈ Z, then the path is stopped and Yn+1 is not defined.
Show that ⟨Yn⟩ has the same distribution as loop-erasing a sample of the Markov chain started
from x0 and stopped when it reaches Z. In the case of a random walk, the conditioned path ⟨Yn⟩
is called the Laplacian random walk from x0 to Z.

4.2. Consider the ladder graph Ln of height n shown in Figure 1.7. Choose a spanning tree T (n)
of Ln uniformly. Use Kirchhoff’s Effective Resistance Formula to determine P[rung 1 is in T (n)]
and its limiting behavior as n→ ∞.

4.3. By using Kirchhoff’s Effective Resistance Formula, show that if e ̸= f , then the events e ∈ T
and f ∈ T are negatively correlated.

4.4. Write out the rest of the proof that for any event B depending on only finitely many edges,
|P[TG′ ∈ B] −P[TG ∈ B]| is arbitrarily small for sufficiently large G′.

4.5. Suppose that A is an increasing event on a graph G and e ∈ E. Note that E(G/e) =
E(G\e) = E(G)\{e}. Define A /e := {F ⊆ E(G/e) ; F∪{e} ∈ A } and A \e := {F ⊆ E(G\e) ; F ∈
A }. Show that these are increasing events on G/e and G\e, respectively.

4.6. (Negative Association) Let G be a finite network. Extend Theorem 4.6 to show that
if A and B are both increasing events and they depend on disjoint sets of edges, then they
are negatively correlated. Still more generally, show the following. Say that a random variable
X:E(G) → R depends on a set F ⊆ E(G) if X is measurable with respect to the σ-field consisting
of events that depend on F . Say also that X is increasing if X(H) ≤ X(H ′) whenever H ⊂ H ′.
If X and Y are increasing random variables with finite second moments that depend on disjoint
sets of edges, then E[XY ] ≤ E[X]E[Y ]. This property of P is called negative association .

4.7. Let G be an edge-amenable infinite graph as witnessed by the sequence ⟨Vn⟩. Show that the
average degree of vertices in any spanning tree of G is 2. That is, if degT (x) denotes the degree
of x in a spanning tree T of G, then

lim
n→∞

|Vn|−1
∑
x∈Vn

degT (x) = 2 .

Every infinite recurrent graph can be shown to be edge-amenable by various results from Chapter 6
that we’ll look at later, such as Theorems 6.5, 6.7, or 6.23. Deduce that for the uniform spanning
tree measure on a recurrent graph,

lim
n→∞

|Vn|−1
∑
x∈Vn

E[degT (x)] = 2 .

In particular, if G is also transitive, such as Z2, meaning that for every pair of vertices x and y,
there is a bijection of V with itself that preserves adjacency and takes x to y, then every vertex
has expected degree 2.

4.8. Show that (1̂{x} − 1̂{y})/φ ∈ L1(T2) for all x, y ∈ Z2.
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4.9. Show that if F ∈ L1(T2) and f(x) =
∫
T2 F (α)e2πix·α dα, then

(∆f)(x) =

∫
T2

F (α)e2πix·αφ(α) dα .

4.10. Deduce the distribution of the degree of a vertex in the uniform spanning tree of Z2, i.e.,
the table (4.15).

4.11. Prove that the Markov chain on trees given by (4.19) is irreducible.

4.12. (a) Show that the weight Ψ(•) is a stationary measure for the Markov chain on trees given
by (4.19).

(b) Prove the Markov Chain Tree Theorem.

4.13. Let ⟨Yn⟩ be a stationary Markov chain with transition probabilities (4.19) and consider its
reversal. Prove that the transition probabilities of Y−n are

p̃(T,B(T, e)) = p(e) .

4.14. Let G be a cycle and x ∈ V. Start simple random walk at x and stop when all edges but
one have been traversed at least once. Show that the edge that has not been traversed is equally
likely to be any edge.

4.15. Suppose that the graph G has a Hamiltonian path, ⟨xk ; 1 ≤ k ≤ n⟩, i.e., a path that is
a spanning tree. Let qk be Pxk [τ+xk < τxk+1,...,xn ] for simple random walk on G. Show that the
number of spanning trees of G equals

∏
k<n qk degG xk.

4.16. Let ⟨Xn⟩ and ⟨Yn⟩ be the Markov chains defined in the proof of the Markov Chain Tree
Theorem, so that Yn is a spanning tree rooted at Xn. Show directly that Y0 has the same
distribution as the one produced by Wilson’s method, given that root(Y0) = X0.

4.17. Prove the Matrix-Tree Theorem by using Kirchhoff’s Effective Resistance Formula and
Exercise 2.61.

4.18. Show that the constant C in (2.26) equals
√
τ(G)/(2π)|V|.

4.19. Consider simple random walk on Z2. Let A := {(x, y) ∈ Z2 ; y < 0 or (y = 0 and x < 0)}.
Show that P(0,0)[τ

+
(0,0) > τA] = e4G/π/4, where G is Catalan’s constant.
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§4.6. Additional Exercises.

In all the exercises, assume the networks are connected.

4.20. Show that not every probability distribution on spanning trees of an undirected graph is
proportional to a weight distribution, where the weight of a tree equals the product of the weights
of its edges.

4.21. Given a probability measure P on spanning trees of a finite graph G, there is the vector of
marginal edge probabilities, µ(e) := P[e ∈ T ] for e ∈ E. The set of such vectors for all possible P
forms a polytope, called the spanning tree polytope. Show that this polytope consists precisely
of those vectors µ that satisfy

(i) µ(e) ≥ 0 for all e ∈ E(G),
(ii)

∑
e∈E(G) µ(e) = |V(G)| − 1, and

(iii)
∑
e∈E(G↾K) µ(e) ≤ |K| − 1 for all ∅ ̸= K ⊊ V(G).

Show in addition that if G has no cut-vertices (vertices whose removal disconnects G), then the
relative interior of this polytope (i.e., the interior as a subset of the affine span of the polytope)
equals the set of such µ that satisfy strict inequality in every instance of (i) and (iii) with |K| > 1
in (iii).

4.22. Given a probability measure P on spanning trees of a finite graph G, there is the vector
of marginal edge probabilities, µP(e) := P[e ∈ T ] for e ∈ E. The entropy of P is defined to be
H(P) := −

∑
T P(T ) logP(T ), where 0 log 0 := 0.

(a) Show that if P is a weighted uniform spanning tree measure and Q is any probability measure
on spanning trees with the same edge marginals µP = µQ, then H(P) > H(Q) unless Q = P.

(b) Suppose that G has no cut-vertices. Show that if µ lies in the relative interior of the spanning
tree polytope (see Exercise 4.21), then there is a unique weighted spanning tree measure
whose edge marginal equals µ.

4.23. Let G be a finite or recurrent network and a ̸= z be two of its vertices. Let i be the unit
current flow from a to z. Show that for every edge e, the probability that loop-erased random
walk from a to z crosses e minus the probability that it crosses −e equals i(e).

4.24. Let G be a finite or recurrent network and a ̸= z be two of its vertices. Let i be the unit
current flow from a to z. Let T be the uniform spanning tree in G and iT be the associated unit
current flow from a to z. Show that i = E[iT ].

4.25. Show that the following procedure also gives a.s. a random spanning tree rooted at r with
distribution proportional to Ψ(•). Let G0 := {r}. Given Gi, if Gi spans G, stop. Otherwise,
choose any vertex x ̸= r that does not have an edge in Gi that leads out of x and add a (directed)
edge from x picked according to the transition probability p(x, •) independently of the past. Add
this edge to Gi and remove any cycle it creates to make Gi+1.

4.26. How efficient is Wilson’s method? What takes time is to generate a random successor state
of a given state. Call this a step of the algorithm. Show that the expected number of steps to
generate a random spanning tree rooted at r for a finite-state irreducible Markov chain is∑

x a state

π(x)(Ex[τr] + Er[τx]) ,

where π is the stationary probability distribution for the Markov chain. Show that another
expression for this expected time is the trace of (I − Pr)

−1, where I is the identity matrix and
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Pr is the transition matrix with the row and column corresponding to r deleted. In the case of a
random walk on a network (V,E), this is

∑
e∈E1/2

c(e)(R(e− ↔ r) + R(e+ ↔ r)) ,

where edge e has conductance c(e) and endpoints e− and e+, and R denotes effective resistance.

4.27. Let ⟨Xn⟩ be a transient Markov chain. Then its loop erasure ⟨Yn⟩ is well defined a.s. Show
that Px0 [Y1 = x1] = p(x0, x1)Px1 [τx0 = ∞]/Px0 [τ+x0 = ∞].

4.28. Suppose that x and y are two vertices in the complete graph Kn. Show that the probability
that the distance between x and y is k in a uniform spanning tree of Kn is

k + 1

nk

k−1∏
i=1

(n− i− 1) .

4.29. Prove Cayley’s formula another way as follows: let tn−1 be a spanning tree of the complete
graph on n vertices and t1 ⊂ t2 ⊂ · · · ⊂ tn−2 ⊂ tn−1 be subtrees such that ti has i edges. Then

P[T = tn−1] = P[t1 ⊆ T ] ·
n−2∏
i=1

P[ti+1 ⊆ T | ti ⊆ T ] .

Show that P[t1 ⊆ T ] = 2/n and

P[ti+1 ⊆ T | ti ⊆ T ] =
i+ 2

n(i+ 1)
.

4.30. (Foster’s Theorem) Exercise 2.64 showed (in slightly different notation) that if G has
n vertices, then

∑
e∈E1/2

c(e)R(e− ↔ e+) = n− 1. Give another proof using spanning trees.

4.31. Kirchhoff (1847) generalized his Effective Resistance Formula in two ways. One of them
is in Exercise 4.24. To express the other, let G be a finite network and a ̸= z ∈ G be two of its
vertices. Denote the sum of Ξ(T ) over all spanning trees of G by Ξ(G). Show that the effective
conductance between a and z is given by

C (a↔ z) =
Ξ(G)

Ξ(G/{a, z})
, (4.20)

where G/{a, z} indicates the network G with a and z identified.

4.32. Let (G, c) be a finite network. Denote the sum of Ξ(T ) over all spanning trees of G by
Ξ(G). Show that P[e ∈ T ] = d log Ξ(G)/dc(e).

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



Chap. 4: Uniform Spanning Trees 140

4.33. Jacobi’s Determinant Identity says that for a square invertible matrix M with a block
decomposition

M =

[
A B
C D

]
and corresponding block decomposition

M−1 =

[
X Y
Z W

]
,

where A and X are square and have the same size, we have

detW =
detA

detM
.

Proof: equate determinants in [
A B
C D

] [
I Y
0 W

]
=

[
A 0
C I

]
.

(a) Use this and the Matrix-Tree Theorem to give another proof of Kirchhoff’s Effective Resis-
tance Formula (other than the part about random walks).

(b) Let G be a finite network and H = G↾K be a connected subnetwork induced by ∅ ̸= K ⊊
V(G). Let va(x, y) be the voltage at x when a unit current flows from y to a (so that the
voltage at a is 0) if y ̸= a and be 0 otherwise. Fix o ∈ K. Let T be a weighted uniform
spanning tree of G and t be a fixed spanning tree of H. Use the Matrix-Tree Theorem and
Exercise 2.61 to show that

P[T ↾H = t] = Ξ(t) det[vo(x, y)]x,y∈K\{o} .

(c) Show that det[vo(x, y)]x,y∈K\{o} takes the same value no matter which vertex o ∈ K is
chosen.

4.34. Suppose that G is a graph with two sets of positive conductances, c and c′, and no cut-
vertices. Show that if for every edge e, we have c(e)R(e− ↔ e+; c) = c′(e)R(e− ↔ e+; c′), then
c/c′ is constant.

4.35. Let (G, c) be a finite network. Recall from Exercise 2.68 that (x, y) 7→ R(x↔ y) is a metric
on V.
(a) Show that V with this effective-resistance metric can be embedded isometrically into some

ℓ1 space.
(b) Show that if f :V → Z has the property that

∑
x∈V f(x) = 1, then

∑
x,y∈V f(x)f(y)R(x ↔

y) ≤ 0.

4.36. Let (G, c) be a finite network with o ∈ V(G). Let Z be the canonical Gaussian field on
G, defined via independent normal random variables X(e) with variance r(e) for e ∈ E1/2. Let
T be the uniform spanning tree on G and ZT be the associated canonical Gaussian field, where
the conductances c from G are used on T and the same X(e) are used for e ∈ E(T ). Show that
Z = E[ZT | X]. Since ZT is easily constructed via summing X along the edges of T starting from
o, this identity shows how to construct Z in a probabilistic way.
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4.37. Consider the doubly infinite ladder graph, the Cayley graph G of Z×Z2 with respect to its
natural generators. Show that the uniform spanning tree T on G has the following description:
the “rungs” [(n, 0), (n, 1)] in T form a stationary renewal process with inter-rung distance being
k with probability 2k(2 −

√
3)k (k ≥ 1). Given two successive rungs in T , all the other edges

between the rungs of the form [(n, 0), (n+ 1, 0)] and [(n, 1), (n+ 1, 1)] lie in T with one exception
chosen uniformly and independently for different pairs of successive rungs.

4.38. Let G be a finite network. Let e and f be two edges not sharing the same two endpoints.
Let îe be the unit current in G/f between the endpoints of e and let ĩe be the unit current in G\f
between the endpoints of e. Let

iec(g) :=

{
îe(g) if g ̸= f ,
0 if g = f ,

and

ied(g) :=

{
ĩe(g) if g ̸= f ,
0 if g = f .

(a) From (4.3), we have iec = P⊥
if i

e. Show that

ie = iec +
Y (e, f)

Y (f, f)
if .

(b) Show that χe − ied = P⊥
χf−if (χe − ie) and that

ie = ied +
Y (e, f)

1 − Y (f, f)
(χf − if ) .

(c) Show that
ie = Y (f, f)iec + [1 − Y (f, f)]ied + Y (e, f)χf

and that the three terms on the right-hand side are pairwise orthogonal.

4.39. Let G be a finite network and i be a current on G. If the conductance on the edge f is
changed to c′(f), then let i′ be the current with the same sources and sinks as i, i.e., so that
d∗i′ = d∗i. Show that

i = i′ +
[c(f) − c′(f)]i(f)

c(f)[1 − Y (f, f)] + c′(f)Y (f, f)
(χf − if ) ,

where if is the unit current with the original conductances from f− to f+ as defined after (2.11),
and deduce that

di

dc(f)
= i(f)r(f)(χf − if ) .

4.40. Let G be a finite transitive graph of degree 3 and n vertices such that the automorphism
group of G induces all 6 permutations on the 3 neighbors of any vertex. For example, G could be
the 1-skeleton of the tetrahedron, the cube, or the dodecahedron. Show that the probability that
the degree of a vertex in the uniform spanning tree on G is 1, 2, or 3 is, respectively, (1−1/n)3/4,
1 − (1 − 1/n)3/2, and (1 − 1/n)3/4.
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4.41. Given any numbers xi (i = 1, . . . , k), let X be the diagonal matrix with entries x1, . . . , xk.
Show that det(Yk+X) = E[

∏
i(1{ei∈T} + xi)], where Yk is as in (4.6). Deduce that P[e1, . . . , em /∈

T, em+1, . . . , ek ∈ T ] = detZm, where

Zm(i, j) :=


1 − Y (ei, ej) if j = i ≤ m,
−Y (ei, ej) if j ̸= i and i ≤ m,
Y (ei, ej) if i > m.

4.42. Give another proof of Cayley’s formula (Corollary 4.5) by using the Transfer-Current The-
orem.

4.43. Consider the weighted uniform spanning tree measure on an infinite recurrent network G.
Let X and Y be increasing random variables with finite second moments that depend on disjoint
sets of edges. Show that E[XY ] ≤ E[X]E[Y ].

4.44. Let (G, c) be a finite network. Let e a fixed edge in G and A be an increasing event that
ignores e. Suppose that a new network is formed from (G, c) by increasing the conductance on e
while leaving unchanged all other conductances. Show that in the new network, the chance of A
under the weighted spanning tree measure is no larger than it was in the original network.

4.45. Let E be a finite set and k < |E|. Let P be a weighted uniform measure on subsets of E of
size k, i.e., for some set of weights we > 0 (e ∈ E), we have P(B) =

∏
e∈B we for B ⊆ E of size k.

Show that if X and Y are increasing random variables with finite second moments that depend
on disjoint subsets of E, as defined in Exercise 4.6, then E[XY ] ≤ E[X]E[Y ].

4.46. Given two probability measures µ1 and µ2 on R, we say that µ1 stochastically dominates
µ2 if for all r ∈ R, we have µ1(r,∞) ≥ µ2(r,∞). Let E be a finite set and k < |E|. Let X
be a uniform random subset of E of size k. Show that if A is an increasing event that depends
only on F ⊂ E, then the conditional distribution of |X ∩F | given A stochastically dominates the
unconditional distribution of |X ∩ F |.

4.47. Let G be the hexagonal lattice. Show that the probability that the degree of a vertex in
the uniform spanning tree on G is 1, 2, or 3 is, respectively, 1/4, 1/2, and 1/4.

4.48. Show that for n ≥ 1, the probability that simple random walk on Z2 starting at (0, 0) visits
(n, n) before returning to (0, 0) equals

π

8

(
n∑
k=1

1

2k − 1

)−1

.

4.49. Show that in Z2, we have that as x→ ∞,

R(0 ↔ x) ∼ 1

π
log ∥x∥ .

4.50. For a function f ∈ L1(T2) and integers x, y, define

f̂(x, y) :=

∫
T2

f(α)e−2πi(xα1+yα2) dα .
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Let Y be the transfer-current matrix for the square lattice Z2. Let ehx,y := [(x, y), (x+ 1, y)] and

evx,y := [(x, y), (x, y + 1)]. Show that Y (eh0,0, e
h
x,y) = f̂(x, y) and Y (eh0,0, e

v
x,y) = ĝ(x, y), where

f(α1, α2) :=
sin2 πα1

sin2 πα1 + sin2 πα2

and

g(α1, α2) :=
(1 − e2πiα1)(1 − e−2πiα2)

4(sin2 πα1 + sin2 πα2)
.

4.51. Consider the ladder graph on Z× Z2 that is the doubly infinite limit of the ladder graphs
shown in Figure 1.7. Calculate its transfer-current matrix.
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Chapter 5

Branching Processes, Second Moments, and Percolation

Consider groundwater percolating down through soil and rock. How can we model

the effects of the irregularities of the medium through which the water percolates? One

common approach is to use a model in which the medium is random. More specifically,

the pathways by which the water can travel are randomly chosen out of some regular set

of possible pathways. For example, one may treat the ground as a half-space in which

possible pathways are the rectangular lattice lines. Thus, we consider the nearest-neighbor

graph on Z×Z×Z− and each edge is independently chosen to be open (allowing water to

flow) or closed. Commonly, the marginal probability that an edge is open, p, is the same

for all edges. In this case, the only parameter in the model is p and one studies how p

affects large-scale behavior of possible water flow.

In fact, this model of percolation is used in many other contexts in order to have a

simple model that nevertheless captures some important aspects of an irregular situation.

In particular, it has an interesting phase transition. Some information about percolation

on Zd and other transitive graphs will be given in this chapter and in Section 6.7, but a

thorough study of percolation on transitive graphs, especially on non-amenable graphs, is

deferred to Chapters 7 and 8.

In this chapter, we will consider percolation mostly on trees, rather than on lattices.

This turns out to be interesting and also useful for other seemingly unrelated probabilistic

processes and questions. For example, we’ll find another fundamental interpretation of the

branching number of a tree.

We will begin by studying a beautiful way of growing trees at random known as

Galton-Watson branching processes. We then move to general trees and develop some

basic analytic methods of probability known as the first- and second-moment methods.

These will fit remarkably well for our study of random walks on the connected components

of percolation in Zd. After that interlude on Zd, we return to Galton-Watson processes

to understand better how they behave and what flows are possible on random networks

based on Galton-Watson trees. Deeper results on Galton-Watson branching processes will

be proved in Chapter 12. The last chapter of this book, Chapter 16, is devoted primarily
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§1. Galton-Watson Branching Processes 145

to random walks on Galton-Watson trees.

§5.1. Galton-Watson Branching Processes.

Percolation on a tree breaks up the tree into random subtrees. Historically, the first

random trees to be considered were a model of genealogical (family) trees. Since such trees

will be an important source of examples and an important tool in later work, we too will

consider their basic theory before turning to percolation. They are also beautiful processes

in themselves.

Galton-Watson branching processes are generally defined as Markov chains ⟨Zn ; n ≥
0⟩ on the non-negative integers, where Zn represents the size of the nth generation of a

family, but we will be interested as well in the underlying family trees. Given numbers

pk ∈ [0, 1] with
∑
k≥0 pk = 1, the process is defined as follows. We start with one particle,

Z0 ≡ 1, unless specified otherwise. It has k children with probability pk. Then each of

these children (should there be any) also have children with the same progeny (or “off-

spring”) distribution ⟨pk ; k ≥ 0⟩, independently of each other and of their parent. This

continues forever or until there are no more children. To be formal, let L be a random

variable with P[L = k] = pk and let ⟨L(n)
i ; n, i ≥ 1⟩ be independent copies of L. The

generation sizes of the branching process are then defined inductively by

Zn+1 :=

Zn∑
i=1

L
(n+1)
i . (5.1)

The probability generating function (p.g.f.) of L is very useful and is denoted

f(s) := E[sL] =
∑
k≥0

pks
k .

This is defined for 0 ≤ s ≤ 1, and possibly for other s as well. Note that we interpret

00 = 1, so that f(0) = P[L = 0] = p0. We call the event [∃n Zn = 0] extinction ; this,

of course, is the same as the event [Zn → 0]. We will often omit the superscripts on L

when not needed. The family (or genealogical) tree associated to a branching process is

obtained simply by having one vertex for each particle ever produced and joining two by

an edge if one is the parent of the other. See Figure 5.1 for an example. We will give a

formal definition later of trees and the associated probability measures on them.

The first basic result on Galton-Watson processes is that on the event of nonextinction,

the population size explodes, except in the trivial case that p1 = 1:
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Figure 5.1. Generations 0 to 9 of a typical Galton-Watson tree for f(s) = (s+ s2)/2.

Proposition 5.1. On the event of nonextinction, Zn → ∞ a.s. provided p1 ̸= 1.

Proof. We want to see that 0 is the only nontransient state of the Markov chain ⟨Zn⟩. If

p0 = 0, this is clear, while if p0 > 0, then from any state k ≥ 1, eventually returning to k

requires not immediately becoming extinct, whence has probability ≤ 1− pk0 < 1. ◀

What is q := P[extinction]? To find out, we use the following very handy property of

the p.g.f.:

Proposition 5.2. E[sZn ] = f ◦ · · · ◦ f︸ ︷︷ ︸
n times

(s) =: f (n)(s) for 0 ≤ s ≤ 1.

Proof. We have

E[sZn ] = E

[
E

[
s
∑Zn−1

i=1
Li

∣∣∣∣ Zn−1

]]
= E

E[ Zn−1∏
i=1

sLi

∣∣∣∣ Zn−1

]
= E

Zn−1∏
i=1

E
[
sLi
]= E

[
E[sL]Zn−1

]
= E

[
f(s)Zn−1

]
since the Li are independent of each other and of Zn−1 and have the same distribution as

L. Iterate this equation n times. ◀

Note that within this proof is the result that

E[sZn | Z0, Z1, . . . , Zn−1] = f(s)Zn−1 . (5.2)
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Corollary 5.3. (Extinction Probability) The extinction probability is given by q =

limn f
(n)(0).

Proof. Since extinction is the increasing union of the events [Zn = 0], we have q =

limnP[Zn = 0] = limn f
(n)(0). ◀

0 1

1

0 1

1

Figure 5.2. Typical graphs of f when m > 1 and m ≤ 1.

Looking at a graph of the increasing convex function f (Figure 5.2), we discover the

most-used result in the field and the answer to our question:

Proposition 5.4. (Extinction Criterion) Provided p1 ̸= 1, we have

(i) q = 1 ⇔ f ′(1) ≤ 1;

(ii) q is the smallest root of f(s) = s in [0, 1]—the only other possible root being 1.

When we differentiate f at 1, we mean the left-hand derivative. Note that

f ′(1) = E[L] =: m =
∑

kpk , (5.3)

the mean number of offspring. We call m simply the mean of the branching process.

▷ Exercise 5.1.

Justify the differentiation in (5.3). Show too that lims↑1 f
′(s) = m.

Because of Proposition 5.4, a branching process is called subcritical ifm < 1, critical

if m = 1, and supercritical if m > 1.

How quickly does Zn → ∞ on the event of nonextinction? The most naive guess

would be that it grows approximately like mn. This is essentially correct. Our first result

is that a martingale results when we divide Zn by mn:
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Proposition 5.5. The sequence ⟨Zn/mn⟩ is a martingale when 0 < m <∞.

In particular, E[Zn] = mn since E[Z0] = E[1] = 1.

Proof. We have

E
[
Zn+1/m

n+1 | Zn
]
= E

[
1

mn+1

Zn∑
i=1

Li

∣∣∣∣ Zn
]

=
1

mn+1

Zn∑
i=1

E[Li | Zn] =
1

mn+1

Zn∑
i=1

m = Zn/m
n .

Actually, we have not verified that we are computing conditional expectations of integrable

random variables. One way to avoid calculating (in a similar manner) the unconditional

expectation first is to note that all random variables are non-negative.* Another way is

to use the fact that Zn takes only countably many values, so that we may work with

expectations conditioned on events, rather than on a random variable. ◀

Since this martingale ⟨Zn/mn⟩ is non-negative, it has a finite limit a.s., denoted W .

Thus, when W > 0, the generation sizes Zn grow as expected, i.e., like mn up to a random

factor. Otherwise, they grow more slowly. Our attention is thus focussed on the following

two questions.

Question 1. When is W > 0?

Question 2. When W = 0 and the process does not become extinct, what is the rate at

which Zn → ∞?

To answer these questions, we first note a general zero-one property of Galton-Watson

branching processes. Call a property of trees inherited if every finite tree has this property

and if whenever a tree has this property, so do all the descendant trees of the children of

the root.

Proposition 5.6. Every inherited property has conditional probability either 0 or 1 given

nonextinction.

Proof. Let A be the set of trees possessing a given inherited property. For a tree T with

k children of the root, let T (1), . . . , T (k) be the descendant trees of these children. Then

P(A) = E
[
P[T ∈ A | Z1]

]
≤ E

[
P[T (1) ∈ A, . . . , T (Z1) ∈ A | Z1]

]
* See the end of Section 12.1 for a review of conditional expectation for non-negative random variables

that may not be integrable.
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by definition of inherited. Since T (1), . . . , T (Z1) are i.i.d. given Z1, the last quantity above

is equal to E
[
P(A)Z1

]
= f

(
P(A)

)
. Thus, P(A) ≤ f

(
P(A)

)
. On the other hand, P(A) ≥ q

since every finite tree is in A. It follows upon inspection of a graph of f that P(A) ∈ {q, 1},
from which the desired conclusion follows. ◀

Corollary 5.7. Suppose that 0 < m < ∞. Either W = 0 a.s. or W > 0 a.s. on nonex-

tinction. In other words, P[W = 0] ∈ {q, 1}.

Proof. The property that W = 0 is clearly inherited, whence this is an immediate conse-

quence of Proposition 5.6. ◀

In answer to the above two questions, we have the following two theorems.

The Kesten-Stigum Theorem (1966). The following are equivalent when 1 < m <

∞:

(i) P[W = 0] = q;

(ii) E[W ] = 1;

(iii) E[L log+ L] <∞.

This will be shown in Section 12.2. The sufficiency of E[L2] < ∞ for (i) and (ii)

is much easier and follows from Exercise 5.28. Since (iii) requires barely more than the

existence of a mean, generation sizes “typically” do grow as expected. When (iii) fails,

however, the means mn overestimate the rate of growth. Yet there is still an essentially

deterministic rate of growth, as shown by Seneta (1968) and Heyde (1970), which is only

slightly less than mn:

The Seneta-Heyde Theorem. If 1 < m <∞, then there exist constants cn such that

(i) limZn/cn exists a.s. in [0,∞) ;

(ii) P[limZn/cn = 0] = q;

(iii) cn+1/cn → m.

Proof. We will find another martingale to do our work. Choose s0 ∈ (q, 1) and set sn+1 :=

f−1(sn) for n ≥ 0. Then sn ↑ 1. By (5.2), we have that ⟨sZn
n ⟩ is a martingale. Being

positive and bounded, it converges a.s. and in L1 to a limit Y ∈ [0, 1] such that E[Y ] =

E[sZ0
0 ] = s0. Now we reformulate these exponentials. Set cn := −1/ log sn. Then sZn

n =

e−Zn/cn , so that limZn/cn exists a.s. in [0,∞]. By l’Hôpital’s rule and Exercise 5.1,

lim
s↑1

− log f(s)

− log s
= lim

s↑1

f ′(s)s

f(s)
= m.

Considering this limit along the sequence ⟨sn⟩, we get (iii). It follows from (iii) that the

property that limZn/cn = 0 is inherited, whence by Proposition 5.6 and the fact that
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E[Y ] = s0 < 1, we deduce (ii). Likewise, the property that limZn/cn < ∞ is inherited

and has probability 1 since E[Y ] > q. This implies (i). ◀

The proof of the Seneta-Heyde theorem gives a prescription for calculating the con-

stants cn, but does not immediately provide estimates for them. Another approach gives

a different prescription that leads sometimes to an explicit estimate; see Asmussen and

Hering (1983), pp. 45–49.

We will often want to consider random trees produced by a Galton-Watson branching

process. Up to now, we have avoided that by giving theorems just about the random

variables Zn (except for Proposition 5.6, but that was used so far only for studying the

limiting behavior of Zn). One approach to formalize tree-valued random variables is as

follows. A rooted labelled tree T is a non-empty collection of finite sequences of positive

integers such that if ⟨i1, i2, . . . , in⟩ ∈ T , then

(i) for every k ∈ [0, n], also the initial segment ⟨i1, i2, . . . , ik⟩ ∈ T , where the case k = 0

means the empty sequence, and

(ii) for every j ∈ [1, in], also the sequence ⟨i1, i2, . . . , in−1, j⟩ ∈ T .

The root of the tree is the empty sequence, ∅. Thus, ⟨i1, . . . , in⟩ is the inth child of

the in−1th child of . . . of the i1th child of the root. If x = ⟨i1, i2, . . . , in⟩ ∈ T , then we

define T x :=
{
⟨j1, j2, . . . , jk⟩ ; ⟨i1, i2, . . . , in, j1, j2, . . . , jk⟩ ∈ T

}
to be the descendant

tree of the vertex x in T . The height of a tree is the supremum of the lengths of the

sequences in the tree. If T is a tree and n ∈ N, write the truncation of T to its first

n levels as T ↾n :=
{
⟨i1, i2, . . . , ik⟩ ∈ T ; k ≤ n

}
. This is a tree of height at most n.

A tree is called locally finite if its truncation to every finite level is finite. Let T be

the space of rooted labelled locally finite trees. We define a metric on T by setting

d(T, T ′) :=
(
1 + sup{n ; T ↾n = T ′↾n}

)−1
.

▷ Exercise 5.2.

Verify that d is a metric and that (T , d) is complete and separable.

▷ Exercise 5.3.

Define the measure GW formally on the space T of Exercise 5.2; your measure should

be the law of a random tree produced by a Galton-Watson process with arbitrary given

offspring distribution.

We can now use this formalism to give meaning to statements such as that in the

following exercise.
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▷ Exercise 5.4.

Show that for any Galton-Watson process with mean m > 1, the family tree T has growth

rate grT = m a.s. given nonextinction. (Don’t use the Kesten-Stigum Theorem to show

this, as we have not yet proved that theorem.)

§5.2. The First-Moment Method.

Let G be a countable, possibly unconnected, graph. The most common percola-

tion on G is Bernoulli bond percolation with constant survival parameter p, or

Bernoulli(p) percolation for short; here, for fixed p ∈ [0, 1], each edge is kept with

probability p and removed otherwise, independently of the other edges. Often, the edges

kept are called open , while the edges removed are called closed . Denote the random

subgraph of G that remains by ω. The connected components of ω are called clusters.

Given a vertex x of G, we are often interested in the cluster of x in ω, written K(x), and

especially we’d like to know whether the diameter of K(x) is infinite with positive prob-

ability. The first-moment method explained in this section gives a simple upper bound

on this probability. In fact, this method is so simple that it works in complete generality:

Suppose that ω is any random subgraph of G. The only measurability needed is that for

each vertex x and each edge e, the sets {ω ; x ∈ ω} and {ω ; e ∈ ω} are measurable. We

will call such a random subgraph a general percolation on G. We will say that a set Π

of edges of G separates x from infinity if the removal of Π leaves x in a component of

finite diameter. Denote by [x ↔ e] the event that e is in the cluster of x and by [x ↔ ∞]

the event that x is in a cluster of infinite diameter.

▷ Exercise 5.5.

Show that for a general percolation, the events [x ↔ e] and [x ↔ ∞] are indeed measur-

able.

Proposition 5.8. Given a general percolation on G,

P[x↔ ∞] ≤ inf

{∑
e∈Π

P[x↔ e] ; Π separates x from infinity

}
. (5.4)

Proof. For any Π separating x from infinity, we have

[x↔ ∞] ⊆
∪
e∈Π

[x↔ e]

by definition. Therefore P[x↔ ∞] ≤
∑
e∈Π P[x↔ e]. ◀
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The method used in the proof of Proposition 5.8 is also called the “union bound”. The

reason for the name “first-moment method” is that another way to get the same bound is

to write

1[x↔∞] ≤
∑
e∈Π

1[x↔e]

and then

P[x↔ ∞] = E
[
1[x↔∞]

]
≤
∑
e∈Π

E
[
1[x↔e]

]
=
∑
e∈Π

P[x↔ e] .

That is, we are using the first moment of a random variable, namely, the sum of certain

indicator random variables. Of course, the first-moment method is extremely popular and

surprisingly powerful.

Returning to Bernoulli percolation with constant survival parameter p, denote the law

of ω by Pp. By Kolmogorov’s zero-one law,

Pp[ω has a cluster of infinite diameter] ∈ {0, 1} .

It is intuitively clear that this probability is increasing in p. For a rigorous proof of this,

we couple all the percolation processes at once as follows. Let U(e) be i.i.d. uniform [0, 1]

random variables indexed by the edges of G. If ωp is the graph containing all the vertices

of G and exactly those edges e with U(e) < p, then the law of ωp is precisely Pp. This

coupling is referred to as the standard coupling of Bernoulli percolation. But now when

p ≤ q, the event that ωp has a cluster of infinite diameter is contained in the event that ωq

has a cluster of infinite diameter. Hence the probability of the first event is at most the

probability of the second. This leads us to define the critical probability

pc(G) := sup
{
p ; Pp[∃ infinite-diameter cluster] = 0

}
.

If G is connected and x is any given vertex of G, then

pc(G) = sup
{
p ; Pp[x↔ ∞] = 0

}
. (5.5)

▷ Exercise 5.6.

Prove this.

Again, the standard coupling provides a rigorous proof that Pp[x↔ ∞] is increasing in p.

Generally, pc(G) is extremely difficult to calculate. Clearly pc(Z) = 1. After long

efforts, it was shown that pc(Z2) = 1/2 (Kesten, 1980). There is not even a conjecture

for the value of pc(Zd) for any d ≥ 3. Now Proposition 5.8 provides a lower bound for pc
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provided we can estimate P[o↔ e]. If G is a tree T , such an estimate is easy to find, since

we actually know the exact value: P[o ↔ e] = p|e|+1. Hence, the definition of branching

number gives immediately that

pc(T ) ≥ 1/brT . (5.6)

In fact, we have equality here (Theorem 5.15), but this requires the second-moment

method. Nevertheless, there are some cases among non-lattice graphs where it is easy

to determine pc exactly, even without the first-moment method. One example is given in

the next exercise:

▷ Exercise 5.7.

Show that for p ≥ pc(G), we have pc(ω) = pc(G)/p for Pp-a.e. ω. Physicists often refer to

p as the “density” of edges in ω and this helps the intuition.

For another example, if T is an n-ary tree, then the cluster of the root under perco-

lation is a Galton-Watson tree with progeny distribution Bin(n, p). Thus, this cluster is

infinite with positive probability iff np > 1, whence pc(T ) = 1/n. This reasoning may be

extended to all Galton-Watson trees (in which case, pc(T ) is a random variable):

Proposition 5.9. (Lyons, 1990) Let T be the family tree of a Galton-Watson process

with mean m > 1. Then pc(T ) = 1/m a.s. given nonextinction.

Proof. Let T be a given tree and write K for the cluster of the root of T after percolation

on T with survival parameter p. When T has the law of a Galton-Watson tree with mean

m, we claim that K has the law of another Galton-Watson tree having mean mp: if Yi

represent i.i.d. Bin(1, p) random variables that are also independent of L, then

E

[
L∑
i=1

Yi

]
= E

[
E

[ L∑
i=1

Yi

∣∣∣∣ L]
]
= E

[
L∑
i=1

E[Yi]

]
= E

[
L∑
i=1

p

]
= pm .

Hence K is finite a.s. iff mp ≤ 1. Since

E
[
P[|K| <∞ | T ]

]
= P

[
|K| <∞

]
, (5.7)

this means that for almost every Galton-Watson tree* T , the cluster of its root is finite

a.s. if p ≤ 1/m. On the other hand, for fixed p, the property
{
T ; Pp[|K| < ∞] = 1

}
is

inherited, so has probability q or 1. If it has probability 1, then (5.7) shows that mp ≤ 1.

* This typical abuse of language means “for almost every tree with respect to Galton-Watson
measure”.
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That is, if mp > 1, this property has probability q, so that the cluster of the root of T

will be infinite with positive probability a.s. on the event of nonextinction. Considering a

sequence pn ↓ 1/m, we see that this holds a.s. on the event of nonextinction for all p > 1/m

at once, not just for a fixed p. We conclude that pc(T ) = 1/m a.s. on nonextinction. ◀

We may easily deduce the branching number of Galton-Watson trees, as shown by

Lyons (1990):

Corollary 5.10. (Branching Number of Galton-Watson Trees) If T is a Galton-

Watson tree with mean m > 1, then brT = m a.s. given nonextinction.

Proof. By Proposition 5.9 and (5.6), we have brT ≥ m a.s. given nonextinction. On the

other hand, brT ≤ grT = m a.s. given nonextinction by Exercise 5.4. ◀

This corollary was shown in the language of Hausdorff dimension (which will be ex-

plained in Chapter 14) by Hawkes (1981) under the assumption that E[L(logL)2] <∞.

§5.3. The Weighted Second-Moment Method.

We obtained a simple upper bound on P[o↔ ∞] for a general percolation on a graph

G by the first-moment method. A lower bound can be obtained by the second-moment

method, which is a powerful method of wide applicability. Fix o ∈ G and let Π be a

minimal set of edges that separates o from ∞. Assume for simplicity that P[e ∈ ω] > 0

for each e ∈ E. Let P(Π) be the set of probability measures µ on Π. The second-moment

method consists in calculating the second moment of the number of edges in Π that are

connected to o. However, we will see that it can be much better to use a weighted count,

rather than a pure count, of the number of connected edges. We will use µ ∈ P(Π) to

make such weights.

Namely, if, as before, we write K(o) for the cluster of o in the percolation graph ω

and if we set

X(µ) :=
∑
e∈Π

µ(e)1[e∈K(o)]/P[e ∈ K(o)] , (5.8)

then

E
[
X(µ)

]
= 1 .

Write o ↔ Π for the event that o ↔ e for some e ∈ Π. This event is implied by the event

that X(µ) > 0. We are looking for a lower bound on the probability of o↔ ∞. Since

P[o↔ ∞] = inf
{
P[o↔ Π] ; Π separates o from ∞

}
, (5.9)
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we therefore seek a lower bound on P[X(µ) > 0]. This will be a consequence of an upper

bound on the second moment of X(µ) as follows. (A slightly more general inequality due

to Paley and Zygmund (1932) will be given in Section 5.5.)

Proposition 5.11. Given a general percolation on G,

P[o↔ Π] ≥ 1/E[X(µ)2]

for every µ ∈ P(Π).

Proof. Given µ ∈ P(Π), the Cauchy-Schwarz inequality yields

1 = E[X(µ)]2 = E[X(µ)1[X(µ)>0]]
2 ≤ E[X(µ)2]E[12

[X(µ)>0]]

= E[X(µ)2]P[X(µ) > 0] ≤ E[X(µ)2]P[o↔ Π]

since X(µ) > 0 implies o↔ Π. Therefore, P[o↔ Π] ≥ 1/E[X(µ)2]. ◀

Clearly, we want to choose the weight function µ ∈ P(Π) that optimizes this lower

bound. Now

E[X(µ)2] =
∑

e1,e2∈Π

µ(e1)µ(e2)
P[e1, e2 ∈ K(o)]

P[e1 ∈ K(o)]P[e2 ∈ K(o)]
. (5.10)

We denote this quantity by E (µ) and call it the energy of µ.

Why is this called an “energy”? In general, like the energy of a flow in Chapter 2,

energy is a quadratic form, usually positive definite. In electrostatics, if µ is a charge

distribution confined to a conducting region Ω in space, then µ will minimize the energy∫
Ω

∫
Ω

dµ(x) dµ(y)

|x− y|2
.

One could also write (5.10) as a double integral to put it in a form closer to this. We too

are interested in minimizing the energy. Thus, from Proposition 5.11, we obtain

Proposition 5.12. Given a general percolation on G,

P[o↔ ∞] ≥ inf

{
1

infµ∈P(Π) E (µ)
; Π separates o from ∞

}
.

Proof. We have shown that P[o ↔ Π] ≥ 1/E (µ) for every µ ∈ P(Π). Hence, the same

holds when we take the sup of the right-hand side over µ. Then the result follows from

(5.9). ◀

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



Chap. 5: Branching Processes, Second Moments, and Percolation 156

Of course, for Proposition 5.12 to be useful, one has to find a way to estimate such

energies. As for the first-moment method, the case of trees is most conducive to such

analysis.

Consider first the case of independent percolation , i.e., with [e ∈ ω] mutually

independent events for all edges e. If µ ∈ P(Π), write µ(x) for µ
(
e(x)

)
. Then we have

E (µ) =
∑

e(x),e(y)∈Π

µ(x)µ(y)
P[o↔ x, o↔ y]

P[o↔ x]P[o↔ y]
=

∑
e(x),e(y)∈Π

µ(x)µ(y)

P[o↔ x ∧ y]
, (5.11)

where x ∧ y denotes the furthest vertex from o that is a common ancestor of both x and

y (we say that z is an ancestor of w if z lies on the shortest path between o and w, so

that z = w is not excluded). This looks suspiciously similar to the result of the following

calculation: Consider a network of conductances on a finite tree T and some flow θ from

o to the leaves, which we’ll write as ∂LT , of T . (We do not include o in ∂LT , even if o

happens to be a leaf.) Write θ(x) for θ
(
e(x)

)
.

Lemma 5.13. Let θ be a flow on a finite tree T from o to ∂LT . Then

E (θ) =
∑

x,y∈∂LT

θ(x)θ(y)R(o↔ x ∧ y) .

Proof. We use the fact that
∑

{x∈∂LT ; e≤x} θ(x) = θ(e) for any edge e (see Exercise 3.3).

Thus, we have∑
x,y∈∂LT

θ(x)θ(y)R(o↔ x ∧ y) =
∑

x,y∈∂LT

θ(x)θ(y)
∑
e≤x∧y

r(e)

=
∑
e∈T

r(e)
∑

x,y∈∂LT
x,y≥e

θ(x)θ(y) =
∑
e∈T

r(e)θ(e)2 = E (θ) . ◀

We now want to relate these two calculations and thereby show that percolation on

trees is related to electrical networks. Write Π := {x ; e(x) ∈ Π}. Let Π be a minimal set

of edges that separates o from ∞. If we happen to have P[o ↔ x] = C (o ↔ x) and if θ is

the flow induced by µ from o to Π, i.e.,

θ(e) :=
∑

e≤x∈Π

µ(x) ,

then we see from (5.11) and Lemma 5.13 that E (µ) = E (θ) and we can hope to profit from

our understanding of electrical networks and random walks. However, if x = o, then the
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desired equation cannot hold since P[o ↔ o] = 1 and C (o ↔ o) = ∞. But suppose we

have, instead, that

1/P[o↔ x] = 1 + R(o↔ x) (5.12)

for all vertices x. Then we find that

E (µ) = 1 + E (θ) ,

which is hardly worse. This suggests that given a percolation problem, we choose conduc-

tances so that (5.12) holds in order to use our knowledge of electrical networks. Let us say

that conductances are adapted to a percolation, and vice versa, if (5.12) holds.

Let the survival probability of e(x) be px. To solve (5.12) explicitly for the conduc-

tances in terms of the survival parameters, write
↼
x for the parent of x. Note that the

right-hand side of (5.12) is a resistance of a series, whence

r
(
e(x)

)
= [1 + R(o↔ x)]− [1 + R(o↔ ↼

x)] = 1/P[o↔ x]− 1/P[o↔ ↼
x]

= (1− px)/P[o↔ x] ,

or, in other words,

c
(
e(x)

)
=

P[o↔ x]

1− px
=

1

1− px

∏
o<u≤x

pu . (5.13)

In particular, for a given p ∈ (0, 1), we have that px ≡ p iff c
(
e(x)

)
= (1− p)−1p|x|; these

conductances correspond to the random walk RW1/p defined in Section 3.2.

▷ Exercise 5.8.

Show that, conversely, the survival parameters adapted to given edge resistances are

px =
1 +

∑
o<u<x r

(
e(u)

)
1 +

∑
o<u≤x r

(
e(u)

) .
For example, simple random walk (c ≡ 1) is adapted to px = |x|/

(
|x|+ 1

)
.

These notions lead us to the following conclusion:

Theorem 5.14. (Lyons, 1992) For an independent percolation and adapted conduc-

tances on the same tree, we have

C (o↔ ∞)

1 + C (o↔ ∞)
≤ P[o↔ ∞] .
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Proof. We first estimate the infimum of energies in Proposition 5.12: given a minimal set Π

of edges that separates o from ∞, let µ ∈ P(Π) be the measure in P(Π) that has minimum

energy and let θ be the flow induced by µ. We have

E (µ) = 1 + E (θ) = 1 + R(o↔ Π)

by Thomson’s Principle. Therefore,

P[o↔ ∞] ≥ inf
Π

1/[1 + R(o↔ Π)] = 1/[1 + R(o↔ ∞)] ,

as desired. ◀

An immediate corollary of this combined with (5.6) and Theorems 2.3 and 3.5 is:

Theorem 5.15. (Lyons, 1990) For any locally finite infinite tree T ,

pc(T ) =
1

brT
.

This reinforces the idea of brT as an average number of branches per vertex.

Question 5.16. This result shows that the first-moment method correctly identifies the

critical value for Bernoulli percolation on trees. Does it in general? In other words, if

the right-hand side of (5.4) is strictly positive for Bernoulli(p) percolation on a connected

graph G, then must it be the case that p ≥ pc(G)? This is known to hold on Zd and on

“tree-like” graphs; see Lyons (1989). However, Kahn (2003) gave a counterexample and

suggested the following modification of the question: Write A(x, e,Π) for the event that

there is an open path from x to e that is disjoint from Π \ {e}. If

inf

{∑
e∈Π

Pp[A(x, e,Π)] ; Π separates x from infinity

}
> 0 ,

then is p ≥ pc(G)?

It turns out that the inequality in Theorem 5.14 can be reversed up to a factor of 2.

We will show this by a stopping-time method in Section 5.6.
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§5.4. Quasi-Independent Percolation.

We have now achieved a fairly good understanding of independent percolation on trees.

In the next section, we apply the second-moment method to Bernoulli percolation in Zd.
Here, however, we remain with trees, but we weaken the assumption of independence.

We begin with an interesting example that this will allow us to analyze. Suppose that

we label the edges e of a tree T by independent random variables Z(e) that take the values

±1 with probability 1/2 each. Fix an integer N > 0. Define S(x) :=
∑
e≤x Z(e). Consider

the percolation

ωN :=
{
e ; S(e−) ∈ [0, N ], S(e+) ∈ [0, N ]

}
. (5.14)

Obviously the component of the root in ω1 is the same as the component of the root in

Bernoulli(1/2) percolation on T . In particular, the root belongs to an infinite cluster with

positive probability for brT > 2, but not for brT < 2. The next case, ω2, is almost as

simple:

P
[
e(x) ∈ ω2

∣∣ e(↼x) ∈ ω2

]
=

{
1/2 if |x| is odd,
1 if |x| is even,

so by Exercise 3.25, the root belongs to an infinite cluster with positive probability for

brT >
√
2, but not for brT <

√
2. However, the succeeding cases ωN for N ≥ 3 are more

complicated as there is dependency in the percolation that was not there before. Luckily,

the dependency is not very large; we will show that it is an example of the following kind

of percolation, from which we will deduce that the critical branching number for infinite

clusters in ωN is 1/ cos π
N + 2

.

We call a percolation quasi-independent* if ∃M <∞ ∀x, y with P[o↔ x∧ y] > 0,

P[o↔ x, o↔ y | o↔ x ∧ y] ≤MP[o↔ x | o↔ x ∧ y]P[o↔ y | o↔ x ∧ y] , (5.15)

or, what is the same, if P[o↔ x]P[o↔ y] > 0, then

P[o↔ x, o↔ y]

P[o↔ x]P[o↔ y]
≤ M

P[o↔ x ∧ y]
.

Example 5.17. Sometimes, this condition holds for easy reasons: If

inf
x̸=o

P[o↔ x | o↔ ↼
x] > 0

and

P[o↔ x, o↔ y | o↔ x ∧ y] = P[o↔ x | o↔ ↼
x]P[o↔ ↼

x, o↔ y | o↔ ↼
x ∧ y]

whenever
↼
x ̸= x ∧ y, then the percolation is quasi-independent.

* This was called “quasi-Bernoulli” in Lyons (1989, 1992).
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▷ Exercise 5.9.

Verify the assertion of Example 5.17.

Example 5.18. Now we verify that the percolation ωN of (5.14) is quasi-independent.

Indeed, fix N and write qk(n) for the probability that simple random walk on Z stays in

the interval [0, N ] for n steps when it starts at k. There is clearly a constant M such that

for all n ≥ 0 and all k, k′ ∈ [0, N ], we have qk(n) ≤Mqk′(n). We claim that this M works

in (5.15). To see this, fix x and y and put r := |x∧ y|, m := |x| − r, and n := |y| − r. Also,

write pk for the probability that simple random walk at time r is at location k given that

it stays in [0, N ] for r steps when it starts at 0. We have

P[o↔ x, o↔ y | o↔ x ∧ y] =
N∑
k=0

qk(m)qk(n)pk ≤M min
k
qk(n) ·

N∑
k=0

qk(m)pk

≤M
N∑
k=0

qk(n)pk

N∑
k=0

qk(m)pk

=MP[o↔ x | o↔ x ∧ y]P[o↔ y | o↔ x ∧ y] .

This shows that our percolation is indeed quasi-independent.

The virtue of a quasi-independent percolation is that it obeys essentially the same

lower bound of Theorem 5.14 as Bernoulli percolation:

Theorem 5.19. (Lyons, 1989) For a quasi-independent percolation with constant M

and adapted conductances, we have

1

M

C (o↔ ∞)

1 + C (o↔ ∞)
≤ P[o↔ ∞] .

Proof. For µ ∈ P(Π), write

E ′(µ) :=
∑

e(x),e(y)∈Π

µ(x)µ(y)

P[o↔ x ∧ y]
.

Then the definition of quasi-independent gives E (µ) ≤ME ′(µ), where E (µ) is still defined

as in (5.10). Also, if θ is the flow induced by µ, then E ′(µ) = 1 + E (θ). Hence

E[X(µ)2] = E (µ) ≤ME ′(µ) =M [1 + E (θ)] ,

and the rest of the proof of Theorem 5.14 can be followed to the desired conclusion. ◀
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Example 5.20. Let’s apply this to Example 5.18. If we consider simple random walk on

[0, N ] killed on exiting the interval, the corresponding substochastic transition matrix P is

symmetric and so real diagonalizable. Let λk be its eigenvalues and vk be the corresponding

eigenvectors with ∥vk∥ = 1. Thus,

Pn(i, j) =
∑
k

λnkvk(i)vk(j) .

By the Perron-Frobenius theorem, |λk| ≤ ρ, where ρ is the largest positive eigenvalue and

the corresponding eigenvector has positive entries. Since this Markov chain has period 2,

it follows that Pn(i, j) ∼ 2vk(i)vk(j)ρ
n when n and i− j have the same parity; otherwise

Pn(i, j) = 0. Now in our case, the top eigenvalue equals cos π
N + 2

(e.g., see Spitzer

(1976), Chap. 21, Proposition 1), whence P[o ↔ x] ∼ a|x|

(
cos π

N + 2

)|x|

as |x| → ∞

for some constants am > 0, where am depends only on the parity of m. This means

that for the conductances c(e) adapted to this percolation, there are constants a′1 and a′2

such that a′1

(
cos π

N + 2

)|e|

≤ c(e) ≤ a′2

(
cos π

N + 2

)|e|

. Thus, Theorem 5.19 yields that

P[o ↔ ∞] > 0 if RWλ is transient on T for λ := 1/ cos π
N + 2

, which holds, in particular,

if brT > 1/ cos π
N + 2

. This result is due to Benjamini and Peres (1994).

▷ Exercise 5.10.

Show that if brT < 1/ cos π
N + 2

, then the root belongs to an infinite cluster in ωN with

probability zero.

§5.5. Transience of Percolation Clusters in Zd.

If T is a tree with pc(T ) < 1, then for pc(T ) < p ≤ 1, consider Bernoulli(p) percolation

on T and its open subgraph ωp. By Exercise 5.7, we have pc(ωp) < 1 a.s., whence by (5.6),

some component of ωp has branching number larger than 1. By Theorem 3.5 in turn,

this means that some component of ωp is transient for simple random walk (among other

random walks). In this section, we look at this same property (transience of percolation

clusters for simple random walk), but for percolation on graphs that are not trees, such as

Zd. Of course, we can hope for transience of a percolation cluster in Zd only when d ≥ 3

by Pólya’s theorem and Rayleigh’s Monotonicity Principle. The technique we use is quite

similar to the methods of the previous sections on the second-moment method, and it also
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uses random paths and their connection to flows, as discussed in Section 3.1. It will use a

slight improvement of Proposition 5.11, which was really the special case of the following

where t = 0:

The Paley-Zygmund Inequality (1932). If X is a random variable with mean 1 and

t < 1, then

P[X > t] ≥ (1− t)2

E
[
X2
] .

Proof. Let A be the event that X > t. The Cauchy-Schwarz inequality gives

E[X2]P(A) = E[X2]E[12
A] ≥ E[X1A]

2 =
(
1−E[X1Ac ]

)2 ≥ (1− t)2 . ◀

Whereas before we considered probability measures on cutsets, now we consider prob-

ability measures on paths. These latter probability measures induce the former probability

measures by looking at the first intersection of a path with a cutset. But random paths

also induce flows, as we saw in Section 3.1, and in order to show transience, we want to

find a flow on the percolation cluster that has finite energy.

We’ll start with finite paths, which we think of as sets of edges. Finite paths will arise

from infinite paths by considering the initial segments of the paths from a starting point

to a given finite distance. If µ is a probability measure on paths ξ from a to z and P is

Bernoulli(p) percolation on the graph, then we combine µ and P as follows: if ω is the set

of open edges for a percolation, then assign the positive measure Yµ(ω) to the open paths

from a to z by letting the measure of ξ be µ(ξ)/P[ξ open] when ξ ⊆ ω and 0 otherwise.

The measure Yµ(ω) induces a flow θµ(ω) from a to z by letting the amount of flow along

an edge e be the measure that e ∈ ξ minus the measure that −e ∈ ξ. Since Yµ(ω) is

not necessarily a probability measure, θµ(ω) is not necessarily a unit flow. Instead, the

strength of θµ(ω) is Xµ(ω) :=
∑
ξ⊆ω µ(ξ)/P[ξ open]. Thus, E[Xµ] = 1 and

E[X2
µ] =

∑
ξ,ξ′

µ(ξ)µ(ξ′)
P[ξ ∪ ξ′ open]

P[ξ open]P[ξ′ open]
=
∑
ξ,ξ′

µ(ξ)µ(ξ′)p−|ξ∩ξ′| . (5.16)

This is pleasingly analogous to (5.10). On the other hand,

E
(
θµ(ω)

)
≤
∑
e

∑
ξ∋e

µ(ξ)1[ξ⊆ω]/P[ξ open]

2

,

whence

E
[
E
(
θµ
)]

≤
∑
e

∑
ξ,ξ′∋e

µ(ξ)µ(ξ′)
P[ξ ∪ ξ′ open]

P[ξ open]P[ξ′ open]
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=
∑
ξ,ξ′

|ξ ∩ ξ′|µ(ξ)µ(ξ′)p−|ξ∩ξ′|

=
∑
n≥1

np−n · (µ× µ)
[
|ξ ∩ ξ′| = n

]
. (5.17)

Here, the intersection ξ ∩ ξ′ is counted without regard to orientation of edges. Thus, our

attention is focussed particularly on the µ-probability that two independent paths have n

edges in common.

We say that a probability measure µ on infinite paths that start at o has exponential

intersection tails with parameter ζ, or EIT(ζ) for short, if there is some constant C

such that for all n,

(µ× µ)
[
|ξ ∩ ξ′| = n

]
≤ Cζn . (5.18)

This definition and the following application of it are due to Benjamini, Pemantle, and

Peres (1998).

Proposition 5.21. If there is a probability measure on infinite paths in a graph G that

has EIT(ζ), then for ζ < p < 1, Bernoulli(p) percolation on G has a.s. a transient open

cluster.

Proof. The existence of a transient open cluster does not depend on the status of any finite

set of edges, whence is a tail event and has probability either 0 or 1 by Kolmogorov’s 0-1

law. Thus, it suffices to prove that this event has positive probability. Let µ be a measure

on infinite paths starting at o that satisfies (5.18). If we identify the complement of the

ball about o of radius r to a vertex zr, then µ induces a probability measure µr on paths

from o to zr. Write θr and Xr for the random flows θµr and their strengths Xµr that we

associated above to µr. By Thomson’s Principle,

R(o↔ zr;ω) ≤ E
(
θr(ω)

)
/Xr(ω)

2 .

We need to get an upper bound on the numerator and a lower bound on the denominator,

with probability bounded from below. By our assumption (5.16), we have

E[X2
r ] =

∑
n≥1

p−n(µ× µ)
[
|ξ ∩ ξ′| = n

]
≤
∑
n≥1

C(ζ/p)n = Cζ/(p− ζ) .

Since E[Xr] = 1, we may deduce that

P[Xr > 1/2] ≥ p− ζ

4Cζ
=: δ > 0 (5.19)

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



Chap. 5: Branching Processes, Second Moments, and Percolation 164

by the Paley-Zygmund Inequality. Now our calculation (5.17) gives

E
[
E (θr)

]
≤
∑
n≥1

Cn(ζ/p)n = Cpζ/(p− ζ)2 =:M ,

whence

P
[
E (θr) > β

]
< M/β

for β > 0. Putting these bounds together, we find that

P
[
R(o↔ zr;ω) < 4β

]
≥ P

[
Xr > 1/2,E (θr) ≤ β

]
≥ P

[
Xr > 1/2

]
−P

[
E (θr) < β

]
> δ −M/β = δ/2

if we choose β := 2M/δ. The events [R(o ↔ zr;ω) < 4β] are decreasing in r since the

effective resistance is increasing, whence their intersection [R(o↔ ∞;ω) ≤ 4β] has positive

probability. But this means that the cluster of o is transient with positive probability. (In

particular, the cluster is infinite with positive probability, but this already follows from

(5.19), which arises from essentially the same calculations as in Section 5.3.) ◀

▷ Exercise 5.11.

Show that Proposition 5.21 is sharp on trees in the sense that when T is a tree, for all

ζ > pc(T ) there is a probability measure with EIT(ζ).

In order to apply this criterion to Zd, we need random paths with exponential intersec-

tion tails in Zd. Such random paths were constructed first by Kesten for d ≥ 4 (published

by Cox and Durrett (1983)):

Proposition 5.22. When d ≥ 4, there is a probability measure on paths in Zd with EIT(ζ)

for some ζ < 1.

Proof. It clearly suffices to prove this for d = 4. Consider the random walk starting at 0

that takes a step in a positive coordinate direction with probability 1/4 for each direction.

For two independent such random walks, ξ and ξ′, their difference ⟨ξ(n)− ξ′(n) ; n ≥ 0⟩ is
a reversible random walk on the subset V3 :=

{
(x1, x2, x3, x4) ;

∑4
i=1 xi = 0

}
. In addition,

|ξ ∩ ξ′| ≤
∣∣{n ; ξ(n) = ξ′(n)

}∣∣ since the random walks on Z4 move only in the positive

directions. The associated network on V3 is clearly roughly isometric to the usual graph on

Z3, whence it is transient and returns of ξ − ξ′ to 0 have a geometric distribution. Thus,

(5.18) holds with C = 1 and ζ = P
[
∃n ≥ 1 ξ(n)− ξ′(n) = 0

]
. ◀
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This result also holds in Z3, but obviously the same method does not work to prove

it. The reader may be interested in the challenge of finding such random paths in Z3; this

was solved by Benjamini, Pemantle, and Peres (1998).

Corollary 5.23. There is a constant p0 < 1 such that for d ≥ 4 and p > p0, Bernoulli(p)

percolation in Zd has a.s. a transient open cluster.

To put this in another context, we state a few basic facts about percolation on Zd,
but they will be proved only later. The case d = 1 is not of interest here, but for other

d, we have that 0 < pc(Zd) < 1 (Proposition 7.12 and Theorem 7.16). Furthermore, when

there is an infinite cluster, it is a.s. unique (Theorem 7.6).

Grimmett, Kesten, and Zhang (1993) proved Corollary 5.23 for all p > pc(Zd) and all

d ≥ 3. This was a difficult result, but a much simpler proof was found by Pete (2008),

relying on ideas that we will discuss in Section 6.7, among others. In any case, the upshot

is that in Euclidean lattices, transience is preserved when the whole lattice is replaced by

an infinite percolation cluster. We will return to this issue for other graphs in Section 6.7.

§5.6. Reversing the Second-Moment Inequality.

The first- and second-moment methods give inequalities in very general situations.

These two inequalities usually give fairly close estimates of a probability, but not so close

as to agree up to a constant factor. Thus, one must search for additional information if

one wants finer estimates. Usually, the estimate that the second-moment method gives is

sharper than the one provided by the first moment. A method for showing the sharpness

of the estimate given by the second-moment method will be described here in the context

of percolation; it depends on a Markov-like structure (see also Exercise 15.10).

This method seems to be due to Hawkes (1970/71) and Shepp (1972). It was applied

to trees by Lyons (1992) and to Markov chains (with a slight improvement) by Benjamini,

Pemantle, and Peres (1995) (see Exercise 15.10). Consider independent percolation on a

tree. Embed the tree in the upper half-plane with its root at the origin. Given a minimal

cutset Π separating o from ∞, order Π clockwise. Call this linear ordering ≼. This has the

property that for each e ∈ Π, the events [o ↔ e′] for e′ ≼ e are conditionally independent

of the events [o ↔ e′′] for e′′ ≽ e given that o ↔ e. On the event o ↔ Π, define e∗ to be

the least edge in Π that is in the cluster of o; on o ↮ Π, define e∗ to take some value not

in Π. Note that e∗ is a random variable. Let σ be the (possibly defective) hitting measure

σ(e) := P[e∗ = e] (e ∈ Π) ,
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so that

σ(Π) = P[o↔ Π] .

Provided P[o↔ Π] > 0, we may define the probability measure

µ := σ/P[o↔ Π] ∈ P(Π) .

For all e ∈ Π, we have∑
e′≼e

σ(e′)
P[o↔ e′, o↔ e]

P[o↔ e′]
=
∑
e′≼e

P[e∗ = e′]P[o↔ e | o↔ e′]

=
∑
e′≼e

P[e∗ = e′]P[o↔ e | e∗ = e′]

=
∑
e′∈Π

P[e∗ = e′]P[o↔ e | e∗ = e′] = P[o↔ e] .

Thus ∑
e′≼e

µ(e′)
P[o↔ e′, o↔ e]

P[o↔ e′]P[o↔ e]
=

1

P[o↔ Π]
.

By symmetry, it follows that

E (µ) ≤ 2
∑
e∈Π

∑
e′≼e

µ(e)µ(e′)
P[o↔ e′, o↔ e]

P[o↔ e′]P[o↔ e]
= 2

∑
e∈Π

µ(e)

P[o↔ Π]
=

2

P[o↔ Π]
.

Therefore,

P[o↔ Π] ≤ 2

E (µ)
≤ 2

infν∈P(Π) E (ν)
.

To sum up, provided such orderings on cutsets Π exist, we are able to reverse the inequality

of Proposition 5.12 up to a factor of 2 (Lyons, 1992). In particular, for independent

percolation on trees, we get the following inequalities:

Theorem 5.24. (Tree Percolation and Conductance) For an independent percola-

tion P on a tree with adapted conductances (i.e., such that (5.12) holds), we have

C (o↔ ∞)

1 + C (o↔ ∞)
≤ P[o↔ ∞] ≤ 2

C (o↔ ∞)

1 + C (o↔ ∞)
, (5.20)

which is the same as

P[o↔ ∞]

2−P[o↔ ∞]
≤ C (o↔ ∞) ≤ P[o↔ ∞]

1−P[o↔ ∞]
.

Consequently, we obtain a sharp refinement of Theorem 5.15:
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Corollary 5.25. We have P[o ↔ ∞] > 0 in percolation on T iff random walk on T is

transient for corresponding adapted conductances (satisfying (5.12)).

This shows that the connection between percolation and random walks hinted at by

Theorems 5.15 and 3.5 goes much deeper than just sharing critical parameters.

Sometimes it is useful to consider percolation on a finite portion of T (which is, in

fact, how our proofs have proceeded). Recall that ∂LT denotes the set of leaves of T (other

than possibly its root). We have shown that for finite trees,

C (o↔ ∂LT )

1 + C (o↔ ∂LT )
≤ P[o↔ ∂LT ] ≤ 2

C (o↔ ∂LT )

1 + C (o↔ ∂LT )
, (5.21)

which is the same as

P[o↔ ∂LT ]

2−P[o↔ ∂LT ]
≤ C (o↔ ∂LT ) ≤

P[o↔ ∂LT ]

1−P[o↔ ∂LT ]
.

Remark 5.26. These inequalities take a nicer form if we add a new vertex ∆ to T by

joining it to o with an edge of conductance 1. Then doing random walk on this new tree

T ∪ {∆}, we have

C (o↔ ∂LT )

1 + C (o↔ ∂LT )
= Po[τ∂LT ≤ τ∆] = C (∆ ↔ ∂LT ) ,

so (5.21) is equivalent to

C (∆ ↔ ∂LT ) = Po[τ∂LT ≤ τ∆] ≤ P[o↔ ∂LT ] ≤ 2Po[τ∂LT ≤ τ∆] = 2C (∆ ↔ ∂LT ) .

Likewise, on an infinite tree, (5.20) is equivalent to

C (∆ ↔ ∞) = Po[τ∆ = ∞] ≤ P[o↔ ∞] ≤ 2Po[τ∆ = ∞] = 2C (∆ ↔ ∞) . (5.22)

Note also that the condition of being adapted, (5.12), also becomes nicer:

P[o↔ x] = C (∆ ↔ x) . (5.23)

▷ Exercise 5.12.

Give a tree for which percolation does and a tree for which percolation does not occur at

criticality.

▷ Exercise 5.13.

Show that critical homesick random walk on supercritical Galton-Watson trees is a.s. recur-

rent in two ways: (1) by using Corollary 5.25; (2) by using the Nash-Williams Criterion.
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As in Exercise 5.13, Theorem 5.24 can be used to solve problems about random walk

on deterministic or random trees. Indeed, sometimes percolation is crucial to such solutions

(see, e.g., Lyons (1992)).

We saw in Proposition 5.1 that when a Galton-Watson process survives, then the

number of survivors tends to infinity a.s. We can strengthen this by Proposition 5.9 to

say that T ′ has generation sizes tending to infinity a.s. when the Galton-Watson tree T

is infinite. In other words, when T is infinite, it contains infinitely many rays a.s. Does

the same hold for Bernoulli(p) percolation on a general tree, T? It turns out that it

does. Moreover, we can prove this by adapting the idea of the proof of Proposition 5.9,

i.e., by doing a further percolation after the Bernoulli percolation. This technique uses

the inequality (5.20) that the percolation probability is captured up to a factor of 2 by

effective conductance. In other words, we will show how a uniform quantitative bound on

percolation probability implies a qualitative property of percolation.

To prove this, we will use the following exercise that gives an alternative expression

for the energy of a flow.

▷ Exercise 5.14.

Let (T, c) be a transient network on a tree. Suppose that each ray of T is recurrent. Let

θ be a flow from the root to infinity of finite energy.

(a) Show that inf
{
R(o↔ x) ; |x| = n

}
→ 0 as n→ ∞.

(b) Show that
∑

|x|=n θ
(
e(x)

)2 → 0 as n→ ∞.

(c) Show that E (θ) =
∑
x R(o↔ x)

[
θ
(
e(x)

)2 −∑↼
y=x

θ
(
e(y)

)2]
.

Proposition 5.27. (Surviving Rays in Independent Percolation) For 0 < p < 1

and every tree T , the number of surviving rays from the root under Bernoulli(p) percolation

on T a.s. either is 0 or has the cardinality of the continuum. More generally, the same

holds for every independent percolation on T such that each ray in T individually has

probability 0 of being open.

Proof. Let R be the event that the number of open rays is positive and countable. We

begin our proof by showing that the probability of R is 0, which we do for the more

general hypothesis. For n ∈ N, let Fn denote the σ-field generated by the events [o ↔ x]

for |x| = n. If P(R) > 0, then by the Lévy 0-1 law, P(R | Fn) → 1R a.s. as n→ ∞. Thus,

we may choose m and an event B ∈ Fm of positive probability so that P(R | B) > 3/4.

Moreover, we may choose B so that the set of x with |x| = m and o ↔ x is a constant

on B. Denote those x by x1, . . . , xk. Whether R occurs given B now depends only on the

descendant trees T xi for 1 ≤ i ≤ k, so we may consider the tree formed from T xi obtained
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by identifying all xi to one vertex, which we take to be the root of a new tree, T ′. Let R′

be the event that the induced percolation on T ′ has a positive countable number of open

rays. Thus, P(R′) = P(R | B) > 3/4. If R0 denotes the event that percolation on T ′ has

no open rays, then it follows that P(R0) < 1/4.

We are now going to define an additional percolation η on T ′, independent of the

given percolation ω, such that P[ω ∩ η /∈ R0] > 1/2 and P[ω ∩ η ∈ R0 | ω ∈ R′] = 1. The

second of these implies that P[ω ∩ η ∈ R0] ≥ P[ω ∩ η ∈ R0, ω ∈ R′] = P[ω ∈ R′] > 3/4,

which contradicts the first of these.

Consider the adapted edge conductances on T ′ given by (5.13). As in Remark 5.26,

add a new vertex ∆ to T ′ by joining it to the root with an edge of conductance 1. Let

i be the unit current flow from ∆ to ∞, so that E (i) = R(∆ ↔ ∞) on T ′. Now use

Exercise 5.14 and (5.23) to write

E (i) =
∑
x

P[o↔ω x]
−1
[
i(x)2 −

∑
↼
y=x

i(y)2
]
, (5.24)

where the subscript ω denotes the percolation and we write i(x) := i
(
e(x)

)
. This expression

allows us to define η to have the properties we wish. Namely, note first that all terms in

(5.24) are non-negative since i(x) =
∑

↼
y=x

i(y). Since E (i) <∞, we may choose a sequence

⟨nk⟩ increasing quickly enough that for each k ≥ 1, we have∑
|x|≥nk

P[o↔ω x]
−1
[
i(x)2 −

∑
↼
y=x

i(y)2
]
<

E (i)

4k
. (5.25)

Define η to be the independent percolation where every edge is kept with probability 1

except for those e(x) with |x| = nk for some k. In the latter case, we set the probability

that e(x) ∈ η to be 1/2. Thus, we have that

P[o↔ω∩η x] = P[o↔ω x]
∏

nk≤|x|

2−k .

It follows from this, (5.24), and (5.25) that∑
x

P[o↔ω∩η x]
−1
[
i(x)2 −

∑
↼
y=x

i(y)2
]
<

3E (i)

2
. (5.26)

Therefore, the effective resistance for the conductances adapted to the percolation ω∩ η is

less than 3E (i)/2, whence by (5.22), it follows that

P[ω ∩ η /∈ R0] >
2

3E (i)
>

1

3
P[ω /∈ R0] >

1

3
· 3
4
=

1

2
.
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This establishes the first property we desired for η. The second property is easy, since every

given ray of T ′ a.s. has an edge not in η, and on the event R′, there are only countably

many rays in ω.

Thus, we have shown that P(R) = 0. By applying this result to every descendant tree

T x, we may deduce that a.s. the set of open rays has no isolated point (as a subset of ∂T ).

Now note that the set of surviving rays forms a closed subset of ∂T . Since ∂T is

compact by Exercise 1.1, it follows that the surviving rays a.s. form a perfect set, so that

when it is non-empty, it has the cardinality of the continuum. ◀

This proof can be modified to handle various other random processes, as in Exer-

cise 15.8. A different proof will be given in Section 5.8, which allows other sorts of modifi-

cations, such as in Exercise 5.67. Another useful variant is in the notes, Proposition 5.36,

with an application in Exercise 5.20.

§5.7. Surviving Galton-Watson Trees.

What does the cluster of a vertex look like in Bernoulli percolation given that the

cluster is infinite? This question is easy to answer on regular trees. In fact, the analogous

question for Galton-Watson trees is also easy to answer. We actually give two kinds of

answers. The first answer describes the Galton-Watson tree given survival in terms of

other Galton-Watson processes. The second answer tells us how large d is so that we can

find d-ary subtrees of a Galton-Watson tree. The first answer will suggest some similar

properties for other types of percolation on trees, which we discuss briefly.

We begin with a Galton-Watson process ⟨Zn⟩. Let Z∗
n be the number of parti-

cles in generation n that have an infinite line of descent. A little thought shows that

⟨Z∗
n⟩ is a Galton-Watson process where each individual has k children with probability∑
j≥k pj

(
j
k

)
(1− q)k−1qj−k. Now, a little thought also shows that given extinction, ⟨Zn⟩ is

a Galton-Watson process. Finally, a little more thought shows that given nonextinction,

the family tree of ⟨Zn⟩ has the same law as a tree grown first by ⟨Z∗
n⟩, then adding “bushes”

independently and in the appropriate number to each node. We calculate (and prove) all

this as follows.

Let T denote the genealogical tree of a Galton-Watson process with p.g.f. f and T ′

denote the reduced subtree of particles with an infinite line of descent. (Thus, T ′ = ∅ iff

T is finite.) Let Y
(n)
i,j be the indicator that the jth child of the ith particle in generation

n has an infinite line of descent. Write

q := 1− q ,
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L
∗(n+1)
i :=

L
(n)
i∑
j=1

Y
(n)
i,j ,

Z∗
n+1 :=

Zn∑
i=1

L
∗(n+1)
i .

Thus Z∗
0 = 1nonextinction. Parts (iii) and (iv) of the following proposition are due to Lyons

(1992). Parts (i) and (ii) are illustrated in Figure 5.3.

Proposition 5.28. (Decomposition) Suppose that 0 < q < 1.

(i) The law of T ′ given nonextinction is the same as that of a Galton-Watson process

with p.g.f.

f∗(s) := [f(q + qs)− q]/q .

(ii) The law of T given extinction is the same as that of a Galton-Watson process with

p.g.f.

f̃(s) := f(qs)/q .

(iii) The joint p.g.f. of L− L∗ and L∗ is

E[sL−L
∗
tL
∗
] = f(qs+ qt).

More generally, the joint p.g.f. of Zn − Z∗
n and Z∗

n is

E[sZn−Z∗ntZ
∗
n ] = f (n)(qs+ qt).

(iv) The law of T given nonextinction is the same as that of a tree T generated as follows:

Let T ∗ be the tree of a Galton-Watson process with p.g.f. f∗ as in (i). To each vertex

x of T ∗ having dx children, attach Ux independent copies of a Galton-Watson tree

with p.g.f. f̃ as in (ii), where Ux has the p.g.f.

E[sUx ] =
(Ddxf)(qs)

(Ddxf)(q)
,

where dx derivatives of f are indicated; all Ux and all trees added are mutually

independent given T ∗. The resultant tree is T .

Proof. We begin with (iii). We have

E[sL−L
∗
tL
∗
] = E

[
E[sL−L

∗
tL
∗
| L]
]
= E

[
E
[
s

∑L

j=1
(1−Yj)t

∑L

j=1
Yj

∣∣∣L]]
= E

[
E[s1−Y1tY1 ]L

]
= E

[
(qs+ qt)L

]
= f(qs+ qt) .
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0 q 1

1

f̃

f∗

Figure 5.3. The graph of f embeds scaled versions of the graphs of f̃ and f∗.

The other part of (iii) follows by a precisely parallel calculation.

In order to show (i), we need to show that on the event L
∗(n)
i ̸= 0 given the σ-field

Fn,i generated by L
∗(n)
k (k ̸= i) and L

∗(m)
k (m < n, k ≥ 1), the p.g.f. of L

∗(n)
i is f∗. Indeed,

on the event L
∗(n)
i ̸= 0, we have

E[sL
∗(n)
i | Fn,i] = E[sL

∗(n)
i | L∗(n)

i ̸= 0]

= E[sL
∗
1[L∗ ̸=0]]/q = E

[
sL
∗
(1 − 1[L∗=0])

]
/q

=
{
E[1L−L

∗
sL
∗
]−P[L∗ = 0]

}
/q

= [f(q1 + qs)− q]/q = f∗(s)

by (iii).

Similarly, (ii) comes from the fact that on the event of extinction,

E[sL
(n)
i | Fn,i] = E[sL

(n)
i | L∗(n)

i = 0] = E[sL1[L∗=0]]/q

= E[sL−L
∗
0L
∗
]/q = f(qs+ q0)/q = f̃(s)

since 0x = 1{0}(x).

Finally, (iv) follows once we show that the function claimed to be the p.g.f. of Ux is

the same as the p.g.f. of L−L∗ given L∗ = dx. Once again, by (iii), we have that for some

constants c and c′,

E
[
sL−L

∗ ∣∣ L∗ = d
]
= c

(
∂

∂t

)d
f(qs+ qt)

∣∣∣
t=0

= c′(Ddf)(qs) .

Substitution of s = 1 yields c′ = 1/(Ddf)(q). ◀
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Remark. Part (iii), which led to all the other parts of the proposition, is an instance

of the following general calculation. Suppose that we are given a non-negative random

number X of particles with X having p.g.f. F . One interpretation of F is that if we color

each particle red independently with probability r, then the probability that all particles

are colored red is F (r). Now suppose that we first categorize each particle independently

as small or big, with the probability of a particle being categorized small being q. Then

independently color each small particle red with probability s and color each big particle

red with probability t. Since the chance that a given particle is colored red is then qs+ qt,

we have (by our interpretation) that the probability that all particles are colored red is

F (qs + qt). On the other hand, if Y is the number of big particles, then by conditioning

on Y , we see that this is also equal to the joint p.g.f. of X − Y and Y .

Another interesting question concerning the surviving Galton-Watson trees is to ask

whether binary subtrees can be found among the survivors. In fact, this issue first arose

in various applications: see, e.g., the proof of Theorem 5.33, due to Chayes, Chayes,

and Durrett (1988), or Lemma 5 of Pemantle (1988). More generally, let τ(d) be the

probability that a Galton-Watson tree contains a d-ary subtree beginning at the initial

individual. Thus, τ(1) is the survival probability, 1−q. Pakes and Dekking (1991) found a

method to determine τ(d), after special cases were solved by Chayes, Chayes, and Durrett

(1988) and Dekking and Meester (1990):

Theorem 5.29. (d-ary Subtrees) Let f be the p.g.f. of a supercritical Galton-Watson

process. Set

Gd(s) :=

d−1∑
j=0

(1− s)j
(Djf)(s)

j!
.

Then 1− τ(d) is the smallest fixed point of Gd in [0, 1].

Note that G1 = f . Thus, this answer is a nice extension of Proposition 5.4.

Proof. We first reinterpret Gd. Let gd(s) be the probability that the root has at most d−1

marked children when each child is marked independently with probability 1 − s. This

function is clearly monotonic increasing in s. By considering how many children the root

has in total, we see that

gd(s) =
∞∑
k=0

pk

d−1∑
j=0

(
k

j

)
(1− s)jsk−j . (5.27)

After changing the order of summation in (5.27), we obtain

gd(s) =
d−1∑
j=0

(1− s)j

j!

∑
k≥j

pk k(k − 1) · · · (k − j + 1)sk−j
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=
d−1∑
j=0

(1− s)j(Djf)(s)

j!
= Gd(s) ,

that is, gd = Gd.

Now we are ready to conclude in a similar fashion to the proof of Proposition 5.4.

Let qn be the chance that the Galton-Watson tree does not contain a d-ary subtree of

height n at the initial individual; notice that 1 − qn ↓ τ(d). By marking a child of the

root when it has a d-ary subtree of height n− 1, we see that qn = Gd(qn−1). Since q0 = 0

and Gd is non-negative, increasing, and satisfies Gd(1) = 1, letting n → ∞ shows that

limn qn = 1− τ(d) is the smallest fixed point of Gd. ◀

▷ Exercise 5.15.

Show that for a Galton-Watson tree with offspring distribution Bin(d + 1, p), we have

τ(d) > 0 for p sufficiently close to 1.

An interesting feature of the phase transitions from τ(d) = 0 to τ(d) > 0 as the

parameter is varied in, e.g., binomial, geometric or Poisson offspring distributions is that

unlike the case of usual percolation d = 1, for d ≥ 2 the probability of having the d-ary

subtree is already positive at criticality. For integers n ≥ 2 and 1 ≤ d ≤ n, define π(n, d)

to be the infimum of probabilities p such that τ(d) > 0 in a Galton-Watson tree with

offspring distribution Bin(n, p).

Proposition 5.30. (Non-Trivial Phase Transition) Let T be an n-ary tree and 2 ≤
d < n. Then π(n, d) ∈ [1/n, 1). For Bernoulli(p) percolation on T , the probability that

there is an open d-ary subtree is 0 for p < π(n, d) and is 1 for p ≥ π(n, d).

Proof. The fact that π(n, d) < 1 follows from Exercise 5.15, and the fact that π(n, d) ≥ 1/n

follows from the fact that pc(T ) = 1/n.

Let θ(p) denote the probability (called τ(d) above) that the root of T belongs to an

open d-ary subtree. Similarly, let θk(p) denote the probability that the root of T belongs

to an open d-ary subtree of height at least k. Then θk(p) ↓ θ(p) as k → ∞. Choose

α0 ∈
(
0,
(
n
d

)−1/(d−1))
; thus, there exists c0 < 1 such that for all α ∈ [0, α0], we have(

n
d

)
αd ≤ c0α. We claim that if p and k0 are such that θk0(p) ∈ [0, α0], then θ(p) = 0. To

see this, note that since θk+1(p) is the probability that there exist at least d open edges

incident to the root that lead to children who begin open d-ary subtrees of height at least

k, it follows from a union bound that θk+1(p) ≤
(
n
d

)
θk(p)

d, and this, in turn, is at most

c0θk(p) if θk(p) ≤ α0. Thus, θk+1(p) ≤ c0θk(p) for all k ≥ k0, and so, letting k → ∞, we

find that θ(p) = 0.
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Now suppose that θ
(
π(n, d)

)
= 0. Then for some k, we have θk

(
π(n, d)

)
< α0, whence

also θk(p) < α0 for some p > π(n, d). But this implies by the above claim that θ(p) = 0,

contradicting the definition of π(n, d). ◀

For a binomial offspring distribution, the critical mean value is asymptotically d, as

shown by the following result. This was proved by Balogh, Peres, and Pete (2006), where

it was applied to bootstrap percolation, a model we will discuss in Section 7.8.

We now show how to calculate π(n, d) and that for large n and d, we have π(n, d) ∼
d/n, which is as small as it could be since Bin(n, d/n) has mean d.

Proposition 5.31. (Asymptotics of the Critical Probability) The critical proba-

bility π(n, d) is the infimum of all p for which the equation

P
[
Bin(n, (1− s)p) ≤ d− 1

]
= s (5.28)

has a real root s ∈ [0, 1). For any constant γ ∈ [0, 1] and sequence of integers dn with

limn→∞ dn/n = γ, we have

lim
n→∞

π(n, dn) = γ. (5.29)

Proof. In the proof of Theorem 5.29, we saw that Gd = gd; in the present case, it is clear

that gd(s) = P
[
Bin(n, (1 − s)p) ≤ d − 1

]
=: Bn,d,p(s). If the probability of not having

the required subtree is denoted by y = y(p), then by Theorem 5.29, y is the smallest fixed

point of the function Bn,d,p(s) in s ∈ [0, 1]. One fixed point is s = 1, and π(n, d) is the

infimum of the p values for which there is a fixed point s ∈ [0, 1). It is easy to see that

∂

∂s
Bn,d,p(s) = npP

[
Bin(n− 1, (1− s)p) = d− 1

]
,

which is positive for s ∈ [0, 1), with at most one extremal point (a maximum) in (0, 1).

Thus Bn,d,p(s) is a monotone strictly increasing function, with Bn,d,p(0) > 0 when p < 1,

and with at most one inflection point in (0, 1). When (n−1)p < d−1, there is no inflection

point and Bn,d,p(s) is concave in [0, 1].

If limn→∞ dn/n = γ, then for any fixed p and s, by the Weak Law of Large Numbers,

Bn,dn,p(s) = P

[
Binom(n, (1− s)p)

n
≤ dn − 1

n

]
→
{
1 if (1− s)p < γ,
0 if (1− s)p > γ

as n → ∞. Solving the equation (1 − s)p = γ for s gives a critical value sc = 1 − γ/p.

Thus for p < γ we have limn→∞Bn,dn,p(s) → 1 for all s ∈ [0, 1]; since for large enough

n, Bn,dn,p(s) is concave in [0, 1], there is no positive root s < 1 of Bn,dn,p(s) = s. On

the other hand, for p > γ there must be a root s = s(n) for large enough n. These prove

(5.29). ◀
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Pakes and Dekking (1991) used Theorem 5.29 to show that the critical mean value for

a geometric offspring distribution to produce with positive probability a d-ary subtree in

the Galton-Watson tree is asymptotic to ed as d→ ∞ (where e is the base of the natural

logarithm), and it is asymptotically d for a Poisson offspring distribution.

We now give an application of Proposition 5.30 to fractal percolation. Given an integer

b ≥ 2 and p ∈ [0, 1], consider the natural tiling of the unit square [0, 1]2 by b2 closed

squares of side 1/b. Let Z1 be a random subcollection of these squares, where each square

has probability p1 of belonging to Z1, and these events are mutually independent. (Thus

the cardinality |Z1| of Z1 is a binomial random variable.) In general, if Zn is a collection

of squares of side b−n, tile each square Q ∈ Zn by b2 closed subsquares of side b−n−1

(with disjoint interiors) and include each of these subsquares in Zn+1 with probability p

(independently). Finally, define

An := An,b(p,Zn−1) :=
∪

Zn and Qb(p) :=

∞∩
n=1

An .

In the construction of Qd(p), the cardinalities |Zn| of Zn form a Galton-Watson branching

process where the offspring distribution is Bin(b2, p). The process ⟨An ; n ≥ 1⟩ is called

fractal percolation , while Qd(p) is the limit set .

We prove the following theorem of Chayes, Chayes, and Durrett (1988): if the proba-

bility p is close enough to 1, then with positive probability, the limit set of the planar fractal

percolation Q2(p) contains a left-to-right crossing of the unit square, i.e., a continuous

path
(
x(t), y(t)

)
: [0, 1] → [0, 1]2 such that x(0) = 0, x(1) = 1.

We begin with a discrete analogue. A left-to-right crossing of squares at level

n is a sequence of distinct squares a1, . . . , ar contained in Zn so that a1 shares a side with

the left side of [0, 1]2, all pairs of successive squares aj , aj+1 share a side, and ar shares a

side with the right side of [0, 1]2.

Lemma 5.32. Consider fractal percolation with b ≥ 3. If each square retained at level n

always contains at least b2−1 surviving subsquares at level n+1, then there is a left-to-right

crossing of squares at all levels n.

Proof. Clearly there is a left-to-right crossing of squares at level 1. More generally, all the

squares in Z1 can be connected via paths of squares in Z1 with consecutive pairs sharing

a side; let us say that Z1 is side connected for the purposes of this proof.

We proceed by induction. Suppose there is a left-to-right crossing of squares a1, . . . , ar

at level n. For notational convenience, let a0 and ar+1 both be the unit square. Let Si be

the common side of ai with ai+1 for 0 ≤ i ≤ r. Since b ≥ 3, for each i, there is a pair of

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



§7. Surviving Galton-Watson Trees 177

squares in Zn+1, each having a side on Si, call them ci ⊂ ai and di ⊂ ai+1, such that ci

and di share a side (of length b−n−1); see Figure 5.4. Since the subset of Zn+1 contained in

ai+1 is side connected, each di is connected to ci+1 by squares in Zn+1 that are contained

in ai+1. It follows that there is a left-to-right crossing in Zn+1 from d0 to cr. This proves

the induction step. ◀

ai ai+1

ci di

di−1

ci+1Si

Figure 5.4.

▷ Exercise 5.16.

Is Lemma 5.32 true for b = 2?

Define θn(p) as the probability of a left-to-right crossing of squares at level n. The

sequence θn is decreasing in n, hence its limit θ∞(p), the chance of a left-to-right crossing

in Q2(p), exists.

Theorem 5.29 and Lemma 5.32 can be combined to give an easy proof that there is a

nontrivial phase where there exist left-to-right crossings in the limit set.

Theorem 5.33. (Left-to-Right Crossing in Fractal Percolation) For p close enough

to 1, the left-to-right crossing probability θ∞(p) is positive.

Proof. We do the case b ≥ 3, leaving b = 2 for an exercise. By Lemma 5.32, it suffices to

show that with positive probability there exist Z ′
n ⊆ Zn with the properties that for all

n ≥ 1, we have
∪
Z ′
n ⊇

∪
Z ′
n+1 and each square of Z ′

n contains at least b2 − 1 subsquares

in Z ′
n+1. This event occurs if and only if the tree associated with ⟨Zn⟩ contains a (b2− 1)-

ary descendant subtree from the root. Exercise 5.15 shows that such subtrees exist with

positive probability provided p is large enough. ◀

▷ Exercise 5.17.

(a) Show that for p ∈ (0, 1), there exists q ∈ (0, 1) such that the first stage A1,b2(p)

of one fractal percolation is stochastically dominated (in the sense of Section 10.2

with respect to inclusion) by the second stage A1,b(q) ∩ A2,b(q) of another fractal
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percolation. Hint: Let Bern(q) denote a Bernoulli random variable with parameter q,

i.e., a random variable that takes the value 1 with probability q and 0 otherwise. Take

q so that Bern(q) dominates the maximum of b2 independent copies of a Bern(
√
p)

random variable.

(b) Deduce that Theorem 5.33 holds for b = 2 as well.

More information on fractal percolation can be found in Exercises 5.69, 5.70, and

14.22, as well as Example 14.9.

§5.8. Harris’s Inequality.

A property that is valid for Bernoulli percolation on any graph is an inequality due to

Harris (1960), though it is nowadays usually called the FKG inequality due to an extension

by Fortuin, Kasteleyn, and Ginibre (1971). In fact, it holds for independent percolation

more generally.

Harris’s inequality permits us to conclude such things as the positive correlation of

the events {x ↔ y} and {u ↔ v} for any vertices x, y, u, and v. The special property

that these two events have is that they are increasing, where an event A ⊆ 2E is called

increasing if whenever ω ∈ A and ω ⊆ ω′, then ω′ ∈ A. As a natural extension, we call

a random variable X on 2E increasing if X(ω) ≤ X(ω′) whenever ω ⊆ ω′. Thus, 1A is

increasing iff A is increasing. Similar definitions apply for site processes.

Harris’s Inequality. Let P be an independent percolation on a graph.

(i) If A and B are both increasing events, then A and B are positively correlated:

P(AB) ≥ P(A)P(B).

(ii) If X and Y are both increasing random variables with finite second moments, then

E[XY ] ≥ E[X]E[Y ].

Property (i) of Harris’s inequality says, by definition, that the measure P has posi-

tive associations (in contrast to the negative associations of the uniform spanning tree

measure in Section 4.2).

▷ Exercise 5.18.

Let P be an independent percolation. Suppose that X is an increasing random variable

with finite expectation, F ⊂ E is finite, and F is the (finite) σ-field generated by the

“coordinate functions” ω 7→ ω(e) (ω ∈ 2E) for the edges e ∈ F . Show that E[X | F ] is an

increasing random variable.
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Harris’s inequality is essentially the following lemma, where the case d = 1 is due to

Chebyshev.

Lemma 5.34. Suppose that µ1, . . . , µd are probability measures on R and µ := µ1×· · ·×µd.
Let f, g ∈ L2(Rd, µ) be functions that are increasing in each coordinate separately. Then∫

fg dµ ≥
∫
f dµ

∫
g dµ .

Proof. We proceed by induction on d. Suppose first that d = 1. Note that

[f(x)− f(y)][g(x)− g(y)] ≥ 0

for all x, y ∈ R. Therefore

0 ≤
∫ ∫

[f(x)− f(y)][g(x)− g(y)] dµ(x) dµ(y) = 2

∫
fg dµ− 2

∫
f dµ

∫
g dµ ,

which gives the desired inequality.

Now suppose that the inequality holds for d = k and let us prove the case d = k + 1.

Define

f1(x1) :=

∫
Rk

f(x1, x2, . . . , xk+1) dµ2(x2) · · · dµk+1(xk+1)

and similarly define g1. Clearly, f1 and g1 are increasing functions, whence∫
f1g1 dµ1 ≥

∫
f1 dµ1

∫
g1 dµ1 =

∫
f dµ

∫
g dµ . (5.30)

On the other hand, the inductive hypothesis tells us that for each fixed x1,

f1(x1)g1(x1) ≤
∫
Rk

f(x1, x2, . . . , xk+1)g(x1, x2, . . . , xk+1) dµ2(x2) · · · dµk+1(xk+1) ,

whence
∫
f1g1 dµ1 ≤

∫
fg dµ. In combination with (5.30), this proves the inequality for

d = k + 1 and completes the proof. ◀

Proof of Harris’s Inequality. The proofs for bond and site processes are identical; our

notation will be for bond processes.

Since (i) derives from (ii) by using indicator random variables, it suffices to prove (ii).

If X and Y depend on only finitely many edges, then the inequality is a consequence of

Lemma 5.34 since ω(e) are mutually independent random variables for all e. To prove

it in general, write E = {e1, e2, . . .}. Let Xn and Yn be the expectations of X and Y

conditioned on ω(e1), . . . , ω(en). According to Exercise 5.18, the random variables Xn and

Yn are increasing, whence E[XnYn] ≥ E[Xn]E[Yn]. Since Xn → X and Yn → Y in L2

by the martingale convergence theorem, which implies that XnYn → XY in L1, we may

deduce the desired inequality for X and Y . ◀
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▷ Exercise 5.19.

Let P be an independent percolation. Show that if A1, . . . , An are increasing events, then

for all p, P
(∩

Ai
)
≥
∏

P(Ai) and P
(∩

Aci
)
≥
∏

P(Aci ).

We can use Harris’s inequality to give a short proof of Proposition 5.27:

Proposition 5.27. (Surviving Rays in Independent Percolation) For 0 < p < 1

and every tree T , the number of surviving rays from the root under Bernoulli(p) percolation

on T a.s. either is 0 or has the cardinality of the continuum. More generally, the same

holds for every independent percolation on T such that each ray in T individually has

probability 0 of being open.

Proof. Let Rk be the event that there are exactly k open rays. We must show that for

every finite k ≥ 1, the probability of Rk is 0, which we do for the more general hypothesis.

As in our first proof of this proposition, it then follows that the number of open rays is

a.s. either 0 or 2ℵ0 . If P(Rk) > 0, then by the Lévy 0-1 law, P(Rk | Fn) → 1Rk
a.s. Thus,

we may choose m so that P(Rk | Fm) ≥ 8/9 on an event B ∈ Fm of positive probability.

We may also choose n ≥ m so large that for all x ∈ Tn, we have P
[
|Raysx| ≥ 1

∣∣ B] < 1/3,

as otherwise there would be a fixed ray that is open with probability at least P(B)/3.

Thus, we may partition Tn = A1 ∪ A2 in such a way that P(A1 | B) ∈ (1/3, 2/3), where

A1 :=
[∑

x∈A1
|Raysx| ≥ k

]
. Define A2 :=

[∑
x∈A2

|Raysx| ≥ 1
]
. Then P(A2 | B) ≥

8/9 − P(A1 | B) and Ai are positively correlated given B by Harris’s inequality, whence

P(A1 ∩ A2 | B) > 4/27 > 1/9. Since occurrence of A1 ∩ A2 precludes occurrence of Rk,

this contradicts the choice of B. ◀

§5.9. Galton-Watson Networks.

We have seen an example of the application of percolation to a question that does

not appear to involve percolation in Corollary 5.10 and Exercise 5.13; other examples

will appear in Exercise 5.55 and Proposition 13.3. We will give yet another example in

this section. Consider the following Galton-Watson network generated by a random

variable L := (L,A1, . . . , AL), where L ∈ N, Ai ∈ (0, 1]. First, use L as an offspring

random variable to generate a Galton-Watson tree. Let the number of children of particle

x be Lx. Complete these random variables to i.i.d. random variables L x. Thus, L x =

(Lx, Ay1 , . . . , AyLx
), where y1, . . . , yLx are the children of x.* Use these random variables

* A formal definition using the framework of Exercise 5.2 makes independent random variables L x

for each finite string x = ⟨i1, i2, . . . , in⟩ of positive integers.
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§9. Galton-Watson Networks 181

to assign edge capacities (or weights or conductances)

c
(
e(x)

)
:=
∏
w≤x

Aw .

We will see the usefulness of such networks for the study of random fractals in Section 14.3.

When can water flow to ∞ in such a random network? Note that if Ai ≡ 1, then water

can flow to ∞ iff the tree is infinite. Let

γ := E

[
L∑
i=1

Ai

]
.

This is the expected value of the constraint on the total that can flow out of a vertex

compared to what can flow into that vertex. The following theorem of Falconer (1986)

shows that the condition for positive flow to infinity with positive probability on these

Galton-Watson networks is γ > 1. Of course, when Ai ≡ 1, this reduces to the usual

survival criterion for Galton-Watson processes. In general, this theorem confirms the

intuition that in order for flow to infinity to be possible, more water must be able to flow

from parent to children, on average, than from grandparent to parent.

Theorem 5.35. (Flow in Galton-Watson Networks) If γ ≤ 1, then a.s. no flow is

possible unless
∑L

1 Ai = 1 a.s. If γ > 1, then flow is possible a.s. on nonextinction.

Proof. As usual, let T1 denote the set of individuals (or vertices) of the first generation.

Let F be the maximum strength of an admissible flow, i.e., of a flow that satisfies the

capacity constraints on the edges.

For x ∈ T1, let Fx be the maximum strength of an admissible flow from x to infinity

through the subtree T x with renormalized capacities e 7→ c(e)/Ax. Thus, Fx has the same

law as F has. It is easily seen that

F =
∑
x∈T1

(
Ax ∧ (AxFx)

)
=
∑
x∈T1

Ax(1 ∧ Fx) .

Now suppose that γ ≤ 1. Taking expectations in the preceding equation yields

E[F ] = E
[
E[F | L o]

]
= E

[
E

[ ∑
x∈T1

Ax(1 ∧ Fx)
∣∣∣∣L o

]]
= E

[∑
x∈T1

E[Ax(1 ∧ Fx) | L o]

]

= E

[∑
x∈T1

AxE[1 ∧ Fx | L o]

]
= E

[∑
x∈T1

AxE[1 ∧ F ]

]
= γE[1 ∧ F ] ≤ E[1 ∧ F ] .
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Therefore F ≤ 1 almost surely and P[F > 0] > 0 only if γ = 1. In addition, we have, by

independence,

∥F∥∞ =
∥∥∥ ∑
x∈T1

Ax

∥∥∥
∞

· ∥F∥∞ .

If ∥F∥∞ > 0, it follows that
∥∥∥∑x∈T1

Ax

∥∥∥
∞

= 1. In combination with γ = 1, this implies

that
∑
x∈T1

Ax = 1 a.s.

For the second part, we introduce percolation as in the proof of Corollary 5.10 via

Proposition 5.9. Namely, augment the probability space so that for each vertex u ̸= o,

there is a random variable Xu with the following properties. Denote by F the σ-field

generated by the random variables L u. Then given F , all Xu are independent and each

Xu takes the value 1 with probability Au and 0 otherwise.* Consider the subtree of the

Galton-Watson tree consisting of the initial individual o together with those individuals u

such that
∏
w≤uXw = 1. This subtree has, unconditionally, the law of a Galton-Watson

branching process with progeny distribution the unconditional law of∑
u∈T1

Xu .

Let Q be the probability that this subtree is infinite conditional on F . Now the uncondi-

tional mean of the new process is

E

[∑
u∈T1

Xu

]
= E

[
E

[ ∑
u∈T1

Xu

∣∣∣∣ L o

]]
= E

[∑
u∈T1

Au

]
= γ,

whence if γ > 1, then this new Galton-Watson branching process survives with positive

probability, say, Q. Of course, Q = E[Q]. On the other hand, for any cutset Π of the

original Galton-Watson tree,
∑
e∈Π c(e) is the expected number, given F , of edges in Π

that are also in the subtree. This expectation is at least the probability that the number

of such edges is at least one, which, in turn, is at least Q:

F = inf
Π

∑
e∈Π

c(e) ≥ Q.

Hence F > 0 on the event Q > 0. The event Q > 0 has positive probability since Q > 0,

whence P[F > 0] > 0. Since the event that F = 0 is clearly inherited, it follows that

P[F = 0] = q. ◀

We will return to percolation on trees in Chapter 15.

* A formal definition uses independent uniform [0, 1] random variables Mu and defines Xu to be the
indicator that Mu ≤ Au.
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§5.10. Notes.

Galton-Watson processes are sometimes called Bienaymé-Galton-Watson processes since Bi-
enaymé, in 1845, was the first to give the fundamental theorem, Proposition 5.4. However, while
he stated the correct result, he gave barely a hint of his proof. See Heyde and Seneta (1977),
pp. 116–120, and Guttorp (1991), pp. 1–3 for some of the history. The first published proof of
Bienaymé’s theorem appears on pp. 83–86 of Cournot (1847), where the context is gambling: An
urn contains tickets marked with non-negative integers, a proportion pk of them being marked k.
Pierre begins with 1 écu, which he gives to Paul for the right of drawing a ticket from the urn. If
the ticket is marked k, then Paul gives Pierre k écus. The ticket is returned to the urn. This is the
end of the first round. For the second and succeeding rounds, if Pierre is not broke, then for each
of the écus he has, he repeats the procedure of the first round. The problem was to determine
the probability, for each n, that Pierre is broke at the end of the nth round. If one keeps track of
Pierre’s fortune at all times, not merely at the ends of rounds, then one obtains a coding of the
associated tree by a random walk as in Exercise 5.36.

For other codings of the trees as random walks, as well as various uses, see Geiger (1995),
Pitman (1998), Bennies and Kersting (2000), Dwass (1969), Harris (1952), Le Gall and Le Jan
(1998), Duquesne and Le Gall (2002), Marckert and Mokkadem (2003), Marckert (2008), Lamperti
(1967), and Kendall (1951).

For additional material on branching processes, see Chapter 12, the books by Athreya and
Ney (1972) and Asmussen and Hering (1983), and the review articles by Vatutin and Zubkov
(1985, 1993).

The study of percolation was initiated by Broadbent and Hammersley (1957).
A more subtle example of a quasi-independent percolation than the one of Example 5.18 is

obtained by replacing the requirement S(x) ∈ [0, N ] by S(x) ≥ 0. This is proved by Benjamini
and Peres (1994) in the course of proving their Theorem 1.1. For more on this particular case,
see Pemantle and Peres (1995a).

Proposition 5.27 is due to Pemantle and Peres (1996), Lemma 4.2(i). The following variant
is new. For x ∈ V(T ), let Fx denote the σ-field generated by the events [o ↔ y] for all y except
y > x.

Proposition 5.36. Let P be a general percolation on a general tree T with the following property:
there is some ϵ > 0 such that for all x ∈ V(T ),

P[|Raysx| ≥ 2 | Fx] ≥ ϵ1[o↔x] . (5.31)

Then the number of open rays is a.s. 0 or 2ℵ0 .

Proof. As before, let Rk be the event that there are exactly k open rays. As in the proof of
Proposition 5.27, it then follows that the number of open rays is a.s. either 0 or 2ℵ0 . Suppose
that P(Rk) > 0 for some k ∈ [1,∞). For n ∈ N, let Fn denote the σ-field generated by the events
[o ↔ x] for |x| = n. By the Lévy 0-1 law, P(Rk | Fn) → 1Rk a.s. Write Vn for the random set
{|x| = n ; x↔ o}. Then P[|Vn| ≥ k | Rk] → 1 as n→ ∞. Thus, we may choose an integer n and
an event A ∈ Fn of positive probability such that

P(Rk | A) > 1 − ϵk (5.32)

and A ⊆ [|Vn| ≥ k]. Let X1, . . . , Xk be an Fn-measurable choice of k distinct vertices in Vn, or
Xi := o if |Vn| < k; e.g., if we embed T in the upper half plane with its root at the origin, we
can choose the k left-most vertices in Vn. Consider non-random distinct vertices x1, . . . , xk ∈ Tn
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such that P(C) > 0, where C is the event [X1 = x1, . . . , Xk = xk]. Define Bi to be the event that
|Raysxi | ≥ 2. Since A,C ∈ Fn ⊆ Fxi and so B1 ∩ · · · ∩ Bi−1 ∩ A ∩ C ∈ Fxi for 1 ≤ i ≤ k, we
may apply (5.31) to get

P(Bi | B1 ∩ · · · ∩Bi−1 ∩A ∩ C) ≥ ϵ ,

whence

P(B1 ∩ · · · ∩Bk | A ∩ C) ≥ ϵk .

Therefore, P[|Rayso| ≥ 2k | A∩C] ≥ ϵk. Since this holds for all choices of C, we have P[|Rayso| ≥
2k | A] ≥ ϵk. This contradicts (5.32), whence P(Rk) = 0, as desired. ◀

▷ Exercise 5.20.

Let T be a binary tree. Give random labels A(x) to its vertices as follows: Begin with A(o) := 0.
The other labels are defined recursively by dividing A(x) at random (as integers) between the
children of x and adding 1. That is, if the two children of x are x1 and x2, then A(x1) is uniform
in {1, 2, . . . , A(x) + 1} and A(x2) = A(x) + 2 −A(x1). Given A(x), all labels A(y) for y /∈ T x are
conditionally independent of all A(z) for z > x.

(a) Let ξ = ⟨ξn ; n ≥ 0⟩ be a ray in T starting at some vertex ξ0 = x. Show that ⟨2n(A(ξn)−2)⟩
is a martingale.

(b) Show that for all n ≥ 1, we have P[A(ξk) ≥ 4 for 1 ≤ k ≤ n | A(ξ0)] ≤ 2−n on the event
[A(ξ0) ≥ 4].

(c) Show that a.s. there is no infinite path in T all of whose labels are at least 4.

(d) If the labels are real numbers instead of integers with the sole change that A(x1) is uniform
in [1, A(x) + 1], then show that again a.s. there is no infinite path in T all of whose labels
are at least 4.

The proof of Proposition 5.30 is based on a similar argument in Chayes, Chayes, and Durrett
(1988). The result itself was fist given by Pakes and Dekking (1991).

Theorem 5.33 was suggested by Mandelbrot (1982) (Chap. 23). One might wonder whether
for large p, there is also positive probability that a directed (horizontally monotonic) left-to-right
crossing exists. However, this is not so, as was proved by Chayes (1995b). An extension was given
by Chayes, Pemantle, and Peres (1997).

The proof presented here of Theorem 5.35 is new. The proof of the first part of the theorem
uses the same idea as the proof of Lemma 4.4(b) of Falconer (1987). The result of Theorem 5.35
was extended in a few ways to general fixed trees by Lyons and Pemantle (1992).

Recursions on trees are a very powerful and general tool. Exercise 5.60 gives some simple
examples. Additional ones along these lines for more general processes are analyzed by Pemantle
and Peres (2010).

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



§11. Collected In-Text Exercises 185

§5.11. Collected In-Text Exercises.

5.1. Justify the differentiation in (5.3). Show too that lims↑1 f
′(s) = m.

5.2. Let T be the space of rooted labelled locally finite trees. Verify that the function d(T, T ′) :=
(1 + sup{n ; T ↾n = T ′↾n})

−1
is a metric on T and that (T , d) is complete and separable.

5.3. Define the measure GW formally on the space T of Exercise 5.2; your measure should be
the law of a random tree produced by a Galton-Watson process with arbitrary given offspring
distribution.

5.4. Show that for any Galton-Watson process with mean m > 1, the family tree T has growth
rate grT = m a.s. given nonextinction. (Don’t use the Kesten-Stigum Theorem to show this, as
we have not yet proved that theorem.)

5.5. Show that for a general percolation, the events [x↔ e] and [x↔ ∞] are indeed measurable.

5.6. Prove (5.5).

5.7. Show that for p ≥ pc(G), we have pc(ω) = pc(G)/p for Pp-a.e. ω. Physicists often refer to p
as the “density” of edges in ω and this helps the intuition.

5.8. Show that, conversely to (5.13), the survival parameters adapted to given edge resistances
are

px =
1 +

∑
o<u<x r(e(u))

1 +
∑
o<u≤x r(e(u))

.

For example, simple random walk (c ≡ 1) is adapted to px = |x|/(|x| + 1).

5.9. Verify the assertion of Example 5.17.

5.10. Show that if brT < 1/ cos π
N + 2

, then the root belongs to an infinite cluster in ωN of

(5.14) with probability zero.

5.11. Show that Proposition 5.21 is sharp on trees in the sense that when T is a tree, for all
ζ > pc(T ) there is a probability measure with EIT(ζ).

5.12. Give a tree for which percolation does and a tree for which percolation does not occur at
criticality.

5.13. Show that critical homesick random walk on supercritical Galton-Watson trees is a.s. re-
current in two ways: (1) by using Corollary 5.25; (2) by using the Nash-Williams Criterion.

5.14. Let (T, c) be a transient network on a tree. Suppose that each ray of T is recurrent. Let θ
be a flow from the root to infinity of finite energy.

(a) Show that inf {R(o↔ x) ; |x| = n} → 0 as n→ ∞.

(b) Show that
∑

|x|=n θ(e(x))
2 → 0 as n→ ∞.

(c) Show that E (θ) =
∑
x R(o↔ x)[θ(e(x))

2 −
∑

↼
y=x θ(e(y))

2
].

5.15. Show that for a Galton-Watson tree with offspring distribution Bin(d + 1, p), we have
τ(d) > 0 for p sufficiently close to 1, where τ(d) is the probability that the tree contains a d-ary
subtree beginning at the initial individual.

5.16. Is Lemma 5.32 true for b = 2?
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5.17. (a) Show that for p ∈ (0, 1), there exists q ∈ (0, 1) such that the first stage A1,b2(p) of
one fractal percolation is stochastically dominated (in the sense of Section 10.2 with respect
to inclusion) by the second stage A1,b(q) ∩ A2,b(q) of another fractal percolation. Hint: Let
Bern(q) denote a Bernoulli random variable with parameter q, i.e., a random variable that
takes the value 1 with probability q and 0 otherwise. Take q so that Bern(q) dominates the
maximum of b2 independent copies of a Bern(

√
p) random variable.

(b) Deduce that Theorem 5.33 holds for b = 2 as well.

5.18. Let P be an independent percolation. Suppose that X is an increasing random variable
with finite expectation, F ⊂ E is finite, and F is the (finite) σ-field generated by the “coordinate
functions” ω 7→ ω(e) (ω ∈ 2E) for the edges e ∈ F . Show that E[X | F ] is an increasing random
variable.

5.19. Let P be an independent percolation. Show that if A1, . . . , An are increasing events, then
for all p, P(

∩
Ai) ≥

∏
P(Ai) and P(

∩
Aci ) ≥

∏
P(Aci ).

5.20. Let T be a binary tree. Give random labels A(x) to its vertices as follows: Begin with
A(o) := 0. The other labels are defined recursively by dividing A(x) at random (as integers)
between the children of x and adding 1. That is, if the two children of x are x1 and x2, then
A(x1) is uniform in {1, 2, . . . , A(x) + 1} and A(x2) = A(x) + 2 − A(x1). Given A(x), all labels
A(y) for y /∈ T x are conditionally independent of all A(z) for z > x.
(a) Let ξ = ⟨ξn ; n ≥ 0⟩ be a ray in T starting at some vertex ξ0 = x. Show that ⟨2n(A(ξn)−2)⟩

is a martingale.
(b) Show that for all n ≥ 1, we have P[A(ξk) ≥ 4 for 1 ≤ k ≤ n | A(ξ0)] ≤ 2−n on the event

[A(ξ0) ≥ 4].
(c) Show that a.s. there is no infinite path in T all of whose labels are at least 4.
(d) If the labels are real numbers instead of integers with the sole change that A(x1) is uniform

in [1, A(x) + 1], then show that again a.s. there is no infinite path in T all of whose labels
are at least 4.

§5.12. Additional Exercises.

5.21. Consider a rooted Galton-Watson tree (T, o) whose offspring distribution is Poisson(c) for
some c > 0. This is sometimes called a Poisson-Galton-Watson(c) tree. If the total number
of vertices of T is k < ∞, then label the vertices of T uniformly with the integers 1, . . . , k.
(These labels are different from the labels used in Section 5.1, where the purpose of the labels
was merely to make a formal definition.) Show that every rooted labelled tree on k vertices arises
with probability e−ckck−1/k!. Consequently, if we condition that |V(T )| = k, then the rooted
labelled tree is uniformly distributed among all rooted labelled trees on k vertices, i.e., it has the
distribution of a uniformly rooted uniform spanning tree on the complete graph on {1, 2, . . . , k}.

5.22. Consider Bernoulli(c/n) percolation on the complete graph Kn with fixed c > 0 and any
n ≥ c. Fix a vertex o of Kn. Let C(o) be the cluster of o “rooted” at o.
(a) Show that as n→ ∞, the distribution of C(o) tends to that of a rooted Galton-Watson tree

(T, o) whose offspring distribution is Poisson(c) in the sense that for every r, the limiting
distribution of the ball of radius r about o in C(o) is the same as the distribution of the ball
of radius r about the root in a Galton-Watson tree.

(b) Let CL be the result of labelling the vertices of C(o) uniformly by the integers 1, . . . , |C(o)|.
Show that for k < ∞, if we condition that |C(o)| = k, then the distribution of the labelled
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cluster CL tends to that of a uniformly labelled Poisson-Galton-Watson(c) tree conditioned
to have size k.

(c) Show that for a rooted labelled tree T of size k <∞,

lim
n→∞

P[CL = T ] =
e−ckck−1

k!
.

This gives another solution to Exercise 5.21.

5.23. Suppose that Ln are offspring random variables that converge in law to an offspring random
variable L with P[L = 1] < 1. Let the corresponding extinction probabilities be qn and q. Show
that qn → q as n→ ∞.

5.24. Give another proof that m ≤ 1 ⇒ a.s. extinction unless p1 = 1 as follows. Let Z∗
1 be the

number of particles of the first generation with an infinite line of descent. Let Z
(i)∗
1 be the number

of children of the ith particle of the first generation with an infinite line of descent. Show that
Z∗

1 =
∑Z1
i=1 1 ∧ Z(i)∗

1 . Take the L1 and L∞ norms of this equation to get the desired conclusion.

5.25. Give another proof of Propositions 5.1 and 5.4 as follows. Write

Zn+1 = Zn +

Zn∑
i=1

(
L

(n+1)
i − 1

)
.

This is a randomly sampled random walk, i.e., a random subsequence of the locations of a random
walk on Z whose steps have the same distribution as L−1. Apply the strong law of large numbers
or the Chung-Fuchs theorem (Durrett (2005), p. 188), as appropriate.

5.26. Let ⟨Xn⟩ be a Markov chain on N such that the law of Xn+1 given Xn is Poisson with
parameter Xn. Show that a.s. for all large n, we have Xn = 0.

5.27. Show that ⟨Zn⟩ is a non-negative supermartingale when m ≤ 1 to give another proof of a.s.
extinction when m ≤ 1 and p1 ̸= 1.

5.28. Suppose that the offspring random variable L has a finite second moment in a Galton-
Watson process. Show that the second moments of Zn/m

n are bounded. Deduce that Zn/m
n →

W in L2.

5.29. Show that if 0 < r < 1 satisfies f(r) = r, then ⟨rZn⟩ is a martingale. Use this to give
another proof of Proposition 5.1 and Proposition 5.4 in the case m > 1.

5.30. (Grey, 1980) Let ⟨Zn⟩, ⟨Z′
n⟩ be independent Galton-Watson processes with identical off-

spring distribution and arbitrary, possibly random, Z0, Z′
0 with Z0 + Z′

0 ≥ 1 a.s., and set

Yn :=

{
Zn/(Zn + Z′

n) if Zn + Z′
n ̸= 0,

Yn−1 if Zn + Z′
n = 0.

(a) Fix n. Let A be the event
A := [Zn+1 + Z′

n+1 ̸= 0]

and Fn be the σ-field generated by Z0, . . . , Zn, Z
′
0, . . . , Z

′
n. Use symmetry to show that

E[L(n+1)
i /(Zn+1 + Z′

n+1) | Fn] = 1/(Zn + Z′
n) on the event A.

(b) Show that ⟨Yn⟩ is a martingale with a.s. limit Y .
(c) If 1 < m < ∞, show that 0 < Y < 1 a.s. on the event Zn ̸→ 0 and Z′

n ̸→ 0. Hint: Let
Y (k) := limn→∞ Zn/(Zn+Z′

k+n). Then E[Y (k) | Z0, Z
′
k] = Z0/(Z0+Z′

k) and P[Y = 1, Zn ̸→
0, Z′

n ̸→ 0] = P[Y (k) = 1, Zn ̸→ 0, Z′
n ̸→ 0] ≤ E[Y (k)1[Z′

k
>0]] → 0 as k → ∞.
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5.31. In the notation of Exercise 5.30, show that if Z0 ≡ Z′
0 ≡ 1 and 1 < m <∞, then

P[Y ∈ (0, 1)] = (1 − q)2 + p20 +
∑
n≥1

[
f (n+1)(0) − f (n)(0)

]2
.

5.32. Deduce the Seneta-Heyde theorem from Grey’s theorem (Exercise 5.30).

5.33. Show that for any Galton-Watson process with m < ∞, we have Zn+1/Zn → m a.s. on
nonextinction.

5.34. Let f be the p.g.f. of a Galton-Watson process. Show that

E
[
s
∑N

n=0 Zn

]
= gN (s) ,

where g0(s) := s and gn+1(s) := sf(gn(s)) for n ≥ 1. Define s0 := sup {t/f(t) ; t ≥ 1} ≥ 1. Show
that

E
[
s
∑

n≥0 Zn

]
= g∞(s) ,

where g∞(s) := limN→∞ gN (s) = sf(g∞(s)) is finite for s < s0. Show that if the process is
subcritical and f(s) <∞ for some s > 1, then s0 > 1.

5.35. Let 0 < p < 1 and consider a branching process such that each individual has 2 children
with probability p and 0 children otherwise. Show that the probability generating function for
the total number of individuals is

s 7→
1 −

√
1 − 4p(1 − p)s2

2ps
.

5.36. Let L be the offspring random variable of a Galton-Watson process. There are various
useful ways to encode by a random walk the family tree when it is finite. We consider one such
way here. Suppose that the process starts with k individuals, i.e., Z0 = k. Let Ztot :=

∑
n≥0 Zn

be the total size of the process. Let Sn :=
∑n
j=1(Lj − 1), where Lj are independent copies of L.

(a) Show that P[Ztot = n] = P[Sn = −k, ∀i < n Si > −k].
(b) (Otter-Dwass formula) Show that P[Ztot = n] = k

n
P[Sn = −k].

(c) Show that in the non-critical case, the expected number of visits to −k of the random walk
⟨Sn ; n ≥ 0⟩ is qk/(1 − f ′(q)), where q is the extinction probability of the Galton-Watson
process and f is the probability generating function of L. Show that in the critical case, this
expectation is infinite.

(d) Let τn be the time of the nth visit to −k of the random walk ⟨Sn ; n ≥ 0⟩, where τn := ∞ if
fewer than n visits are made to −k. Show that P[τ1 <∞] = qk and E[

∑
n 1/τn] = qk/k.

5.37. Consider a Galton-Watson process with offspring distribution equal to Poisson(1) and total
size Ztot :=

∑
n≥0 Zn.

(a) Show that P[Ztot = n] = nn−1e−n/n!. Hint: Use the Otter-Dwass formula from Exer-
cise 5.36(b).

(b) By comparing with Exercise 5.21, derive Cayley’s formula that the number of trees on n
vertices is nn−2.

5.38. Consider a Galton-Watson process with offspring distribution equal to Poisson(1). Let o
be the root and X be a random uniform vertex of the tree. Show that P[X = o] = 1/2.
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5.39. Let T be a tree. Show that for p < 1/grT , the expected size of the cluster of a vertex is
finite for Bernoulli(p) percolation, while it is infinite for p > 1/grT .

5.40. Let T be an infinite locally finite tree. Define the random tree T (p) by contracting e(x)
for each x ̸= o independently with probability p. Show that sup {p ; T (p) is locally finite a.s.} =
pc(T ) and calculate the distribution of brT (p) for p < pc(T ).

5.41. Deduce Corollary 5.10 from Hawkes’s earlier result (that is, from the special case where it
is assumed that E[L(logL)2] <∞) by considering truncation of the progeny random variable, L.

5.42. Let θn(p) denote the probability that the root of an n-ary tree has an infinite cluster under
Bernoulli(p) percolation. Thus, θn(p) = 0 iff p ≤ 1/n. Calculate and graph θ2(p) and θ3(p). Show
that for all n ≥ 2, the left-hand derivative of θn at 1 is 0 and the right-hand derivative of θn at
1/n is 2n2/(n− 1).

5.43. Let Π be a cutset in a locally finite graph on which is defined some percolation measure.
Show that for µ1, µ2 ∈ P(Π),

E
(µ1 + µ2

2

)
+ E
(µ1 − µ2

2

)
=

E (µ1) + E (µ2)

2
,

where E (•) is extended in the obvious way to non-probability measures on Π from the definition
(5.10).

5.44. Let Π be a cutset in a locally finite graph on which is defined some percolation measure,
P. Show that if P[e1, e2 ⊆ K(o)] ̸= 0 for every pair e1, e2 ∈ Π, then E (•) has a unique minimum
on P(Π).

5.45. Let T be the family tree of a supercritical Galton-Watson process. Show that a.s. on the
event of nonextinction, simple random walk on T is transient.

5.46. Let T be the family tree of a supercritical Galton-Watson process without extinction and
with mean m. For 0 < λ < m, consider RWλ with the conductances c(e) = λ−|e|.
(a) Show that E[C (o↔ ∞;T )] ≤ m− λ.
(b) Show that E[P[τ+o = ∞]] ≤ 1 − λ/m.

5.47. Given a quasi-independent percolation on a locally finite tree T with P[o↔ u | o↔ ↼
u] ≡ p,

show that if p < (brT )−1, then P[o↔ ∞] = 0 while if p > (brT )−1, then P[o↔ ∞] > 0.

5.48. Let T be any tree on which simple random walk is transient. Let U be a random variable
uniform on [0, 1]. Define the percolation on T by taking the subtree of all edges at distance at
most 1/U . Show that the inequality of Theorem 5.19 fails if conductances are adapted to this
percolation.

5.49. Let T be any infinite tree. Let U(x) be i.i.d. random variables uniform on [0, 1] indexed by
the vertices of T . Define the percolation on T by taking the subgraph spanned by all vertices x
such that U(x) ≤ U(o). Show that the root belongs to an infinite cluster with positive probability
iff brT > 1. Show that this percolation is not quasi-independent.

5.50. Improve the Paley-Zygmund Inequality to the following: If X is a random variable with
mean 1 and t < 1, then

P[X > t] ≥ (1 − t)2

(1 − t)2 + Var(X)
.

5.51. Consider the usual graph on Zd and orient each edge in its positive coordinate direction. For
Bernoulli percolation on Zd, the set of oriented open paths is called oriented percolation . The
critical value pc(d) for oriented percolation is the supremum of those p such that in Bernoulli(p)
percolation, there is no infinite oriented open path. Show that limd→∞ dpc(d) = 1.
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5.52. Consider Bernoulli(1/2) percolation on a tree T . Let pn := P1/2[o↔ Tn].
(a) Show that if there is a constant c such that for every n we have |Tn| ≤ c2n, then pn ≤

4c/(n+ 2c) for all n.
(b) Show that if there are constants c1 and c2 such that for every n we have |Tn| ≥ c12n and also

for every vertex x we have |T xn | ≤ c22n, then pn ≥ c3/(n+ c3) for all n, where c3 := 2c21/c
3
2.

5.53. Let T (n) be a binary tree of height n and consider Bernoulli(1/2) percolation. For large n,
which inequalities in (5.21) are closest to equalities?

5.54. Let T be a binary tree and consider Bernoulli(p) percolation with p ∈ (1/2, 1). Which
inequalities in Theorem 5.24 have the ratios of the two sides closest to 1?

5.55. Randomly stretch a tree T by adding vertices to (“subdividing”) the edges to make the
edge e(x) a path of length Lx(ω) with Lx i.i.d. Call the resulting tree T (ω). Calculate brT (ω) in
terms of brT . Show that if brT > 1, then brT (ω) > 1 a.s.

5.56. Suppose that brT = grT . Consider the stretched tree T (ω) from Exercise 5.55. Show that
brT (ω) = grT (ω) a.s.

5.57. Consider the stretched tree T (ω) from Exercise 5.55. If we assume only that simple random
walk on T is transient, is simple random walk on T (ω) transient a.s.?

5.58. Consider a percolation on T for which there is some M ′ > 0 such that, for all x, y ∈ T and
A ⊆ T with the property that the removal of x ∧ y would disconnect y from every vertex in A,

P[o↔ y | o↔ x, o↮ A] ≥M ′P[o↔ x | o↔ x ∧ y] .

Show that the adapted conductances satisfy

P[o↔ ∞] ≤ 2

M ′
C (o↔ ∞)

1 + C (o↔ ∞)
.

5.59. Consider the percolation of Example 5.20. Sharpen Exercise 5.10 by showing that if the
root belongs to an infinite cluster with positive probability, then RWλ is transient on T for
λ := 1/ cos π

N + 2
.

5.60. The inequalities (5.21) can also be proved by entirely elementary means.
(a) Prove that if 0 < xn ≤ 1, then

∑ 1 − xn
xn

≤ 1 −
∏
xn∏

xn
and

∑ 1 − xn
1 + xn

≥ 1 −
∏
xn

1 +
∏
xn

.

(b) Use induction to deduce (5.21) from the inequalities of part (a).
(c) Prove that for C ≥ 0 and C/(1 + C) < p ≤ 1,

p

(
1 − exp

(
−2C

p(1 + C) − C

))
≤ 1 − e−2C .

(d) Use induction to deduce from part (c) the following sharper form of the right-hand inequality
of (5.21):

P[o↔ ∂LT ] ≤ 1 − exp (− 2C (o↔ ∂LT )) .
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5.61. Show that if f is the p.g.f. of a supercritical Galton-Watson process, then the p.g.f. of Zn
given survival is

[f (n)(s) − f (n)(qs)]/q .

5.62. A multi-type Galton-Watson branching process has J types of individuals, with an
individual of type i generating kj individuals of type j for j = 1, . . . , J with probability p

(i)
k , where

k := (k1, . . . , kJ). As in the single-type case, all individuals generate their children independently
of each other. Show that a supercritical single-type Galton-Watson tree given survival has the
following alternative description as a 2-type Galton-Watson tree. Let ⟨pk⟩ be the offspring dis-
tribution and q be the extinction probability. Let type 1 have offspring distribution obtained as
follows: Begin with k children with probability pk(1 − qk)/(1 − q) for k ≥ 1. Then make each
child type 1 with probability 1 − q and type 2 with probability q, independently but conditional
on having at least one type-1 child. The type-2 offspring distribution is simpler: it has k children
of type 2 (only) with probability pkq

k−1. Let the root be type 1.

5.63. Let 1 ≤ b < d < n. Recall the critical probabilities π(•, •) of Proposition 5.30. Show that
π(n, d)π(d, b) ≥ π(n, b).

5.64. Let d ≥ 2. Consider a Galton-Watson process with offspring distribution being geometric
with parameter p. Write τp(d) for the probability that the Galton-Watson tree contains a d-ary
subtree beginning with the initial individual. Show that there exists p0 ∈ (0, 1) such that for
p < p0, we have τp(d) = 0 and for p ≥ τp(d), we have τp(d) > 0. Prove a similar statement when
the offspring distribution is Poisson with parameter λ.

5.65. Show that the extinction probability y(p) introduced in the proof of Proposition 5.31 sat-
isfies y(p) → 0 as p→ 1.

5.66. Show that

π(n, n− 1) =
(n− 1)2n−3

nn−1(n− 2)n−2

for the critical probability of Section 5.7. What is the probability of having an (n−1)-ary subtree
exactly at this value of p?

5.67. Fix an infinite tree T . Let φ:V(T ) → R be given, as well as real-valued independent random
variables A(x) for x ∈ V(T ). Define the associated T -indexed random walk S(x) :=

∑
y≤xA(y).

Let Φ be the set of rays ξ ∈ ∂T such that S(x) > φ(x) for all x ∈ ξ. Suppose that for all ξ ∈ ∂T ,
the probability that ξ ∈ Φ is 0. Show that a.s. |Φ| ∈ {0, 2ℵ0}. Hint: Modify the proof in Section 5.8
of Proposition 5.27.

5.68. Let T be a tree such that supn |Tn|/
√
n <∞. Assign ±1 labels to each vertex independently

with probability 1/2 each. Show that a.s. there is no ray along which the sum of the labels stays
positive.

5.69. Consider fractal percolation in the rectangle [0, 1] × [0, 2] with parameters b and p. That
is, take a union of two independent copies of fractal percolation Qb(p) in the unit square as in
Theorem 5.33, one translated vertically by 1. Let λk(p) denote the probability of a left-to-right
crossing with retained squares of side length b−k and write λ∞(p) := limk λk(p).
(a) Show that there exists p1×2 ∈ [1/b2, 1) such that λ∞(p) = 0 for p < p1×2 and λ∞(p) > 0 for

p > p1×2.
(b) Show that p1×2 ≥ 1/b.

(c) Prove that λk+1(p) ≤ ((4b − 3)λk(p))
2
. Hint: Consider first the case b = 2. Show that

crossing [0, 1/2] × [0, 2] in level k + 1 requires a horizontal crossing of at least one of three
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specific [0, 1/2]× [0, 2] rectangles, or a vertical crossing of at least one of two specific squares
of side 1/2.

(d) Deduce that λ∞(p1×2) > 0.

5.70. Consider fractal percolation Qb(p) in the unit square [0, 1]× [0, 1] with parameters b and p.
Recall that θk(p) denotes the probability of a left-to-right crossing with retained squares of side
length b−k and θ∞(p) := limk θk(p). Let p1×1 := inf {p ∈ [0, 1] ; θ∞(p) > 0}. For a level m square
A on the bottom of the unit square, let LA be the left side of the unit square union the bottom
side to the left of A, and define RA analogously (see Figure 5.5). For k ≥ m, write θk(p,A) for
the probability there exists path of retained squares at level k that connects LA to RA and does
not use A. We also adopt the notation of Exercise 5.69.
(a) Show that λk(p) ≤ 2pm + 2θk(p,A) for all m ≤ k and every A. Hint: See Figure 5.6.

(b) Show that there exists A such that θk(p,A)b
m

≤ θk(p). Hint: Use Harris’s inequality.
(c) Deduce that θ∞(p) = 0 implies λ∞(p) = 0.
(d) Conclude that p1×1 = p1×2 and that θ∞(p1×1) > 0.

A
LA RA

A
LA RA

A′

LA′ RA′

Figure 5.5. Figure 5.6.

The remaining exercises use the following notions. Let X and Y be real-valued random
variables. Say that X is at least Y in the increasing convex order if E[h(X)] ≥ E[h(Y )] for
all non-negative increasing convex functions h:R → R.

5.71. Let X and Y be real-valued random variables.
(a) Show that X is at least Y in the increasing convex order iff

∫∞
a

P[X > t] dt ≥
∫∞
a

P[Y > t] dt
for all a ∈ R.

(b) Suppose that X is at least Y in the increasing convex order. Show that E[h(X)] ≥ E[h(Y )]
for every convex function h:R → R if and only if X and Y have the same mean. When the
means of X and Y are the same, one also says that X is stochastically more variable than
Y .

5.72. Suppose that Xi are non-negative independent identically distributed random variables,
that Yi are non-negative independent identically distributed random variables, and that Xi is
stochastically more variable than Yi for each i ≥ 1.
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(a) Show that
∑n
i=1Xi is at least

∑n
i=1 Yi in the increasing convex order for each n ≥ 1.

(b) Let M and N be non-negative integer-valued random variables independent of all Xi and Yi.
Suppose that M is at least N in the increasing convex order. Show that

∑M
i=1Xi is at least∑N

i=1Xi in the increasing convex order, which, in turn, is at least
∑N
i=1 Yi in the increasing

convex order.

5.73. Suppose that L(1) is an offspring random variable that is at least L(2) in the increasing
convex order and that Z

(i)
n are the corresponding generation sizes of Galton-Watson processes

beginning with 1 individual each.
(a) Show that Z

(1)
n is at least Z

(2)
n in the increasing convex order for each n.

(b) Show that P[Z
(1)
n = 0] ≥ P[Z

(2)
n = 0] for each n if the means of L(1) and L(2) are the same.

(c) Show that the conditional distribution of Z
(1)
n given Z

(1)
n > 0 is at least the conditional

distribution of Z
(2)
n given Z

(2)
n > 0 in the increasing convex order for each n.

(d) Show that the following is an example where L(1) is at least L(2) in the increasing convex

order. Write p
(i)
k for P[L(i) = k]. Suppose that p

(1)
0 > 0, that a := min{k ≥ 1 ; p

(1)
k > 0},

that p
(2)
k = 0 for k > K, that p

(2)
k = p

(1)
k for a < k ≤ K, and that E[L(1)] = E[L(2)].
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Chapter 6

Isoperimetric Inequalities

Just as the branching number of a tree is for most purposes more important than

the growth rate, there is a number for a general graph that is more important for many

purposes than its growth rate. In the present chapter, we consider this number, or, rather,

several variants of it, called isoperimetric or expansion constants. This is not an extension

of the branching number, however; for that, the reader can see Section 13.4.

Our main interest in expansion constants is to apply them to random walks and

percolation on infinite graphs. In particular, whether the expansion is zero or positive

plays a crucial role in determining qualitative behavior of these probabilistic processes.

This will be seen here, as well as in the later Chapters 7, 8, 10, and 11. A similar role is

played on finite graphs, but we touch on finite graphs only briefly in Section 6.4.

§6.1. Flows and Submodularity.

A common illegal scheme for making money, known as a pyramid scheme or Ponzi

scheme, goes essentially as follows. You convince 10 people to send you $100 each and

to ask 10 others in turn to send them $100. Everyone who manages to do this will profit

$900 (and you will profit $1000). Of course, some people will lose $100 in the end. But

suppose that we had an infinite number of people. Then no one need lose money and indeed

everyone can profit $900. But what if people can ask only people they know? Suppose that

people are at the vertices of the square lattice and know only their 4 nearest neighbors.

Is it now possible for everyone to profit $900 (we now do not assume that only $100 can

be passed from one person to another)? Well, if the amount of money allowed to change

hands (i.e., the amount crossing any edge) is unbounded, then certainly this is possible.

But suppose the amount is bounded by, say, $1,000,000? The answer now is no. In fact,

although it is still possible for everyone to profit, the profit cannot be bounded away from

0.

Why is this? Consider first the case that there are only a finite number of people. If

we simply add up the total net gains, we obtain 0, whence it is impossible for everyone to
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gain a strictly positive amount. For the lattice case, consider all the people lying within

distance n of the origin. What is the average net gain of these people? The only reason

this average might not be 0 is that money can cross the boundary. However, because of our

assumption that the money crossing any edge is bounded, it follows that for the average

net gain, this boundary crossing is negligible in the limit as n→ ∞. Hence the average net

gain of everyone is 0 and it cannot be that everyone profits $900 (or even just one cent).

But what if the neighbor graph was that of the hyperbolic tessellation of Figure 2.4?

The figure suggests that the preceding argument, which depended on finding finite subsets

of vertices with relatively few edges leading out of them, will not work. Does that mean

everyone could profit $900? What is the maximum profit everyone could make? The picture

also suggests that the graph is somewhat like a tree, which suggests that significant profit

is possible. Indeed, this is true, as we now show. We will generalize this problem a little

by restricting the amount that can flow over edge e to be at most c(e) and by supposing

that the person at location x has as a goal to profit D(x). We ask: What is the maximum

α such that each person x can profit αD(x)? Thus, on the Euclidean lattice, we saw that

α = 0 when c is bounded above and D is bounded below.

To answer this question, we introduce some terminology. Let G be a connected graph.

Weight the edges by positive numbers c(e) and the vertices by positive numbers D(x). We

call (G, c,D) a network , which is a little more general than the networks we have used

before where we had weights only for the edges. We assume that G is locally finite, or,

more generally, that for each x, ∑
e−=x

c(e) <∞ . (6.1)

For K ⊂ V, we define the edge boundary ∂EK to be the set of (unoriented) edges that

connect K to its complement. Write

|K|D :=
∑
x∈K

D(x)

and

|∂EK|c :=
∑
e∈∂EK

c(e) .

Define the edge-expansion constant or edge-isoperimetric constant of (G, c,D) by

ΦE(G) := ΦE(G, c,D) := inf

{
|∂EK|c
|K|D

; ∅ ̸= K ⊂ V is finite

}
.

This is a measure of how small we can make the boundary effects in our argument above.

The most common choices for (c,D) are (1,1) and (1, deg). For a network with conduc-

tances c, one often chooses (c, π) (as in Section 6.2 below). When ΦE(G) = 0, we say the
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network is edge amenable (we’ll explain the origin of the name after we define “vertex

amenable” below). Thus, the square lattice is edge amenable; but note that there are

large sets in Z2 that also have large boundary. The point is that there exist sets that have

relatively small boundary. This is impossible for a regular tree of degree at least 3.

▷ Exercise 6.1.

Show that ΦE(Tb+1,1,1) = b − 1 for all b ≥ 1, where Tb+1 is the regular tree of degree

b+ 1.

The opposite of “amenable” is non-amenable ; one also says that a non-amenable

network satisfies a strong isoperimetric inequality .

The following theorem (and Exercise 6.2) shows that ΦE(G) is precisely the maximum

proportional profit α that we seek (actually, because of our choice of d∗, we need to take

the negative of the function θ guaranteed by Theorem 6.1). The theorem thus dualizes

the infimum in the definition of ΦE(G) not only to a supremum, but to a maximum. It

is due to Benjamini, Lyons, Peres, and Schramm (1999b), hereinafter referred to as BLPS

(1999b).

Theorem 6.1. (Duality for Edge Expansion) For any network (G, c,D), we have

ΦE(G, c,D) = max
{
α ≥ 0 ; ∃θ ∀e |θ(e)| ≤ c(e) and ∀x d∗θ(x) = αD(x)

}
,

where θ runs over the antisymmetric functions on E.

Proof. Denote by A the set of α of which the maximum is taken on the right-hand side of

the desired equation. Thus, we want to show that maxA = ΦE(G). In fact, we will show

that A =
[
0,ΦE(G)

]
as a consequence of the Max-Flow Min-Cut Theorem.

Given α ≥ 0 and any finite nonempty K ⊂ V, define the network G(K) = G(K,α)

with vertices K and two extra vertices, a and z. The edges are those of G with both

endpoints in K, those in ∂EK where the endpoint not in K is replaced by z, and an edge

between a and each point in K. Give each edge e with both endpoints in K the capacity

c(e). Give each edge [x, z] the capacity of the corresponding edge in ∂EK. Give the other

edges capacity c(a, x) := αD(x).

In view of the cutset consisting of all edges incident to z, it is clear that any admissible

flow from a to z in G(K) has strength at most |∂EK|c. Suppose that α ∈ A, in other words,

there is a function θ satisfying ∀e |θ(e)| ≤ c(e) and ∀x d∗θ(x) = αD(x). This function θ

induces an admissible flow on G(K) from a to z of strength α|K|D by putting the flow

αD(x) on each edge (a, x) for x ∈ K, whence α ≤ |∂EK|c/|K|D. Since this holds for all

K, we get α ≤ ΦE(G).
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In the other direction, if α ≤ ΦE(G), then for all finite K, we claim that there is an

admissible flow from a to z in G(K) of strength α|K|D. Consider any cutset Π separating

a and z. Let K ′ be the vertices in K that Π separates from z. Then ∂EK
′ ⊆ Π and

[a, x] ∈ Π for all x ∈ K \K ′. Therefore,∑
e∈Π

c(e) ≥ |∂EK ′|c + α|K \K ′|D ≥ ΦE(G)|K ′|D + α|K \K ′|D

≥ α|K ′|D + α|K \K ′|D = α|K|D .

Thus, our claim follows from the Max-Flow Min-Cut Theorem. Note that the flow along

[a, x] is αD(x) for every x ∈ K since the flow’s strength is α|K|D.
Now let Kn be finite sets increasing to V and let θn be admissible flows on G(Kn)

with strength α|Kn|D. There is a subsequence ⟨ni⟩ such that for all edges e ∈ E, the limit

θ(e) := θni(e) exists; clearly, ∀e |θ(e)| ≤ c(e) and, by (6.1) and the dominated convergence

theorem, ∀x d∗θ(x) = αD(x). Thus, α ∈ A. ◀

▷ Exercise 6.2.

Show that for any network (G, c,D), we have

ΦE(G, c,D) = max
{
α ≥ 0 ; ∃θ ∀e |θ(e)| ≤ c(e) and ∀x d∗θ(x) ≥ αD(x)

}
,

where θ runs over the antisymmetric functions on E.

Is the infimum in the definition of ΦE(G) a minimum? Certainly not in the edge

amenable case. The reader should find an example where it is a minimum, however. It

turns out that in the transitive case, it is never a minimum, as shown by BLPS (1999b).

Here, we say that a network (G, c,D) is transitive if for every pair x, y ∈ V(G), there is

an automorphism of the graph G that takes x to y and that preserves the edge weights c

and vertex weights D. In order to prove that transitive networks do not have minimizing

sets, we will use the following concept.

A function b on finite subsets of V is called submodular if

∀K,K ′ b(K ∪K ′) + b(K ∩K ′) ≤ b(K) + b(K ′) . (6.2)

For example, K 7→ |K|D is obviously submodular with equality holding in (6.2):

∀K,K ′ |K ∪K ′|D + |K ∩K ′|D = |K|D + |K ′|D . (6.3)

The identity

|∂E(K ∪K ′)|c + |∂E(K ∩K ′)|c + 2 |∂E(K \K ′) ∩ ∂E(K ′ \K)|c = |∂EK|c + |∂EK ′|c , (6.4)

is easy, though tedious, to check. It shows that b:K 7→ |∂EK|c is submodular, with equality

holding in (6.2) iff ∂E(K \K ′)∩∂E(K ′ \K) = ∅, which is the same as K \K ′ not adjacent

to K ′ \K.
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Theorem 6.2. If (G, c,D) is an infinite transitive network, then for all finite nonempty

K ⊂ V, we have |∂EK|c/|K|D > ΦE(G).

Proof. At first, we do not need to suppose that G is transitive. By the submodularity of

b(K) := |∂EK|c and (6.3), we have for any finite K and K ′,

b(K ∪K ′) + b(K ∩K ′)

|K ∪K ′|D + |K ∩K ′|D
≤ b(K) + b(K ′)

|K|D + |K ′|D
,

with equality iff K \K ′ is not adjacent to K ′ \K. Now when a, b, c, d are positive numbers,

we have

min{a/b, c/d} ≤ (a+ c)/(b+ d) ≤ max{a/b, c/d} .

Therefore

min

{
b(K ∪K ′)

|K ∪K ′|D
,
b(K ∩K ′)

|K ∩K ′|D

}
≤ max

{
b(K)

|K|D
,
b(K ′)

|K ′|D

}
, (6.5)

with equality iff K \K ′ is not adjacent to K ′ \K and all four quotients appearing in (6.5)

are equal. (In case K ∩K ′ is empty, omit it on the left-hand side.)

Now we are ready to use the hypothesis that G is transitive. Suppose for a con-

tradiction that there is some finite set K with b(K)/|K|D = ΦE(G). Choose some such

set K of minimal cardinality. Let o ∈ K and choose an automorphism γ of G such

that γo is outside K but adjacent to some vertex in K. Define K ′ := γK. Note that

b(K ′)/|K ′|D = b(K)/|K|D. If K ∩ K ′ ̸= ∅, then our choice of K implies that equality

cannot hold in (6.5), whence K∪K ′ has a strictly smaller quotient, a contradiction. But if

K ∩K ′ = ∅, then K \K ′ and K ′ \K are adjacent, whence (6.5) shows again that K ∪K ′

has a strictly smaller quotient, a contradiction. ◀

Sometimes it is useful to look at boundary vertices rather than boundary edges. Thus,

given positive numbers D(x) on the vertices of a graph G, define the (external) vertex

boundary

∂VK := {x /∈ K ; ∃y ∈ K, y ∼ x}

and

ΦV(G) := ΦV(G,D) := inf

{
|∂VK|D
|K|D

; ∅ ̸= K ⊂ V is finite

}
,

called the vertex-expansion constant or vertex-isoperimetric constant of G. The

most common choice is D = 1. We call G vertex amenable if its vertex-expansion

constant is 0. For two positive functions f1 and f2 on the same domain, write f1 ≍ f2

to mean that inf f1/f2 > 0 and sup f1/f2 < ∞. Note that if (G, c,D) satisfies c ≍ 1 ≍
D ≍ deg, then (G, c,D) is edge amenable iff (G,D) is vertex amenable. We’ll call (G, c,D)

simply amenable if it is both edge amenable and vertex amenable.
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▷ Exercise 6.3.

Suppose that G is a graph such that for some o ∈ V, we have subexponential growth of

balls: lim infn→∞ |{x ∈ V ; d(o, x) ≤ n}|1/n = 1, where d(•, •) denotes the graph distance

in G. Show that (G,1) is vertex amenable.

▷ Exercise 6.4.

Show that every Cayley graph of a finitely generated abelian group is amenable.

▷ Exercise 6.5.

Suppose that G1 and G2 are roughly isometric graphs with bounded degrees and having

both edge and vertex weights ≍ 1. Show that G1 is amenable iff G2 is.

Because of Exercises 6.5 and 3.12, either all Cayley graphs of a group are amenable

or none are; that is, amenability is a property of the group. In fact, the concept of

amenability comes from groups, not graphs. This origin also explains the name “amenable”

in the following way. Let Γ be any countable group and let ℓ∞(Γ) be the Banach space of

bounded real-valued functions on Γ. A linear functional on ℓ∞(Γ) is called a mean if it

maps the constant function 1 to 1 and non-negative functions to non-negative numbers.

If f ∈ ℓ∞(Γ) and γ ∈ Γ, we write (Rγf)(γ
′) := f(γ′γ). We call a mean µ invariant

if µ(Rγf) = µ(f) for all f ∈ ℓ∞(Γ) and all γ ∈ Γ. Finally, we say that Γ is amenable

if there is an invariant mean on ℓ∞(Γ). Thus, “amenable” was introduced as a play on

words that evoked the word “mean”. How is this related to the definitions we have given?

Suppose that Γ is finitely generated and that G is one of its Cayley graphs. If (G,1) is

amenable, then there is a sequence of finite sets Kn with

|∂VKn|/|Kn| → 0 . (6.6)

Now consider the sequence of means

f 7→ µn(f) :=
1

|Kn|
∑
x∈Kn

f(x) .

Then given f ∈ ℓ∞(Γ), for every generator γ of Γ, we see that |µn(f)− µn(Rγf)| → 0 as

n→ ∞, whence the same holds for all γ ∈ Γ. One can use a weak∗ limit point of the means

µn to obtain an invariant mean and therefore show that Γ is amenable. The converse was

established by Følner (1955) and is usually stated in the form that for every nonempty

finite B ⊂ Γ and all ϵ > 0, there is a nonempty finite set A ⊂ Γ such that |BA△A| ≤ ϵ|A|;
see Paterson (1988), Theorem 4.13, for a proof of this converse. In this case, one often
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refers informally to A as a Følner set. More properly, a sequence ⟨Kn⟩ satisfying (6.6) is

called a Følner sequence . In conclusion, a finitely generated group Γ is amenable iff any

of its Cayley graphs is.

The analogue for vertex amenability of Theorem 6.1 is due to Benjamini and Schramm

(1997). It involves the amount flowing along edges into vertices,

flow+(θ, x) :=
∑
e+=x

(
θ(e) ∨ 0

)
.

Theorem 6.3. (Duality for Vertex Expansion) For any graph G with vertex weights

D, we have

ΦV(G,D) = max
{
α ≥ 0 ; ∃θ ∀x flow+(θ, x) ≤ D(x) and d∗θ(x) = αD(x)

}
,

where θ runs over the antisymmetric functions on E.

Proof. This time we use the Max-Flow Min-Cut Theorem in the version of Exercise 3.14,

where capacity constraints are imposed on vertices as well as on edges. Given α ≥ 0 and

any finite nonempty K ⊂ V, define the network G(K) with vertices K ∪ ∂VK and two

extra vertices, a and z. The edges of G(K) are those of G that have both endpoints in

K ∪ ∂VK, an edge between a and each point in K, and an edge between z and each point

in ∂VK. Give all edges incident to a capacity c(a, x) := αD(x). Let the capacity of the

vertices in K be c(x) := (α + 1)D(x), and the capacity of the vertices in ∂VK be D(x).

The remaining edges and vertices are given infinite capacity.

In view of the cutset consisting of all vertices in ∂VK, it is clear that any admissible

flow from a to z in G(K) has strength at most |∂VK|D. Now a function θ satisfying

∀x flow+(θ, x) ≤ D(x) and d∗θ(x) = αD(x) induces an admissible flow on G(K) from a

to z of strength α|K|D, whence α ≤ |∂VK|D/|K|D. Since this holds for all K, we get

α ≤ ΦV(G).

In the other direction, if α ≤ ΦV(G), then for all nonempty K, we claim that there is

an admissible flow from a to z in G(K) of strength α|K|D. Consider any cutset Π of edges

and vertices separating a and z. We will show that |Π|c ≥ α|K|D, whence our claim will

follow from the Max-Flow Min-Cut Theorem. If Π contains an edge of infinite capacity,

then this is trivial, so assume it does not. Let K ′ be the vertices in K that Π separates

from z. Then ∂VK
′ ⊂ Π and [a, x] ∈ Π for all x ∈ K \K ′. Therefore,∑

e∈Π∩E

c(e) +
∑

x∈Π∩V

c(x) ≥ α|K \K ′|D + |∂VK ′|D ≥ α|K \K ′|D +ΦV(G)|K ′|D ≥ α|K|D .
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Thus, our claim follows. Note that the flow along [a, x] is αD(x) for every x ∈ K.

Now let Kn be finite nonempty sets increasing to V and let θn be the corresponding

admissible flows on G(Kn). There is a subsequence ⟨ni⟩ such that for all edges e ∈ E, the

limit θ(e) := θni
(e) exists; clearly, ∀x flow+(θ, x) ≤ D(x) and d∗θ(x) = αD(x). ◀

Not surprisingly, an analogue of Theorem 6.2 holds, that the infimum in the definition

of ΦV(G) is not attained for transitive G; again, this is due to BLPS (1999b). To show it,

we first check that the function K 7→ |∂VK|D is submodular. In fact, the following identity

holds, where K := K ∪ ∂VK:

|∂V(K ∪K ′)|D + |∂V(K ∩K ′)|D + |(K ∩K ′) \K ∩K ′|D = |∂VK|D + |∂VK ′|D . (6.7)

Of course, in the transitive case, we must have D is constant.

Theorem 6.4. If G is an infinite transitive graph, then for all finite nonempty K ⊂ V,

we have |∂VK|/|K| > ΦV(G).

Proof. By the submodularity of b(K) := |∂VK|, we have for any finite K and K ′, as in the

proof of Theorem 6.2, that

min

{
b(K ∪K ′)

|K ∪K ′|
,
b(K ∩K ′)

|K ∩K ′|

}
≤ b(K) + b(K ′)

|K|+ |K ′|
, (6.8)

with equality iff both terms on the left-hand side are equal to the right-hand side. (In case

K ∩K ′ is empty, omit it on the left-hand side.)

Now suppose for a contradiction that G is transitive and that K is a finite set min-

imizing |K| among those K with b(K)/|K| = ΦV(G). Let γ be any automorphism of G

such that γK ∩ K ̸= ∅. Define K ′ := γK. Then (6.8) shows that K ′ = K. Thus, if,

instead, we choose γ so that γK ∩ ∂VK ̸= ∅, then γK ∩K = ∅, whence (6.7) shows that

K ′′ := K ∪ γK satisfies b(K ′′)/|K ′′| < b(K)/|K|, a contradiction. ◀

An interesting aspect of Theorem 6.3 is that it enables us to find (virtually) regular

subtrees in many non-amenable graphs, as shown by Benjamini and Schramm (1997):

Theorem 6.5. (Regular Subtrees in Non-Amenable Graphs) Let G be any graph

with n := ⌊ΦV(G,1)⌋ ≥ 1. Then G has a spanning forest in which every tree has one vertex

of degree n and all others of degree n+ 2.

Proof. The proof of Theorem 6.3 in combination with Exercise 3.15 shows that there is an

integer-valued θ satisfying

∀x flow+(θ, x) ≤ 1 and d∗θ(x) = n . (6.9)
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If there is an oriented cycle along which θ = 1, then we may change the values of θ to be

0 on the edges of this cycle without changing the validity of (6.9). Thus, we may assume

that there is no such oriented cycle. After this, there is no (unoriented) cycle in the

support of θ since this would force a flow ≥ 2 into some vertex x on the cycle, and hence

flow+(θ, x) ≥ n + 2 > 1. We may similarly assume that there is no oriented bi-infinite

path along which θ = 1. Thus, (6.9) shows that for every x with flow+(θ, x) = 1, there

are exactly n + 1 edges leaving x with flow out of x equal to 1. Furthermore, the lack of

an oriented bi-infinite path where θ = 1 shows that each component of the support of θ

contains a vertex into which there is no flow, and (6.9) implies that such a vertex has n

edges leading out with flow 1 each. This immediately implies also that no component of

the support of θ contains two vertices into which there is no flow. Thus, the support of θ

is the desired spanning forest. ◀

This result can be extended to graphs with ΦV > 0, but it is more complicated; see

Benjamini and Schramm (1997). It follows from Theorem 6.5 that if ΦV(G,1) ≥ 1, then

G contains a spanning tree T with ΦV(T,1) ≥ 1: just add edges to the spanning forest

from Theorem 6.5. However, it is unknown whether “≥ 1” can be replaced here by “> 0”,

a question asked by Benjamini and Schramm (1997). It is also unknown whether every

Cayley graph of exponential growth has a non-amenable subtree, another question asked

by Benjamini and Schramm (1997).

§6.2. Spectral Radius.

In most infinite networks of interest, the probability of return of random walk to its

starting point decays to 0 as the number of steps tends to infinity. Intuitively, the more

the network spreads out, the more quickly the return probabilities will decay. This section

makes precise this connection; network spread will be measured by the expansion constant,

while decay of return probabilities will be measured by the spectral radius, to be defined.

As in Chapter 2, we use the inner product notation

(f, g)h := (fh, g) = (f, gh)

and

∥f∥h :=
√

(f, f)h .

Also, let D00 denote the collection of functions on V with finite support.
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Suppose that ⟨Xn⟩ is a Markov chain on a countable state space V with a stationary

measure π. We define the transition operator

(Pf)(x) := Ex
[
f(X1)

]
=
∑
y∈V

p(x, y)f(y) .

Then P maps ℓ2(V, π) to itself with norm

∥P∥π := ∥P∥ℓ2(V,π) := sup
{∥Pf∥π

∥f∥π
; f ̸= 0

}
at most 1.

▷ Exercise 6.6.

Prove that ∥P∥π ≤ 1.

As the reader should recall from the theory of Markov chains, we have that

(Pnf)(x) =
∑
y∈V

pn(x, y)f(y)

when pn(x, y) := Px[Xn = y].

Let G be a (connected) graph with conductances c(e) > 0 on the edges and π(x) be

the sum of the conductances incident to a vertex x. The operator P that we defined above

is self-adjoint: for functions f, g ∈ D00, we have

(Pf, g)π =
∑
x∈V

π(x)(Pf)(x)g(x) =
∑
x∈V

π(x)

[∑
y∈V

p(x, y)f(y)

]
g(x)

=
∑
x∈V

∑
y∈V

c(x, y)f(y)g(x) .

Since this is symmetric in f and g, it follows that (Pf, g)π = (f, Pg)π. Since the functions

with finite support are dense in ℓ2(V, π), we get this identity for all f, g ∈ ℓ2(V, π).

There are two other expressions for the norm ∥P∥π that will be useful to us. One is

in the following exercise, while the other is in our next proposition.

▷ Exercise 6.7.

(Rayleigh Quotient) Show that

∥P∥π = sup

{
|(Pf, f)π|
(f, f)π

; f ∈ D00 \ {0}
}

= sup

{
(Pf, f)π
(f, f)π

; f ∈ D00 \ {0}
}
.
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Proposition 6.6. For any two vertices x, y ∈ V, we have

∥P∥π = lim sup
n→∞

sup
z

(
pn(x, z)/

√
π(z)

)1/n
= lim sup

n→∞
pn(x, y)

1/n . (6.10)

Moreover,

∀n pn(x, y) ≤
√
π(y)/π(x)∥P∥nπ . (6.11)

Proof. Irreducibility of the Markov chain implies that the right-most quantity in (6.10)

does not depend on the choice of x, y. Thus, define

ρ(G) := lim sup
n→∞

pn(x, y)
1/n .

It is clear that the middle term in (6.10) is at least ρ(G). To see that this middle term is

at most ∥P∥π, use pn(x, z) =
(
1{x}, P

n1{z}
)
π
/π(x) and the Cauchy-Schwarz inequality to

deduce that pn(x, z) ≤
√
π(z)/π(x)∥Pn∥π ≤

√
π(z)/π(x)∥P∥nπ. This also implies (6.11).

Finally, to show the converse inequality that ∥P∥π ≤ ρ(G), suppose that 0 ≤ f ∈
D00 \ {0}. Then self-adjointness of P and the Cauchy-Schwarz inequality yield

∥Pn+1f∥4π = (Pnf, Pn+2f)2 ≤ ∥Pnf∥2π∥Pn+2f∥2π .

This means that ∥Pn+1f∥π/∥Pnf∥π is increasing, whence it has a limit, L. Since the

product of these quotients for n = 0, . . . , N − 1 is ∥PNf∥π/∥f∥π, we have that

L = lim
N→∞

(
∥PNf∥π/∥f∥π

)1/N
= lim
N→∞

∥PNf∥1/Nπ . (6.12)

Now p2n(x, x) ≥ pn(x, x)
2, since one way to return after 2n steps is to return after n steps

and then again after n steps. Therefore,

ρ(G) = lim sup
n→∞

p2n(x, x)
1/2n .

Thus, for 0 ≤ f ∈ D00 \ {0}, we have, by self-adjointness of P ,

lim sup
n→∞

∥Pnf∥1/nπ = lim sup
n→∞

(P 2nf, f)1/2nπ

= lim sup
n→∞

[∑
x,y

π(x)f(x)f(y)p2n(x, y)

]1/2n
= ρ(G) .

Combining this with (6.12), we deduce that L = ρ(G). In particular, ∥Pf∥π/∥f∥π ≤ ρ(G).

When f ∈ D00 is not assumed to be non-negative, we may use the inequality ∥Pf∥π ≤∥∥P |f |∥∥
π
to deduce that ∥Pf∥π ≤ ρ(G)∥f∥π in general, i.e., ∥P∥π ≤ ρ(G). ◀
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Thus, we have proved that the norm ∥P∥π equals the spectral radius,* denoted

(as in the proof) ρ(G). For a non-reversible Markov chain, the norm of the transition

operator is not generally equal to its spectral radius. Here, in this more general setting,

lim supn→∞ pn(x, y)
1/n is called the spectral radius of the Markov chain.

For example, the spectral radius of simple random walk in Zd is 1 since the return

probabilities decay only polynomially fast. If the walk were biased, this might no longer

hold. Likewise, simple random walk on a regular tree of degree d ≥ 3 has spectral radius

less than 1; we will calculate it exactly in several ways (Exercise 6.9, (6.22), Exercise 6.57,

and Proposition 7.35).

Theorem 6.7. (Expansion and Spectral Radius) Let (G, c, π) be a connected infinite

network and ΦE(G) := ΦE(G, c, π) be its edge-expansion constant. The spectral radius ρ(G)

of the associated network random walk satisfies

ΦE(G)
2/2 ≤ 1−

√
1− ΦE(G)2 ≤ 1− ρ(G) ≤ ΦE(G) . (6.13)

The most important consequence of this is the qualitative statement that the spectral

radius ρ(G) is less than 1 iff the network (G, c, π) is non-amenable.

To prove Theorem 6.7, we will use the following easy calculation:

▷ Exercise 6.8.

Show that for f ∈ D00, we have d∗(c df) = π(f − Pf).

The meaning of the equation in this exercise is as follows. Recall from Section 2.8

that the gradient of a function f on V is the antisymmetric function

∇f := c df

on E. If we define the divergence by div θ := π−1d∗θ, then Exercise 6.8 says that div∇ =

I − P , where I is the identity. This is the discrete probabilistic Laplace operator. In

particular, div∇f = 0 iff Pf = f , i.e., f is harmonic according to our definition of

“harmonic” in Section 2.1.

Now by Exercise 6.8, we have that for f ∈ D00,

(df, df)c = (c df, df) =
(
d∗(c df), f

)
=
(
π(f − Pf), f

)
= (f, f)π − (Pf, f)π . (6.14)

* For a general operator on a Banach space, its spectral radius is defined to be max |z| for z in the
spectrum of the operator. This agrees with the usage in probability theory, but we will not need this
representation explicitly.
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Combine this with Exercise 6.7 and Proposition 6.6 to write

ρ(G) = sup

{
(Pf, f)π
(f, f)π

; f ∈ D00 \ {0}
}

= sup

{
(f, f)π − (df, df)c

(f, f)π
; f ∈ D00 \ {0}

}
= 1− inf

{
(df, df)c
(f, f)π

; f ∈ D00 \ {0}
}
. (6.15)

Choosing f := 1K ∈ D00 shows the last inequality in (6.13). This also illustrates the

primary difference between ρ(G) and ΦE(G): the former is related to all f ∈ D00, while

the latter is related only to indicator functions.

We will also use the following lemma for the proof of Theorem 6.7.

Lemma 6.8. For any non-negative f ∈ D00, we have

ΦE(G, c, π)
∑
x∈V

f(x)π(x) ≤
∑
e∈E1/2

|df(e)|c(e) .

Proof. For t > 0, we may use K := {x ; f(x) > t} in the definition of ΦE to see that

ΦE · |{x ; f(x) > t}|π ≤
∑
x,y∈V

c(x, y)1{f(x)>t≥f(y)} . (6.16)

Now ∫ ∞

0

|{x ; f(x) > t}|π dt =
∑
x∈V

f(x)π(x)

and ∫ ∞

0

1{f(x)>t≥f(y)} dt = f(x)− f(y)

if f(x) ≥ f(y). Therefore, integrating (6.16) on t ∈ (0,∞) gives the desired result. ◀

Proof of Theorem 6.7. We have already seen the last inequality in (6.13). The first in-

equality in (6.13) comes from the elementary inequality 1 − x/2 ≥
√
1− x. To prove the

crucial middle inequality, let f ∈ D00. Apply Lemma 6.8 to f2 to get

(f, f)2π ≤ ΦE(G)
−2

 ∑
e∈E1/2

c(e)
∣∣f(e+)2 − f(e−)2

∣∣2

(6.17)

= ΦE(G)
−2

(∑
e

c(e)
∣∣f(e+)− f(e−)

∣∣ · ∣∣f(e+) + f(e−)
∣∣)2

≤ ΦE(G)
−2

(∑
e

c(e)df(e)2

)(∑
e

c(e)
(
f(e+) + f(e−)

)2)
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by the Cauchy-Schwarz inequality. The last factor here is

∑
e

c(e)
[
f(e+)2 + f(e−)2 + 2f(e+)f(e−)

]
=
∑
x

π(x)f(x)2 +
∑
x∼y

c(x, y)f(x)f(y)

= (f, f)π +
∑
x

f(x)π(x)
∑
y∼x

p(x, y)f(y)

= (f, f)π + (f, Pf)π = 2(f, f)π − (df, df)c

by (6.14). Therefore,

(f, f)2π ≤ ΦE(G)
−2
[
2(f, f)π − (df, df)c

]
(df, df)c .

A little algebra transforms this to

(
1− (df, df)c

(f, f)π

)2

≤ 1− ΦE(G)
2 .

This gives the middle inequality of (6.13) when combined with (6.15). ◀

▷ Exercise 6.9.

Show that for simple random walk on Tb+1, we have ρ(Tb+1) = 2
√
b/(b+ 1).

As one application of knowing the spectral radius, we give a sufficient condition for

random walk on a network to have positive speed. Later, in Section 13.4, we will give some

necessary conditions for positive speed. Define the upper (exponential) growth rate of

a graph to be lim supn→∞ |B(o, n)|1/n, where B(o, n) is the ball of radius n centered at o,

i.e., the set of vertices whose graph distance from o is at most n.

Proposition 6.9. (Speed and Spectral Radius) Let G be a graph with upper expo-

nential growth rate b ∈ (1,∞). Suppose that the edges are weighted so that the spectral

radius ρ(G) < 1 and π is bounded. Then the network random walk ⟨Xn⟩ on G has positive

liminf speed, i.e.,

lim inf
n→∞

distG(X0, Xn)/n ≥ − log ρ(G)/ log b a.s.

Note that distG(•, •) denotes the graph distance, so that the quotient whose limit we

are taking is distance divided by time. This is the reason we call it “speed”.
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Proof. Without loss of generality, assume X0 is a fixed vertex, o. Let α < − log ρ(G)/ log b,

so that ρ(G)bα < 1. Choose λ > b so that ρ(G)λα < 1. Equation (6.11), our assumption

that π is bounded, and the definition of b ensure that there is some constant M < ∞ so

that for all n ≥ 0,

∀y ∈ V pn(o, y) ≤Mρ(G)n

and ∣∣{y ; distG(o, y) ≤ n}
∣∣ ≤Mλn .

Therefore,

Po

[
distG(o,Xn) ≤ αn

]
=

∑
distG(o,y)≤αn

pn(o, y) ≤M2ρ(G)
n
λαn =M2

[
ρ(G)λα

]n
.

Since this is summable in n, it follows by the Borel-Cantelli lemma that distG(o,Xn) ≤ αn

only finitely often a.s. ◀

In Section 7.7, we will apply Theorem 6.7 to percolation on non-amenable graphs.

§6.3. Non-Backtracking Paths and Cogrowth.

A path in a multigraph is called non-backtracking if no edge is immediately followed

by its reversal. Note that a loop is its own reversal. Non-backtracking random walks are

almost as natural as ordinary random walks, though more difficult to analyze in most

situations. Moreover, they can be more useful than ordinary random walks when random

walks are used to search for something, as they explore more quickly, not wasting time

immediately backtracking; see Exercise 6.58. In this section, however, we use them to

analyze the spectral radius of ordinary random walks on regular graphs.

We begin with some calculations that count paths and non-backtracking paths for

general d-regular graphs, G. Write b := d − 1. Let A be the adjacency matrix of G,

where A(x, y) is the number of edges from x to y. Let Ak be the matrix whose (x, y)-entry

is the number of non-backtracking paths of length k from x to y for x, y ∈ V(G). Define

A−1 := 0 and note that A0 = I, A1 = A. We claim that

Ak+1 =

{
AAk − bAk−1 for k ∈ N \ {1},
AA1 − dI for k = 1.

(6.18)

Indeed, the (x, y)-entry of AAk equals the number of paths x = x0, x1, . . . , xk+1 = y

such that the path from x1 to xk+1 does not backtrack. This includes once each non-

backtracking path of length k + 1 from x to y, but also includes backtracking paths when
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x2 = x. For each non-backtracking path x2, . . . , xk+1 of length k − 1 from x to y, there

are b choices of edges from x to some x1 that make a path counted by AAk, namely, all

the edges incident to x other than the one used from x2 to x3. (We have to speak of edges

in case of multiple edges or loops.) This exception (to x3) does not occur, however, when

k = 1.

Now define F (z) :=
∑
k≥0Akz

k. Multiplying the recursion (6.18) by zk and summing

over k ≥ 0, we get
F (z)− I

z
= AF (z)− bzF (z)− zI

whenever the series converge. Since ∥A∥ ≤ d and thus ∥Ak∥ ≤ ∥A∥k ≤ dk, all the series

do converge when |z| < 1/d. Solving this equation for F (z) gives

F (z) = (1− z2)
(
(1 + bz2)I − zA

)−1
(6.19)

for |z| < 1/d.

Next, let the number of cycles of length n starting from some fixed o ∈ V(G) be cn(G),

while the number of those that are non-backtracking is bn(G). Factor out 1 + bz2 from

(6.19) and expand the inverse as a geometric series. Then look at the (o, o)-entry. Since

|z| < 1/(d+ 1) implies that |z/(1 + bz2)| < 1/d, we get that for |z| < 1/(d+ 1),

∑
n≥0

bn(G)z
n =

1− z2

1 + bz2

∑
n≥0

cn(G)
( z

1 + bz2

)n
. (6.20)

Now consider the special case where G = Tb+1, the d-regular tree. In that case,

bn(G) = 0 for all n ≥ 1 and b0(G) = 1. Put w := z/(1 + bz2). Then z/w = 1 + bz2,

whence 1 = w/z + bwz. Therefore,
(∑

n≥0 cn(Tb+1)w
n
)−1

= (1 − z2)w/z = 1 − dwz.

Since z = (1−
√
1− 4bw2)/(2bw), we get that

∑
n≥0

cn(Tb+1)w
n =

2b

b− 1 + (b+ 1)
√
1− 4bw2

(6.21)

for small w. The radius of convergence of the series on the left is the reciprocal of the

exponential growth rate of c2n, i.e., is equal to 1/
(
dρ(Tb+1)

)
. The right-hand side of

(6.21) shows that the radius of convergence is equal to 1/
(
2
√
b
)
—the function cannot be

analytically continued from a neighborhood of 0 to w = 1/
(
2
√
b
)
—, whence

ρ(Tb+1) =
2
√
b

b+ 1
, (6.22)

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



Chap. 6: Isoperimetric Inequalities 210

as in Exercise 6.9. (Recall that a function is analytic at a point if it is equal to a convergent

power series in a (complex) neighborhood of that point. If f1: Ω1 → C is an analytic

function and Ω′ ⊆ C (possibly a singleton), then we say that f1 can be analytically

continued to Ω′ if there exists an open connected set Ω2 ⊇ Ω1 ∪ Ω′ and an analytic

function f2: Ω2 → C such that f2↾Ω1 = f1. If Ω1 is open, then f2 is unique when it exists.)

In order to compare ρ(G) to ρ(Td) for other d-regular G, we continue analyzing (6.20)

for general d-regular G. Let cogr(G) := lim supn→∞ bn(G)
1/n, the exponential growth

rate of the number of non-backtracking cycles containing o. This number is called the

cogrowth of G. The reason for this name is that if we consider a covering map φ:Td → G,

then the cogrowth of G equals the exponential growth rate of φ−1(o) inside Td since φ

induces a bijection between simple paths in Td and non-backtracking paths in G. One can

see by using this covering map that cogr(G) does not depend on o. In particular, if G is

the Cayley graph of Γ with respect to S and Γ is (isomorphic to) the quotient of the free

group on S by the normal subgroup N , then cogr(G) is the growth rate of N inside the

free group.

The central result about cogrowth is the following formula (6.24), due to Grigorchuk

(1980) for Cayley graphs and extended by Northshield (1992) to all regular graphs:

Theorem 6.10. (Cogrowth Formula) If G is a d-regular connected multigraph, then

cogr(G) >
√
d− 1 iff ρ(G) >

2
√
d− 1

d
, (6.23)

in which case

dρ(G) =
d− 1

cogr(G)
+ cogr(G) . (6.24)

If the conditions of (6.23) fail, then ρ(G) = 2
√
d− 1/d and cogr(G) ≤

√
d− 1.

Proof. Suppose that G is d-regular. We may assume that G is not a tree. We follow the

notation previously established. Let g(z) be an analytic continuation of
∑
n≥0 bn(G)z

n

and h(z) be an analytic continuation of
∑
n≥0 cn(G)z

n. Write ψ(z) := z/(1 + bz2). Thus,

(6.20) becomes in this notation

g(z) =
1− z2

1 + bz2
h
(
ψ(z)

)
.

The idea now is to equate radii of convergence, but because of the composition with ψ(z)

on the right, we have to do this carefully. In fact, we are going to look only at analytic

continuation along the real line.
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The radius of convergence for g(z) about z = 0 is z1 := 1/cogr(G) ≤ 1, while that for

h(z) is z2 := 1/
(
dρ(G)

)
. Equation (6.24) is equivalent to ψ(z1) = z2. Because both series

have non-negative coefficients, Pringsheim’s theorem (see Exercise 6.53) tells us that g can

be analytically continued to [0, z1) but not to [0, z1], and likewise h can be analytically

continued to [0, z2) but not to [0, z2]. Note that ψ(0) = 0, ψ(z) is strictly monotone

increasing for 0 < z < 1/
√
b, and ψ(z) is strictly monotone decreasing for z > 1/

√
b.

The fact that g is analytic on [0, z1) implies that h
(
ψ(z)

)
is analytic on that same

interval, whence ψ(z1) ≤ z2.

Now suppose that cogr(G) >
√
d− 1, i.e., z1 < 1/

√
b. Since z1 is a singularity of g

and ψ is strictly increasing on [0, z1), it must be that ψ(z1) is a singularity of h, whence

ψ(z1) ≥ z2. Together with the result of the preceding paragraph, this gives ψ(z1) = z2,

i.e., (6.24).

Next, suppose that ρ(G) > 2
√
d− 1/d, i.e., z2 < ψ

(
1/
√
b
)
. Then the smaller value

of ψ−1(z2) is the first singularity of h
(
ψ(z)

)
on the positive real line, whence it equals z1.

This is (6.24) again.

Since each condition of (6.23) implies (6.24), it is clear that the two conditions of

(6.23) are equivalent.

Finally, since Tb+1 covers G, we may couple simple random walk on G with simple

random walk on Tb+1 in such a way that it returns to o ∈ V(G) if it returns to its starting

point in Tb+1. Thus, ρ(G) ≥ ρ(Tb+1). ◀

A great advantage of the cogrowth formula is that it allows us to show that ρ(G) >

ρ(Tb+1) in many common situations by showing that cogr(G) >
√
b. Kesten (1959b) proved

the following result and various extensions for Cayley graphs:

Theorem 6.11. If d ≥ 3 and G is a d-regular transitive multigraph that is not a tree,

then ρ(G) > ρ(Td).

It follows that (6.24) holds for all transitive multigraphs, G, other than trees.

Proof. Let L be the length of the shortest cycle in G (which is 1 if there is a loop). Consider

a non-backtracking random walk ⟨Yn ; n ≥ 1⟩, where each edge Yn+1 is chosen uniformly

among the edges incident to the head Y +
n of Yn, other than the reversal of Yn. We are

going to handle loops differently than other cycles, so it will be convenient to let

L′ :=
{
L if L > 1,
3 if L = 1.

Let An be the event that Yn+1, . . . , Yn+L′ is a non-backtracking cycle. For n ≥ 1,

P(An | Y1, . . . , Yn) ≥
1

dbL′−1
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since if L > 1, then there is a way to traverse a simple cycle starting at Y +
n and not

using the reversal of Yn, while if L = 1, then the walk can first choose an edge other than

the reversal of Yn, then traverse a loop, and then return by the reversal of Yn+1. Let

Zk := 1AkL′ −P(AkL′ | Y1, . . . , YkL′). Then ⟨Zk⟩ are uncorrelated, whence by the Strong

Law of Large Numbers for uncorrelated random variables (Theorem 13.1), we have

lim
n→∞

1

n

n−1∑
k=0

Zk = 0 a.s. ,

which implies that

lim inf
n→∞

1

n

n−1∑
k=0

1AkL′ ≥
1

dbL′−1
a.s.

Therefore if we choose ϵ < 1/
(
dbL

′−1
)
, then in nL′ steps, at least ϵn events AkL′ will occur

for 0 ≤ k < n with probability tending to 1 as n→ ∞.

Consider the following transformation of a path P = (Y1, . . . , YnL′) to a “reduced”

path P ′: For each k such that AkL′ occurs, remove the edges Yk+1, . . . , Yk+L′ . Next, com-

bine P and P ′ to form a non-backtracking cycle P ′′ by following P with a non-backtracking

cycle of length L′ that does not begin with the reversal of YnL′ , and then by returning to

the tail of Y1 by P ′ in reverse order. Note that the map P 7→ P ′′ is 1-1.

When at least ϵn events AkL′ occur, the length of P ′′ is at most (2n+1− ϵn)L′. The

number of non-backtracking paths Y1, . . . , Yn equals dbn−1, whence
∑
k≤(2n+1−ϵn)L′ bk(G) ≥

dbnL
′−1/2 for large n. This gives that cogr(G) >

√
b, which implies the result by Theo-

rem 6.10. ◀

Remark 6.12. An alternative way of handling loops in the above proof is to use Exer-

cise 6.37. On the other hand, the proof can be modified to go beyond transitive multi-

graphs, provided that there is a non-backtracking cycle of length at most L at every vertex.

This method of proof can be shown to work with even weaker hypotheses: see Lyons and

Peres (2013), inspired by Theorem 5 of Abért, Glasner, and Virág (2011). The latter au-

thors also prove quantitative versions and other extensions, with conclusions about spectral

radii also derived from the analysis of non-backtracking walk.

▷ Exercise 6.10.

Let G be a d-regular multigraph. Show that ρ(G) = 1 iff cogr(G) = d− 1.

▷ Exercise 6.11.

Give an example of a d-regular graph G where 1 < cogr(G) <
√
d− 1.
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§6.4. Relative Mixing Rate, Spectral Gap and Expansion in Finite Networks.

In this section we investigate the rate at which random walk on a finite network

converges to the stationary distribution. This is an analogue to spectral radius on infinite

networks and there is an inequality analogous to Theorem 6.7 that relates this rate to an

expansion constant.

There are many ways to measure convergence to the stationary distribution. We’ll

consider one here, and another in Section 13.3. Namely, at any time t, we’ll consider here

the relative distance to the stationary distribution, maximized over the initial and current

state:

max
x,y∈V

∣∣∣∣pt(x, y)− π(y)

π(y)

∣∣∣∣ .
In this section, all inner products are with respect to the stationary probability

measure π, i.e.,

⟨f, g⟩ := (f, g)π =
∑
x∈V

π(x)f(x)g(x) .

As we have seen in the preceding section, the transition operator P is self-adjoint with

respect to this inner product. Now the norm of P is at most 1 by Exercise 6.6. Because we

are working now on a finite network, P has 1 as an eigenvector with eigenvalue 1. Thus, we

may write the eigenvalues of P as −1 ≤ λn ≤ · · · ≤ λ1 = 1, where n := |V|. Since we still

want to use the notation that π(x) =
∑
e−=x c(e), we now assume that the conductances

are normalized so that
∑
e∈E1/2

c(e) = 1/2.

We will show that when the Markov chain is aperiodic, the chain converges to its

stationary distribution at an exponential rate in t, with the exponent given by the gap

between 1 and the absolute values of the other eigenvalues. The idea is that any function

can be expanded in a basis of eigenfunctions. This expansion shows clearly how P t acts on

the given function. Those parts of the function multiplied by small eigenvalues go quickly

to 0 as t→ ∞.

▷ Exercise 6.12.

Show that λ2 < 1 iff the network is connected and that λn > −1 iff the random walk is

aperiodic.

Theorem 6.13. (Relative Mixing Rate and Absolute Spectral Gap) Consider

an aperiodic random walk on a finite connected network. Let πmin := minx π(x) and

λ∗ := maxi≥2 |λi|. Write g∗ := 1− λ∗. Then for all vertices x and y,∣∣∣∣pt(x, y)− π(y)

π(y)

∣∣∣∣ ≤ e−g∗t

πmin
.
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Proof. Consider the functions ψx := 1{x}/π(x) on the vertices, indexed by vertices x.

Since for all x and y we have (P tψy)(x) = pt(x, y)/π(y), we get that

pt(x, y)− π(y)

π(y)
= ⟨ψx, P tψy − 1⟩ . (6.25)

Since P1 = 1, we have

⟨ψx, P tψy − 1⟩ = ⟨ψx, P t(ψy − 1)⟩ ≤ ∥ψx∥π∥P t(ψy − 1)∥π . (6.26)

Let ⟨fi⟩ni=1 be a basis of orthogonal eigenvectors of P , where fi is an eigenvector of

eigenvalue λi. Since ψy − 1 is orthogonal to 1, there exist constants ⟨ai⟩ni=2 such that

ψy − 1 =
∑n
i=2 aifi, whence∥∥P t(ψy − 1)

∥∥2
π
=
∥∥∥ n∑
i=2

λtiaifi

∥∥∥2
π
=

n∑
i=2

|λtiai|2∥fi∥2π

≤
n∑
i=2

λ2t∗ |ai|2∥fi∥2π = λ2t∗

∥∥∥ n∑
i=2

aifi

∥∥∥2
π

= λ2t∗ ∥ψy − 1∥2π . (6.27)

Since (ψy−1) ⊥ 1, an orthogonal decomposition of ψy is (ψy−1)+1, whence ∥ψy−1∥π ≤
∥ψy∥π, and thus by (6.25), (6.26), and (6.27),∣∣∣∣pt(x, y)− π(y)

π(y)

∣∣∣∣ ≤ λt∗∥ψx∥π∥ψy∥π =
λt∗√

π(x)π(y)
≤ e−g∗t

π∗
. ◀

▷ Exercise 6.13.

Show that the rate of exponential convergence in Theorem 6.13 cannot be faster than the

gap g∗. More precisely, show that for all pairs x, y,

lim
t→∞

− log |pt(x, y)− π(y)|
t

= g∗ .

Because of the bound in Theorem 6.13, we’d like to know how we can estimate the

absolute spectral gap g∗ := 1 − maxi≥2 |λi| defined in that theorem. Intuitively, if a

Markov chain has a “bottleneck”, that is, a large set of states with large complement that

is difficult to transition into or out of, then it will take it more time to mix, i.e., to become

close to the stationary distribution. To formulate this intuition and relate it to the absolute

spectral gap, we define what is known as the expansion constant, the analogue for finite

networks of the expansion constant we defined in Section 6.1 for infinite networks.

For any two subsets of vertices A and B, let c(A,B) :=
∑
a∈A,b∈B c(a, b) and π(A) :=∑

a∈A π(a) (which we have also denoted |A|π).
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Definition 6.14. The expansion constant of a finite network is

Φ∗ := min
{
ΦS ; 0 < π(S) ≤ 1/2

}
,

where for S ⊆ V,

ΦS :=
c(S, Sc)

π(S)
.

Note that 0 ≤ ΦS ≤ 1 and ΦS is the probability that one step from a π-random state

in S will lead to Sc. (The standard notation Φ may suggest a graph cut in two.) A more

symmetrical form of Φ∗ is

Φ∗ = min
{ c(S, Sc)

min{π(S), π(Sc)}
; 0 < π(S) < 1

}
.

Some people prefer to define Φ∗ as the slightly different quantity

min
{ c(S, Sc)

π(S)π(Sc)
; 0 < π(S) < 1

}
,

which is equal to our definition up to a factor of at most 2.

The following theorem is the analogue of Theorem 6.7. Combined with the previous

theorem, it connects the expansion properties of a network with its mixing time via its

spectral gap g := 1 − λ2. We assume that the chain is lazy , i.e., for any state x we

have that p(x, x) ≥ 1/2. In that case, P = (I + P̃ )/2 where P̃ is the transition operator

of the random walk on another network, and hence all the eigenvalues of P are in [0, 1],

so λ∗ = λ2. Note that laziness implies aperiodicity. If the chain is not lazy, then we can

always consider the new chain with transition matrix (I + P )/2, which is lazy.

Theorem 6.15. (Expansion and Spectral Gap) Let λ2 be the second eigenvalue of

a reversible and lazy Markov chain and g := 1− λ2. Then

Φ∗
2

2
≤ g ≤ 2Φ∗ .

We will use the following lemma in the proof of the lower bound. The proof is the

same as that for Lemma 6.8.

Lemma 6.16. Let ψ ≥ 0 be a function on the vertices of a network with stationary

probability distribution π. If π[ψ > 0] ≤ 1/2, then

Φ∗
∑
x

ψ(x)π(x) ≤ 1

2

∑
x,y

∣∣ψ(x)− ψ(y)
∣∣c(x, y) .

We also need the following analogue of Exercise 6.7:
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▷ Exercise 6.14.

Show that

λ2 = max
f⊥1

⟨Pf, f⟩
⟨f, f⟩

.

Proof of Theorem 6.15. The upper bound is easier. By Exercise 6.14, we have

g = min
f⊥1

⟨(I − P )f, f⟩
⟨f, f⟩

. (6.28)

As we have seen before in (6.14), expanding the numerator gives

⟨(I − P )f, f⟩ = 1

2

∑
x,y

π(x)p(x, y)[f(y)− f(x)]2 .

To obtain g ≤ 2Φ∗, consider any S with π(S) ≤ 1/2. Define a function f by f(x) := π(Sc)

for x ∈ S and f(x) := π(S) for x ̸∈ S. Then
∑
x f(x)π(x) = 0, so f ⊥ 1. Using this f in

(6.28), we get that

g ≤ 2c(S, Sc)

2π(S)π(Sc)
≤ 2c(S, Sc)

π(S)
= 2ΦS ,

and so g ≤ 2Φ∗.

To prove the lower bound, take an eigenfunction f2 such that Pf2 = λ2f2 and

π[f2 > 0] ≤ 1/2 (if this inequality does not hold, take −f2). Define a new function

f := max{f2, 0}. We claim that

∀x [(I − P )f ](x) ≤ gf(x) .

This is because if f(x) = 0, this inequality translates to −(Pf)(x) ≤ 0, which is true since

f ≥ 0, while if f(x) > 0, then [(I − P )f ](x) ≤ [(I − P )f2](x) = gf2(x) = gf(x). Since

f ≥ 0, we get

⟨(I − P )f, f⟩ ≤ g⟨f, f⟩ ,

or equivalently,

g ≥ ⟨(I − P )f, f⟩
⟨f, f⟩

=: R .

(This looks like a contradiction to (6.28), but it is not since f is not orthogonal to 1.)

Then just as in the proof of Theorem 6.7, we obtain

1− Φ∗
2

2
≥
√

1− Φ∗2 ≥ 1−R ≥ 1− g . ◀
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Families of graphs with rapid mixing are useful in a variety of applications in theo-

retical computer science; see, e.g., Hoory, Linial, and Wigderson (2006). To ensure rapid

mixing, one usually bounds the expansion constants from below. A family of d-regular

graphs {Gn} is said to be a (d, c)-expander family if the expansion constant of the simple

random walk on Gn satisfies Φ∗(Gn) ≥ c for all n.

Although for applications, explicit families of expanders are needed, they are more

difficult to construct than random families. We now construct a 3-regular family ⟨Gn⟩ of
expander multigraphs. This was the first construction of an expander family of bounded

degree and it is due to Pinsker (1973).* We will construct Gn = (V,E) as a bipartite

graph with parts A and B, each with n vertices. Although A and B are distinct, we will

denote them both by {1, . . . , n}. Draw uniformly at random two permutations σ1, σ2 of

{1, . . . , n} and take the edge set to be E =
{(
i, i
)
,
(
i, σ1(i)

)
,
(
i, σ2(i)

)
; 1 ≤ i ≤ n

}
. We’ll

call this Pinsker’s model on 2n vertices.

Theorem 6.17. There exists δ > 0 such that with probability tending to 1 as n → ∞,

Pinsker’s model on 2n vertices satisfies ∀S ⊂ V with 0 < |S| ≤ n,

|∂ES|
|S|

> δ .

Proof. We claim that it is enough to prove that for some δ > 0, with probability tending

to 1, every non-empty S ⊂ A of size k ≤ ⌊n/2⌋ has at least
⌈
(1 + δ)k

⌉
neighbors ∂VS in

B. To see this, consider any S ⊂ V with 0 < |S| ≤ n. Write S = S1 ∪ S2 with S1 ⊆ A and

S2 ⊆ B. We may assume that |S1| ≥ |S2|. If |S1| > n/2, then let S′ be a subset of S1 of

cardinality ⌊n/2⌋; otherwise, let S′ := S1. In either case, we have |S′| ≥ |S2| and so

|∂ES| ≥ |∂VS′| − |S2| ≥
⌈
(1 + δ)|S′|

⌉
− |S′| ≥ δ|S′| ≥ δ|S|/2

if our condition holds.

So let S ⊂ A be a set of size 0 < k ≤ ⌊n/2⌋. We wish to bound from above the

probability that |∂VS| ≤ ⌊(1 + δ)k⌋. Since (i, i) is an edge for every 1 ≤ i ≤ n, we always

have that |∂VS| ≥ k. Consider therefore the possible vertex sets of size
⌊
(1 + δ)k

⌋
that

could contain ∂VS and calculate the probability that both σ1(S) and σ2(S) fall within that

set. A first-moment argument (union bound) then gives

P
[
|∂VS| ≤ ⌊(1 + δ)k⌋

]
≤

(
n

⌊δk⌋
)(⌊(1+δ)k⌋

k

)2(
n
k

)2 .

* An earlier random construction with bounded mean degree was due to Kolmogorov and Barzdin’
(1967).
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Considering now all possible S, we obtain

P
[
∃S ⊂ A 0 < |S| ≤ ⌊n

2
⌋ , |∂VS| ≤ ⌊(1 + δ)k⌋

]
≤

⌊n/2⌋∑
k=1

(
n

k

)( n
⌊δk⌋
)(⌊(1+δ)k⌋

⌊δk⌋
)2(

n
k

)2 ,

which tends to 0 for δ > 0 small enough by the following calculation.

Since for any integer ℓ, we have log ℓ! =
∑ℓ
i=2 log i ≥

∫ ℓ
1
log x dx = ℓ log ℓ− ℓ+ 1, i.e.,

ℓ! ≥ e(ℓ/e)ℓ, it follows that(
n

⌊δk⌋

)
≤ n⌊δk⌋

⌊δk⌋!
<

(
en

⌊δk⌋

)⌊δk⌋

≤
(en
δk

)δk
,

where the last inequality holds because t 7→ (en/t)t is increasing for t ∈ (0, n). Similarly

bound
(⌊(1+δ)k⌋

⌊δk⌋
)
, while

(
n
k

)
≥ nk

kk
. This gives

⌊n/2⌋∑
k=1

(
n

⌊δk⌋
)(⌊(1+δ)k⌋

⌊δk⌋
)2(

n
k

) <

⌊n/2⌋∑
k=1

(k
n

)(1−δ)k[e3(1 + δ)2

δ3

]δk
.

Each term clearly tends to 0 as n tends to ∞, for any δ ∈ (0, 1), and since k
n ≤ 1

2 and(
1
2

)(1−δ) [ e3(1+δ)2
δ3

]δ
< 1 for δ ≤ 0.05, for any such δ the whole sum tends to 0 as n tends

to ∞ by the dominated convergence theorem. ◀

§6.5. Planar Graphs.

With rare exceptions, planar graphs are the only graphs we can draw in a nice way and

gaze at. See Figures 6.1 and 6.2 for some examples drawn by a program created by Don

Hatch. They also make great art; see Figure 6.3 for a transformation by Doug Dunham of

a print by Escher.

These are good reasons for studying planar graphs separately. But a mathematical

reason is that they often exhibit special behavior, as we will see several times in this book,

and there are special techniques available as well. Planar duality is a prototype for more

general types of duality, which is yet another reason to study it.

A planar graph is one that can be drawn in the plane in such a way that edges do not

cross; an actual such embedding is called a plane graph. If G is a plane graph such that

each bounded set in the plane contains only finitely many vertices of G, then G is said to be

properly embedded in the plane. We will always assume without further mention

that plane graphs are properly embedded. A face of a plane graph is a connected

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



§5. Planar Graphs 219

Figure 6.1. A Cayley graph in the hyperbolic disc and its dual in light
blue, with triangles of interior angles π/2, π/3, and π/7.

Figure 6.2. Dual tessellations in the hyperbolic disc.

component of the complement of the graph in the plane. If G is a plane (multi)graph,

then the plane dual G† of G is the (multi)graph formed as follows: The vertices of G†

are the faces formed by G. Two faces of G are joined by an edge in G† precisely when they

share an edge in G. A face of G also gets a loop for each edge in G on both sides of which

lie that same face. Thus, E(G) and E(G†) are in a natural one-to-one correspondence.

Furthermore, if one draws each vertex of G† in the interior of the corresponding face of G
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Figure 6.3. A transformed Escher print, Circle Limit I,
based on a (6,4)-tessellation of the hyperbolic disc.

and each edge of G† so that it crosses only the corresponding edge of G, then the dual of

G† is G.

In this section, drawn from Häggström, Jonasson, and Lyons (2002), we will calculate

the edge-expansion constants of certain regular planar graphs that arise from tessella-

tions of the hyperbolic plane. The same results were found independently (with different

proofs) by Higuchi and Shirai (2003). Of course, edge graphs of Euclidean tessellations are

amenable, whence their expansion constants are 0. During this section, we assume that G

and its plane dual G† are locally finite, whence each graph has one end, i.e., the deletion

of any finite set of vertices leaves exactly one infinite component. We first examine the

combinatorial difference between Euclidean and hyperbolic tessellations. See Section 2.6

for background on the hyperbolic plane.

A regular Euclidean polygon with d† sides has interior angles π(1−2/d†). In order for

such polygons to form a tessellation of the plane with d polygons meeting at each vertex, we

must have π(1− 2/d†) = 2π/d, i.e., 1/d+1/d† = 1/2, or, equivalently, (d− 2)(d† − 2) = 4.

There are three such cases, and in all three, tessellations have been well known since

antiquity. On the other hand, in the hyperbolic plane, the interior angles of a regular

geodesic polygon with d† sides can take any value in
(
0, π(1−2/d†)

)
, whence a tessellation

of degree d exists only if 1/d+1/d† < 1/2, or, equivalently, (d− 2)(d†− 2) > 4; again, this

condition is also sufficient for the existence of a hyperbolic tessellation, as has been known

since the 19th century. Furthermore, in the hyperbolic plane, any two (regular geodesic)
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d-gons with interior angles all equal to some number α are congruent. (There are no

homotheties of the hyperbolic plane.) The edges of a tessellation form the associated edge

graph . Clearly, when the tessellation is any of the above ones, the associated edge graph

is regular and its dual is regular as well. An example is drawn in Figure 2.4. (We remark

that the cases (d− 2)(d† − 2) < 4 correspond to the spherical tessellations that arise from

the five regular solids.)

Moreover, we claim that if G is a plane regular graph with regular dual, then G is

transitive, as is G†, and that G is the edge graph of a tessellation by congruent regular

polygons. The proof of this claim is a nice application of geometry to graph theory.

First, suppose we are given the edge graphs of any two tessellations by congruent

regular polygons (in the Euclidean or hyperbolic plane, as necessary) of the same type

(d, d†) and one fixed vertex in each edge graph. Then there is an isomorphism of the two

edge graphs that takes one fixed vertex to the other. This is easy to see by going out

ring by ring around the fixed vertices, since the polygons are all congruent. In particular,

taking the two edge graphs the same but with different fixed vertices, we see that such

edge graphs are transitive.

Now to prove the general statement, it suffices to prove that any (proper) tessellation

of a plane with degree d and codegree d† has an edge graph that is isomorphic to the edge

graph of the corresponding tessellation by congruent polygons. In case (d−2)(d†−2) = 4,

replace each face by a congruent copy of a flat polygon; in case (d−2)(d†− 2) > 4, replace

it by a congruent copy of a regular hyperbolic polygon (with curvature −1) of d† sides

and interior angles 2π/d; while if (d − 2)(d† − 2) < 4, replace it by a congruent copy

of a regular spherical polygon (with curvature +1) of d† sides and interior angles 2π/d.

Glue these polygons together along their edges. We get a metrically complete Riemannian

surface of curvature 0, −1, or +1, correspondingly, that is homeomorphic to the plane

since our assumption is that the plane is the union of the faces, edges, and vertices of

the tessellation, without needing any limit points. A theorem of Riemann says that the

surface is isometric to either the Euclidean plane or the hyperbolic plane (the spherical

case is impossible). That is, we now have a tessellation by congruent polygons, as desired.

(One could also prove the existence of tessellations by congruent polygons in a similar

manner. We also remark that either the graph or its dual is a Cayley graph; see Chaboud

and Kenyon (1996).)

We write dG for the degree of vertices in G when G is regular. Our main result will

be the following calculation of the edge-expansion constant ΦE(G,1,1):
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Theorem 6.18. If G is an infinite plane regular graph with regular dual G†, then

ΦE(G,1,1) = (dG − 2)

√
1− 4

(dG − 2)(dG† − 2)
.

Compare this to the regular tree of degree d, where the left-hand side is equal to d−2

(Exercise 6.1). (Note that in Section 6.2, ΦE(G) denoted ΦE(G,1,deg) for an unweighted

graph G, which differs in the regular case by a factor of dG from ΦE(G,1,1) used here.)

To prove Theorem 6.18, we unfortunately need to introduce a few more ways to

measure expansion. For K ⊆ V, define

E(K) :=
{
[x, y] ∈ E ; x, y ∈ K

}
(6.29)

and

E∗(K) :=
{
[x, y] ∈ E ; x ∈ K or y ∈ K

}
.

Thus, ∂EK = E∗(K) \ E(K) and the graph induced by K is G↾K =
(
K,E(K)

)
. Write

ΦE
′(G) := lim

N→∞
inf

{
|∂EK|
|K|

; K ⊂ V, G↾K connected, N ≤ |K| <∞
}
,

β(G) := lim
N→∞

inf

{
|K|

|E(K)|
; K ⊂ V, G↾K connected, N ≤ |K| <∞

}
,

δ(G) := lim
N→∞

sup

{
|K|

|E∗(K)|
; K ⊂ V, G↾K connected, N ≤ |K| <∞

}
.

When G is regular, we have for all finite K that 2|E(K)| = dG|K|−|∂EK| and 2|E∗(K)| =
dG|K|+ |∂EK|, whence

β(G) =
2

dG − ΦE
′(G)

(6.30)

and

δ(G) =
2

dG +ΦE
′(G)

. (6.31)

Combining this with Theorem 6.2, we see that when G is transitive, ΦE
′(G) = ΦE(G) and

δ(G) = sup

{
|K|

|E∗(K)|
; K ⊂ V finite and nonempty

}
. (6.32)

A short bit of algebra shows that Theorem 6.18 follows from applying the following

identity to G, as well as to G†, then solving the resulting two equations using (6.30) and

(6.31):
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Theorem 6.19. For any plane regular graph G with regular dual G†, we have

β(G) + δ(G†) = 1 .

Proof. We begin with a sketch of the proof in the

simplest case. Suppose that K ⊂ V(G) and that the

Figure 6.4. The simplest case.

graph G↾K looks like Figure 6.4 in the following sense:

If Kf denotes the vertices of G† that are faces of G↾K,

then Kf consists of all the faces, other than the outer

face, of G↾K; and |E(K)| = |E∗(Kf )|. In this nice case,

Euler’s formula applied to the graph G↾K gives

|K| − |E(K)|+
[
|Kf |+ 1

]
= 2 ,

which is equivalent to

|K|/|E(K)|+ |Kf |/|E∗(Kf )| = 1 + 1/|E(K)| .

Now if we also assume that K can be chosen so that the first term above is arbitrarily

close to β(G) and the second term is arbitrarily close to δ(G†) with |E(K)| arbitrarily
large, then the desired formula follows at once. Thus, our work will consist in reducing or

comparing things to such a nice situation.

Let ϵ > 0 and letK be a finite set in V(G†) such thatG↾K is connected, |K|/|E∗(K)| ≥
δ(G†)− ϵ, and |E∗(K)| > 1/ϵ. Regarding each element of K as a face of G, let K ′ ⊂ V(G)

be the set of vertices bounding these faces and let E′ ⊂ E(G) be the set of edges bounding

these faces. Then |E(K ′)| ≥ |E′| = |E∗(K)|. Since the number of faces F of the graph

(K ′, E′) is at least |K|+ 1, we have

|K ′|/|E(K ′)|+ |K|/|E∗(K)| ≤ |K ′|/|E′|+ |K|/|E′|

≤ |K ′|/|E′|+ (F − 1)/|E′|

= 1 + 1/|E′| < 1 + ϵ , (6.33)

where the identity comes from Euler’s formula applied to the graph (K ′, E′). Our choice

of K then implies that

|K ′|/|E(K ′)|+ δ(G†) ≤ 1 + 2ϵ .

Since G↾K ′ is connected and |K ′| → ∞ when ϵ→ 0, it follows that β(G) + δ(G†) ≤ 1.

To prove that β(G)+ δ(G†) ≥ 1, note that the constant ΦE
′(G) is unchanged if, in its

definition, we require K to be connected and simply connected when K is regarded as a
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union of closed faces of G† in the plane. This is because filling in holes increases |K| and
decreases |∂EK|. Since G is regular, the same holds for β(G) by (6.30). Now let ϵ > 0. Let

K ⊂ V(G) be connected and simply connected (when regarded as a union of closed faces

of G† in the plane) such that |K|/|E(K)| ≤ β(G) + ϵ. Let Kf be the set of vertices in G†

that correspond to faces of G↾K. Since |E∗(Kf )| ≤ |E(K)| and the number of faces of the

graph G↾K is precisely |Kf |+ 1, we have

|K|/|E(K)|+ |Kf |/|E∗(Kf )| ≥ |K|/|E(K)|+ |Kf |/|E(K)| = 1 + 1/|E(K)| ≥ 1

by Euler’s formula applied to the graph G↾K. (In case Kf is empty, a comparable calcu-

lation shows that |K|/|E(K)| ≥ 1.) Because G† is transitive, (6.32) allows us to conclude

that

β(G) + δ(G†) + ϵ ≥ β(G) + ϵ+ |Kf |/|E∗(Kf )| ≥ |K|/|E(K)|+ |Kf |/|E∗(Kf )| ≥ 1 .

Since ϵ is arbitrary, the desired inequality follows. ◀

Question 6.20. What is ΦV(G) for regular co-regular plane graphs G? What are ΦE(G)

and ΦV(G) for more general transitive plane graphs G?

Question 6.21. Suppose that G is a planar graph with all degrees in [d1, d2] and all

co-degrees in [d†1, d
†
2]. Do we have

(d1 − 2)

√
1− 4

(d1 − 2)(d†1 − 2)
≤ ΦE(G,1,1) ≤ (d2 − 2)

√
1− 4

(d2 − 2)(d†2 − 2)
?

For partial results on this question, see Lawrencenko, Plummer, and Zha (2002) and the

references therein.

§6.6. Profiles and Transience.

Write

ψ(G, t) := inf
{
|∂EK|c ; t ≤ |K|π <∞

}
.

This is a functional elaboration of the expansion constant: the constant ΦE(G, c, π) mea-

sures only whether ψ(G, t) grows linearly in t. We saw that such linear growth is equivalent

to exponential decay of return probabilities of the network random walk. Another con-

nection to random walk arises from this expansion “profile” via a relationship to effective

resistance, which will allow us to show that Cayley graphs of at least cubic growth are
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transient; it will also prove useful to us in Section 10.6. Since we will consider effective

resistance from a set to infinity, we will use the still more refined function

ψ(G,A, t) := inf
{
|∂EK|c ; A ⊆ K, K/A is connected, t ≤ |K|π <∞

}
(6.34)

for A ⊂ V(G). Here, we say that K/A is connected when the graph induced by K in G/A

is connected, where we have identified all of A to a single vertex. If A = {a}, then we’ll

write more simply ψ(G, a, t) for ψ
(
G, {a}, t

)
.

It is commonly the case that ψ(t) = ψ(G,A, t) ≥ f(t) for some increasing function f

on
[
|A|π,∞

)
that satisfies 0 < f(t) ≤ t and f(2t) ≤ αf(t) for some α. For example, f has

the latter two properties when f has the form f(t) = βta for some β ∈ (0, |A|−1
π ∧ 1] and

a ∈ [0, 1]. In this case, we obtain the following upper bound on effective resistance:

Theorem 6.22. Let A be a finite set of vertices in a network G with |V(G)|π = ∞.

Suppose that ψ(t) := ψ(G,A, t) has the property that ψ(t) ≥ f(t) for some increasing

function f on
[
|A|π,∞

)
that satisfies 0 < f(t) ≤ t and f(2t) ≤ αf(t) for some α. Then

R(A↔ ∞) ≤
∫ ∞

|A|π

4α2

f(t)2
dt .

Theorem 6.22 is an easy consequence of a result that does not assume any regularity

on ψ(G,A, t), namely:

Theorem 6.23. Let A be a finite set of vertices in a network G with |V(G)|π = ∞. Let

ψ(t) := ψ(G,A, t). Define s0 := |A|π and sk+1 := sk+ψ(sk)/2 recursively for k ≥ 0. Then

R(A↔ ∞) ≤
∑
k≥0

2

ψ(sk)
.

Before proving Theorem 6.23, we show how it easily implies Theorem 6.22.

Proof of Theorem 6.22. Define t0 := |A|π and tk+1 := tk+f(tk)/2 recursively. We have that

sk ≥ tk and tk ≤ tk+1 ≤ 2tk, whence for tk ≤ t ≤ tk+1, we have f(t) ≤ f(2tk) ≤ αf(tk),

so that∫ ∞

|A|π

4α2

f(t)2
dt ≥

∑
k≥0

∫ tk+1

tk

4α2

f(t)2
dt ≥

∑
k≥0

∫ tk+1

tk

4

f(tk)2
dt =

∑
k≥0

4(tk+1 − tk)

f(tk)2

=
∑
k≥0

2f(tk)

f(tk)2
≥
∑
k≥0

2

ψ(tk)
≥
∑
k≥0

2

ψ(sk)
≥ R(A↔ ∞) . ◀

To show Theorem 6.23, we’ll prove an analogue for finite networks, Lemma 6.24, which

gives Theorem 6.23 immediately by using the following exercise:
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▷ Exercise 6.15.

Let A be a finite set of vertices in a connected network G with |V(G)|π = ∞. Let H be a

finite connected subnetwork containing A. In HW, identify A to a single vertex a and let

z be the (wired) boundary vertex; call the new graph H ′. Define ψ(G,A, t) and ⟨sk⟩ as in
Theorem 6.23 and ϕ(H ′, t) with its associated sequence ⟨s′k⟩ as in Lemma 6.24. Show that

for all t ≥ 0,

ϕ
(
H ′, π(a) + t

)
≥ ψ

(
G,A, |A|π + t

)
and for all k ≥ 0, we have ϕ(H ′, s′k) ≥ ψ(G,A, sk).

Lemma 6.24. Let a and z be two distinct vertices in a finite connected network G. Define

ϕ(t) := ϕ(G, t) := min
{
|∂EW |c ; a ∈W, z /∈W, W is connected, t ≤ |W |π

}
for t ≤ |V(G) \ {z}|π and ϕ(t) := ∞ for t > |V(G) \ {z}|π. Define s′0 := π(a) and

s′k+1 := s′k + ϕ(s′k)/2 recursively for k ≥ 0. Then

R(a↔ z) ≤
∞∑
k=0

2

ϕ(s′k)
.

Proof. Let v(•) be the voltage corresponding to the unit current flow i from z to a, with

v(a) = 0.

For t ≥ 0, let W (t) :=
{
x ∈ V ; v(x) ≤ t

}
, and for 0 ≤ t < t′, let E(t, t′) be the set of

directed edges from W (t) to
{
x ∈ V ; v(x) ≥ t′

}
. Define t0 := 0 and recursively,

tk+1 := inf
{
t ≥ tk ; |E(tk, t)|c ≤ |∂EW (tk)|c/2

}
.

Set k̄ := min
{
j ; z ∈ W (tj)

}
= min

{
j ; tj+1 = ∞

}
. Fix some k < k̄. Note that i(e) ≤ 0

for every e ∈ ∂EW (tk) (where edges in ∂EW (tk) are oriented away from W (tk)). Since

E(tk, tk+1) ⊆ ∂EW (tk),

1 =
∑

e∈∂EW (tk)

|i(e)| ≥
∑

e∈E(tk,tk+1)

c(e)
(
v(e+)− v(e−)

)
≥

∑
e∈E(tk,tk+1)

c(e) (tk+1 − tk) ≥ (tk+1 − tk)
|∂EW (tk)|c

2
,

where the last inequality follows from the definition of tk+1.

Thus

tk+1 − tk ≤ 2/ϕ
(
|Wk|π

)
, (6.35)
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where we abbreviate Wk :=W (tk). Clearly,

|Wk+1|π = |Wk|π + |Wk+1 \Wk|π ≥ |Wk|π +
1

2
|∂EWk|c ≥ |Wk|π +

1

2
ϕ
(
|Wk|π

)
.

Since ϕ is an increasing function, it follows by induction that |Wk|π ≥ s′k for k < k̄ and

(6.35) gives

R(a↔ z) = v(z) = tk̄ − t0 ≤
k̄−1∑
k=0

2

ϕ
(
|Wk|π

) ≤
k̄−1∑
k=0

2

ϕ(s′k)
. ◀

In order to apply this bound to Cayley graphs, we can use the following theorem due

to Coulhon and Saloff-Coste (1993). Define the internal vertex boundary of a set K as

∂intV K := {x ∈ K ; ∃y /∈ K y ∼ x}.

Theorem 6.25. (Expansion of Cayley Graphs) Let G be a Cayley graph. Let ρ(m)

be the smallest radius of a ball in G that contains at least m vertices. Then for all finite

K ⊂ V, we have
|∂intV K|
|K|

≥ 1

2ρ
(
2|K|

) .
Proof. Let s be a generator of the group Γ used for the right Cayley graph G. The

bijection x 7→ xs moves x to a neighbor of x. Thus, it moves at most |∂intV K| vertices of

K to the complement of K. If γ is the product of r generators, then the map x 7→ xγ is

a composition of r moves of distance 1, each of which moves at most |∂intV K| points of K
out of K, whence it itself moves at most r|∂intV K| points of K out of K. Let ρ := ρ

(
2|K|

)
.

Now by choice of ρ, a random γ in the ball of radius ρ about the identity has chance at

least 1/2 of moving any given x ∈ K out of K, so that, in expectation, a random γ moves

at least |K|/2 points of K out of K. Hence there is some γ that moves this many points,

whence ρ|∂intV K| ≥ |K|/2. This is the desired inequality. ◀

The same proof shows the same bound for the external vertex boundary, ∂VK. An

extension to transitive graphs is given in Lemma 10.46.

Example 6.26. One might expect that the external boundary of a finite set in an in-

finite Cayley graph is at least as big as its internal boundary, especially if the set is

a ball. However, this is not true. Consider the usual Cayley graph of Z × Z2n, and

K :=
{
(x, y) ; |x| ≤ n − 1, y ̸= n

}
. Then K is a “square” whose internal boundary has

size 8n− 8, but whose external boundary has size 6n− 1, which is smaller when n ≥ 4. In

order to make K a ball, add the generators (1, 1), (1,−1), and their inverses.

An old question of Kesten asked whether the recurrent Cayley graphs are precisely

those whose growth is at most quadratic. Exercise 2.83 showed that all graphs of at most
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quadratic growth are recurrent. Gromov (1981a) showed that Cayley graphs whose growth

is not at most quadratic have at least cubic growth. That Cayley graphs of at least cubic

growth are indeed transient was shown finally by Varopoulos (1986). We can now show

this as a consequence of our preceding work:

Theorem 6.27. (Transience of Cayley graphs) If G is a Cayley graph of at least

cubic growth, then simple random walk on G is transient.

Proof. In the notation of Theorem 6.25, we have ρ(m) ≥ cm1/3 for some positive constant

c. By that theorem, therefore, we have ψ
(
G, o,m

)
≥ c′m2/3 for some other positive

constant c′. Hence, transience is a consequence of Theorem 6.22. ◀

§6.7. Anchored Expansion and Percolation.

Recall the probability measure Pp defining Bernoulli percolation from Section 5.2 and

the critical probability pc. There, we took a random subset of edges, but an alternative is

to take the subgraph induced by a random subset of vertices. This alternative is called site

percolation . The adjective Bernoulli applies when each vertex is present independently

with the same probability. When we need different notation for these two processes, we

use Psite
p and Pbond

p for the two product measures on 2V and 2E, respectively, and psitec

and pbondc for the two critical probabilities. If we don’t indicate whether the percolation

is bond or site and both make sense in context, then results we state should be taken to

apply to both types of percolation.

Grimmett, Kesten, and Zhang (1993) showed that simple random walk on the infinite

cluster of Bernoulli percolation in Zd (when p > pc) is transient for d ≥ 3; in other words, in

Euclidean lattices, transience is preserved when the whole lattice is replaced by an infinite

percolation cluster. (We gave a proof of part of this result in Section 5.5, where we also

noted that another proof based on ideas in the present section was given by Pete (2008).)

In general, what aspects of Cayley graphs are preserved under percolation?

Conjecture 6.28. (Percolation and Transience) If G is a transient Cayley graph,

then a.s. every infinite cluster of Bernoulli percolation on G is transient.

Conjecture 6.29. (Percolation and Speed) Let G be a Cayley graph. Then simple

random walk on G has positive speed iff simple random walk on infinite clusters of Bernoulli

percolation has positive speed a.s.

These conjectures were made by Benjamini, Lyons, and Schramm (1999), who proved

that simple random walk on an infinite cluster of any non-amenable Cayley graph has
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positive speed. One might hope to use Proposition 6.9 to establish this result, but, in fact,

the infinite clusters are amenable:

▷ Exercise 6.16.

For any p < 1, every infinite cluster K of Bernoulli(p) percolation on any graph G of

bounded degree has ΦE(K) = 0 a.s.

On the other hand, the infinite clusters might satisfy the following weaker “anchored

expansion” property, which is known to imply positive speed (Theorem 6.44).

Fix o ∈ V(G). The anchored expansion constants of G are

Φ∗
E(G) := lim

n→∞
inf

{
|∂EK|
|K|

; o ∈ K ⊂ V, G↾K is connected, n ≤ |K| <∞
}

and

Φ∗
V(G) := lim

n→∞
inf

{
|∂VK|
|K|

; o ∈ K ⊂ V, G↾K is connected, n ≤ |K| <∞
}
.

These are closely related to the number ψ(G, o, 0) of (6.34), but have the advantage that

Φ∗
E(G) and Φ∗

V(G) do not depend on the choice of the basepoint o. We say that a graph G

has anchored expansion if Φ∗
E(G) > 0.

▷ Exercise 6.17.

Show that if G is a transitive graph, then ΦE(G) = Φ∗
E(G) and ΦV(G) = Φ∗

V(G).

An important feature of anchored expansion is that several probabilistic implications

of non-amenability remain true with this weaker assumption. Furthermore, anchored ex-

pansion is quite stable under percolation, as we will see.

First, we give a simple relationship between anchored expansion and percolation via

the following upper bound on pc due to Benjamini and Schramm (1996b):

Theorem 6.30. (Percolation and Anchored Expansion) For any graph G, we have

pbondc (G) ≤ 1/
(
1 + Φ∗

E(G)
)
and psitec (G) ≤ 1/

(
1 + Φ∗

V(G)
)
.

Note that equality holds in both inequalities when G is a regular tree. For the proof,

as well as later, we will identify a subset ω ⊆ E with its indicator function, so that ω(e)

takes the value 0 or 1 depending on whether e lies in the subset or not.
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Proof. The proofs of both inequalities are completely analogous, so we prove only the first.

In fact, we prove it with ΦE(G) in place of Φ∗
E(G), leaving the improvement to Exercise 6.18.

Choose any ordering ⟨e1, e2, . . .⟩ of E so that o is an endpoint of e1. Fix p > 1/
(
1 +

ΦE(G)
)
and let ⟨Yk⟩ and ⟨Y ′

k⟩ be independent {0, 1}-valued Bernoulli(p) random variables.

If A is the event that
1

n

n∑
k=1

Yk >
1

1 + ΦE(G)

for all n ≥ 1, then A has positive probability by the Strong Law of Large Numbers.

Define E0 := ∅. We will look at a finite or infinite subsequence of edges ⟨enj ⟩ via a

recursive procedure and define a percolation ω as we go. Suppose that the edges Ek :=

⟨en1 , . . . , enk
⟩ have been selected and that ω(enj ) = Yj for j ≤ k. Let Vk be the union

of {o} and the endpoints of the open edges of Ek. Let nk+1 be the smallest index of an

edge in E \ Ek that has exactly one endpoint in Vk, if any. If there are none, then stop;

K(o) is finite and we set ω(ej) := Y ′
j for the remaining edges ej ∈ E \ Ek. Otherwise, let

ω(enk+1
) := Yk+1.

If this procedure never ends, thenK(o) is infinite; assign ω(ej) := Y ′
j for any remaining

edges ej ∈ E \ Ek.
In both cases (whether K(o) is finite or infinite), ω is a fair sample of Bernoulli(p)

percolation on G.

We claim that K(o) is infinite on the event A. This would imply that p ≥ pbondc (G)

and would complete the proof.

For suppose that K(o) is finite and contains m vertices. Let En be the final set of

selected edges. Note that En contains ∂EK(o) (all edges of which are closed) and a spanning

tree of K(o) (all edges of which are open). This implies that n ≥ |∂EK(o)| +m − 1 and∑n
k=1 Yk = m− 1. Since |∂EK(o)|/m ≥ ΦE(G), we have

1

n

n∑
k=1

Yk ≤ m− 1

|∂EK(o)|+m− 1
=

1

1 + |∂EK(o)|/(m− 1)
<

1

1 + |∂EK(o)|/m
≤ 1

1 + ΦE(G)

and the event A does not occur. ◀

▷ Exercise 6.18.

Prove the first inequality of Theorem 6.30 as written with anchored expansion.

Similar ideas show the following general property. Given two multigraphs G and G′,

a homomorphism ϕ:G → G′ is a weak covering map if for every vertex x ∈ V(G) and

every edge e′ incident to ϕ(x), there is some edge e incident to x such that ϕ(e) = e′. For
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example, if ϕ: Γ → Γ′ is a group homomorphism that maps a generating set S for Γ onto

a generating set S′ for Γ′, and if G, G′ are the corresponding Cayley graphs, then ϕ is

also a weak covering map. In the case |S| = |S′| and G, G′ are simple, we get a stronger

notion than weak covering map, one which is closer to the topological notion of covering

map; we now define it for networks. Given two graphs G = (V,E) and G′ = (V′,E′)

with edges weighted by c, c′, respectively, and vertices weighted by D, D′, respectively,

call a surjection ϕ:V → V′ a covering map if for every vertex x ∈ V, the restriction

ϕ:T (x) → T
(
ϕ(x)

)
is a network isomorphism, where T (x) denotes the star at x, i.e., the

network induced on the edges incident to x. If there is such a covering map, then we

call G a covering network of G′. For example, the nearest-neighbor graph on {−1, 0, 1}
with unit weights can be mapped to the edge between 0 and 1 by mapping −1 to 1. This

provides a weak covering map, but not a covering map. The following result is due to

Campanino (1985), but our proof is modelled on that of Benjamini and Schramm (1996b).

Theorem 6.31. (Covering and Percolation) Suppose that ϕ:G → G′ is a weak cov-

ering map of multigraphs. Then for any x ∈ V(G) and p ∈ (0, 1), we have

Pp[x↔ ∞] ≥ Pp[ϕ(x) ↔ ∞] .

Therefore pc(G) ≤ pc(G
′).

Proof. Write G = (V,E) and G′ = (V′,E′). We prove the theorem for bond percolation,

the proof for site percolation being almost identical. We will construct a coupling of the

percolation measures on the two graphs. That is, given ω′ ∈ 2E
′
, we will define ω ∈ 2E in

such a way that, first, if ω′ has distribution Pp on G′, then ω has distribution Pp on G;

and, second, if K
(
ϕ(x)

)
is infinite, then so is K(x).

Choose any ordering ⟨e′1, e′2, . . .⟩ of E′ so that ϕ(x) is an endpoint of e′1 and so that

for each k > 1, one endpoint of e′k is also an endpoint of some e′j with j < k.

Let e1 be any edge that ϕ maps to e′1. Define ω(e1) := ω′(e′1) and set n1 := 1. We

will select a subsequence of edges ⟨e′nj
⟩ via a recursive procedure. Suppose that E′

k :=

{e′n1
, . . . , e′nk

} have been selected and edges ej that ϕ maps onto e′nj
(j ≤ k) have been

chosen. Let nk+1 be the smallest index of an edge in E′ \ E′
k that shares an endpoint

with at least one of the open edges in E′
k, if any. If there are none, then stop; K

(
ϕ(x)

)
is

finite and ω(e) for the remaining edges e ∈ E may be assigned independently in any order.

Otherwise, if e′nk+1
is incident with e′nj

∈ E′
k, then let ek+1 be any edge that ϕ maps to

e′nk+1
and that is incident with ej ; such an edge exists because ϕ is a weak covering map.

Set ω(ek+1) := ω′(e′nk+1
).
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If this procedure never ends, thenK
(
ϕ(x)

)
is infinite; assigning ω(e) for any remaining

edges e ∈ E independently in any order gives a fair sample of Bernoulli percolation on G

that has K(x) infinite. This proves the theorem. ◀

In the appendix to Chen and Peres (2004), G. Pete strengthened the conclusion of

Theorem 6.30 as follows:

Theorem 6.32. (Anchored Expansion of Clusters) Consider Bernoulli(p) bond per-

colation on a graph G with Φ∗
E(G) > 0. If p > 1/

(
1 + Φ∗

E(G)
)
, then almost surely on the

event that the open cluster K containing o is infinite, it satisfies Φ∗
E(K) > 0. Likewise, for

p > 1/
(
1 + Φ∗

V(G)
)
, we have Pp

[
Φ∗

V(K) > 0
∣∣ |K| = ∞] = 1.

Proof. We prove only the first assertion, as the second is similar. Define

An :=
{
K ⊂ V(G) ; o ∈ K, G↾K is connected and finite, |∂EK| = n

}
. (6.36)

We will consider edge boundaries with respect to both G↾K and G, so we denote them by

∂KE and ∂GE , respectively. Note that in Bernoulli(p) bond percolation, for any 0 < α < p

and S ∈ An, we can estimate the conditional probability

P

[
|∂KE S|
|∂GE S|

≤ α

∣∣∣∣ S ⊆ K

]
= P

[
Bin
(
n, p
)
≤ αn

]
≤ e−nIp(α) , (6.37)

where the large deviation rate function

Ip(α) := α log
α

p
+ (1− α) log

1− α

1− p
, (6.38)

is continuous in α and − log(1 − p) = Ip(0) > Ip(α) > 0 for 0 < α < p (see Billingsley

(1995), p. 151, or Dembo and Zeitouni (1998), Exercise 2.2.23(b)). Therefore,

P

[
∃S ∈ An, S ⊆ K ;

|∂KE S|
|∂GE S|

≤ α

]
≤
∑
S∈An

P

[
S ⊆ K,

|∂KE S|
|∂GE S|

≤ α

]
≤
∑
S∈An

e−nIp(α)P[S ⊆ K]

= en[Ip(0)−Ip(α)]
∑
S∈An

(1− p)nP[S ⊆ K]

= en[Ip(0)−Ip(α)]
∑
S∈An

P[K = S]

= en[Ip(0)−Ip(α)]P
[
|K| <∞, |∂GE K| = n

]
. (6.39)
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To estimate P
[
|K| < ∞, |∂GE (K)| = n

]
for p > 1/

(
1 + Φ∗

E(G)
)
, recall the argument

of Theorem 6.30. Choose h < Φ∗
E(G) such that p > 1/(1 + h). Then there exists nh < ∞

such that |∂GE S|/|S| > h for all S ∈ An with n > nh. We showed that

{
|K| <∞, |∂GE (K)| = n

}
⊂

∞∪
N=n

BN ,

where

BN :=

 N∑
j=1

Yj ≤
N

1 + h


and ⟨Yj⟩ is an i.i.d. sequence of Bernoulli(p) random variables.

As above, P[BN ] ≤ e−Nδp where δp := Ip

(
1

1+h

)
> 0, since p > 1/(1 + h). Thus for

some constant Cp <∞,

P
[
|K| <∞, |∂GE (K)| = n

]
≤

∞∑
N=n

e−Nδp ≤ Cpe
−nδp . (6.40)

Taking α > 0 in (6.39) so small that Ip(0) − Ip(α) < δp, we deduce that (6.39) is

summable in n. By the Borel-Cantelli Lemma,

lim
n→∞

inf

{
|∂KE S|
|∂GE S|

; o ∈ S ⊂ V(K), S is connected, n ≤ |∂GE S|
}

≥ α a.s.,

whence

Φ∗
E(K) ≥ αΦ∗

E(G) > 0

almost surely on the event that K is infinite. ◀

The following possible extension is open:

Question 6.33. If Φ∗
E(G) > 0, does every infinite cluster K in a Bernoulli percolation

satisfy Φ∗
E(K) > 0?

A partial result is due to Pete (2008). A converse is known, namely, that if G is a

transitive amenable graph, then for every invariant percolation on G, a.s. each cluster has

0 anchored expansion constant; see Corollary 8.38.

Percolation is one way of randomly thinning a graph. Another way is to replace an

edge by a random path of edges. What happens to expansion then? We will use the

following notation.

Let G be an infinite graph of bounded degree and pick a probability distribution ν on

the positive integers. Replace each edge e ∈ E(G) by a path of Le ≥ 1 edges, where the
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random variables ⟨Le⟩e∈E(G) are independent with law ν. Let Gν denote the random graph

obtained from G in this way. We call Gν a random subdivision of G. Say that ν has

an exponential tail if for some ϵ > 0 and all sufficiently large ℓ, we have ν[ℓ,∞) < e−ϵℓ.

This is equivalent to the condition that if X ∼ ν, then E[sX ] <∞ for some s > 1.

▷ Exercise 6.19.

Show that if the support of ν is unbounded, then ΦE(G
ν) = 0 a.s.

Define another anchored expansion constant,

Φ∗∗
E (G) := lim

n→∞
inf

{
|∂EK|
|E(K)|

; o ∈ K ⊂ V, G↾K is connected, n ≤ |K| <∞
}
,

with notation as in (6.29). Since |E(K)| ≥ |K| − 1, we have

Φ∗∗
E (G) ≤ Φ∗

E(G)

for every graph G. Conversely, if the maximum degree of G is D, then

Φ∗∗
E (G) ≥ Φ∗

E(G)/D

since |E(K)| ≤ D|K|. On the other hand, for trees G, we have |E(K)| = |K| − 1, so

Φ∗∗
E (G) = Φ∗

E(G) for trees.

Theorem 6.34. (Anchored Expansion and Subdivision) Suppose that Φ∗∗
E (G) > 0.

If ν has an exponential tail, then the random subdivision satisfies Φ∗∗
E (Gν) > 0 a.s. In

particular, if G has bounded degree and Φ∗
E(G) > 0, then Φ∗

E(G
ν) > 0 a.s.

In order to prove this, we use the following combinatorial aspect of anchored expansion.

Proposition 6.35. As in (6.36), let

An :=
{
K ⊂ V(G) ; o ∈ K, G↾K is connected and finite, |∂EK| = n

}
(6.41)

and

hn := inf

{
|∂EK|
|K|

; K ∈ An

}
. (6.42)

Then

|An| ≤ Ψ(hn)
n , (6.43)

where Ψ(•) is the monotone decreasing function

Ψ(h) := (1 + h)1+
1
h /h, Ψ(0) := ∞ .
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Proof. Consider Bernoulli(p) bond percolation in G. Let K(o) be the open cluster con-

taining o. For any K ∈ An, we have |E(K)| ≥ |K| − 1 since a spanning tree on K has

|K| − 1 edges; also, |∂EK| ≥ hn|K|. Therefore,

P
[
V
(
K(o)

)
= K

]
≥ p|K|−1(1− p)|∂EK| ≥ pn/hn(1− p)n ,

whence

1 ≥ P
[
V
(
K(o)

)
∈ An

]
=
∑
K∈An

P
[
V
(
K(o)

)
= K

]
≥ |An|pn/hn(1− p)n.

Thus,

|An| ≤
(
1

p

)n/hn
(

1

1− p

)n
for every p ∈ (0, 1). Letting p := 1/(1 + hn) concludes the proof. ◀

Proof of Theorem 6.34. Since ν has an exponential tail, there is an increasing convex rate

function I(•) such that I(c) > 0 for c > ELi and P
[∑n

i=1 Li > cn
]
≤ exp

(
− nI(c)

)
for

all n (see Dembo and Zeitouni (1998), Theorem 2.2.3) when Li ∼ ν are independent. Fix

h < Φ∗
E(G). Choose c large enough that I(c) > logΨ(h). For S ∈ An,

P

[∑
e∈E∗(S) Le

|E∗(S)|
> c

]
≤ exp

(
− |E∗(S)|I(c)

)
≤ exp

(
− |∂ES|I(c)

)
since ∂ES ⊆ E∗(S). Therefore for all n,

P

[
∃S ∈ An ;

∑
e∈E∗(S) Le

|E∗(S)|
> c

]
≤ |An|e−I(c)n ,

which is summable by (6.43) since hn (defined in (6.42)) is strictly larger than h for all

large n. By the Borel-Cantelli Lemma, with probability one, we have

lim sup
n→∞

sup
S∈An

∑
e∈E∗(S) Le

|E∗(S)|
≤ c .

Therefore

lim
n→∞

inf

{
|∂ES|∑

e∈E∗(S) Le
; o ∈ S ⊂ V(G), G↾S is connected, n ≤ |∂ES|

}
≥ Φ∗∗

E (G)

c(1 + Φ∗∗
E (G))

a.s. since E∗(S) = E(S) ∪ ∂ES.
Since Gν is obtained from G by adding new vertices, V(G) can be embedded into

V(Gν) as a subset. In particular, we can choose the same basepoint o in Gν and in G.

For S connected in G such that o ∈ S ⊂ V(G), there is a unique maximal connected

S̃ ⊂ V(Gν) such that S̃ ∩ V(G) = S; it satisfies |E(S̃)| ≤
∑
e∈E∗(S) Le. In computing

Φ∗
E(G

ν), it suffices to consider only such maximal sets S̃, so we conclude that Φ∗∗
E (Gν) ≥

Φ∗∗
E (G)/

(
c(1 + Φ∗∗

E (G))
)
> 0. ◀
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The exponential tail condition is necessary to ensure the positivity of Φ∗
E(G

ν); see

Exercise 6.73.

Do Galton-Watson trees have anchored expansion? Clearly they do when the offspring

distribution ⟨pk⟩ satisfies p0 = p1 = 0. On the other hand, when p1 ∈ (0, 1), the tree can

be obtained from a different Galton-Watson tree with p1 = 0 by randomly subdividing the

edges. This will allow us to use Theorem 6.34 in order to establish that Galton-Watson

trees do indeed have anchored expansion when p0 = 0, and another argument will cover

the case p0 > 0.

Theorem 6.36. (Anchored Expansion of Galton-Watson Trees) For a supercritical

Galton-Watson tree T , given nonextinction we have Φ∗
E(T ) > 0 a.s.

Proof. Case (i): p0 = p1 = 0. For every finite S ⊂ V(T ), we have

|S| ≤ |∂ES|
(1
2
+

1

22
+ · · ·

)
≤ |∂ES| .

So Φ∗
E(T ) ≥ ΦE(T ) ≥ 1.

Case (ii): p0 = 0, p1 > 0. In this case, let x be the vertex closest to the root that has

at least 2 children. Then T x has the law of a random subdivision Gν of another Galton-

Watson tree G and T differs from T x by a finite path. Here, G is generated according

to the offspring distribution ⟨p′k ; k ≥ 0⟩, where p′k := pk/(1 − p1) for k = 2, 3, . . . and

p′0 := p′1 := 0; and ν is the geometric distribution with parameter 1−p1. By Theorem 6.34

and the fact that Φ∗∗
E = Φ∗

E for trees, Φ∗
E(T ) = Φ∗

E(T
x) = Φ∗

E(G
ν) > 0 a.s.

Case (iii): p0 > 0. Let A(n, h) be the event that there is a subtree S ⊂ T having n

vertices, including the root of T , and satisfying |∂ES| ≤ hn.

We claim that

P
[
A(n, h)

]
≤ enf(h)P

[
n ≤ |V(T )| <∞

]
(6.44)

for some function f :R+ → R+ that satisfies limh↓0 f(h) = 0. The idea is that the event

A(n, h) is “close” to the event that V(T ) is finite but at least n. That is, it could have

happened that the hn leaves of the growing Galton-Watson tree had no children after it

already had n vertices, and for T ∈ A(n, h), this alternative scenario isn’t too unlikely

compared to what actually happened.

For the proof, we can map any tree T in A(n, h) to a finite tree ϕ(T ) with at least

n vertices as follows: Given x ∈ V(T ), label its children from 1 to the number of children

of x. Use this to place a canonical total order on all finite subtrees of T that include the

root. (This can be done in a manner similar to the lexicographic order of finite strings.)

Choose the first n-vertex S in this order such that the edge boundary of S in T has at
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most hn edges. Define ϕ(T ) from T by retaining all edges in S and its edge boundary in

T , while deleting all other edges. Note that for each vertex x ∈ T , the tree ϕ(T ) contains

either all children of x or none.

Any finite tree t with m vertices arises as ϕ(T ) from at most
∑
k≤hm

(
m
k

)
choices of S

because for n ≤ m, there are at most hn ≤ hm edges in t \ S, while for n > m, there are

no choices of S. Now
∑
k≤hm

(
m
k

)
≤ exp

(
mf1(h)

)
, where

f1(α) := −α logα− (1− α) log(1− α)

by (6.37). Given S and a possible tree t in the image of ϕ on A(n, h), we have

P
[
ϕ(T ) = t

]
≤ p−hn0 P[T = t] .

Indeed, let L(t) denote the leaves of t and J(t) := V(t) \ L(t). Let d(x) be the number of

children in t of x ∈ J(t). Then

P
[
ϕ(T ) = t

]
=

∏
x∈J(t)

pd(x) = p
−|L(t)|
0 P[T = t] ≤ p−hn0 P[T = t] .

Thus, if we let f(α) := f1(α)− α log p0, we obtain (6.44).

Now a supercritical Galton-Watson process conditioned on extinction is the same as

a subcritical process with p.g.f. f̃(s) := f(qs)/q by Proposition 5.28(ii). Since f̃(1/q) <∞
and 1/q > 1, the total size of this subcritical Galton-Watson process decays exponentially

by Exercise 5.34. Therefore, the last term of (6.44) decays exponentially in n. By choos-

ing h small enough, we can ensure that also the left-hand side P
[
A(n, h)

]
also decays

exponentially in n. ◀

§6.8. Euclidean Lattices and Entropy.

Euclidean space is amenable, so does not satisfy the kind of strong isoperimetric

inequality that we have studied in the earlier sections of this chapter. However, it is the

origin of isoperimetric inequalities that continue to be useful today. The main result of

this section is the following discrete analogue of the classical isoperimetric inequality for

balls in space.

Theorem 6.37. (Discrete Isoperimetric Inequality) If A ⊂ Zd is a finite set, then

|∂EA| ≥ 2d|A|
d−1
d .
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Observe that the 2d constant in the inequality is the best possible as the example of

the d-dimensional cube shows: If A = [0, n)d ∩ Zd, then |A| = nd and |∂EA| = 2dnd−1.

The same inequality without the sharp constant follows from Theorem 6.25.

To prove this inequality, we will develop other very useful tools concerning entropy.

For every 1 ≤ i ≤ d, define the projection Pi:Zd → Zd−1 simply as the function drop-

ping the ith coordinate, i.e., Pi(x1, . . . , xd) = (x1, . . . , xi−1, xi+1, . . . , xd). Theorem 6.37

will follow easily from the following beautiful inequality of Loomis and Whitney (1949).

Lemma 6.38. (Discrete Loomis and Whitney Inequality) For any finite A ⊂ Zd,

|A|d−1 ≤
d∏
i=1

|Pi(A)| .

Before proving Lemma 6.38, we show how it gives our isoperimetric inequality.

Proof of Theorem 6.37. We claim that

|∂EA| ≥ 2

d∑
i=1

|PiA| . (6.45)

To see this, observe that any vertex in Pi(A) matches to a straight line in the ith coordinate

direction which intersects A. Thus, since A is finite, to any vertex in Pi(A), we can always

match two distinct edges in ∂EA: the first and last edges on the straight line that intersects

A.

Using Lemma 6.38, the arithmetic-geometric mean inequality, and (6.45), we get

|A|d−1 ≤
d∏
i=1

|Pi(A)| ≤

(
1

d

d∑
i=1

|Pi(A)|

)d
≤
(
|∂EA|
2d

)d
,

as desired. ◀

To prove Lemma 6.38, we introduce the powerful notion of entropy. LetX be a random

variable taking values x1, . . . , xn. Denote p(x) := P[X = x], and define the entropy of X

to be

H(X) :=

n∑
i=1

p(xi) log
1

p(xi)
= −

n∑
i=1

p(xi) log p(xi) .

By concavity of the logarithm function and Jensen’s inequality, we have

H(X) ≤ log
∑

p(xi) ·
1

p(xi)
= log n . (6.46)
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Clearly H(X) depends only on the law µX of X and it will be convenient to write this

functional as H[µX ].

Given another random variable, Y , define the conditional entropy H(X | Y ) of X

given Y as

H(X | Y ) := H(X,Y )−H(Y ) .

The reason this is called “conditional entropy” is that it can be written in a way using

conditional distributions: Write µX|Y for the conditional distribution of X given Y ; this

is a random variable, a function of Y , with E[µX|Y ] = µX .

Proposition 6.39. Given two discrete random variables X and Y on the same space, we

have H(X | Y ) = E
[
H
[
µX|Y

]]
.

Proof. We have

E
[
H
[
µX|Y

]]
= −

∑
y

P[Y = y]
∑
x

P[X = x | Y = y] logP[X = x | Y = y]

= −
∑
x,y

P[X = x, Y = y]
(
logP[X = x, Y = y]− logP[Y = y]

)
= H(X,Y )−H(Y ) . ◀

Corollary 6.40. (Shannon’s Inequalities) For any discrete random variables X, Y ,

and Z, we have

0 ≤ H(X | Y ) ≤ H(X) , (6.47)

H(X,Y ) ≤ H(X) +H(Y ) , (6.48)

and

H(X,Y | Z) ≤ H(X | Z) +H(Y | Z) . (6.49)

Proof. Since entropy is non-negative, so is conditional entropy by Proposition 6.39. Since

the function t 7→ −t log t is concave, so is the functional µ 7→ H[µ], whence Jensen’s

inequality gives

H(X | Y ) = E
[
H
[
µX|Y

]]
≤ H

[
E
[
µX|Y

]]
= H[µX ] = H(X) .

This proves (6.47). Combined with the definition of H(X | Y ), (6.47) gives (6.48). Because

of Proposition 6.39, (6.48) gives (6.49). ◀

Our last step before proving Lemma 6.38 is the following inequality of Han (1978):
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Theorem 6.41. (Han’s Inequality) For any discrete random variables X1, . . . , Xk,

we have

(k − 1)H(X1, ..., Xk) ≤
k∑
i=1

H(X1, ..., Xi−1, Xi+1, ..., Xk) .

Proof. Write X∗
i for the vector (X1, ..., Xi−1, Xi+1, ..., Xk). Then a telescoping sum and

(6.47) give

H(X1, ..., Xk) =
k∑
i=1

H(Xi|X1, ..., Xi−1)

≥
k∑
i=1

H(Xi|X∗
i ) =

k∑
i=1

[
H(X1, ..., Xk)−H(X∗

i )
]
.

Rearranging the terms gives Han’s inequality. ◀

We now prove the Loomis-Whitney inequality.

Proof of Lemma 6.38. Take random variables X1, . . . , Xd such that (X1, . . . , Xd) is dis-

tributed uniformly on A. Clearly H(X1, . . . , Xd) = log |A|, and by (6.46),

H(X1, . . . Xi−1, Xi+1, . . . , Xd) ≤ log |Pi(A)| .

Now use Theorem 6.41 on X1, . . . , Xd to find that

(d− 1) log |A| ≤
d∑
i=1

log |Pi(A)| ,

as desired. ◀

The proof of Han’s inequality, while short, leaves some mystery as to why the inequal-

ity is true. In fact, a more general and very beautiful inequality due to Shearer, discovered

in the same year but not published until later by Chung, Graham, Frankl, and Shearer

(1986), has a proof that shows not only why the inequality holds, but also why it must

hold. We present this now. Shearer’s inequality has many applications in combinatorics.

Lemma 6.42. Given random variables X1, . . . , Xk and S ⊆ [1, k], write XS for the

random variable ⟨Xi ; i ∈ S⟩. The function S 7→ H(XS) is submodular, where H(X∅) := 0.

Proof. Given S, T ⊆ [1, k], we wish to prove that

H(XS∪T ) +H(XS∩T ) ≤ H(XS) +H(XT ) .

Subtracting 2H(XS∩T ) from both sides, we see that this is equivalent to

H(XS∪T | XS∩T ) ≤ H(XS | XS∩T ) +H(XT | XS∩T ) ,

which is (6.49). ◀
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Theorem 6.43. (Shearer’s Inequality) In the notation of Lemma 6.42, let S be a

collection of subsets of [1, k] such that each integer in [1, k] appears in exactly r of the sets

in S . Then

rH(X1, . . . , Xk) ≤
∑
S∈S

H(XS) .

Proof. Apply submodularity to the right-hand side by combining summands in pairs as

much as possible and iteratively: When we apply submodularity to the right-hand side, we

take a pair of index sets and replace them by their union and their intersection. We get a

new sum that is smaller. It does not change the number of times that any element appears

in the collection of sets. We repeat on any pair we wish. This won’t change anything if

one of the pair is a subset of the other, but it will otherwise. So we keep going until we

can’t change anything, that is, until every remaining pair has the property that one index

set is contained in the other. Since each element appears exactly r times in S , it follows

that we are left with r copies of [1, k] (and some copies of ∅, which may be ignored). ◀

▷ Exercise 6.20.

Prove the following generalization of the Loomis-Whitney inequality. Let A ⊂ Zd be finite

and S be a collection of subsets of {1, . . . , d} such that each integer in [1, d] appears in

exactly r of the sets in S . Write PS for the projection of Zd → ZS onto the coordinates

in S. Then

|A|r ≤
∏
S∈S

|PSA| .

§6.9. Notes.

Kesten (1959a, 1959b) proved the qualitative statement that a countable group G is amenable
iff some (or every) symmetric random walk with support generating G has spectral radius less
than 1. Making this quantitative, as in Theorem 6.7, was accomplished by Cheeger (1970) in the
continuous setting; he dealt with the bottom of the spectrum of the Laplacian, rather than any
spectral radius, but this is equivalent: in the discrete case, the Laplacian is I − P , so the bottom
of the spectrum of I − P equals 1 minus the spectral radius of P . Cheeger’s inequality states
the following: Let M be a closed n-dimensional Riemannian manifold. Let λ1(M) denote the
smallest positive eigenvalue of the Laplace-Beltrami operator on M . Let h(M) be the infimum
of Vn−1(E)/min{Vn(A), Vn(B)} when M is divided into two pieces A and B by an (n − 1)-
submanifold E and Vk denotes k-dimensional volume. Then

λ1(M) ≥ h(M)2/4 .
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An inequality in the opposite direction was proved later by Buser (1982), whose showed that in
this context, if the Ricci curvature of M is always at least −(n− 1)a2, then

λ1(M) ≤ 2a(n− 1)h(M) + 10h(M)2 .

In the discrete case, the direction of Buser’s inequality is the easy one. Cheeger’s result
was transferred to the discrete setting in various contexts of infinite graphs by Dodziuk (1984),
Dodziuk and Kendall (1986), Varopoulos (1985a), Ancona (1988), Gerl (1988), Biggs, Mohar,
and Shawe-Taylor (1988), and Kaimanovich (1992). Cheeger’s method of proof is used in all of
these. We have incorporated an improvement due to Mohar (1988). Similar inequalities were
proved independently for finite graphs, again inspired by Cheeger (1970). The first results were
by Alon and Milman (1985) and Alon (1986), and the final form was given by Jerrum and Sinclair
(1989) and Lawler and Sokal (1988) independently. Analogous inequalities for measure-preserving
actions of groups are due to Lyons and Nazarov (2011). For more information on inequalities of
broadly similar nature to Theorem 6.7 and on mixing rates, see, e.g., Saloff-Coste (1997), Woess
(2000), and Levin, Peres, and Wilmer (2009).

Theorem 6.7 is used mostly to deduce whether ρ(G) is less than 1 or not, depending on
whether G is non-amenable or amenable. However, it has also been used to deduce amenability of
some groups that had not been known to be amenable, by analyzing simple random walks thereon.
This proved that the class of amenable groups is not the closure (under natural operations) of the
class of groups of subexponential growth. See Bartholdi and Virág (2005), Kaimanovich (2005),
Brieussel (2009), and Bartholdi, Kaimanovich, and Nekrashevych (2010).

See Bartholdi (1999) for a relationship between the numbers of cycles at a vertex and the
numbers of cycles with given numbers of backtracking edge pairs. His analysis extends that of
the generating functions used in Section 6.3.

The fact proved in Section 6.5 that proper tessellations of the same type are isomorphic and
transitive is folklore. The sizes of the spheres in the tessellations analyzed in Section 6.5 are given
by explicit rational generating functions: see Paul and Pippenger (2011).

Our proof of Theorem 6.25 is modelled on the one presented by Gromov (1999), p. 348.
Results similar to Theorem 6.25 were proved earlier by Aldous (1987) and Babai (1991).

Benjamini, Lyons, and Schramm (1999) initiated a systematic study of the properties of a
transitive graph G that are preserved for infinite percolation clusters.

The notion of anchored expansion was implicit in Thomassen (1992), and made explicit in
Benjamini, Lyons, and Schramm (1999). Theorem 6.23 is due to Lyons, Morris, and Schramm
(2008); it refines Thomassen (1992) and is adapted from a similar result of He and Schramm (1995).
It is very similar to an independent result of Benjamini and Kozma (2005). The relevance of
anchored expansion to random walks, beyond the issue of transience, is exhibited by the following
theorem of Virág (2000a), the first part of which was conjectured by Benjamini, Lyons, and
Schramm (1999).

Theorem 6.44. Let G be a bounded degree graph with Φ∗
E(G) > 0. For a vertex x, denote by |x|

the distance from x to the basepoint o in G. Then the simple random walk ⟨Xn⟩ in G, started at o,
satisfies lim infn→∞ |Xn|/n > 0 a.s., and there exists C > 0 such that P[Xn = o] ≤ exp(−Cn1/3)
for all n ≥ 1.

Note that this theorem, combined with Theorem 6.32, implies positive speed on the infinite
clusters of Bernoulli(p) percolation on any G with Φ∗

E(G) > 0, provided p > 1/(1 + Φ∗
E(G)). This

partially answers Question 6.33. Furthermore, in conjunction with Theorem 6.36, we get that the
speed of simple random walk on supercritical Galton-Watson trees is positive, a result first proved
in Lyons, Pemantle, and Peres (1995b); see Theorem 16.13 and Exercise 16.6, where a formula for
the speed is given.
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▷ Exercise 6.21.
Show that the bound of Theorem 6.44 on the return probabilities is sharp by giving an example
of a graph with anchored expansion that has P[Xn = o] ≥ exp(−Cn1/3) for some C < ∞. Hint:
Take a Galton-Watson tree T with offspring distribution p1 = p2 = 1/2, rooted at o. Look for a
long pipe (of length n1/3) starting at level n1/3 of T .

Both Theorem 6.34 and Proposition 6.35 are from Chen and Peres (2004). The idea of the
proof of the latter originates in Kesten (1982). Theorem 6.36 is due to Chen and Peres (2004),
but the original proof was incomplete.

Loomis and Whitney (1949) proved an inequality analogous to Lemma 6.38 for bodies in Rd.
It implies the inequality we stated by taking a cube in Rd centered at each point of A.

The right-hand side minus the left-hand side of (6.48), i.e., H(X) + H(Y ) − H(X,Y ), is
known as the mutual information of X and Y .

A combination of ideas from Sections 6.6, 6.7, and 6.8 was used by Pete (2008) to show
that transient wedges in Z3 (see (2.19)) also have transient percolation clusters for supercritical
percolation, provided a mild technical condition on the function f of (2.19) is satisfied. The result
is true without this technical condition; see Angel, Benjamini, Berger, and Peres (2006).

§6.10. Collected In-Text Exercises.

6.1. Show that ΦE(Tb+1,1,1) = b− 1 for all b ≥ 1, where Tb+1 is the regular tree of degree b+ 1.

6.2. Show that for any network (G, c,D), we have

ΦE(G, c,D) = max {α ≥ 0 ; ∃θ ∀e |θ(e)| ≤ c(e) and ∀x d∗θ(x) ≥ αD(x)} ,

where θ runs over the antisymmetric functions on E.

6.3. Suppose that G is a graph such that for some o ∈ V, we have subexponential growth of balls:
lim infn→∞ |{x ∈ V ; d(o, x) ≤ n}|1/n = 1, where d(•, •) denotes the graph distance in G. Show
that (G,1) is vertex amenable.

6.4. Show that every Cayley graph of a finitely generated abelian group is amenable.

6.5. Suppose that G1 and G2 are roughly isometric graphs with bounded degrees and having
both edge and vertex weights ≍ 1. Show that G1 is amenable iff G2 is.

6.6. Prove that ∥P∥π ≤ 1.

6.7. (Rayleigh Quotient) Show that

∥P∥π = sup

{
|(Pf, f)π|

(f, f)π
; f ∈ D00 \ {0}

}
= sup

{
(Pf, f)π
(f, f)π

; f ∈ D00 \ {0}
}
.

6.8. Show that for f ∈ D00, we have d∗(c df) = π(f − Pf).

6.9. Show that for simple random walk on Tb+1, we have ρ(Tb+1) = 2
√
b/(b+ 1).

6.10. Let G be a d-regular multigraph. Show that ρ(G) = 1 iff cogr(G) = d− 1.

6.11. Give an example of a d-regular graph G where 1 < cogr(G) <
√
d− 1.
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6.12. Show that λ2 < 1 iff the network is connected and that λn > −1 iff the random walk is
aperiodic.

6.13. Show that the rate of exponential convergence in Theorem 6.13 cannot be faster than the
gap g∗. More precisely, show that for all pairs x, y,

lim
t→∞

− log |pt(x, y) − π(y)|
t

= g∗ .

6.14. Show that

λ2 = max
f⊥1

⟨Pf, f⟩
⟨f, f⟩ .

6.15. Let A be a finite set of vertices in a connected network G with |V(G)|π = ∞. Let H be a
finite connected subnetwork containing A. In HW, identify A to a single vertex a and let z be the
(wired) boundary vertex; call the new graph H ′. Define ψ(G,A, t) and ⟨sk⟩ as in Theorem 6.23
and ϕ(H ′, t) with its associated sequence ⟨s′k⟩ as in Lemma 6.24. Show that for all t ≥ 0,

ϕ(H ′, π(a) + t) ≥ ψ(G,A, |A|π + t)

and for all k ≥ 0, we have ϕ(H ′, s′k) ≥ ψ(G,A, sk).

6.16. For any p < 1, every infinite cluster K of Bernoulli(p) percolation on any graph G of
bounded degree has ΦE(K) = 0 a.s.

6.17. Show that if G is a transitive graph, then ΦE(G) = Φ∗
E(G) and ΦV(G) = Φ∗

V(G).

6.18. Prove the first inequality of Theorem 6.30 as written with anchored expansion.

6.19. Show that if the support of ν is unbounded, then ΦE(Gν) = 0 a.s.

6.20. Prove the following generalization of the Loomis-Whitney inequality. Let A ⊂ Zd be finite
and S be a collection of subsets of {1, . . . , d} such that each integer in [1, d] appears in exactly r
of the sets in S . Write PS for the projection of Zd → ZS onto the coordinates in S. Then

|A|r ≤
∏
S∈S

|PSA| .

6.21. Show that the bound of Theorem 6.44 on the return probabilities is sharp by giving an
example of a graph with anchored expansion that has P[Xn = o] ≥ exp(−Cn1/3) for some
C <∞. Hint: Take a Galton-Watson tree T with offspring distribution p1 = p2 = 1/2, rooted at
o. Look for a long pipe (of length n1/3) starting at level n1/3 of T .
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§6.11. Additional Exercises.

6.22. If (G1, c1, D1) and (G2, c2, D2) are networks, consider the cartesian product graph G1 ×
G2 = (V,E) defined by V := V1 × V2,

E :=

{
((x1, x2), (y1, y2)) ; (x1 = y1, (x2, y2) ∈ E2) or ((x1, y1) ∈ E1, x2 = y2)

}
with the weights D((x1, x2)) := D1(x1)D2(x2) on the vertices and

c([(x1, x2), (x1, y2)]) := D1(x1)c2([x2, y2]) and c([(x1, x2), (y1, x2)]) := D2(x2)c1([x1, y1])

on the edges. Show that with these weights, ΦE(G1 ×G2) = ΦE(G1) + ΦE(G2).

6.23. Let G = (V,E) be an infinite graph and M a matching in G, i.e., a set of edges that are
pairwise non-adjacent. Show that ΦE(G\M,1,1) ≥ ΦE(G,1,1) − 1.

6.24. Use Theorem 6.1 and its proof to give another proof of Theorem 6.2.

6.25. Refine Theorem 6.2 to show that if K is any finite vertex set in a transitive infinite graph
G, then |∂EK|/|K| ≥ ΦE(G) + 1/|K|.

6.26. Show that ifG is a transitive graph of degree d and the edge-expansion constant ΦE(G,1,1) =
d− 2, then G is a tree.

6.27. Show that if G is a finite transitive network, then the minimum of |∂EK|c/|K| over all K
of size at most |V|/2 occurs only for |K| > |V|/4.

6.28. Suppose that we had used the internal vertex boundary of sets K, defined as ∂int
V K :=

{x ∈ K ; ∃y /∈ K y ∼ x}, in place of the external vertex boundary, to define vertex amenability.
Show that this would not change the class of networks that are vertex amenable.

6.29. Let G and G† be plane dual graphs such that G† has bounded degrees. Show that if G is
amenable, then so is G†.

6.30. Show that every finitely generated subgroup of an amenable finitely generated group is
itself amenable.

6.31. Use Theorem 6.3 and its proof to give another proof of Theorem 6.4.

6.32. Refine Theorem 6.4 to show that if K is any finite vertex set in a transitive infinite graph
G, then |∂VK|/|K| ≥ ΦV(G) + 1/|K|.

6.33. Recall from Exercise 6.28 the internal vertex boundary of sets K. Let Φint
V (G) be the

corresponding expansion constant. Show that if G is a transitive network, then Φint
V (G) =

ΦV(G)/(1 + ΦV(G)) and that for all finite K, we have |∂int
V K|/|K| > Φint

V (G).

6.34. Let G be a transitive graph and b be a submodular function that is invariant under the
automorphisms of G and is such that if K and K′ are disjoint but adjacent, then strict inequality
holds in (6.2). Show that there is no finite set K that minimizes b(K)/|K|.

6.35. Show that a transitive graph G is non-amenable iff there exists a function f :V(G) → V(G)
having the two properties that (i) supx∈V(G) distG(x, f(x)) < ∞, and (ii) for all x ∈ V(G), the

cardinality of f−1(x) is at least 2.

6.36. Does every subperiodic tree with exponential growth have a non-amenable subtree?
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6.37. Consider a random walk on a graph with spectral radius ρ. Suppose that we introduce a
delay so that each step goes nowhere with probability pdelay, and otherwise chooses a neighbor
with the same distribution as before. Show that the new spectral radius equals pdelay+(1−pdelay)ρ.

6.38. Show that if G is a covering network of G′, then ΦE(G) ≥ ΦE(G′), ΦV(G) ≥ ΦV(G′), and
ρ(G) ≤ ρ(G′).

6.39. Show that if G is a graph of maximum degree d, then its edge-expansion constant satisfies
ΦE(G,1,1) ≤ d− 2.

6.40. Let T be a tree and Tb+1 be the regular tree of degree b+ 1.
(a) Show that if the degree of each vertex in T is at least b+ 1, then ρ(T ) ≤ ρ(Tb+1).
(b) Show that if for every r, the ball of radius r in Tb+1 is isomorphic to some ball in T , then

ρ(T ) ≥ ρ(Tb+1).

6.41. Let G be a graph and H be a transitive graph. Which of the following extensions of
Exercise 6.40 are valid?
(a) If each vertex in G is contained in a subgraph of G that is isomorphic to H, then ρ(G) ≤ ρ(H).
(b) If for every r, the ball of radius r in H is isomorphic to some ball in G, then ρ(G) ≥ ρ(H).

6.42. Give another proof of (6.17) by using Theorem 6.1.

6.43. Let G be a d-regular finite connected graph of diameter at least 2k for some integer k ≥ 2.
Let λ2 be the second largest eigenvalue of its adjacency matrix. Show that

λ2 > 2
√
d− 1 − 2

√
d− 1 − 1

k − 1
.

Hint: Choose a, z ∈ V so that their distance is at least 2k. Write b := d−1. Consider the function
f on V defined by

f(x) :=


1 if x = a,
b−(i−1)/2 if dist(x, a) = i ∈ [1, k − 1],
cb−(i−1)/2 if dist(x, z) = i ∈ [1, k − 1],
c if x = z,
0 otherwise,

where c is chosen so that
∑
x f(x) = 0. Show that (∆Gf, f) < 1 + b− 2

√
b+ (2

√
b− 1)/(k − 1).

6.44. Show that for a network (G, c,D), we have

ΦE(G, c,D) = inf

{
∥df∥ℓ1(c)
∥f∥ℓ1(D)

; 0 < ∥f∥ℓ1(D) <∞
}
.

6.45. For a network (G, c,D) with 0 < |V(G)|D < ∞, one of the alternative definitions of the
expansion constant (also known, unfortunately, as the conductance) is

Φc,D(G) := inf

{
|∂EK|c

min {|K|D, |V \K|D}
; K ⊂ V, 0 < |K|D < |V|D

}
.

Show that

Φc,D(G) = inf

{
∥df∥ℓ1(c)

infa∈R ∥f − a∥ℓ1(D)
; 0 < ∥f∥ℓ1(D) <∞

}
.

6.46. Let G be a network with spectral radius ρ(G) and let A be a set of vertices in G. Show
that for any x ∈ V and n ∈ N, we have Px[Xn ∈ A] ≤ ρ(G)n

√
|A|π/π(x).
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6.47. Suppose that G is a network with bounded π. Improve Proposition 6.9 to show that

lim inf
n→∞

distG(X0, Xn)/n ≥ −2 log ρ(G)/ log b a.s.

6.48. Let (G, c) be a network. For a finite non-empty set of vertices A, let πA(•) = π(•)/π(A)
be the normalized restriction of π to A. Write PπA for the network random walk ⟨Xn⟩ started
at a point x ∈ A with probability π(x)/π(A). Show that (G, c) is non-amenable iff there is some
function f :N → [0, 1] that tends to 0 at infinity and that has the following property: For all finite
A and all n ∈ N, we have PπA [Xn ∈ A] ≤ f(n).

6.49. Let (G, c) be a network with spectral radius ρ < 1. Let v(•) be the voltage function from
a fixed vertex o to infinity. Show that

∑
x∈V π(x)v(x)2 <∞.

6.50. Let (G, c) be a network with spectral radius ρ < 1. Let A ⊂ V be a nonempty set of states
with π(A) < ∞ and let πA(•) = π(•)/π(A) be the normalized restriction of π to A. Show that
when the chain is started according to πA, the chance that it never returns to A is at least 1 − ρ:

PπA [Xn never returns to A] ≥ 1 − ρ .

Hint: Consider the function f(x) defined as the chance that starting from x, the set A will ever
be visited. Use Exercise 6.7.

6.51. Let G be the Cayley graph of a group Γ with respect to a finite generating set S. Without
assuming that S is closed under inverses, let A be the associated averaging operator that includes
the identity, i.e., (Af)(x) := (f(x) +

∑
s∈S f(xs))/(|S| + 1) for f ∈ ℓ2(Γ). Show that ∥A∥ < 1 iff

Γ is non-amenable.

6.52. Non-backtracking random walk can be thought of as a Markov chain on directed edges.
Show that if G is a regular graph of degree at least 3, then simple random walk on G is transient
iff non-backtracking random walk is transient.

6.53. (Pringsheim’s Theorem) Let ⟨an ; n ≥ 0⟩ be a sequence of non-negative real numbers

and f(z) :=
∑
n≥0 anz

n be convergent for some positive z. Suppose that δ := lim supn→∞ a
1/n
n >

0. Show that there is no analytic function whose domain includes [0, 1/δ] and that agrees with
f(z) in a neighborhood of 0. Hint: Assume the contrary. Write R := 1/δ. Then there is a
z0 ∈ (0, R) and an ϵ > 0 so that f has a power series in a disk about z0 that includes R + ϵ.
Calculate its coefficients. Note they are non-negative. Rearrange terms to show it converges at
R+ ϵ, a contradiction.

6.54. Let G be a connected graph.
(a) Show that if G has no simple cycle and at most one loop, then cogr(G) = 0.
(b) Show that if G has one simple cycle and no loop or no simple cycle and two loops, then

cogr(G) = 1 and, if G is d-regular, ρ(G) = 2
√
d− 1/d.

(c) Show that in all other cases, cogr(G) > 1.

6.55. Let G be a d-regular multigraph. Suppose that there are some L,M < ∞ such that for
every vertex x ∈ V(G), there is a simple cycle of length at most L that is at distance at most M
from x. Show that ρ(G) > 2

√
d− 1/d.

6.56. Let G be a graph. Let the number of non-backtracking cycles of length n starting from
x ∈ V(G) be bn(x). Among those, let b∗n(x) be the ones whose first edge is not the reverse of its
last edge, or is a loop. Write S(x) := {n ; bn(x) ̸= 0} and S∗(x) := {n ; b∗n(x) ̸= 0}.
(a) Show that b∗m(x)b∗n(x)/2 ≤ b∗m+n(x).
(b) Show that limS∗(x)∋n→∞ b∗n(x)1/n exists and b∗n(x) ≤ 2 cogr(G)n.

(c) Show that limS(x)∋n→∞ bn(x)1/n exists and does not depend on x.
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6.57. Here we give another approach to proving (6.19) and (6.21). Let G be a d-regular graph
with root o. Write b := d − 1. Let the number of cycles of length n starting from o be cn(G),
while the number of those that are non-backtracking is bn(G). Write H0(z) :=

∑
n≥0 cn(Tb+1)zn

and H(z) :=
∑
n≥0 cn(T )zn, where T is a b-ary tree.

(a) Show that ∑
n≥0

cn(G)zn =
∑
n≥0

bn(G)znH(z)nH0(z) .

(b) Show that

H(z) =
∑
n≥0

(bz2)nH(z)n

and that

H(z) =
2

1 +
√

1 − 4bz2
.

(c) Show that H0(z) = H(z)/(1 − z2H(z)2) and that

H0(z) =
2b

b− 1 + (b+ 1)
√

1 − 4bz2
.

6.58. Let G be a d-regular graph. Write b := d − 1. Let A be the adjacency matrix of G.
Write B for the matrix indexed by the oriented edges of G such that B((x, y), (y, z)) = 1 when
(x, y), (y, z) ∈ E(G) and x ̸= z, with all other entries of B equal to 0. As usual, every edge of G
comes with both orientations and ℓ2−(E) is the Hilbert space of square-summable anti-symmetric
functions on E. Let ℓ2+(E) denote the Hilbert space of square-summable symmetric functions on
E. Thus, ℓ2(E) = ℓ2−(E) ⊕ ℓ2+(E).
(a) Show that B is invertible and that bB−1 has integer entries.
(b) Let C := bB−1 +B. Show that the subspaces ℓ2−(E) and ℓ2+(E) are invariant under C.
(c) Show that C is self-adjoint.
(d) Given f ∈ ℓ2(V), let θ−(e) := f(e+) − f(e−) and θ+(e) := f(e+) + f(e−). Show that if

Af = λf , then Cθ− = λθ− and Cθ+ = λθ+.
(e) More generally, show that if λ belongs to the spectrum σ(A) of A, then it belongs to the

spectrum of C.
(f) Show that if ψ ⊥ θ− for all θ− of the form in (d) and ψ ∈ ℓ2−(E), then Cψ = dψ, while if

ψ ⊥ θ+ for all θ+ of the form in (d) and ψ ∈ ℓ2+(E), then Cψ = −dψ.
(g) Show that if λ ̸= ±d belongs to the spectrum of C, then λ belongs to the spectrum of A.
(h) Show that the set {b/κ + κ ; κ ∈ σ(B)} equals σ(A) ∪ {±d} and that |κ| =

√
b for all

κ ∈ σ(B) \ R.
(i) Show that when d ≥ 3 and G is a finite non-bipartite graph of diameter at least 6, non-

backtracking random walk mixes faster on G than does simple random walk. In other words,
let M− and M+ be the incidence matrices whose rows are indexed by vertices and columns
by oriented edges, where M−(x, e) is the indicator that x is the tail of e and M+(x, e) is
the indicator that x is the head of e. The (x, y)-entry of Qk := M−B

kMT
+/(db

k) is the
probability that a non-backtracking random walk from x is at y at time k + 1, where the
superscript T indicates transpose. Show that non-backtracking random walk is aperiodic and
for all x, y, we have

lim sup
k→∞

|Qk(x, y) − 1/|V||1/k < lim
k→∞

|P k(x, y) − 1/|V||1/k ,

where P is the transition matrix for simple random walk.
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6.59. For a general irreducible positive recurrent Markov chain with stationary probability mea-
sure π, prove that for any set S of states, we have∑

x∈S

π(x)Ex[τ+S ] = 1

and ∑
x∈S

∑
y∈Sc

π(x)p(x, y)Ey[τS ] = π(Sc) .

This shows that starting at the stationary measure conditioned on just having made a transition
from S to Sc, the expected time to hit S again is 1/ΦSc . Hint: Write Ex[τ+S ] = 1+

∑
y p(x, y)Ey[τS ]

and observe that in the last sum, only y ∈ Sc contribute.

6.60. Let ⟨Xn⟩ be a reversible Markov chain with a stationary probability distribution π on the
state space V. Let A be a set of states with |A| ≥ 2. Consider the chain ⟨Yn⟩ induced on A,
i.e., P[Y0 = x] = π(x)/π(A) and P[Yn+1 = y | Yn = x] = P[X

τ+
A

= y | X0 = x]. Show that the

spectral gap for the chain ⟨Yn⟩ is at least that for the chain ⟨Xn⟩.
6.61. Show that ifG is a plane regular graph with regular dual, then ΦE(G) is either 0 or irrational.

6.62. Show that if G is a plane regular graph with non-amenable regular dual G†, then

β(G) + β(G†) > 1 .

6.63. Let G be a plane regular graph with regular dual G†. Write K′ for the set of vertices
incident to the faces corresponding to K, for both K ⊂ V and for K ⊂ V†. Likewise, let K̂ denote
the faces inside the outermost cycle of E(K′). Let K0 ⊂ V be an arbitrary finite connected set and

recursively define Ln := (K̂n)′ ⊂ V† and Kn+1 := (L̂n)′ ⊂ V. Show that |∂EKn|/|Kn| → ΦE
′(G)

and |∂ELn|/|Ln| → ΦE
′(G†).

6.64. Let G be a plane graph in the hyperbolic plane whose dual G† has geodesic edges.
(a) Show that ΦE(G,1,1) is at least the infimum of the hyperbolic areas of the faces of G†. Hint:

Use Theorem 6.1 and the fact that geodesic triangles have area at most π.
(b) Show that if all degrees in G are at least d and all degrees in G† are at least d†, then

ΦE(G,1,1) ≥ [(d− 2)(d† − 2)− 4]/d†. Hint: The area of a geodesic polygon of n sides equals
(n− 2)π minus the sum of the interior angles.

6.65. The upper bound on effective resistance given in Lemma 6.24, while useful for applications
to resistance to infinity as in Theorem 6.23, is very weak for finite networks. Prove the following
better version and some consequences.
(a) Let a and z be two distinct vertices in a finite connected network G. Define

ψ(t) := min

{
|∂EW |c ; a ∈W, z /∈W, G↾W is connected, t ≤ min {|W |π, |V(G) \W |π}

}
when this set is non-empty and ψ(t) := ∞ otherwise. Define s0 := π(a) and sk+1 :=
sk + ψ(sk)/2 recursively for k ≥ 0. Then

R(a↔ z) ≤
∞∑
k=0

4

ψ(sk)
.

(b) Let a and z be two distinct vertices in a finite connected network G with c(e) ≥ 1 for all
edges e. Show that

R(a↔ z) ≤ 12

Φ∗
+ 4 ,

where Φ∗ is the expansion constant of Definition 6.14.
(c) Give another proof of the upper bound of Proposition 2.14 that uses (a).

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



Chap. 6: Isoperimetric Inequalities 250

6.66. Show that there is a function C: (1,∞)× (1,∞) → (0, 1) such that every graph G with the
property that the cardinality of each of its balls of radius r lies in [br/a, abr] satisfies

|∂VK|
|K| ≥ C(a, b)

log(1 + |K|)

for each finite non-empty K ⊂ V(G). You may wish to complete the following outline of its proof,
parts (a)–(f) below. Define f(x, y) := b−d(x,y), where the distance is measured in G. Fix K. Set
Z :=

∑
x∈K

∑
y∈∂VK

f(x, y). Estimate Z in two ways, depending on the order of summation.

(a) Fix x ∈ K. Choose R so that |B(x,R)| ≥ 2|K| and let W := B(x,R) \K. For w ∈W , fix a
geodesic (i.e., shortest) path from x to w and let w′ be the first vertex in ∂VK on this path.
Let B := |{(w,w′) ; w ∈W}|. Show that B ≥ CbR.

(b) Show that B ≤ C′bR
∑
y∈∂VK

f(x, y).

(c) Deduce that Z ≥ C|K|.
(d) Fix y ∈ ∂VK. Show that

∑
x∈K f(x, y) ≤ C′ log(1 + |K|).

(e) Deduce that Z ≤ C′|∂VK| log(1 + |K|).
(f) Deduce the result.

(g) Find a tree with bounded degree and such that every ball of radius r has cardinality in
[2⌊r/2⌋, 3 · 2r], yet there are arbitrarily large finite subsets with only one boundary vertex.

(h) Show that if a tree satisfies |∂VK| ≥ 3 for every vertex set K of size at least m, where m is
fixed, then the tree is non-amenable.

6.67. Show that there is a function C: (1,∞) × (1,∞) → (0,∞) such that every graph G with
the property that the cardinality of each of its balls of radius r lies in [br/a, abr] satisfies R(x↔
∞) ≤ C(a, b) for all x ∈ V(G).

6.68. Let G be a Cayley graph of growth rate b. Show that a.s., every infinite cluster of
Bernoulli(p) percolation on G is transient when p > 1/b.

6.69. Write out the proof of the second inequality of Theorem 6.30.

6.70. Write out the proof of the second inequality of Theorem 6.32.

6.71. Show that Φ∗
E(G) > 0 implies that for p sufficiently close to 1, in Bernoulli(p) percolation the

open cluster K(o) of any vertex o ∈ V(G) satisfies Pp[|V(K(o))| < ∞, |∂EV(K(o))| = n] < Cqn

for some q < 1 and C <∞.

6.72. Suppose that G satisfies an anchored (at-least-) two-dimensional isoperimetric in-
equality , i.e., hn > c/n for a fixed c > 0 and all n, where hn is as in (6.42). Show that
|An| ≤ eCn logn for some C < ∞. Give an example of a graph G that satisfies an anchored
two-dimensional isoperimetric inequality, has pc(G) = 1, and |An| ≥ ec1n logn for some c1 > 0.

6.73. Let G be a binary tree. Show that if ν has a tail that decays slower than exponentially,
then Φ∗

E(G) > 0 yet Φ∗
E (Gν) = 0 a.s.

6.74. Show that equality holds in (6.46) iff X is uniform on n values.

6.75. Show that equality holds on the left in (6.47) iff X is a function of Y , whereas equality
holds on the right iff X and Y are independent. Show that equality holds in (6.49) iff X and Y
are independent given Z.

6.76. Use concavity of the entropy functional H[ • ] to prove (6.46).
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6.77. Show that there exists a constant Cd > 0 such that if A is a subgraph of the box {0, . . . , n−
1}d and |A| < nd/2, then

|∂EA| ≥ Cd|A|
d−1
d .

Here, ∂EA refers to the edge boundary within the box, so this is not a special case of Theorem 6.37.

6.78. Consider a stationary Markov chain ⟨Xn⟩ on a finite state space V with stationary measure
π(x) and transition probabilities p(x, y). Show that for n ≥ 0, we have

H(X0, . . . , Xn) = H[π] − n
∑
x,y∈V

π(x)p(x, y) log p(x, y) .
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Chapter 7

Percolation on Transitive Graphs

How many infinite clusters does Bernoulli(p) percolation have on a given graph? How

does this change as p changes? How do the infinite clusters themselves change as p in-

creases? As we saw in Section 5.2, once p is large enough that there is an infinite cluster

a.s., then the same holds for all larger p. For general graphs, the number of infinite clusters

can be any non-negative integer or infinity, and can change in an irregular fashion as p

increases. However, many nice properties of infinite clusters ensue when the underlying

graph is itself nice. What do we mean?

Many natural graphs look the same from every vertex. To make this notion precise,

recall that an automorphism of a graph G = (V,E) is a bijection ϕ:V → V such that

[ϕ(x), ϕ(y)] ∈ E iff [x, y] ∈ E. We write Aut(G) for the group of automorphisms of G. If G

has the property that for every pair of vertices x, y, there is an automorphism of G that

takes x to y, then G is called (vertex-) transitive . The most prominent examples of

transitive graphs are Cayley graphs, defined in Section 3.4. Of course, these include the

usual Euclidean lattices Zd, on which the classical theory of percolation has been built.

Our purpose is not to develop the classical theory of percolation, for which Grimmett

(1999) is an excellent source, but we will now briefly state some of the important facts

from that theory that motivate some of the questions that we will treat. Recall from

Section 6.7 the probability measures Psite
p and Pbond

p for the two product measures on 2V

and 2E defining Bernoulli percolation and the associated critical probabilities pbondc and

psitec . As we said there, if we don’t indicate whether the percolation is bond or site and

both make sense in context, then results we state should be taken to apply to both types

of percolation. As we will prove, we have 0 < pc(Zd) < 1 for all d ≥ 2. It was conjectured

about 1955 that pbondc (Z2) = 1/2, but this was not proved until Kesten (1980); see Chapter

3 of Bollobás and Riordan (2006) for a proof and Figure 7.1 for an illustration. How many

infinite clusters are there when p ≥ pc? We will see in Theorem 7.5 that for each p, this

number is a random variable that is constant a.s. More precisely, Aizenman, Kesten, and

Newman (1987) showed that there is a.s. only one infinite cluster when p > pc(Zd), and one

of the central conjectures in the field is that there is a.s. no infinite cluster when p = pc(Zd)
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(d ≥ 2). This was proved for d = 2 partially by Harris (1960) and fully by Kesten (1980),

and for d ≥ 19 by Hara and Slade (1990, 1994) (and for d ≥ 7 when bonds between all

pairs of vertices within distance L of each other are added, for some L).

Figure 7.1. Bernoulli bond percolation on a 40×40 square grid graph
at levels p = 0.4, 0.5, 0.6. Each cluster is given a different color.

The conventional notation for Pp[x belongs to an infinite cluster] is θx(p), not to be

confused with the notation for a flow used in other chapters. For a transitive graph, it is

clear that this probability does not depend on x, so the subscript is usually omitted. For

all d ≥ 2, van den Berg and Keane (1984) showed that θ(p) is continuous for all p ̸= pc

and is continuous at pc iff θ(pc) = 0; see Exercise 7.33 for a more general result. Thus, θ is

a continuous function on all of [0, 1] iff the conjecture above [that θ(pc) = 0] holds. More

results that lend support to this conjecture are that for all d ≥ 2,

lim
k→∞

pc
(
Z2 × [0, k]d−2

)
= pc

(
Zd
)
= pc

(
Zd−1 × Z+

)
(Grimmett and Marstrand, 1990) and θ(pc) = 0 on the graph Zd−1 × Z+ (Barsky, Grim-

mett, and Newman, 1991). We will not prove any results regarding θ(pc) on Zd (except

that θ(1/2) = 0 for bond percolation on Z2), but in Section 8.4, we will prove that θ(pc) = 0

on non-amenable Cayley graphs.

This chapter is devoted to the basics of percolation theory and especially to the possi-

ble existence of a double phase transition on non-amenable graphs: one phase transition is

at pc, where the number of infinite clusters changes from 0 to positive, while another may

occur at a point denoted pu, where the number of infinite clusters changes from one positive

number to another. This latter phase transition is considerably subtler than the former.

Further progress on these issues requires (at present) another tool, the mass-transport

technique, which is explained in the succeeding chapter. That tool works wonders on

Cayley graphs, but is not very effective on all transitive graphs.
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In this chapter, all graphs are assumed to be locally finite without explicit mention.

A slight generalization of transitive graphs is the class of quasi-transitive graphs,

which are those that have only finitely many orbits for the action of the automorphism

group on the vertex set. Note that an orbit is an equivalence class of vertices if two vertices

are equivalent when there is an automorphism that takes one vertex to the other. Most

results concerning quasi-transitive graphs can be deduced from corresponding results for

transitive graphs or can be deduced in a similar fashion but with some additional attention

to details. In this context, the following construction is useful: Suppose that Γ ⊆ Aut(G)

acts quasi-transitively on V, i.e., the orbit space V/Γ is finite. Let o be a vertex in

G. Let r be such that every vertex in G is within distance r of some vertex in the orbit

Γo. Form the graph G′ from the vertex set Γo by joining two vertices by an edge if their

distance in G is at most 2r + 1. It is easy to see that G′ is connected: if f :V → Γo is a

map such that distG
(
x, f(x)

)
≤ r for all x, then any path x0, x1, . . . , xn in G between two

vertices of Γo maps to a path x0, f(x1), f(x2), . . . , f(xn−1), xn in G′. Also, restriction of

the elements of Γ to G′ yields a subgroup Γ′ ⊆ Aut(G′) that acts transitively on G′, i.e.,

V′ is a single orbit. We call G′ a transitive representation of G.

We begin with a section giving additional background on Cayley graphs before we

turn to percolation theory.

§7.1. Groups and Amenability.

In Section 3.4, we looked at some basic constructions of groups. Another useful but

more complex construction is that of amalgamation. Suppose that Γ1 = ⟨S1 | R1⟩ and

Γ2 = ⟨S2 | R2⟩ are groups that both have a subgroup isomorphic to Γ′. We want to

take the free product of Γ1 and Γ2, while identifying the copies of Γ′. More precisely,

suppose that ϕi: Γ
′ → Γi are monomorphisms for i = 1, 2 and that S1 ∩ S2 = ∅. Let

R := {ϕ1(γ)ϕ−1
2 (γ) ; γ ∈ Γ′}. The relations in R allow us to identify the copies ϕi(Γ

′) in

forming the new group ⟨S1 ∪ S2 | R1 ∪ R2 ∪ R⟩, which is called the amalgamation of

Γ1 and Γ2 over Γ′ and denoted Γ1 ∗Γ′ Γ2. The name and notation do not reflect the role

of the maps ϕi, even though they are crucial. For example, Z ∗2Z Z = ⟨a, b | a2b−2⟩ has a
Cayley graph that, if its edges are not labelled,* looks just like the usual square lattice;

see Figure 7.2. However, Z ∗3Z Z = ⟨a, b | a3b−3⟩ is quite different: it is non-amenable by

Exercise 6.38, as it has the quotient ⟨a, b | a3b−3, a3, b3⟩ = Z3 ∗Z3. Of course, both 2Z and

3Z are isomorphic to Z; our notation evokes inclusion as the appropriate maps ϕi.

* When the edges are oriented and labelled by the generators, we get the Cayley diagram .
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a a

a a

a

a a

a a
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b b

b b

b

b

b

b b

b

b

Figure 7.2. A portion of the edge-labelled Cayley graph of Z ∗2Z Z.

In this chapter, we will use ΦE(G) to mean always the expansion constant

ΦE(G,1,1) and ΦV(G) to mean always ΦV(G,1). This also makes the latter directly

comparable to the anchored expansion constant Φ∗
V(G). Since |∂EK| ≥ |∂VK|, we have

ΦE(G) ≥ ΦV(G). In the other direction, for any graph of degree bounded by d, we have

ΦV(G) ≥ ΦE(G)/d. For a tree T , it is clear that ΦE(T ) = ΦV(T ). See Section 6.5 for the

calculation of ΦE(G) when G arises from certain hyperbolic tessellations; e.g., ΦE(G) =
√
5

for the graph in Figure 2.4. Many of the edge graphs of hyperbolic tessellations are not

Cayley graphs, but are still transitive graphs. The graph in Figure 2.4 is a Cayley graph;

see Chaboud and Kenyon (1996) for an analysis of which regular tessellations are Cayley

graphs. Another Cayley graph is shown in Figure 6.1.

We claim that for any graph G, the balls BG(o, n) in G about a fixed point o of radius

n satisfy

lim inf
n→∞

|BG(o, n)|1/n ≥ 1 + Φ∗
V(G) . (7.1)

Indeed, for every c < Φ∗
V(G) and for all sufficiently large n, we have that |∂VB(o, n)| >

c|B(o, n)|, i.e., |B(o, n+1)| > (1+ c)|B(o, n)|. This implies (7.1). In particular, if a group

Γ is non-amenable, then all its Cayley graphs G have exponential growth.

Surprisingly, the converse fails, and various classes of counterexamples are known.
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Chap. 7: Percolation on Transitive Graphs 256

One counterexample is the group G1, also known as the lamplighter group. It is defined

as a (restricted) wreath product, which is a special kind of semidirect product. First,

the group
∑
x∈Z Z2, the direct sum of copies of Z2 indexed by Z, is the group of maps

η:Z → Z2 with η−1
(
{1}
)
finite and with componentwise addition mod 2, which we denote

⊕: that is, (η⊕η′)(j) := η(j)+η′(j) (mod 2). Let S be the left shift, S(η)(j) := η(j+1).

Now define G1 := Z ⋉
∑
x∈Z Z2, which is the set Z ×

∑
x∈Z Z2 with the following group

operation: for m,m′ ∈ Z and η, η′ ∈
∑
x∈Z Z2, we multiply* by the rule

(m, η)(m′, η′) := (m+m′, η ⊕ S−mη′) .

We call an element η ∈
∑
m∈Z Z2 a configuration and call η(k) the bit at k. We identify

Z2 with {0, 1}. The first component of an element x = (m, η) ∈ G1 is called the position of

the marker in the state x. One nice set of generators of G1 is
{
(1,0), (−1,0), (0,1{0})

}
.

The reason for the name of this group is that we may think of a street lamp at each integer

with the configuration η representing which lights are on, namely, those where η = 1. We

also may imagine a lamplighter at the position of the marker. The first two generators of

G1 correspond (for right multiplication) to the lamplighter taking a step either to the right

or to the left (leaving the lights unchanged); the third generator corresponds to flipping

the light at the position of the lamplighter. See Figure 7.3.

012 3

1 1 1 1 1 1 1 1 1 1 1 111 1

-1

000 0 0000000 0

Figure 7.3. A typical element of G1.

To see that G1 has exponential growth, use the generators given above. Consider the

subset Tn of group elements at distance n from the identity that can be arrived at from the

identity by using only the generators (1,0) and (0,1{0}), i.e., by never allowing the lamp-

lighter to move leftwards. Since Tn is a disjoint union of (1,0)Tn−1 and (0,1{0})(1,0)Tn−2,

we have |Tn| = |Tn−1|+ |Tn−2|. Thus, ⟨|Tn|⟩ is the sequence of Fibonacci numbers. There-

fore the exponential growth rate of |Tn| equals the golden mean, (1 +
√
5)/2. In fact, it is

easy to check that this is the growth rate of balls in G1. On the other hand, to see that

G1 is amenable, consider the “boxes”

Kn :=
{
(m, η) ; m ∈ [−n, n], η−1

(
{1}
)
⊆ [−n, n]

}
.

* This multiplication rule corresponds better to a semidirect product for (m′, η′)(m, η), but we want
to use the right Cayley graph, so this is the opposite group to the usual one.
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Then |Kn| = (2n+ 1)22n+1, while |∂EKn| = 22n+2.

Besides the hyperbolic graphs mentioned above, some other transitive graphs that are

not Cayley graphs can be constructed as follows.

Example 7.1. (Grandparent Graph) Let ξ be a fixed end of a regular tree T of degree

at least 3. Ends in graphs will be defined more generally in Section 7.3, but for trees, the

definition is simpler. Namely, an end is an equivalence class of rays (i.e., infinite simple

paths), where rays may start from any vertex and two rays are equivalent if they share all

but finitely many vertices. Thus, given an end ξ, for every vertex x in T , there is a unique

ray xξ := ⟨x0, x1, x2, . . .⟩ in the class ξ that starts from x = x0; for each pair x, y, the rays

xξ and yξ differ by only finitely many vertices. Call x2 in this ray the ξ-grandparent of

x. Let G be the graph obtained from T by adding, for every x, an edge [x, x2] between

x and its ξ-grandparent. This is shown in Figure 7.4. Then G is a transitive graph that

is not the Cayley graph of any group. A proof that this is not a Cayley graph is given in

Section 8.2. To see that G is transitive, let x and y be two of its vertices. Let ⟨xn ; n ∈ Z⟩
be a bi-infinite simple path in T that extends xξ to negative integer indices. We have

redrawn the grandfather graph using this line in Figure 7.5. There is some k such that

xk ∈ yξ. We claim that there is an automorphism of G that takes x to xk; this implies

transitivity since there is then also an automorphism that takes xk to y. Indeed, the graph

G \ {xn ; n ∈ Z} consists of components that are isomorphic, one for each n ∈ Z. Seeing

this, we also see that it is easy to shift along the path ⟨xn ; n ∈ Z⟩ by any integer amount,

in particular, by k, via an automorphism of G. This proves the claim. These examples

were described by Trofimov (1985).

Figure 7.5. The grandparent graph redrawn.

Example 7.2. (Diestel-Leader Graph) Let T (1) be a 3-regular tree with edges ori-

ented towards some distinguished end, and let T (2) be a 4-regular tree with edges oriented

towards some distinguished end. (An edge ⟨x, y⟩ is oriented towards an end in a tree if y

is on the ray starting from x that belongs to that end.) Let V be the cartesian product

of the vertices of T (1) and the vertices of T (2). Join (x1, x2), (y1, y2) ∈ V by an edge if
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Chap. 7: Percolation on Transitive Graphs 258

Figure 7.4. The grandparent graph, with the new edges shown in magenta.

⟨x1, y1⟩ is an edge of T (1) and ⟨x2, y2⟩ is an edge of T (2), and precisely one of these edges

goes against the orientation. The resulting graph G has infinitely many components, any

two components being isomorphic. Each component is a transitive graph, but not a Cay-

ley graph for the same (still-to-be-explained) reason as in Example 7.1. To see that each

component of G is transitive, note that if ϕi is an automorphism of T (i) that preserves its

distinguished end, then ϕ1×ϕ2: (x1, x2) 7→
(
ϕ1(x1), ϕ2(x2)

)
is an automorphism of G. We

saw in Example 7.1 that such automorphisms ϕi act transitively. Therefore, G is transi-

tive, whence so is each of its components (and all components are isomorphic). One way

to describe this graph is as a family graph: Suppose that there is an infinity of individuals,

each of which has 2 parents and 3 children. The children are shared by the parents, as is

the case in the real world. If an edge is drawn between each individual and his parent,

then one obtains this graph for certain parenthood relations (with one component if each

individual is related to every other individual). This graph is not a tree: If, say, John and

Jane are both parents of Alice, Betty, and Carl, then one cycle in the family graph is from

John to Alice to Jane to Betty to John. This example of a transitive graph was first dis-

covered by Diestel and Leader (2001) for the purpose of providing a potential example of a

transitive graph that is not roughly isometric to any Cayley graph. The question whether

there was any such transitive graph was asked by Woess (1991). Finally, Eskin, Fisher,

and Whyte (2006) showed that indeed the Diestel-Leader graph is not roughly isometric

to any Cayley graph.
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§7.2. Tolerance and Ergodicity.

This section is devoted to some quite general and elementary properties of the product

measures Pp. Notation we will use throughout is that 2A denotes the collection of subsets

of A. It also denotes {0, 1}A, the set of functions from A to {0, 1}. These two spaces are

identified by identifying a subset with its indicator function.

The first general property that we treat is that Pp is insertion tolerant, which means

the following. Given a configuration ω ∈ 2E and an edge e ∈ E, write

Πeω := ω ∪ {e} ,

where we regard ω as the subset of open edges. The notation is chosen to evoke the phrase,

“put e in ω”. Extend this notation to events A by

ΠeA := {Πeω ; ω ∈ A} .

Also, for any set F of edges, write

ΠFω := ω ∪ F

and extend to events as above. A bond percolation process P on G is insertion tolerant

if P(ΠeA) > 0 for every e ∈ E and every measurable A ⊂ 2E satisfying P(A) > 0. Here, we

use the Borel σ-field generated by the product topology on 2E. For Bernoulli(p) percolation,

we have the stronger inequality

Pp(ΠeA) ≥ pPp(A) . (7.2)

▷ Exercise 7.1.

Prove (7.2).

Likewise, a bond percolation process P on G is deletion tolerant if P(Π¬eA) > 0

whenever e ∈ E and P(A) > 0, where Π¬eω := ω \ {e}. We extend this notation to sets F

by Π¬Fω := ω \ F . By symmetry, Bernoulli percolation is also deletion tolerant, with

Pp(Π¬eA) ≥ (1− p)Pp(A) .

Similar definitions hold for site percolation processes.*

* In the statistical physics literature, a measure that is both insertion- and deletion-tolerant is said
to have finite energy , while one that is assumed only insertion-tolerant has positive finite energy . Of
course, these terms have nothing to do with the energy of flows in electrical networks. Rather, they arise
by analogy to other processes where a different form of energy plays a role.
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▷ Exercise 7.2.

Let G be a connected graph and x, y ∈ V(G). Consider Bernoulli(p) percolation on G.

Prove that if θy(p) > 0, then also θx(p) > 0.

We will use insertion and deletion tolerance often. Another crucial pair of properties

is invariance and ergodicity. Suppose that Γ is a group of automorphisms of a graph G. A

measure P on 2E, on 2V, or on 2E∪V is called a Γ-invariant percolation if P(γA) = P(A)

for all γ ∈ Γ and all events A. In the case of a measure on 2E∪V, we assume that P is

concentrated on subgraphs of G, i.e., whenever an edge lies in a configuration, so do both

of its endpoints. Let IΓ denote the σ-field of events that are invariant under all elements

of Γ. The measure P is called Γ-ergodic if for each A ∈ I Γ, we have either P(A) = 0

or P(¬A) = 0. Bernoulli percolation on any infinite Cayley graph is both invariant and

ergodic with respect to translations. The invariance is obvious, while ergodicity is proved

in the following proposition.

Proposition 7.3. (Ergodicity of Bernoulli Percolation) If Γ acts on a connected

locally finite graph G in such a way that each vertex has an infinite orbit, then Pp is

Γ-ergodic.

Note that if some vertex in G has an infinite Γ-orbit, then every vertex has an infinite

Γ-orbit. Recall that we identify a subset ω ⊆ E with its indicator function, so that ω(e)

takes the value 0 or 1 depending on whether e lies in the subset or not. Also, recall that

a cylinder event B is one for which there is a finite set F ⊂ E with the property that for

every pair ω1, ω2 ∈ 2E that agree on F , we have either both ω1, ω2 are in B or neither are

in B. In this case, we say that B depends only on F .

Proof. Our notation will be for bond percolation. The proof for site percolation is identical.

Let A ∈ I Γ. The idea is to show that A is almost independent of γA = A for “large” γ.

To make this precise, we approximate A by a cylinder event. Thus, let ϵ > 0. Because

A is measurable, there is a cylinder event B that depends only on some finite set F such

that Pp(A △ B) < ϵ. For all γ ∈ Γ, we have Pp(γA △ γB) = Pp[γ(A △ B)] < ϵ. By

the assumption that vertices have infinite orbits, there is some γ such that F and γF are

disjoint (because their graph distance can be made arbitrarily large). Since γB depends

only on γF , it follows that B and γB are independent. Now for any events C1, C2, D, we

have

|Pp(C1 ∩D)−Pp(C2 ∩D)| ≤ Pp[(C1 ∩D)△ (C2 ∩D)] ≤ Pp(C1 △ C2) .
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Therefore,

|Pp(A)−Pp(A)
2| = |Pp(A ∩ γA)−Pp(A)

2|

≤ |Pp(A ∩ γA)−Pp(B ∩ γA)|+ |Pp(B ∩ γA)−Pp(B ∩ γB)|

+ |Pp(B ∩ γB)−Pp(B)2|+ |Pp(B)2 −Pp(A)
2|

≤ Pp(A△B) +Pp(γA△ γB) + |Pp(B)Pp(γB)−Pp(B)2|

+ |Pp(B)−Pp(A)|
(
Pp(B) +Pp(A)

)
< ϵ+ ϵ+ 0 + 2ϵ .

It follows that Pp(A) ∈ {0, 1}, as desired. ◀

Another way we could have proved Proposition 7.3 is to use Kolmogorov’s 0-1 Law in

combination with the fact that every invariant event is a tail event up to a set of probability

0. Recall what the tail events are: For a set of edges K ⊆ E, let F (K) denote the σ-field

of events depending only on K. Define the tail σ-field to be the intersection of F (E \K)

over all finite K.

Lemma 7.4. (Invariant Events are Almost Tail Events) Let Γ act on a connected

locally finite graph G in such a way that each vertex has an infinite orbit. Let P be a

Γ-invariant percolation on G. Then for every Γ-invariant event A, there is a tail event B

such that P(A△B) = 0.

Proof. Since A is measurable, there exist increasing finite sets Kn ⊂ E whose union is E

and cylinder events Bn that depend only on Kn with
∑
n≥1 P(A △ Bn) < ∞. Choose

γn ∈ Γ so that γnKn ∩Kn = ∅. Since P and A are Γ-invariant, we have P(A△ γnBn) =

P(A △ Bn), whence
∑
n≥1 P(A △ γnBn) < ∞. The Borel-Cantelli lemma implies that

P
(
lim supn(A△ γnBn)

)
= 0, i.e., P(A△ lim supn γnBn) = 0. The event lim supn γnBn is

the tail event we seek. ◀

§7.3. The Number of Infinite Clusters.

The number of infinite clusters in Bernoulli percolation could be any non-negative

integer, or infinity, with positive probability (see Exercise 7.22), but on transitive graphs,

it is quite restricted, as shown by the following theorem of Newman and Schulman (1981).

The proof is a beautiful combination of insertion tolerance and ergodicity.
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Theorem 7.5. If G is a transitive connected graph, then the number of infinite clusters

is constant Pp-a.s. and equal to either 0, 1, or ∞. In fact, it suffices that vertices have

infinite orbits under the automorphism group of G.

Proof. Let N∞ denote the number of infinite clusters and Γ denote the automorphism

group of the infinite graph G. The action of any element of Γ on a configuration does not

change N∞. That is, N∞ is measurable with respect to the σ-field I Γ of events that are

invariant under all elements of Γ. By ergodicity (Proposition 7.3), this means that N∞ is

constant a.s.

Now suppose that N∞ ∈ [2,∞) a.s. Then there must exist two vertices x and y

that belong to distinct infinite clusters with positive probability. For bond percolation, let

e1, e2, . . . , en be a path of edges from x to y. If A denotes the event that x and y belong

to distinct infinite clusters and B denotes the event Π{e1,e2,···,en}A, then by insertion

tolerance, we have Pp(A) > 0 and Pp(B) > 0. Yet N∞ takes a strictly smaller value on

B than on A, which contradicts the constancy of N∞. (The proof for site percolation is

parallel.) ◀

The result mentioned in the introduction that there is at most one infinite cluster for

percolation on Zd, due to Aizenman, Kesten, and Newman (1987), was extended and sim-

plified until the following result appeared, due to Burton and Keane (1989) and Gandolfi,

Keane, and Newman (1992).

Theorem 7.6. (Amenability Yields At Most One Infinite Cluster) If G is a

connected transitive amenable graph, then Pp-a.s. there is at most one infinite cluster, no

matter the value of p.

The proof of Theorem 7.6 makes a more complicated use of insertion and deletion

tolerance, but it is still quite striking. A major open conjecture is that the converse of

Theorem 7.6 holds; see Conjecture 7.31.

To prove Theorem 7.6, we will use the result of the following exercise.

▷ Exercise 7.3.

Let T be a tree that has no vertices of degree 1. Let B be the set of vertices of degree at

least 3. LetK be a finite nonempty subset of vertices of T . Show that |∂EK| ≥ |K∩B|+2.

We will also use the following notation and concept. Let ER(x) denote the set of edges

that have at least one endpoint at distance at most R− 1 from x. This is the edge-interior

of the ball of radius R about x. We will denote the component of x in a percolation
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configuration by K(x). Call a vertex x a furcation of a configuration ω if closing all

edges incident to x would split K(x) into at least 3 infinite clusters*.

Proof of Theorem 7.6. We will do the proof for bond percolation; the case of site percolation

is exactly analogous. Let 0 < p < 1 and fix a vertex o ∈ V. Let Λ = Λ(ω) denote the set

of furcations of ω. We claim that if there is more than one infinite cluster with positive

probability, then there are sufficiently many furcations as to create tree-like structures that

force G to be non-amenable. To be precise, we claim first that

c := Pp[o ∈ Λ] > 0

and, second, that for each finite set K ⊂ V,

|∂EK| ≥ c|K| . (7.3)

These two claims together imply that G is non-amenable.

Now our assumption that there is more than one infinite cluster with positive proba-

bility implies that there are, in fact, infinitely many infinite clusters a.s. by Theorem 7.5.

We turn these into furcations as follows. Choose some R > 0 such that the ball of radius

R about o intersects at least 3 infinite clusters with positive probability. When this event

occurs and then ER(o) is closed, this event still occurs. Thus by deletion tolerance, we

may choose x, y, z at the same distance, R, from o such that Pp(A) > 0, where A is the

event that x, y, z belong to distinct infinite clusters and ER(o) is closed. Join o to x by

a path Px of length R. There is a path Py of length R that joins o to y and such that

Px ∪ Py does not contain a cycle. Finally, there is also a path Pz of length R that joins

o to z and such that T := Px ∪ Py ∪ Pz does not contain a cycle. Necessarily there is a

vertex u such that x, y, z are in distinct components of T \ {u}. By insertion tolerance,

Pp(A
′) > 0, where A′ := ΠE(T )A. Furthermore, u is a furcation on the event A′. Hence

c = Pp[o ∈ Λ] = Pp[u ∈ Λ] ≥ Pp(A
′) > 0.

It follows that for every finite K ⊂ V,

Ep
[
|K ∩ Λ|

]
=
∑
x∈K

Pp[x ∈ Λ] = c|K| . (7.4)

We next claim that

|∂EK| ≥ |K ∩ Λ| . (7.5)

* In Burton and Keane (1989), these vertices were called encounter points. When K(x) is split into
exactly 3 infinite clusters, then x is called a trifurcation by Grimmett (1999).
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Taking the expectation of (7.5) and using (7.4) shows (7.3).

To see why (7.5) is true, let T be a spanning tree of an infinite component η of ω.

Remove all vertices of degree 1 from T and iterate until there are no more vertices of

degree 1; call the resulting tree T (η). Note that every furcation in η has degree ≥ 3 in

T (η). Apply Exercise 7.3 to conclude that

∣∣(∂EK) ∩ T (η)
∣∣ = ∣∣∂E(T (η))

(
K ∩ T (η)

)∣∣ ≥ ∣∣K ∩ Λ ∩ T (η)
∣∣ = ∣∣K ∩ Λ ∩ η

∣∣ .
If we sum this over all components η of ω, we arrive at (7.5). ◀

There is an extension of Theorem 7.6 to invariant insertion-tolerant percolation that

was proved in the original papers: we used deletion tolerance in one place of our proof.

Since this theorem is so important, we give a second proof that yields this more general

theorem. Our proof uses a technique from BLPS (1999b), which will itself be important

in Chapter 8. The method uses trees, as well as the important notion of ends of graphs.

Let G = (V,E) be any graph. The number of ends of G is defined to be the

supremum of the number of infinite components of G \ K over all finite subsets K of

G. In particular, G has no ends iff all components of G are finite and only 1 end iff

the complement of each finite set in G has exactly 1 infinite component. This definition

suffices for our purposes, but nevertheless, what is an end? To define an end, we make

two preliminary definitions. First, an infinite set of vertices V0 ⊂ V is end convergent if

for every finite K ⊂ V, there is a component of G \K that contains all but finitely many

vertices of V0. Second, two end-convergent sets V0, V1 are equivalent if V0 ∪ V1 is end

convergent. Now an end of G is an equivalence class of end-convergent sets. For example,

Z has two ends, which we could call +∞ and −∞. For a tree, this definition agrees with

the one in Example 7.1 and the ends are in natural one-to-one correspondence with the

boundary with respect to any fixed root.

▷ Exercise 7.4.

Show that for any finitely generated group, the number of ends is the same for all of its

Cayley graphs. Thus, we may speak of the number of ends of a group, not merely of a

Cayley graph. In fact, show that if two graphs are roughly isometric, then they have the

same number of ends.

▷ Exercise 7.5.

Show that if G and G′ are any two infinite connected graphs, then the cartesian product

graph G×G′ (defined in Exercise 6.22) has only one end.
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▷ Exercise 7.6.

Show that if Γ and Γ′ are any two finitely generated groups with |Γ| ≥ 2 and |Γ′| ≥ 3, then

Γ ∗ Γ′ has infinitely many ends.

Lemma 7.7. (Forests in Percolation) Let P be a Γ-invariant percolation process on a

graph G. If with positive probability there is a component of ω with at least three ends, then

(on a larger probability space) there is a random forest F ⊂ ω such that the distribution of

the pair (F, ω) is Γ-invariant and with positive probability, there is a component of F that

has at least three ends.

Proof. Assign independent uniform [0, 1] random variables to the edges (independently of

ω) to define the free minimal spanning forest F of ω. By definition, this means that

an edge e ∈ ω is present in F iff there is no cycle in ω containing e in which e is assigned

the maximum value. There is no cycle in F since the edge with the largest label in any

cycle could not belong to F. In addition, all components (trees) of F that lie in infinite

components of ω are a.s. infinite since if K were a finite component, then consider the

element of ∂EK with smallest label. Provided all labels are distinct, which occurs a.s.,

this element would be in F by definition of F, a contradiction. Thus, each vertex in an

infinite component of ω belongs to some infinite tree of F. (Minimal spanning forests will

be studied in Chapter 11.)

Suppose that K(x) has at least 3 ends with positive probability. Choose any finite

tree T containing x so that with positive probability, T ⊂ K(x) and K(x) \ V(T ) has at

least 3 infinite components. Then with positive probability, all of the following 4 events

occur: (1) T ⊂ K(x); (2) K(x) \ V(T ) has at least 3 infinite components; (3) all edges in

T are assigned values less than 1/2; and (4) all edges incident to V(T ) but not in T are

assigned values greater than 1/2. On this event, F contains T and T is part of a tree in F

with at least 3 ends. ◀

We next show that a version of Theorem 7.5 holds for insertion-tolerant invariant

percolation.

Theorem 7.8. If P is an insertion-tolerant invariant percolation on a transitive con-

nected graph, G, then the number of infinite clusters is P-a.s. equal to 0, 1, or ∞.

Proof. The proof of Theorem 7.5 would apply if we knew that the number of infinite

clusters were constant a.s. However, this does not follow from our hypotheses. Yet if we

condition on the number of infinite clusters being a fixed number k, and if we are able to

show that the conditioned percolation is still insertion tolerant and invariant, then the old

proof will work just fine. Luckily, such conditioning does indeed preserve these properties.
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To see this, we show that actually, conditioning P on any invariant event A of positive

probability preserves insertion tolerance and invariance. The fact that P(• | A) is invariant
is immediate from the invariance of P and A. To show insertion tolerance, let B be any

event with P(B | A) > 0 and e be any edge. By Lemma 7.4, we may assume that A is a

tail event, so that ΠeA = A. Thus,

P(ΠeB | A) = P(ΠeB ∩A)
P(A)

=
P
(
Πe(B ∩A)

)
P(A)

> 0

since P(B ∩A) > 0. In other words, P(• | A) is insertion tolerant. ◀

Here is the promised extension of Theorem 7.6:

Theorem 7.9. (Amenability Yields At Most One Infinite Cluster) If Γ acts

transitively on a connected amenable graph G and P is a Γ-invariant insertion-tolerant

percolation process on G, then P-a.s. there is at most one infinite cluster.

Proof. We prove the case of bond percolation, as the case of site percolation is virtually the

same. By Theorem 7.8, it suffices to show that if there are infinitely many infinite clusters

with positive probability, then G is not amenable. Let x, y, and z be three vertices such

that the event A that they belong to distinct infinite clusters has positive probability.

Choose a finite set of edges F that connect all three to each other. By insertion tolerance,

P(ΠFA) > 0. On the event ΠFA, there is an infinite cluster with at least 3 ends. Thus, the

hypothesis of Lemma 7.7 holds. Let F be as in Lemma 7.7. Since F has a component with

at least 3 ends with positive probability, there is a furcation of F with positive probability.

This shows (7.4) for some c > 0, where Λ is the set of furcations of F. Exercise 7.3 then

gives (7.5), which completes the proof. ◀

§7.4. Inequalities for pc.

In Section 6.7, we saw that pc can be bounded above by using an anchored expansion

constant, and we also saw how pc behaves under covering maps. How do pbondc and psitec

compare? When is there a real phase transition in the sense that 0 < pc < 1? These are

the questions we address in this section, but, as we will see, there is still a basic hole in

our knowledge.

Our first two results show that pbondc and psitec are comparable in a uniform sense

depending on the maximum degree.
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Proposition 7.10. (Hammersley, 1961a) For any graph G, any p ∈ (0, 1), and any

vertex o ∈ G, we have θsiteo (p) ≤ θbondo (p). Therefore psitec (G) ≥ pbondc (G).

Proof. As we have done to prove other percolation inequalities, we will construct a coupling

of the two percolation measures. That is, given ξ ∈ 2V, we will construct ω ∈ 2E in such

a way that, first, if ξ has distribution Psite
p on G, then ω has distribution Pbond

p on G;

and, second, if Kξ(o) is infinite, then so is Kω(o), where the subscript indicates which

configuration determines the cluster of o. This implies the desired inequalities.

Choose any ordering ⟨x1, x2, . . .⟩ of V with x1 = o. Let ⟨Ye⟩e∈E be {0, 1}-valued
Bernoulli(p) random variables.

We will look at a finite or infinite subsequence of vertices ⟨xnj ⟩ via a recursive pro-

cedure. If ξ(o) = 0, then stop. Otherwise, let V1 := {o}, W1 := ∅, and set n1 := 1.

Suppose that Vk and Wk have been selected. Let nk+1 be the smallest index of a ver-

tex in V \ (Vk ∪Wk) that neighbors some vertex in Vk, if any. If there is such a vertex,

then let x′k+1 be the vertex in Vk that neighbors xnk+1
and that has smallest index, and

set ω
(
[x′k+1, xnk+1

]
)
:= ξ(xnk+1

). If ξ(xnk+1
) = 1, then put Vk+1 := Vk ∪ {xnk+1

} and

Wk+1 := Wk, while if ξ(xnk+1
) = 0, then put Vk+1 := Vk and Wk+1 := Wk ∪ {xnk+1

}.
When nk+1 is not defined, stop; Kξ(o) is finite and we set ω(e) := Ye for the remaining

edges e ∈ E for which we have not yet specified ω(e).

If this procedure never ends, then bothKξ(o) andKω(o) are infinite; assigning ω(e) :=

Ye for any remaining edges e ∈ E gives a fair sample of Bernoulli(p) bond percolation on

G when ξ ∼ Psite
p . This gives the desired coupling. ◀

In the preceding proof, we constructed a certain coupling of two percolation measures.

Another kind of coupling that is important is the following. Given two percolation measures

P and P′ on G, we say that P stochastically dominates P′, written P ≽ P′, if there

are random variables ω and ω′ with laws P and P′, respectively, such that ω ≥ ω′ a.s.,

which we could also write as ω ⊇ ω′ a.s.* We use this idea to prove inequalities in the

other direction to those in Proposition 7.10. For an intuitive understanding of the next

inequality, think about p close to 1.

Proposition 7.11. (Grimmett and Stacey, 1998) For any graph G of maximal degree

d, any p ∈ (0, 1), and any vertex o ∈ G of degree do, we have

θsiteo

(
1− (1− p)d−1

)
≥
[
1− (1− p)do

]
θbondo (p) .

Therefore

psitec (G) ≤ 1−
(
1− pbondc (G)

)d−1
.

* See Section 10.2 for more on this concept.
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Proof. We will again construct a coupling of the two percolation measures. This time,

given ω ∈ 2E, we will construct ξ ∈ 2V in such a way that, first, if ω has distribution Pbond
p

on G, then ξ has a distribution that is stochastically dominated by Psite
q on G conditioned

on ξ(o) = 1, where q := 1− (1− p)d−1; and, second, if Kω(o) is infinite, then so is Kξ(o).

Choose any ordering ⟨x1, x2, . . .⟩ of V with x1 = o. Let ⟨Yx⟩x∈V be {0, 1}-valued
Bernoulli(q) random variables.

We will look at a finite or infinite subsequence of vertices ⟨xnj ⟩ via a recursive pro-

cedure. If ω(e) = 0 for all edges e incident to o, then stop. Otherwise, let V1 := {o},
W1 := ∅, ξ(o) := 1, and n1 := 1. Note that the probability that some edge incident to o

is open is 1− (1− p)do .

Suppose that Vk and Wk have been selected. Let nk+1 be the smallest index of a

vertex in V \ (Vk ∪Wk) that neighbors some vertex in Vk, if any. Define ξ(xnk+1
) to be the

indicator that there is some vertex x not in Vk∪Wk for which ω
(
[xnk+1

, x]
)
= 1. Note that

the conditional probability that ξ(xnk+1
) = 1 is 1− (1− p)r ≤ q, where r is the degree of

xnk+1
in G \ (Vk ∪Wk). If ξ(xnk+1

) = 1, then put Vk+1 := Vk ∪ {xnk+1
} and Wk+1 :=Wk;

otherwise put Vk+1 := Vk and Wk+1 := Wk ∪ {xnk+1
}. When nk+1 is not defined, stop;

Kω(o) is finite and we set ξ(x) := Yx for the remaining vertices x ∈ V \ Vk.
If this procedure never ends, then Kξ(o) (though perhaps not Kω(o)) is infinite; as-

signing ξ(x) := Yx for any remaining vertices x ∈ V gives a law of ξ that is dominated by

Bernoulli(q) site percolation on G conditioned to have ξ(o) = 1. This gives the desired

inequality. ◀

We now discuss whether 0 < pc < 1. It turns out that a lower bound for pc is rather

simple to obtain and implies that pc > 0 for all graphs of bounded degree. (It is easy to

see that there are graphs of unbounded degree for which pc = 0.) The idea for our lower

bound was used already in Chapter 5, where we calculated pc for general trees. Namely,

we use a simple first-moment argument as in Proposition 5.8. We can apply a similar

argument on a general graph by using the associated tree of self-avoiding walks. Recall

that in Example 3.6, we described a tree formed from the self-avoiding walks in Z2. If G

is any graph, not necessarily transitive, we may again form the tree T SAW of self-avoiding

walks of G, where all walks begin at some fixed base point, o. The lower growth rate

of this tree, µ(G) := grT SAW, is called the connective constant of G. This does not

depend on choice of o, although that will not matter for us. If G is transitive, then T SAW

is 0-subperiodic, whence µ(G) = brT SAW by Theorem 3.8.

Proposition 7.12. For any connected infinite graph G, we have pc(G) ≥ 1/µ(G). In

particular, if G has bounded degree, then pc(G) > 0.
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Proof. In view of Proposition 7.10, it suffices to prove the inequality for bond percolation.

Let K(o) be the component of o in Bernoulli(p) percolation. Write Kn(o) for the

self-avoiding walks of length n within K(o). Thus, Kn(o) ⊆ T SAW
n. If K(o) is infinite,

then Kn(o) ̸= ∅ for each n. It follows that

θbondo (p) ≤ Pp[Kn(o) ̸= ∅] ≤ Ep
[
|Kn(o)|

]
= |T SAW

n|pn .

Taking nth roots and letting n → ∞, we obtain 1 ≤ µ(G)p whenever θbondo (p) > 0—in

particular, for p > pbondc . ◀

Upper bounds for pc are more difficult. In fact, we have seen examples of graphs

(trees) that have exponential growth, bounded degree, and pc = 1. The transitive case

is thought to be better behaved, according to the following conjecture of Benjamini and

Schramm (1996b):

Conjecture 7.13. (Quadratic Growth Yields a Phase Transition) If G is a tran-

sitive graph with at least quadratic growth (i.e., the ball of radius n grows at least as fast

as some quadratic function of n), then pc(G) < 1.

We will prove “most” cases of this conjecture. Now given a group, certainly the value

of pc depends on which generators are used. Nevertheless, whether pc < 1 does not depend

on the generating set chosen. To prove this, consider two generating sets, S1 and S2, of

a group Γ. Let G1, G2 be the corresponding Cayley graphs. We will transfer Bernoulli

percolation on G1 to a dependent percolation on G2 by making an edge of G2 open iff

a certain corresponding path in G1 is open. We then want to compare this dependent

percolation on G2 to Bernoulli percolation on G2. To do this, we use a weak form of a

comparison result of Liggett, Schonmann, and Stacey (1997). That, in turn, will rely on

the following general coupling principle:

▷ Exercise 7.7.

Suppose that Pi (i = 1, 2, 3) are three percolation measures on 2A such that P1 ≽ P2 and

P2 ≽ P3. Show that there exist random variables ωi on a common probability space such

that ωi ∼ Pi for all i and ω1 ≥ ω2 ≥ ω3 a.s.

In the following comparison principle, Bernoulli percolation on a set A is transferred

to a dependent percolation on a set B, where the dependency is given by a set D ⊆ A×B.

The resulting dependent percolation on B then dominates a Bernoulli percolation on B

whose parameter depends on the amount of dependencies introduced.
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Proposition 7.14. Write PA
p for the Bernoulli(p) product measure on a set 2A. Let A

and B be two sets and D ⊆ A×B. Write Da :=
(
{a}×B

)
∩D and Db :=

(
A×{b}

)
∩D.

Suppose that m := supa∈A |Da| <∞ and that n := supb∈B |Db| <∞. Given 0 < p < 1, let

q :=
(
1− (1− p)1/m

)n
.

Given ω ∈ 2A, define ω′ ∈ 2B by

ω′(b) :=

{
min{ω(a) ; (a, b) ∈ Db} if Db ̸= ∅,
1 if Db = ∅.

Let P be the law of ω′ when ω has the law of PA
p . Then P stochastically dominates PB

q .

Proof. Let η have law PA×B
q1/n

. Define

ζ(a) :=

{
max η↾Da if Da ̸= ∅,
0 if Da = ∅ and ζ ′(b) :=

{
min η↾Db if Db ̸= ∅,
1 if Db = ∅.

Then the collection ζ ′ has a law µ′ that dominates PB
q since ζ ′(b) are mutually independent

for b ∈ B and

PA×B
q1/n

[ζ ′(b) = 1] = (q1/n)|D
b| ≥ q .

Similarly, PA
p dominates the law µ of ζ since ζ(a) are mutually independent for a ∈ A and

PA×B
q1/n

[ζ(a) = 0] = (1− q1/n)|Da| = (1− p)|Da|/m ≥ 1− p .

Therefore, if ω ∼ PA
p , then we may couple ω and ζ so that ω ≥ ζ. Since ζ(a) ≥ η(a, b), we

have that for each fixed b with Db ̸= ∅, under our coupling (as extended by Exercise 7.7),

ω′(b) = min
{
ω(a) ; (a, b) ∈ Db

}
≥ min

{
ζ(a) ; (a, b) ∈ Db

}
≥ min η↾Db = ζ ′(b) ,

while ω′(b) = 1 = ζ ′(b) if Db = ∅. It follows that P ≽ µ′ ≽ PB
q , as desired. ◀

Theorem 7.15. Let S1 and S2 be two finite generating sets for a countable group Γ,

yielding corresponding Cayley graphs G1 and G2. Then pc(G1) < 1 iff pc(G2) < 1.

Proof. Left and right Cayley graphs with respect to a given set of generators are isomorphic

via x 7→ x−1, so we consider only right Cayley graphs. We also give the proof only for

bond percolation, as site percolation is treated analogously.

Express each element s ∈ S2 in terms of a minimal-length word φ(s) using letters from

S1. If s
−1 ∈ S2, then we take φ

(
s−1
)
= φ(s)−1. Let ω1 be Bernoulli(p) percolation on G1

and define ω2 on G2 by letting [x, xs] ∈ ω2 (for s ∈ S2) iff the path from x to xs in G1
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determined by φ(s) lies in ω1. Then we may apply Proposition 7.14 with A the set of edges

of G1, B the set of edges of G2, and D the set of pairs (e, e′) such that e is used in a path

between the endpoints of e′ determined by some φ(s) for an appropriate s ∈ S2. Clearly

n = max
{
|φ(s)| ; s ∈ S2

}
and m is finite, whence we may conclude that ω2 stochastically

dominates Bernoulli(q) percolation on G2. Since o lies in an infinite cluster with respect

to ω1 if it lies in an infinite cluster with respect to ω2, it follows that if q > pc(G2), then

p ≥ pc(G1), showing that pc(G2) < 1 implies pc(G1) < 1. ◀

It is easy to see that the preceding proof extends beyond Cayley graphs to cover the

case of two graphs that are roughly isometric and have bounded degrees.

We now show that the Euclidean lattices Zd (d ≥ 2) have a true phase transition

for Bernoulli percolation in that pc < 1. The argument again relies on a first-moment

calculation, but the new ingredient is planar duality, which introduces “contours”.

Theorem 7.16. For all d ≥ 2, we have pc(Zd) < 1.

Proof. We use the standard generators of Zd. In view of Proposition 7.11, it suffices

to consider bond percolation. Also, since Zd contains a copy of Z2, it suffices to prove

the result for d = 2. Consider the plane dual lattice (Z2)†. (See Section 6.5 for the

definition.) To each configuration ω in 2E, we associate the dual configuration ω× in 2E
†

by ω×(e†) := 1 − ω(e). Those edges of (Z2)† that lie in ω× we call “open”. If K(o) is

finite, then ∂EK(o)† contains a simple cycle of open edges in (Z2)† that surrounds o. Now

each edge in (Z2)† is open with probability 1 − p. Furthermore, the number of simple

cycles in (Z2)† of length n surrounding o is at most n3n since each one must intersect the

x-axis somewhere in (0, n). Let M(n) be the total number of open simple cycles in (Z2)†

of length n surrounding o. Then

1− θ(p) = Pp

[
|K(o)| <∞

]
= Pp

[∑
n

M(n) ≥ 1

]
≤ Ep

[∑
n

M(n)

]
=
∑
n

Ep
[
M(n)

]
≤
∑
n

(n3n)(1− p)n .

By choosing p sufficiently close to 1, we may make this last sum less than 1, and that

makes θ(p) > 0. ◀

The preceding proof introduced the dual percolation ω×, which is another Bernoulli

percolation. When p = 1/2, the dual percolation has the same law as the original perco-

lation. Some thought may suggest from this that pbondc (Z2) = 1/2. Although we will not

prove the full theorem that pbondc (Z2) = 1/2 and θ(pc,Z2) = 0, we will give a beautiful
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proof due to Zhang, taken from Grimmett (1999), of Harris’s theorem that θ(1/2,Z2) = 0.

This implies that pbondc (Z2) ≥ 1/2. The proof uses the self-duality of Bernoulli(1/2) per-

colation and the uniqueness of the infinite cluster if there is one.

Theorem 7.17. For bond percolation on Z2, we have θ(1/2) = 0.

Proof. Assume for a contradiction that θ(1/2) > 0. By Theorem 7.6, there is a unique

infinite cluster a.s. Let B be a square box with sides parallel to the axes in Z2. Let A be the

event that B intersects the infinite cluster. Then P1/2(A) is arbitrarily close to 1 provided

we take B large enough. Let Ai (1 ≤ i ≤ 4) be the event that there is an infinite path in

ω whose only intersection with B is on the ith side of B. These events are increasing and

have equal probability. Since Ac =
∩4
i=1A

c
i , it follows from Exercise 5.19 that P1/2(Ai)

are also arbitrarily close to 1 when B is large. As in the proof of Theorem 7.16, to each

configuration ω in 2E, we associate the dual configuration ω× in 2E
†
by ω×(e†) := 1−ω(e).

Let B′ be the smallest square box in the dual lattice (Z2)† that contains B in its interior.

Then similar statements apply to the sides of B′ with respect to ω×. In particular, the

probability is close to 1 when B is large that there are infinite paths in ω from the left and

right sides of B and simultaneously infinite paths in ω× from the top and bottom sides

of B′. See Figure 7.6. However, on the event that these four things occur simultaneously,

there cannot be a unique infinite cluster in both Z2 and its dual, which is the contradiction

we sought. ◀

B

B′

Figure 7.6. Infinite open paths from two sides of B and infinite closed paths from two sides of B′.

In Corollary 7.19 and Theorem 7.20, we establish that pc < 1 for the “majority”

of groups. The following language will be useful. We say that a group almost has a
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property if it has a subgroup of finite index that has the property in question. We will use

the following fact:

Theorem 7.18. If Γ is a finitely generated group of at most polynomial growth, then

either Γ is almost (isomorphic to) Z or Γ contains a subgroup isomorphic to Z2.

See Section 7.9 for the proof, which relies on a deep theorem of Gromov (1981a).

Combining this with Theorems 7.16 and 7.15, we may immediately deduce what we want

for groups of polynomial growth:

Corollary 7.19. (Polynomial Growth Yields a Phase Transition) If G is a Cayley

graph of a group Γ with at most polynomial growth, then either Γ is almost (isomorphic

to) Z or pc(G) < 1.

Now we continue with groups of exponential growth, which are quite a bit easier to

handle given what we know about trees.

Theorem 7.20. (Lyons, 1995) (Exponential Growth Yields a Phase Transition)

If G is a Cayley graph of a group with exponential growth, then pc(G) < 1.

Proof. Let b be the exponential growth rate of balls in G and let T lexmin(G) be the

lexicographically-minimal spanning tree constructed in Section 3.4. This subperiodic tree

is isomorphic to a subgraph of G, whence

pc(G) ≤ pc(T
lexmin) = 1/br(T lexmin) = 1/gr(T lexmin) = 1/b < 1 (7.6)

by Theorems 5.15 and 3.8. ◀

▷ Exercise 7.8.

Extend Theorem 7.20 to quasi-transitive graphs of upper exponential growth rate larger

than 1.

The reason that Corollary 7.19 and Theorem 7.20 do not cover all groups is that

there exist groups that have superpolynomial growth but subexponential growth. These

are called groups of “intermediate growth”. The examples constructed by Grigorchuk

(1983) also have pc < 1 (Muchnik and Pak, 2001). It is not proved that all other groups

of intermediate growth have pc < 1. Among Cayley graphs, these are the only cases of

Conjecture 7.13 that remain unresolved.
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§7.5. Merging Infinite Clusters and Invasion Percolation.

As p is increased, Bernoulli(p) percolation adds more edges, whence if there is an

infinite cluster a.s. at p0, then there is also an infinite cluster a.s. at each p > p0. This

intuition was made precise by using the standard coupling defined in Section 5.2. How

does the number of infinite clusters vary as p is increased through the range where there

is at least one infinite cluster? There are two competing features of increasing p: the fact

that finite clusters can join up means that new infinite clusters could form, while the fact

that infinite clusters can join up or can absorb finite clusters means that the number of

infinite clusters could decrease.

For general graphs, either one of these two features could be dominant. For example,

if the Cayley graph of Z2 is joined by an edge to a tree T with branching number in(
1, 1/pc(Z2)

)
, then for pc(Z2) < p < 1/brT , there is a unique infinite cluster, while for

1/brT < p < 1, there are infinitely many infinite clusters (see Exercise 7.37). On the

other hand, we will see in Theorem 7.37 that for graphs that are the product of Z with

a regular tree of large degree, the number of infinite clusters is first 0 in an interval of p,

then ∞, and then 1. In Theorem 8.24, we will see the same for the self-dual hyperbolic

pentagonal tessellation graph shown in Figure 2.4. By combining examples such as these,

one can obtain more complicated behavior of the number of infinite clusters.

However, on quasi-transitive graphs, it turns out that once there is a unique infinite

cluster, then that remains the case for all larger values of p. To prove this, we use the stan-

dard coupling and prove something stronger, due to Schonmann (1999b) and Häggström,

Peres, and Schonmann (1999). It shows that the dominant feature of percolation clusters

is that the infinite ones grow faster than finite ones can create new infinite clusters. Let

Θ(G) be the set of p ∈ [0, 1] for which there is an infinite cluster Pp-a.s. on G (so that

pc(G) = inf Θ(G)). It is conjectured that Θ(G) =
(
pc(G), 1

]
when G is quasi-transitive

and pc(G) < 1: see Conjecture 8.15.

Theorem 7.21. (Merging Infinite Clusters) Let G be a quasi-transitive graph. If

p1 ∈ Θ(G) is such that there exists a unique infinite cluster Pp1-a.s., then for all p2 >

p1, there is a unique infinite cluster Pp2-a.s. Furthermore, in the standard coupling of

Bernoulli percolation processes, a.s. simultaneously for all p1, p2 ∈ Θ(G) with p2 > p1,

every infinite p2-cluster contains an infinite p1-cluster.

If we define

pu(G) := inf
{
p ; there is a.s. a unique infinite cluster in Bernoulli(p) percolation

}
,

(7.7)
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then it follows from Theorem 7.21 that when G is a quasi-transitive graph,

pu(G) = sup{p ; there is a.s. not a unique infinite cluster in Bernoulli(p) percolation} .
(7.8)

Of course, pc(G) ≤ pu(G) ≤ 1 and two new questions immediately arise: When is

pu < 1? When is pc < pu? We will address these questions in Sections 7.6 and 7.7.

Our first order of business, however, is to prove Theorem 7.21. For this, we introduce

invasion percolation, which will also be important in our study of minimal spanning forests

in Chapter 11. There are two types of invasion percolation, bond and site. We describe

first invasion bond percolation. Fix distinct labels U(e) ∈ [0, 1] for e ∈ E, usually a sample

of independent uniform random variables. Fix a vertex x. Imagine U(e) as the height

of e and the height of x as 0. If we pour water gradually on x, then when the water

reaches the height of the lowest edge incident to x, water will flow along that edge. As we

keep pouring, the water will continue to “invade” the lowest edge that it touches. This is

invasion percolation. More precisely, let I1(x) be the lowest edge incident to x and define

In(x) recursively thereafter by letting In+1(x) := In(x)∪{e}, where e is the lowest among

the edges that are not in In(x) but are adjacent to (some edge of) In(x). Finally, define

the invasion basin of x to be I(x) :=
∪
n In(x). This is the set of all edges invaded from

x. Invasion site percolation is similar, but the vertices are labelled rather than the edges

and the invasion basin is a set of vertices, rather than a set of edges. For invasion site

percolation, we start with I1(x) := {x}.
Given the labels U(e), we have the usual subgraphs ωp := {e ; U(e) < p} that we

use for the standard coupling of Bernoulli percolation. The first connection of invasion

percolation to Bernoulli percolation is that if x belongs to an infinite cluster η of ωp, then

I(x) ⊆ η (this is clear). Similarly, if there is some edge e adjacent to I(x) but not in I(x)

that satisfies U(e) < p, then |I(x) ∩ η| = ∞ for some infinite cluster η of ωp. A much

deeper connection is the following result of Häggström, Peres, and Schonmann (1999):

Theorem 7.22. (Invasion of Infinite Clusters) Let G be an infinite quasi-transitive

graph. Then in the standard coupling of Bernoulli percolation processes, a.s. for all p >

pc(G) and all x ∈ V, there is some infinite p-cluster that intersects I(x).

The proof of Theorem 7.22 is rather tricky. The main steps will be to show that I(x)

contains arbitrarily large balls, that it comes infinitely often within distance 1 of infinite

p-clusters, and finally that it actually invades some infinite p-cluster. We present the proof

for invasion bond percolation, as the site case is similar.

The first step does not require quasi-transitivity. Recall that ER(x) denotes the

set of edges that have at least one endpoint at distance at most R − 1 from x. From
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now on, invasion percolation uses the edge labels from the standard coupling of Bernoulli

percolation.

Lemma 7.23. (Invasion of Large Balls) Let G be any infinite graph with bounded

degrees, x ∈ V, and R ∈ N. Then a.s. the invasion basin of x contains ER(y) for some

y ∈ V.

Proof. The idea is that as the invasion from x proceeds, it will encounter balls of radius

R for the first time infinitely often. Each time, the ball might have all its labels fairly

small, in which case that ball would eventually be contained in the invasion basin. Since

the encountered balls can be chosen far apart, these events are independent and therefore

one of them will eventually happen.

To make this precise, fix an enumeration of V. Let d be the maximum degree in G,

Sr := {y ; distG(x, y) = r} ,

and

τn := inf
{
k ; distG

(
Ik(x), S2nR

)
= R

}
.

Since I(x) is infinite, τn <∞ for all n ∈ N. Let Yn be the first vertex in the enumeration

of V such that Yn ∈ S2nR and distG
(
Iτn(x), Yn

)
= R. Let A be the event of probability 1

that there is no infinite p-cluster for any p < pc(G) and consider the events

An :=
[
∀e ∈ ER(Yn) U(e) < pc(G)

]
.

On the event A ∩ An, we have ER(Yn) ⊂ I(x), so that it suffices to show that a.s. some

An occurs. The sets ER(Yn) are disjoint for different n. Also, the invasion process up

to time τn gives no information about the labels of ER(Yn). Since |ER(y)| ≤ dR for

all y, it follows that P(An | Yn, A1, A2, . . . , An−1) = pc(G)
|ER(Yn)| ≥ pc(G)

dR , so that

P(An | A1, A2, . . . , An−1) ≥ pc(G)
dR . Since pc(G) > 0 by Proposition 7.12, it follows that

a.s. some An occurs. ◀

We next need an extension of insertion and deletion tolerance that holds for the edge

labels. It allows us to change the labels on a finite set of edges while maintaining the

positivity of the probability of events.

Lemma 7.24. (Change Tolerance of Labels) Let X be a denumerable set and A

be an event in [0, 1]X . Let LX be the product of Lebesgue measures on [0, 1]X . Given a

finite Y ⊂ X and a continuously differentiable injective map φ: [0, 1]Y → [0, 1]Y with a.e.

non-zero Jacobian determinant, let

A′ :=
{
ω ∈ [0, 1]X ; ∃η ∈ A ω↾(X \ Y ) = η↾(X \ Y ) and ω↾Y = φ(η↾Y )

}
.
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Then LX(A′) > 0 if LX(A) > 0.

Proof. Regard [0, 1]X as [0, 1]Y × [0, 1]X\Y . Apply Fubini’s theorem to this product to

see that it suffices to prove the case where X = Y . But this case follows from the usual

change-of-variable formula

LX(A′) =

∫
A

|J | dLX ,

where J is the Jacobian determinant of φ. ◀

We now come to the second step, proving that I(x) comes infinitely often within

distance 1 of infinite p-clusters. Let ξp(x) be the number of edges [y, z] with y ∈ I(x)

and z in some infinite p-cluster. (It is irrelevant to the definition whether z ∈ I(x), but if

z ∈ I(x) and in some infinite p-cluster, then ξp(x) = ∞.)

Lemma 7.25. If G is a quasi-transitive graph, p ∈ Θ(G), and x ∈ V, then ξp(x) = ∞
a.s.

Proof. Let p ∈ Θ(G) and ϵ > 0. Because G is quasi-transitive, there is some R so that

∀y ∈ V P
[
some infinite p-cluster comes within distance R of y

]
≥ 1− ϵ . (7.9)

This is the only way that quasi-transitivity will enter the proof. Indeed, the rest of the

section will not use quasi-transitivity at all, but only that ξp(x) = ∞ a.s. However, we

need to reformulate (7.9). Given a set of edges F , write V (F ) for the set of its endpoints.

By (7.9), if F ⊂ E and F contains some set ER(y), then with probability at least 1 − ϵ,

the set F is adjacent to some infinite p-cluster. Let A(F ) be the event that there is an

infinite path in ωp that starts at distance 1 from V (F ) and that does not use any vertex

in V (F ). Our reformulation of (7.9) is that if F ⊂ E is finite and contains some set ER(y),

then P[A(F )] ≥ 1− ϵ.

By Lemma 7.23, there is a.s. a smallest finite k for which Ik(x) contains some ER(y).

Call this smallest time τ . Since the invasion process up to time τ gives no information about

the labels of edges that are not adjacent to Iτ (x), we have P
[
A
(
Iτ (x)

) ∣∣ Iτ (x)] ≥ 1 − ϵ,

whence P
[
A
(
Iτ (x)

)]
≥ 1 − ϵ. Since ξp(x) ≥ 1 on the event A

(
Iτ (x)

)
and since ϵ was

arbitrary, we obtain P[ξp(x) ≥ 1] = 1.

Now suppose for a contradiction that P[ξp(x) = n] > 0 for some finite n. Then there

is a set F1 of n edges such that P(A1) > 0 for the event A1 that F1 is precisely the set

of edges joining I(x) to an infinite p-cluster. Among the edges adjacent to F1, there is a

non-empty set F2 of edges such that P(A1 ∩A2) > 0 for the event A2 that F2 is precisely

the set of edges adjacent to F1 that belong to an infinite p-cluster. Now changing the labels
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U(e) for e ∈ F2 to be p + (1 − p)U(e) changes A1 ∩ A2 to an event A3 where ξp(x) = 0,

since I(x) on A1 ∩ A2 is the same as I(x) on the corresponding configuration in A3. By

Lemma 7.24, P(A3) > 0, so P[ξp(x) = 0] > 0. This contradicts the preceding conclusion.

Therefore, ξp(x) = ∞ a.s. ◀

Proof of Theorem 7.22. First fix p1, p2 with p2 > p1 > pc(G) and fix x ∈ V. Given a

labelling of the edges, color an edge blue if it lies in an infinite p1-cluster. Color an edge

red if it is adjacent to some blue edge but is not itself blue. Observe that for red edges e,

the labels U(e) are independent and uniform on [p1, 1].

Now consider invasion from x given this coloring information. We claim that a.s., some

edge of I(x) is adjacent to some colored edge e with label U(e) < p2. To see this, note

that by Lemma 7.25, ξp1(x) = ∞ a.s., so that infinitely many edges of I(x) are adjacent

to colored edges. When invasion from x first becomes adjacent to a colored edge, e, the

distribution of U(e), conditional on the colors of all edges and on the invasion process so

far, is still concentrated on [0, p1) if e is blue or is uniform on [p1, 1] if e is red. Hence

U(e) < p2 with conditional probability at least (p2 − p1)/(1 − p1) > 0. Since the same

holds every time a colored edge is encountered, there must be one colored edge with label

less than p2 a.s. that is adjacent to some edge of I(x). This proves the claim.

Now the claim we have just established implies that I(x) a.s. intersects some infinite

p2-cluster by the observation preceding the statement of Theorem 7.22.

Apply this result to a sequence of values of p2 approaching pc(G) to get the theorem.

◀

Before we can deduce Theorem 7.21, we need one more lemma.

Lemma 7.26. If G is a quasi-transitive graph, p1 < p2 are fixed with p1, p2 ∈ Θ(G), then

a.s. every infinite p2-cluster contains an infinite p1-cluster.

Proof. Consider a labelling U of the edges. Because of Lemma 7.25, we know that for

each vertex x in an infinite p2-cluster C, there are a.s. infinitely many edges [y, z] with

y ∈ I(x) ⊆ C and z in some infinite p1-cluster. If C does not contain an infinite p1-cluster,

then it must be that C is adjacent via infinitely many edges e to infinite p1-clusters a.s.

Those edges e must then have labels U(e) ≥ p2.

To show that this is impossible, condition on the set F of all edges e having label

U(e) < p1. All other edges have i.i.d. distribution uniform on [p1, 1] conditional on F .

Given any vertex x that does not belong to an infinite cluster in F (i.e., an infinite p1-

cluster), grow the p2-cluster of x one edge at a time: Choose any deterministic ordering

⟨e1, e2, . . .⟩ of E. Define E0 := F0 := ∅. We will look at a finite or infinite subsequence
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of edges ⟨enj ⟩ via a recursive procedure and discover the p2-cluster C of x at the end.

Suppose that the edges Ek := ⟨en1 , . . . , enk
⟩ have been looked at and that Fk has been

defined. Let Vk be the union of {x} and the endpoints of the edges of Ek whose labels are

less than p2. Let nk+1 be the smallest index of an edge in E \ Ek that has an endpoint in

Vk, if any. If there are none, then stop; C is finite with vertex set Vk. Otherwise, define

Fk+1 :=

{
Fk ∪ {nk+1} if enk+1

has exactly one endpoint in an infinite F -cluster,
Fk otherwise.

Define F∞ :=
∪
Fk. Let ⟨Yi ; i ≥ 1⟩ be the random variables U(ej) for j ∈ F∞ ordered in

the same order as F∞. The random variables Yi are i.i.d. uniform on [p1, 1] (consider the

distribution of Yi given all Ym with m < i). If C is infinite and does not contain an infinite

F -cluster, then F∞ is infinite, as we said at the start of the proof. If F∞ is infinite, then

Yi < p2 a.s. for some i ≥ 1. But this implies that C does contain an infinite F -cluster. So

this proves the lemma. ◀

Proof of Theorem 7.21. We give the proof for bond percolation, as site percolation is

treated in an identical manner. We consider first only pairs pc(G) < p1 < p2 and use

Theorem 7.22. Let A be the event of probability 1 that all edge labels are distinct and

that for all p > pc(G) and all x ∈ V, there is some infinite p-cluster that intersects I(x).

On A, for each infinite cluster η2 of ωp2 and each x ∈ η2, there is some infinite cluster η1 of

ωp1 that intersects I(x). Since I(x) ⊆ η2, it follows that η1 intersects η2, whence η1 ⊆ η2

on A, as desired.

To finish the proof, we need to consider pairs pc(G) = p1 < p2 in case pc(G) ∈ Θ(G).

But for each p2, this is the statement of Lemma 7.26, whence it holds simultaneously for

any countable collection of p2. So let ⟨pn ; n ≥ 2⟩ be converging to p1 from above. We

have that a.s. every pair (p1, pn) satisfies the conclusion, and by what we have shown in

the preceding paragraph, also simultaneously every pair (pn, p) with n ≥ 2 and pn < p

satisfies the conclusion. However, whenever a p-cluster contains an infinite pn-cluster and

that pn-cluster in turn contains an infinite p1-cluster, then the p-cluster also contains an

infinite p1-cluster, so we are done. ◀

§7.6. Upper Bounds for pu.

If G is a regular tree, then it is easy to see that pu(G) = 1. (In fact, this is true for

any tree; see Exercise 7.37.) What about the Cayley graph of a free group with respect

to a non-free generating set? A special case of the following exercise (combined with

Exercise 7.4) shows that such a Cayley graph still has pu(G) = 1.

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



Chap. 7: Percolation on Transitive Graphs 280

▷ Exercise 7.9.

(a) Show that if ω is an a.s. non-empty Aut(G)-invariant percolation on a quasi-transitive

graph G, then a.s. every end of G contains an end-convergent subset of ω.

(b) Show that if G is a quasi-transitive graph with more than one end, then pu(G) = 1.

In fact, one can show that the property pu(G) < 1 does not depend on the generating

set for any group (Lyons and Schramm, 1999), but this would be subsumed by the following

conjecture, suggested by a question of Benjamini and Schramm (1996b):

Conjecture 7.27. If G is a quasi-transitive graph with one end, then pu(G) < 1.

This conjecture has been verified in many cases, most notably, when G is the Cayley

graph of a finitely presented group. The present section is devoted to proving this case.

(See Section 7.9 for a discussion of other known cases.) A key ingredient is the following

combinatorial fact.

Lemma 7.28. Let k ≥ 1. Suppose that G is a graph that has a set K of cycles of length

at most k such that every cycle belongs to the linear span (in ℓ2−(E)) of K. Fix y, z ∈ V.

Let Π be a (possibly infinite) cutset of edges that separates y and z and that is minimal

with respect to inclusion. Then for each nontrivial partition Π = Π1 ∪ Π−1, there exist

vertices xi ∈ V(Πi) (i = 1,−1) such that the distance between x1 and x−1 is at most k/2.

Note that when a presentation ⟨S | R⟩ has relators (elements of R) with length at

most k, then the associated Cayley graph satisfies the hypothesis of Lemma 7.28.

Proof. It suffices to show that there is some cycle of K that intersects both Πi. By the

assumption of minimality, for i = 1,−1, there is a path Pi from y to z that does not

intersect Π−i. Considering Pi as elements of ℓ2−(E), we may write the cycle P1 − P−1 as

a linear combination of cycles
∑
C∈K′ αCC for some finite set K ′ ⊂ K with αC ∈ R. Let

K ′
1 denote the cycles of K ′ that intersect Π1 and K ′

−1 := K ′ \K ′
1. We have

θ := P1 −
∑
C∈K′1

αCC = P−1 +
∑

C∈K′−1

αCC .

The right-hand side is composed of a path and cycles that do not intersect Π1, whence

θ(e) = 0 for all e ∈ Π1. Since θ is a unit flow from y to z, it follows that θ(e) ̸= 0 for some

e ∈ Π−1. Since P1 does not include an edge from Π−1, we deduce that some cycle in K ′
1

does. This provides precisely the sort of cycle we sought. ◀
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Write Ê :=
{
(e, f) ∈ E × E ; e, f are adjacent

}
in order to define the line graph∗ of

G as Ĝ := (E, Ê). Write Ek :=
{
(x, y) ∈ V × V ; 1 ≤ distG(x, y) ≤ k

}
in order to define

the k-fuzz of G as Gk := (V,Ek). Finally, write Ĝk := (Ĝ)k. If every cycle in G can

be written as a (finite) linear combination of cycles with length < 2k, then according to

Lemma 7.28,

every minimal cutset in G is the vertex set of a connected subgraph of Ĝk. (7.10)

Theorem 7.29. (Babson and Benjamini, 1999) If G is the Cayley graph of a non-

amenable finitely presented group with one end, then pu(G) < 1. In fact, the same holds

for any non-amenable quasi-transitive graph G with one end such that there is a set of

cycles with bounded length whose linear span contains all cycles.

An extension to the amenable case (where pu = pc) is given in Exercise 7.42. In

particular, pc < 1 for finitely presented amenable Cayley graphs. However, since it is

unknown whether there are any finitely presented groups of intermediate growth, it is not

clear that this extension adds to our knowledge that pc < 1 for groups other than possibly

those of intermediate growth.

Proof. Let 2k be strictly larger than the lengths of cycles of some generating set. We do

the case of bond percolation and prove that

pbondu (G) ≤ max
{
pbondc (G), 1− psitec (Ĝk)

}
.

The case of site percolation is left as Exercise 7.38. Choose p < 1 so that p > pbondc (G) and

p > 1− psitec (Ĝk). This is possible by Theorem 7.20, (7.1), and Proposition 7.12. Because

G has only one end, any two open infinite clusters must be separated by a closed infinite

minimal cutset (indeed, one within the edge boundary of one of the open infinite clusters).

Combining this with (7.10), we obtain

Pbond
p,G [∃ at least 2 open infinite clusters] ≤ Pbond

p,G [∃ a closed infinite minimal cutset in G]

≤ Psite

p,Ĝk
[∃ a closed infinite cluster in Ĝk]

= Psite

1−p,Ĝk
[∃ an open infinite cluster in Ĝk] = 0 .

On the other hand, Pbond
p,G [∃ at least 1 open infinite cluster] = 1 since p > pbondc (G). This

proves the result. ◀

∗ Since site percolation on Ĝ is equivalent to bond percolation on G, one might wonder why we study
bond percolation separately. There are three principal reasons for this: One is that other sorts of bond
percolation processes have no natural site analogue. Another is that planar duality is quite different for
bonds than for sites. Third, various quantities for graphs would have differing values for line graphs; e.g.,

in Theorem 6.30, Φ∗
E(G) ≥ Φ∗

V(Ĝ), so using site percolation on Ĝ might give a worse bound for pcbond(G).
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Remark 7.30. The proof shows that for every graph G with one end such that there is

a set of cycles with bounded length whose linear span contains all cycles, if pc(G) < 1,

then pu(G) < 1. For example, this applies to every plane graph with a bounded number

of sides on its faces.

§7.7. Lower Bounds for pu.

According to Theorem 7.6, when G is amenable and transitive, there can never be

infinitely many infinite clusters, whence pc(G) = pu(G). Behavior that is truly different

from the amenable case arises when there are infinitely many infinite clusters. This has

been conjectured always to be the case on non-amenable transitive graphs for some interval

of p:

Conjecture 7.31. (Benjamini and Schramm, 1996b) If G is a quasi-transitive non-

amenable graph, then pc(G) < pu(G).

It is not easy even to give examples of quasi-transitive graphs where 0 < pc < pu < 1,

and thus where we have three phases in Bernoulli percolation. But we will, and we will

even prove that every non-amenable group has some Cayley graph where pbondc < pbondu .

Our first tool will be the following lower bound for pu. Recall that a simple cycle is a

cycle that does not use any vertex or edge more than once. Let an(G) be the number of

simple cycles of length n in G that contain o and

γ(G) := lim sup
n→∞

an(G)
1/n , (7.11)

where a cycle is counted only as a set without regard to ordering or orientation. (We do

not know whether limn→∞ a2n(G)
1/2n exists for every transitive, or even every Cayley,

graph.)

Theorem 7.32. If G is a transitive graph, then

pu(G) ≥ 1/γ(G) . (7.12)

Proof. We give the proof for site percolation, the proof for bond percolation being similar.

Let ωp for 0 ≤ p ≤ 1 be the standard coupling associated to independent uniform [0, 1]

random variables U(x) indexed by V. Consider p > pu. In order to show that pu(G) ≥
lim infn→∞ an(G)

−1/n, we will show that
∑
n an(G)p

n = ∞.
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First, since ωp contains a.s. a unique infinite cluster, that infinite cluster K has only

one end: otherwise, removing a finite number of sites would create more than one infi-

nite cluster and deletion tolerance would give more than one infinite cluster with positive

probability.

Second, with positive probability, there are two (edge- and vertex-) disjoint infinite

rays in K. To see this, suppose not. Then by Menger’s theorem (Exercise 3.16), for every

vertex x ∈ K, a.s. there would be infinitely many vertices xn, each of whose removal would

leave x in a finite open component. Now the law of U(y) given ωp is uniform on [0, p] for

y ∈ ωp. Since K is independent of all U(y) given ωp, it follows that the law of U(y) given

ωp and that y ∈ K is still uniform on [0, p]. The same holds for the law of U(xn) since the

xn are determined simply by x and K. Choose any p′ ∈ (pc, p). Then given ωp, given any

such vertex x as above, and given any such vertices xn, we have that U(xn) > p′ a.s. for

some n. This means that the cluster of x in ωp′ is finite a.s. The fact that this holds for

all x ∈ K contradicts p′ > pc.

Therefore, with positive probability there are two infinite rays in ωp starting at o that

are disjoint except at o. Since K has only one end, the two rays may be connected by

paths in ωp that stay outside arbitrarily large balls. In particular, there are an infinite

number of simple cycles in ωp through o, whence the expected number of simple cycles

through o in ωp must be infinite. That is,
∑
n an(G)p

n = ∞. ◀

It seems difficult to calculate γ(G), although Hammersley (1961b) showed that γ(Zd) =
µ(Zd) for all d ≥ 2, where µ is the connective constant defined in Section 7.4; in particular,

γ(Z2) ≈ 2.64 (Madras and Slade, 1993). However, although it is crude, quite a useful

estimate of γ(G) arises from the spectral radius of G, which is much easier to calculate.

For any graph G, recall that the spectral radius of (simple random walk on) G is defined

to be

ρ(G) := lim sup
n→∞

Po[Xn = o]1/n ,

where
(
⟨Xn⟩,Po

)
denotes simple random walk on G starting at o.

▷ Exercise 7.10.

Show that for any graph G, ρ(G) = limn→∞ Po[X2n = o]1/2n and Po[Xn = o] ≤ ρ(G)n for

all n.

Lemma 7.33. For any graph G of maximum degree d, we have γ(G) ≤ ρ(G)d.

Proof. For any simple cycle o = x0, x1, . . . , xn−1, xn = o, one way that simple random

walk could return to o at time n is by following this cycle. That event has probability at

least 1/dn. Therefore Po[Xn = o] ≥ an(G)/d
n, which gives the result. ◀
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Of course, since every simple cycle is a non-backtracking cycle, we have

γ(G) ≤ cogr(G) . (7.13)

Recall that Theorem 6.10 gives a formula for cogr(G) in terms of ρ(G) whenG is a transitive

graph. It would be useful to have a better estimate of γ(G), even for G = Tb+1 × Z.

Proposition 7.34. (Spectral Radius of Products) Let G and G′ be transitive graphs

of degrees dG and dG′ . We have

ρ(G×G′) =
dG

dG + dG′
ρ(G) +

dG′

dG + dG′
ρ(G′) .

Proof. We first sketch the calculation, then show how to make it rigorous. We will use

superscripts on Po to denote on which graph the walk is taking place. The degree in G×G′

is dG+dG′ , whence each step of simple random walk has chance dG/(dG+dG′) to be along

an edge coming from G. Take o in G×G′ to be the product of the basepoints in the two

graphs. Then a walk of n steps from o in G × G′ that takes k steps along edges from G

and the rest from G′ is back at o iff the k steps in G lead back to o in G and likewise for

the n− k steps in G′. Thus,

PG×G′
o [Xn = o] =

n∑
k=0

(
n

k

)(
dG

dG + dG′

)k (
dG′

dG + dG′

)n−k
PG
o [Xk = o]PG′

o [Xn−k = o]

≈
n∑
k=0

(
n

k

)(
dG

dG + dG′

)k (
dG′

dG + dG′

)n−k
ρ(G)kρ(G′)n−k

=

(
dGρ(G) + dG′ρ(G

′)

dG + dG′

)n
.

Taking nth roots gives the result.

To make this argument rigorous, we will replace the vague approximation by inequal-

ities in both directions.

For an upper bound, we may use the inequality of Exercise 7.10.

For a lower bound, we note that according to Exercise 7.10, it suffices to consider only

even n, which we now do. Then we may sum over even k only (for a lower bound) and use

PG
o [Xk = o] ≥ C

(
ρ(G) − ϵ

)k
and PG′

o [Xn−k = o] ≥ C
(
ρ(G′) − ϵ

)n−k
, where ϵ is chosen

arbitrarily small and then C is chosen sufficiently small. Note that for any 0 < p < 1, we

have

lim
n→∞

n∑
k=0

(
2n

2k

)
p2k(1− p)2n−2k = 1/2 .

Putting together these ingredients with p := (dG(ρ(G)−ϵ)/
(
dG(ρ(G)−ϵ)+dG′(ρ(G′)−ϵ)

)
completes the proof. ◀
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Since ρ(Z) = 1, it follows that ρ(Zd) = 1 as well, a fact that is also easy to verify

directly. Another particular value of ρ that is useful for us is that of regular trees:

Proposition 7.35. (Spectral Radius of Trees) For all b ≥ 1, we have

ρ(Tb+1) =
2
√
b

b+ 1
.

In fact, we proved this in Exercise 6.9, as well as in (6.22); see also Exercises 7.45 and

7.46. We give a more direct proof here.

Proof. If Xn is simple random walk on Tb+1, then |Xn| is a biased random walk on N,
with probability p := b/(b+ 1) to increase by 1 and q := 1/(b+ 1) to decrease by 1 when

Xn ̸= 0. Let τ+0 := inf
{
n ≥ 1 ; |Xn| = 0

}
. Now the number of paths of length 2n from 0

to 0 in N that do not visit 0 in between is equal to the number of paths of length 2n− 2

from 1 to 1 in Z minus the number of the latter that visit 0. The former number is clearly(
2n−2
n−1

)
. The latter number is

(
2n−2
n

)
, since reflection after the first visit to 0 of a path from

1 to 1 that visits 0 yields a bijection to the set of paths from 1 to −1 of length 2n − 2.

Hence, the difference is (
2n− 2

n− 1

)
−
(
2n− 2

n

)
=

1

n

(
2n− 2

n− 1

)
.

(This is the sequence of Catalan numbers, which appear in many combinatorial prob-

lems.) Each path of length 2n from 0 to 0 in N that does not visit 0 has probability pn−1qn,

whence we have

P[τ+0 = 2n] =
1

n

(
2n− 2

n− 1

)
pn−1qn =

−1

2
(−4)n

(
1/2

n

)
pn−1qn .

We have written this probability in a second way because to find the asymptotics as n→ ∞,

we will use a generating function, and this will turn out to fit just right. That is, provided

|z| is sufficiently small,

g(z) := E[zτ
+
0 ] =

∑
n≥1

−1

2
(−4)n

(
1/2

n

)
pn−1qnz2n =

(
1−

√
1− 4pqz2

)
/(2p) . (7.14)

Since the square root function cannot be analytically continued in a neighborhood of

z = 1/(2
√
pq), it follows that the radius of convergence of the power series for g is 1/(2

√
pq).

We now use a generating function to find the spectral radius as well. Since

G(z) :=
∑
n≥0

P
[
|Xn| = 0

]
zn =

1

1− g(z)
,

it follows that the radius of convergence of G is also 1/(2
√
pq), which shows that the

spectral radius is 2
√
pq, as desired. ◀
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Combining this with Proposition 7.34, we get:

Corollary 7.36. For all b ≥ 1, we have

ρ(Tb+1 × Z) =
2
√
b+ 2

b+ 3
. ◀

We now have enough tools at our disposal to give our first example of a graph with two

phase transitions. This was also historically the first example ever given, when Grimmett

and Newman (1990) gave a version of the following result.

Theorem 7.37. For all b ≥ 6, we have 0 < pc(Tb+1 × Z) < pu(Tb+1 × Z) < 1.

Proof. The first inequality follows from Proposition 7.12. Since Tb+1 and Z are both finitely

presented, so is their product, whence the last inequality is a consequence of Theorem 7.29.

To prove the middle inequality, note that by Theorem 7.32 and (7.13),

pc(Tb+1 × Z) ≤ pc(Tb+1) =
1

b
<

1

cogr(Tb+1 × Z)
≤ pu(Tb+1 × Z)

if cogr(Tb+1×Z) < b. Combining Theorem 6.10 and Corollary 7.36, we obtain cogr(Tb+1×
Z) < b iff ρ(Tb+1 × Z)(b+ 3) = 2

√
b+ 2 < b+ 1 + 2/b. It is easy to check that this holds

for b ≥ 6. ◀

Using Exercise 7.47, the proof of Theorem 7.37 extends immediately to all b ≥ 4. On

the other hand, using the weaker bound Lemma 7.33 in place of (7.13), the proof would

work only for b ≥ 8.

To establish some more cases of Conjecture 7.31, we use the following consequence of

(6.13). (Recall that in this chapter, ΦE(G) means ΦE(G,1,1), while in (6.13), it meant

ΦE(G, c, π).)

Theorem 7.38. If G is a regular graph of degree d, then

ρ(G)2 +

(
ΦE(G)

d

)2

≤ 1 (7.15)

and

ρ(G) +
ΦE(G)

d
≥ 1 . (7.16)

◀

The following corollary is due to Schonmann (2001) (parts (i) and (ii)) and Pak and

Smirnova-Nagnibeda (2000) (part (iii)).
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Corollary 7.39. Let G be a transitive graph of degree d.

(i) If ΦE(G)/d ≥ 1/
√
2, then pbondc (G) < pbondu (G).

(ii) If ΦV(G)/d ≥ 1/
√
2, then psitec (G) < psiteu (G).

(iii) If ρ(G) ≤ 1/2, then pbondc (G) < pbondu (G).

Proof. We will use the following implications:

ρ(G)d ≤ ΦE(G) =⇒ pbondc (G) < pbondu (G) , (7.17)

ρ(G)d ≤ ΦV(G) =⇒ psitec (G) < psiteu (G) . (7.18)

To prove (7.17), use Theorem 6.30, Lemma 7.33, and Theorem 7.32 to see that when

ρ(G)d ≤ ΦE(G), we have

pbondc (G) ≤ 1

1 + ΦE(G)
<

1

ΦE(G)
≤ 1

ρ(G)d
≤ 1

γ(G)
≤ pbondu (G) .

Similarly, when ρ(G)d ≤ ΦV(G), we have

psitec (G) ≤ 1

1 + ΦV(G)
<

1

ΦV(G)
≤ 1

ρ(G)d
≤ 1

γ(G)
≤ psiteu (G) .

Part (i) is now an immediate consequence of (7.15) and (7.17). Part (ii) follows

similarly from (7.15) and (7.18), with the observation that ΦE(G) ≥ ΦV(G), so that if

ΦV(G)/d ≥ 1/
√
2, then also ΦE(G)/d ≥ 1/

√
2, so that ρ(G)d ≤ d/

√
2 ≤ ΦV(G). Part (iii)

follows from (7.16) and (7.17). ◀

To get a sense of the strength of the hypotheses of Corollary 7.39, note that by

Exercise 6.1, we have Φ(Tb+1)/dTb+1
= (b−1)/(b+1). Also, for a given degree, the regular

tree maximizes Φ over all graphs by Exercise 6.39.

It turns out that any non-amenable group has a generating set that gives a Cayley

graph satisfying the hypotheses of Corollary 7.39(iii). To show this, consider the following

construction. Let G be a graph and k ≥ 1. Define a new multigraph G[k] to have vertex

set V(G) and to have one edge joining x, y ∈ V(G) for every path in G of length exactly k

that joins x and y. Thus G[1] = G. Further, if G is the Cayley graph of Γ corresponding

to a generating set S that is closed under inverses, then for any odd k, we have that G[k]

is the Cayley graph of the same group Γ, but presented as ⟨S[k] | R[k]⟩, where

S[k] := {xw1,w2,...,wk
; wi ∈ S}

and R[k] is the set of products xw1,1,w1,2,...,w1,k
xw2,1,w2,2,...,w2,k

· · ·xwn,1,wn,2,...,wn,k
of ele-

ments from S[k] such that w1,1w1,2 · · ·w1,kw2,1w2,2 · · ·w2,k · · ·wn,1wn,2 · · ·wn,k is the iden-

tity in Γ. (To see that G[k] is connected, note that for every s ∈ S, we have S[k] ∋
xs,s−1,s,s−1,...,s = s. If G is not bipartite, then G[k] is connected also for even k.) Of

course, this does have the disadvantage that S[k] is not a subset of Γ. That disadvantage

can be removed by a result of Thom (2013b).
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Corollary 7.40. (Pak and Smirnova-Nagnibeda (2000)) If G is any non-amenable

transitive graph, then pbondc (G[k]) < pbondu (G[k]) for all odd k ≥ − log 2/ log ρ(G). In

particular, every finitely generated non-amenable group has a generating set whose Cayley

graph satisfies pbondc < pbondu .

Proof. Let k be as given. Then ρ(G)k ≤ 1/2. Now simple random walk on G[k] is the same

as simple random walk on G sampled every k steps. Therefore ρ(G[k]) = ρ(G)k by Exer-

cise 7.10. This means that ρ(G[k]) ≤ 1/2, whence the result follows from Corollary 7.39.

◀

Corollary 7.40 would confirm Conjecture 7.31 if the following conjecture were estab-

lished:

Conjecture 7.41. (Benjamini and Schramm, 1996b) If G and G′ are roughly iso-

metric quasi-transitive graphs and pc(G) < pu(G), then pc(G
′) < pu(G

′).

More detailed information about percolation requires additional tools, which we de-

velop in the next chapter.

§7.8. Bootstrap Percolation on Regular Trees.

The last section in this chapter is devoted to a different model, bootstrap percolation,

that, like ordinary percolation, was introduced by physicists. Our limited study of it will

be restricted to regular trees. We will combine some ideas from Sections 5.7 and 5.8.

Bootstrap percolation on an infinite graph G begins with a random initial configuration

where each vertex is occupied with probability p, independently of each other—in other

words, with Bernoulli(p) site percolation. It then evolves at positive integer times according

to a deterministic spreading rule with a fixed parameter k: if a vacant site has at least

k occupied neighbors at a certain time step, then it becomes occupied in the next step.

Perhaps all sites are eventually occupied; the probability of this happening depends on

p and k. If we fix k, then we define the critical probability p(G, k) as the infimum of

the initial probabilities p that make Pp[complete occupation] > 0. If k = 1, then clearly

everything becomes occupied when G is connected and p > 0, so p(G, 1) = 0, while if k is

the maximum degree of G, then clearly not everything becomes occupied when p < 1, and

so p(G, k) = 1.

▷ Exercise 7.11.

Show that p(Z2, 2) = 0 for the usual square lattice graph.
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Bootstrap percolation is well studied on Zd and on finite boxes where some surprising

“metastability” phenomena occur (see, e.g., Aizenman and Lebowitz (1988), Schonmann

(1992), Holroyd (2003), Adler and Lev (2003), Gravner and Holroyd (2009), Balogh, Bol-

lobás, and Morris (2009), Balogh, Bollobás, Duminil-Copin, and Morris (2011)). Balogh,

Peres, and Pete (2006) investigated bootstrap percolation on regular and general infinite

trees and on graphs with anchored expansion (such as non-amenable Cayley graphs).

For example, Balogh, Peres, and Pete (2006) showed that if Γ is a finitely generated

group that contains a free subgroup on two elements, then Γ has a Cayley graph G such

that 0 < p(G, k) < 1 for some k. In contrast, Schonmann (1992) proved that p(Zd, k) = 0

if k ≤ d and = 1 if k > d. These results raise the following open question:

Question 7.42. (Balogh, Peres, and Pete, 2006) Is a group amenable if and only if

for any finite generating set, the resulting Cayley graph G has p(G, k) ∈ {0, 1} for every

k?

It turns out that finding the critical probability p(Td+1, k) on a (d + 1)-regular tree

is equivalent to the problem of finding certain regular subtrees in a Bernoulli percolation

process, so the results of Section 5.7 are directly applicable to this case.

To see this, we introduce the following notion:

Definition 7.43. A finite or infinite connected subset F ⊆ V of vertices is called a k-fort

if for each x ∈ F , there are at most k edges that join x to (some vertex in) V \ F .

What’s the relationship of forts to the occupation question? If there is an initially

vacant (k− 1)-fort, then it will remain vacant and so there will never be complete occupa-

tion. On the other hand, the unoccupied sites in the final configuration are a (k − 1)-fort

and thus form an initial vacant (k− 1)-fort. Therefore, the failure of complete occupation

by the k-neighbor rule for a given initial configuration ω is equivalent to the existence of

a non-trivial vacant (k − 1)-fort in ω.

We can now analyze bootstrap percolation on the (d + 1)-regular tree, Td+1, where

d ≥ 2 is a fixed integer. Let 1 ≤ k ≤ d. Consider Bernoulli(p) bond percolation on Td+1;

does the cluster of a fixed vertex contain a (k+1)-regular subtree with positive probability?

Define π(d, k) to be the infimum of probabilities p for which the answer is yes. Harris’s

inequality (Section 5.8) implies that this critical probability is the same as the one for

having a k-ary subtree at the root in a Galton-Watson tree with offspring distribution

Bin(d, p), which we analyzed in Section 5.7. Ergodicity also shows that the probability is

either 0 or 1 that somewhere there is a (k + 1)-regular subtree in Bernoulli(p) percolation

on Td+1; this probability is monotonic in p and changes at π(d, k). The relationship of the
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critical probabilities π(d, k) to those for bootstrap percolation are as follows. Asymptotics

for large d and k lead to the very cute asymptotic p(Td+1, k) ∼ k/d:

Proposition 7.44. (Balogh, Peres, and Pete, 2006) Let 1 ≤ k ≤ d, and consider

k-neighbor bootstrap percolation on the (d + 1)-regular tree, Td+1. We have the following

equality of critical probabilities:

p(Td+1, k) = 1− π(d, d+ 1− k) . (7.19)

In particular, for any constant γ ∈ [0, 1] and sequence of integers kd with limd→∞ kd/d = γ,

we have

lim
d→∞

p(Td+1, kd) = γ. (7.20)

Proof. The tree Td+1 has no finite (k−1)-forts, and it is easy to see that any infinite (k−1)-

fort of Td+1 contains a complete (d+2−k)-regular subtree. Hence, unsuccessful complete

occupation for the k-neighbor rule is equivalent to the existence of a (d + 2 − k)-regular

vacant subtree in the initial configuration. Furthermore, the set of initial configurations

that lead to complete occupation on Td+1 is invariant under the automorphism group of

Td+1, hence has probability 0 or 1: see Proposition 7.3. So incomplete occupation has

probability 1 if and only if a fixed origin is contained in a (d + 2 − k)-regular vacant

subtree with positive probability. Since the vacant vertices in Td+1 form a Bernoulli(1−p)
percolation process, we find that (7.19) holds.

Note that if limd→∞ kd/d = γ, then limd→∞(d + 1 − kd)/d = 1 − γ, so (5.29) of

Proposition 5.31 implies (7.20). ◀

Proposition 5.30 showed that for k ≥ 2 we already have a k-ary subtree at the critical

probability π(d, k). For bootstrap percolation, this means that the probability of complete

occupation is still 0 at p = p(Td+1, k) if k < d.

§7.9. Notes.

In the non-amenable case, two Cayley graphs are roughly isometric iff there is a bijective
rough isometry between them, which is the same as a bi-Lipschitz map: see Whyte (1999). How-
ever, in the amenable case, this is not so and there are lamplighter groups that are roughly
isometric but not bi-Lipschitz equivalent: see Dymarz (2010). These lamplighter groups are of
the form Z⋉

∑
x∈Z Zm; other lamplighter groups of interest in probability replace the base space

Z by Zd (see Kăımanovich and Vershik (1983)).
The proof in this chapter of Proposition 5.27 is due to Pemantle and Peres (1996), Lemma

4.2(i). A modification of this proof is used by Peres, Pete, and Scolnicov (2006).
Special cases of Proposition 7.10 were proved by Fisher (1961).
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Proposition 7.12 was first observed for bond percolation on Z2 by Broadbent and Hammersley
(1957) and Hammersley (1959).

Proposition 7.14 comes from Lyons and Schramm (1999), Remark 6.2.
The contour argument used to prove Theorem 7.16 is often referred to as a “Peierls argu-

ment”, after Peierls (1936), who used such an argument to prove that the 2-dimensional Ising
model has a phase transition.

Inequality (7.6), that pc(G) ≤ 1/b, also follows from the following result of Aizenman and
Barsky (1987):

Theorem 7.45. (Expected Cluster Size) If G is any transitive graph and p < pc(G), then
Ep[|K(o)|] <∞.

Aizenman and Barsky (1987) worked only on Zd, but their proof works in greater generality: in
their notation, one simply has to use the inequality

ProbL(CΛL\A(y) ∩G ̸= ∅) ≤ Prob(C(y) ∩G ̸= ∅) = M ,

so that one does not need periodic finite approximations.
To prove Theorem 7.18, we will use the following result:

Proposition 7.46. A subgroup of finite index in a finitely generated group is itself finitely gen-
erated.

Proof. Let Γ be generated by the set S. Given a subgroup Γ′ < Γ, choose a set A ⊂ Γ such that A
intersects each coset of Γ′ exactly once. We may assume that o ∈ A, where o is the identity of Γ.
Thus, for each γ ∈ Γ, there is a unique k(γ) ∈ A and a unique h(γ) ∈ Γ′ such that γ = k(γ)h(γ).
Now if γ = ah(γ) and γ′ = a′h(γ′), then γγ′ = γa′h(γ′) = a′′h(γa′)h(γ′) for some a′′ ∈ A, whence
h(γγ′) = h(γk(γ′))h(γ′). It follows by induction that

h(γ1 · · · γm) = h(γ1k(γ2 · · · γm))h(γ2k(γ3 · · · γm)) · · ·h(γm−1k(γm))h(γm) .

Therefore, given any choice of si ∈ S∪S−1, the element h(s1 · · · sm) is a product of elements from
S′ := {h(sa) ; s ∈ S ∪S−1, a ∈ A}. Since o ∈ A, h(γ) = γ for all γ ∈ Γ′, whence if s1 · · · sm ∈ Γ′,
then h(s1 · · · sm) = s1 · · · sm. This means that Γ′ is generated by S′. ◀
Proof of Theorem 7.18. The principal fact we need is the difficult theorem of Gromov (1981a), who
showed that Γ is almost a nilpotent group. (The converse is true as well; see Wolf (1968). Also, see
Kleiner (2010) for another proof of Gromov’s theorem.) Now every finitely generated nilpotent
group is almost torsion-free∗, while the upper central series of a torsion-free finitely generated
nilpotent group has all factors isomorphic to free abelian groups (Kargapolov and Merzljakov
(1979), Theorem 17.2.2 and its proof). Thus, Γ has a subgroup Γ′ of finite index that is torsion-
free and either Γ′ equals its center, C, or there is a subgroup C′ of Γ′ such that C′/C is the center
of Γ′/C and C′/C is free abelian of rank at least 1. If the rank of C is at least 2, then C already
contains Z2, so suppose that C ≈ Z. If Γ′ = C, then Γ is almost Z. If not, then let C′′ be a
subgroup of C′ such that C′′/C is isomorphic to Z. We claim that C′′ is isomorphic to Z2, and
thus that C′′ provides the subgroup we seek. Choose γ ∈ C′′ such that γC generates C′′/C. Let
D be the group generated by γ. Then clearly D ≈ Z. Since C′′ = DC and C lies in the center of
C′′, it follows that C′′ ≈ D × C ≈ Z2. ◀

∗ A group is torsion-free if all its elements have infinite order, other than the identity element.
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Alexander (1995b) proved Theorem 7.21 in the case of Zd. The extension of his result to
the first part of Theorem 7.21 and a weakening of the second part, when p1 and p2 are fixed
in advance, was shown by Häggström and Peres (1999) for Cayley graphs and other unimodular
transitive graphs, then by Schonmann (1999b) in general. This answered affirmatively a question
of Benjamini and Schramm (1996b). Finally Häggström, Peres, and Schonmann (1999) proved
Theorem 7.21 in general. They also showed that Theorem 7.21 holds for semi-transitive graphs,
which are those graphs G for which there exists a finite set F of vertices with the property that
for every x ∈ V(G), there is some injective homomorphism of G that maps some y ∈ F to x. For
example, Zd × Z+ is semi-transitive, as is every superperiodic tree. Since semi-transitive graphs
satisfy (7.9), our proof gives this result.

Invasion percolation was introduced by Wilkinson and Willemsen (1983). Chayes, Chayes,
and Newman (1985) proved Theorem 7.22 in the case of Zd. A detailed study of invasion per-
colation on regular trees is given by Angel, Goodman, den Hollander, and Slade (2008), with its
scaling limit studied in Angel, Goodman, and Merle (2011).

Lemma 7.28 is due to Babson and Benjamini (1999), who used topological definitions and
proofs. Our proof is due to Timár (2007). If instead of hypothesizing that K spans the cycles
with real coefficients, one assumes that K spans the cycles with F2 coefficients, where F2 is the
field of two elements, then the same statement is true with a very similar proof.

That pu < 1 for planar quasi-transitive graphs with one end follows from Theorem 7.29
and Exercise 7.42. An alternative proof will be given in Section 8.5. Other techniques have
established Conjecture 7.27 for the cartesian product of two infinite graphs (Häggström, Peres,
and Schonmann, 1999) and for Cayley graphs of Kazhdan groups, i.e., groups with Kazhdan’s
property (T) (Lyons and Schramm, 1999).

The definition of Kazhdan’s property is the following. Let Γ be a countable group and S be
a finite subset of Γ. A unitary representation of Γ is an action π of Γ by unitary maps on a
Hilbert space. An invariant vector of π is a vector v such that π(γ)v = v for all γ ∈ Γ. Let
UΓ(H ) denote the set of unitary representations of Γ on H that have no invariant vectors except
0. Set

κ(Γ, S) := max

{
ϵ ; ∀H ∀π ∈ UΓ(H ) ∀v ∈ H ∃s ∈ S ∥π(s)v − v∥ ≥ ϵ∥v∥

}
.

Then Γ is called Kazhdan (or has Kazhdan’s property (T)) if κ(Γ, S) > 0 for all finite S (or,
equivalently, for a single S that generates Γ). The only amenable Kazhdan groups are the finite
ones. Examples of Kazhdan groups include SL(n,Z) for n ≥ 3. See de la Harpe and Valette (1989)
for background; in particular, every Kazhdan group is finitely generated (p. 11 there), but not
necessarily finitely presentable (as shown by examples of Gromov; see p. 43 there). Every infinite
Kazhdan group has only one end. See Żuk (1996) for examples of Kazhdan groups arising as fun-
damental groups of finite simplicial complexes. There is a beautiful probabilistic characterization
of Kazhdan groups. Let P∗ be the probability measure on subsets of Γ that is the empty set half
the time and all of Γ half the time. Recall that Γ acts by translation on the probability measures
on 2Γ.

Theorem 7.47. (Glasner and Weiss, 1997) A countable infinite group Γ is Kazhdan iff P∗
is not in the weak∗ closure of the Γ-invariant ergodic probability measures on 2Γ.

The inequality pu(G) ≥ 1/(ρ(G)d) for quasi-transitive graphs of maximum degree d, which
follows from Theorem 7.32 combined with Lemma 7.33, was proved earlier by Benjamini and
Schramm (1996b).
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Theorem 7.32 is due to Schramm; his proof was published by Lyons (2000). A strengthening
of Theorem 7.32 and of a result in the proof of Theorem 4 of Benjamini and Schramm (1996b) is
the following:

Theorem 7.48. If G is a transitive graph and p < 1/γ(G), then limx→∞ Pp[o↔ x] = 0.

The reason that this implies Theorem 7.32 is that when there is a unique infinite p-cluster,
Pp[o↔ x] ≥ Pp[|K(o)| = ∞, |K(x)| = ∞] ≥ θ(p)2 by Harris’s inequality (Section 5.8).

Proof. Consider first site percolation. Let p < p+ < 1/γ(G). We use the standard coupling
of Bernoulli percolation. A vertex z is called an (x, y)-cutpoint if x and y belong to the same
p+-open cluster, but would not if z were closed. Let uk(r) denote the probability that for some
x outside the ball B(o, r), we have that o and x are connected via a p+-open path with at most
k (o, x)-cutpoints (for the p+-open vertices). When there are no (o, x)-cutpoints, there are two
disjoint paths joining o to x by Menger’s theorem (Exercise 3.16), i.e., there is a simple cycle
containing o and x. Thus, u0(r) ≤

∑
n>2r an(G)pn+ → 0 as r → ∞. For k ≥ 0 and r ≤ R,

consider x /∈ B(o,R). If there is a p+-open path from o to x that has at most k + 1 (o, x)-
cutpoints, then either this path contains no cutpoints in B(o, r) or it has at most k cutpoints
outside B(o, r). In the latter case, it intersects the sphere of radius r in one of at most dr points,
where d is the degree of G. Therefore, we obtain the bound

uk+1(R) ≤ u0(r) + druk(R− r) . (7.21)

The inequality (7.21) implies inductively that (for any fixed k) uk(R) tends to zero as R → ∞.
[Given ϵ, first choose r such that u0(r) < ϵ and then choose R′ so that druk(R − r) < ϵ for all
R ≥ R′.]

Next, let τp(R) denote the maximum over x /∈ B(o,R) of the probability that o and x are in
the same p-cluster. Then for every k, we have

τp(R) ≤ (p/p+)k+1 + uk(R) (7.22)

by considering whether there is a p+-open path from o to x with at most k cutpoints or not; in
the latter case, there are k + 1 cutpoints that lie on every p+-open path from o to x and they
must also be p-open. Finally (7.22) implies that τp(R) tends to zero as R → ∞. [Given ϵ, first
choose k such that (p/p+)k+1 < ϵ, then choose R′ so that uk(R) < ϵ for all R ≥ R′.]

The proof for bond percolation is similar, but needs just the following modification: replace

(p/p+)k+1 by (1 − (1 − p/p+)d)
(k+1)/2

in (7.22) because if o and x are in the same p-cluster and
there is a no p+-open path from o to x with at most k cutpoints, then at least one edge incident
to each cutpoint must also be p-open. Furthermore, the cutpoints must appear in a fixed order
in every p+-open path from o to x, and two cutpoints can share at most one edge. ◀

According to Schonmann (1999a), techniques of that paper combined with those of Stacey
(1996) can be used to show the same inequality as that of Theorem 7.37 for all b ≥ 2, but the
proof “is quite technical”.

The only groups for which it is known that all their Cayley graphs satisfy pc < pu are the
groups of “cost” larger than 1. This concept is defined in Section 10.2, but we give a few classes
of examples here. This includes, first, free groups of rank at least 2 and fundamental groups of
compact surfaces of genus larger than 1. Second, let Γ1 and Γ2 be two groups of finite cost with
Γ1 having cost larger than 1. Then every amalgamation of Γ1 and Γ2 over an amenable group
has cost larger than 1. Third, every HNN extension of Γ1 over an amenable group has cost larger
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than 1. Also, every HNN extension of an infinite group over a finite group has cost larger than 1.
For proofs that the above groups have cost larger than 1, see Gaboriau (1998, 2000, 2002). The
proof that pc(G) < pu(G) when G is a Cayley graph of a group Γ with cost larger than 1 follows
fairly easily from Theorem 8.21 in the next chapter, as noted by Lyons (2000); see Lyons (2012)
for the details. If Γ is a group with a Cayley graph G and the free and wired uniform spanning
forest measures on G differ (equivalently, there exist non-constant harmonic Dirichlet functions),
then Γ has cost larger than 1. These are the same as the groups with strictly positive first ℓ2-Betti
number; see Sections 10.2 and 10.8. Possibly these are exactly the groups of cost larger than 1; see
Question 10.12. Notably, although it is known (Bekka and Valette, 1997) that Kazhdan groups
have first ℓ2-Betti number equal to 0, it is not known that they have cost 1. Likewise, it is not
known that all Cayley graphs of Kazhdan groups have pc < pu. If the free and wired uniform
spanning forests differ on a unimodular quasi-transitive graph G, then again pc(G) < pu(G): see
Corollary 4.5 of Gaboriau (2005).

The following results concerning the uniqueness phase of Bernoulli percolation are also known.
(The definition of “unimodular” is in the next chapter; it includes all Cayley graphs.)

Theorem 7.49. Let G be a transitive graph.
(i) (Schonmann, 1999b) We have

pu(G) = inf

{
p ; sup

R
inf
x

Pp[B(o,R) ↔ B(x,R)] = 1

}
. (7.23)

(ii) (Lyons and Schramm, 1999) If G is unimodular and infxPp[o↔ x] > 0, then there is
a unique infinite cluster Pp-a.s. Therefore,

pu(G) = inf {p ; inf
x

Pp[o↔ x] > 0} . (7.24)

Equation (7.24) implies (7.23), but it is unknown whether (7.24) holds in the non-unimodular
case.

It is not known which Cayley graphs have the property that there is a unique infinite cluster
Ppu -a.s. It is known that there is a unique infinite cluster at pu when G is planar, non-amenable
and transitive (Theorem 8.24). On the other hand, Schonmann (1999a) proved that this does
not happen on Tb+1 × Z with b ≥ 2, which Peres (2000) extended to all non-amenable cartesian
products of infinite transitive graphs. Likewise, there are infinitely many infinite clusters at pu
when G is a Cayley graph of a Kazhdan group (due to Peres; see Lyons and Schramm (1999)).

▷ Exercise 7.12.
Show that for every transitive graph G, psiteu (G) ≥ pbondu (G).

▷ Exercise 7.13.
Show that if G and G′ are roughly isometric quasi-transitive graphs, then pu(G) < 1 iff pu(G′) <
1.

▷ Exercise 7.14.
Let G be a unimodular transitive graph. Suppose that there are constants C <∞ and ζ < 1 such
that for all vertices x in G, there is a probability measure µ on paths from o to x that satisfies

(µ× µ)[|ξ ∩ ξ′| = n] ≤ Cζn

for all n. Show that pu(G) ≤ ζ.
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An analogue of non-amenable graphs in the world of finite graphs is a sequence of finite
graphs whose expansion constants are bounded away from 0; such a sequence is usually called
an expander sequence. Properties of percolation on an expander sequence that are analogues of
the existence or uniqueness of infinite percolation clusters for infinite graphs are studied in Alon,
Benjamini, and Stacey (2004) and Angel and Benjamini (2007). The analogue of the existence of
an infinite cluster is the existence of a “giant” component, i.e., a cluster that contains a positive
proportion of all vertices; if there is such a giant component, then it is unique. It is somewhat of
a mystery, then, what uniqueness of the infinite cluster could correspond to. The answer seems
to be this: The analogue of the uniqueness of infinite clusters is that for any given pair of vertices
in the giant component, their distance within the giant component is not much larger than their
distance within the whole graph. This is similar to whether the limit of uniform spanning trees in
an exhaustion of an infinite graph (i.e., the free spanning forest) has only one component, a topic
studied in Chapter 10. Much remains to be understood for percolation in this finite-analogue
world.

§7.10. Collected In-Text Exercises.

7.1. Prove (7.2).

7.2. Let G be a connected graph and x, y ∈ V(G). Consider Bernoulli(p) percolation on G. Prove
that if θy(p) > 0, then also θx(p) > 0.

7.3. Let T be a tree that has no vertices of degree 1. Let B be the set of vertices of degree at
least 3. Let K be a finite nonempty subset of vertices of T . Show that |∂EK| ≥ |K ∩B| + 2.

7.4. Show that for any finitely generated group, the number of ends is the same for all of its
Cayley graphs. Thus, we may speak of the number of ends of a group, not merely of a Cayley
graph. In fact, show that if two graphs are roughly isometric, then they have the same number
of ends.

7.5. Show that if G and G′ are any two infinite connected graphs, then the cartesian product
graph G×G′ (defined in Exercise 6.22) has only one end.

7.6. Show that if Γ and Γ′ are any two finitely generated groups with |Γ| ≥ 2 and |Γ′| ≥ 3, then
Γ ∗ Γ′ has infinitely many ends.

7.7. Suppose that Pi (i = 1, 2, 3) are three percolation measures on 2A such that P1 ≽ P2 and
P2 ≽ P3. Show that there exist random variables ωi on a common probability space such that
ωi ∼ Pi for all i and ω1 ≥ ω2 ≥ ω3 a.s.

7.8. Extend Theorem 7.20 to quasi-transitive graphs of upper exponential growth rate larger
than 1.

7.9. (a) Show that if ω is an a.s. non-empty Aut(G)-invariant percolation on a quasi-transitive
graph G, then a.s. every end of G contains an end-convergent subset of ω.

(b) Show that if G is a quasi-transitive graph with more than one end, then pu(G) = 1.

7.10. Show that for any graph G, ρ(G) = limn→∞ Po[X2n = o]1/2n and Po[Xn = o] ≤ ρ(G)n for
all n.

7.11. Show that p(Z2, 2) = 0 for the usual square lattice graph.

7.12. Show that for every transitive graph G, psiteu (G) ≥ pbondu (G).
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7.13. Show that if G and G′ are roughly isometric quasi-transitive graphs, then pu(G) < 1 iff
pu(G′) < 1.

7.14. Let G be a unimodular transitive graph. Suppose that there are constants C < ∞ and
ζ < 1 such that for all vertices x in G, there is a probability measure µ on paths from o to x that
satisfies

(µ× µ)[|ξ ∩ ξ′| = n] ≤ Cζn

for all n. Show that pu(G) ≤ ζ.

§7.11. Additional Exercises.

7.15. Show that if G′ is a transitive representation of a quasi-transitive graph G, then G is
amenable iff G′ is amenable.

7.16. Show that a tree is quasi-transitive iff it is a universal cover of a finite undirected (multi-)
graph (as in Section 3.3).

7.17. Let x and y be two vertices of any graph and define τp(x, y) := Pp[x↔ y]. Show that τ is
continuous from the left as a function of p.

7.18. Find the Cayley graph of the lamplighter group G1 with respect to the 4 generators (1,0),
(−1,0), (1,1{0}), and (−1,1{0}).

7.19. Show that if bn is the size of a ball of radius n in the graph Tb+1×Zd, then limn→∞ b
1/n
n = b

for all b ≥ 1 and d ≥ 0.

7.20. Use Harris’s inequality to do Exercise 7.2.

7.21. Let T be a finite tree. Call a vertex x a k-branch point of T if T\x has at least 3
components that each have at least k vertices. Let Bk be the set of k-branch points of T . Show
that if |Bk| ≥ 1, then |V(T ) \Bk| ≥ k(|Bk| + 2).

7.22. Give an example of a connected graph such that for some p, the number of infinite clusters
of Bernoulli(p) percolation is finite and at least 2 with positive probability.

7.23. Suppose that ω is an invariant percolation on a transitive graph G. Let Λ be the set of
furcations of ω. Show that ΦV(G,1,1) ≥ P[o ∈ Λ].

7.24. Suppose that P is an invariant percolation on an amenable transitive graph. Show that all
infinite clusters have at most 2 ends a.s.

7.25. Let F be an invariant random forest on a transitive graph G. Show that

E[degF o] ≤ ΦV(G,1,1) + 2 .

7.26. Show that if G is a quasi-transitive graph with at least 3 ends, then G has infinitely many
ends.

7.27. Extend Theorem 7.9 to quasi-transitive amenable graphs.

7.28. Refine Proposition 7.10 to prove that θsiteo (p) ≤ pθbondo (p).
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7.29. Extend Proposition 7.10 to show that there is a coupling of site percolation ξ and bond
percolation ω such that every ξ-cluster is contained in some ω-cluster.

7.30. Strengthen Proposition 7.12 to show that for any connected graph G, we have pc(G) ≥
1/brT SAW.

7.31. Suppose that G is a graph such that for some constant a <∞ and all n ≥ 1, we have

∣∣∣∣{Π ⊂ E ; Π is a minimal cutset separating o from ∞, |∂EΠ| = n

}∣∣∣∣ ≤ aean , (7.25)

where o is a fixed vertex in G. Show that pbondc (G) < 1.

7.32. Prove that pbondc (Z2) ≤ 1 − 1/µ(Z2).

7.33. Let G be an infinite graph and x ∈ V(G). Write K(x) for the cluster of x in percolation;
as usual, θx(p) := Pp[|K(x)| = ∞].
(a) Show that θx(p) is continuous from the right at all p ∈ [0, 1).

(b) For 0 < p ≤ 1, show that θx(p) − θx(p−) = Pp[|K(x)| = ∞, pc(K(x)) = 1].
(c) Show that if G is quasi-transitive, then θx(p) is continuous from the left at all p ∈ (0, 1] with

an exception at p = pc iff θ(pc) > 0.

7.34. Let U(e) be distinct labels on an infinite graph. Show that if some edge e ∈ ∂EI(x) belongs
to an infinite cluster of ωp, then |I(x) \ η| <∞ for some infinite cluster η of ωp.

7.35. Give an example of a graph with a vertex x such that

P[∃p > pc I(x) ∩ ωp has no infinite component] > 0 .

7.36. Let G be an infinite quasi-transitive graph with pu < 1. Show that in the standard coupling
of Bernoulli percolation, a.s. for all p > pu, every infinite cluster in ωp has one end.

7.37. Show that if T is any tree and p < 1, then Bernoulli(p) percolation on T has either no
infinite clusters a.s. or infinitely many infinite clusters a.s.

7.38. Prove Theorem 7.29 for site percolation.

7.39. Let G = (V,E) be a graph with a fixed base point o. A finite subset of vertices that includes
o and that induces a connected subgraph is called a site animal . Let an be the number of n-
vertex site animals. Show that if all vertices have degrees at most d, then lim supn→∞ a

1/n
n < ed,

where e is the base of natural logarithms.

7.40. Let G = (V,E) be a graph with a fixed base point o. A finite set of edges that includes
some edge incident to o and that form a connected subgraph is called a bond animal . Let bn
be the number of n-edge bond animals. Show that if all vertices have degrees at most d, then
lim supn→∞ b

1/n
n < e(d− 1), where e is the base of natural logarithms.

7.41. A sequence of vertices ⟨xk⟩k∈Z is called a bi-infinite geodesic if distG(xj , xk) = |j− k| for
all j, k ∈ Z. Show that an infinite transitive graph contains a bi-infinite geodesic passing through
o.
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7.42. Show that if G is a transitive graph such that there is a set of cycles with bounded length
whose linear span contains all cycles, then pc(G) < 1. For example, this holds when G is the
Cayley graph of a finitely presented group with respect to a finite presentation.

7.43. Let G be any connected graph. Let an(G, x) be the number of simple cycles of length n in
G from x to x and

γ(G) := sup
x

lim sup
n→∞

an(G, x)1/n .

Show that if there is a unique infinite cluster Pp-a.s., then p ≥ 1/γ(G). Moreover, show that if
p < 1/γ(G), then limx→∞ Pp[o↔ x] = 0.

7.44. Let G and G′ be transitive networks with conductance sums at vertices π, π′, respectively.
(These are constants by transitivity.) Define the cartesian product network as in Exercise 6.22.
Show that

ρ(G×G′) =
π

π + π′ ρ(G) +
π′

π + π′ ρ(G′) .

7.45. Combine Exercises 5.35 and 5.36(a) to give another proof of (7.14).

7.46. Give another proof of (7.14) by conditioning on the second step to get a recursion for g(z).

7.47. Prove that pbondc (Tb+1 × N) ≤ (b+ 1 −
√
b2 + 2b− 3)/2.

7.48. Prove that pbondc (Tb+1 × Z) ≥ (
√
b2 + 6b+ 1 − b− 1)/(2b) for b ≥ 3.

7.49. Prove that for every transitive graph G, if b is sufficiently large, then pc(Tb+1 × G) <
pu(Tb+1 ×G).

7.50. Show that in Corollary 7.39, the hypotheses of (i)–(iii) may be replaced by, respectively,
ΦE(G)/(d− 1) ≥ 1/

√
2; ΦV(G)/(d− 1) ≥ 1/

√
2; and ρ(G) ≤ 1/2 +

√
d− 1/d.

7.51. Show that Corollary 7.39 holds for quasi-transitive graphs when d is replaced by the max-
imum degree in G.

7.52. Consider bootstrap percolation with the k-neighbor rule on a 2k-regular graph, G. Show
that if Φ∗

E(G) > 0, then p(G, k) > 0. Hint: Suppose not. For small p, given the initial configuration
ωp, find an arbitrarily large finite set K such that K becomes occupied even if the outside of K
were to be made vacant. Count the increase of the boundary throughout the evolution of the
process. Use Exercise 7.39.

7.53. Show that for bootstrap percolation on the d-regular tree Td+1, we have

p(Td+1, d) = 1 − 1

d
and p(Td+1, 2) = 1 − (d− 1)2d−3

dd−1(d− 2)d−2
∼ 1

2d2
. (7.26)

7.54. For bootstrap percolation, define another critical probability, b(G, k), as the infimum of
initial probabilities for which, following the k-neighbor rule on G, there will be an infinite con-
nected component of occupied vertices in the final configuration with positive probability. Clearly,
b(G, k) ≤ p(G, k). Show that for any integers d, k with 2 ≤ k ≤ d, if T is an infinite tree with
maximum degree d+ 1, then p(T, k) ≥ b(Td+1, k) > 0.

7.55. Consider bootstrap percolation on the family tree Tξ of a Galton-Watson process with
offspring distribution ξ.
(a) Show that p(Tξ, k) is a constant almost surely, given nonextinction.
(b) Prove that p(Tξ, k) ≥ p(Tη, k) if η stochastically dominates ξ.

7.56. Consider the Galton-Watson tree Tξ with offspring distribution P(ξ = 2) = P(ξ = 4) = 1/2.
Then br(Tξ) = Eξ = 3 a.s., there are no finite 1-forts in Tξ, and 0 < p(Tξ, 2) < 1 is an almost sure
constant by Exercise 7.55. Prove that p(Tξ, 2) < p(T3+1, 2) = 1/9.
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Chapter 8

The Mass-Transport Technique and Percolation

Interchanging the order of summation in a double sum is one of the most useful

techniques in a mathematician’s toolkit. It can always be tried when the sums are finite,

but requires assumptions when the sums are infinite. This chapter develops a technique

that is quite similar to interchange of summation, but applies to certain infinite settings

where pure interchange of summation would not make sense. This technique, based on

the so-called “the Mass-Transport Principle”, is so powerful that its applications often

seem magical. The technique has become indispensable in the context of percolation on

non-amenable graphs, whose study is continued in this chapter. We will use it again in

Chapters 10 and 11 as well. Recall that for us, percolation means simply a probability

measure on subgraphs of a given graph. There are two main types, bond percolation ,

wherein each subgraph has all the vertices, and site percolation , where each subgraph is

the graph induced by some of the vertices. In this chapter, all graphs are assumed to be

locally finite without explicit mention.

Our main topic is invariant percolation on Cayley graphs. The importance of this topic

is, as we will see, that it has many applications to Bernoulli percolation and to random

spanning forests. This is not only because these percolations are themselves invariant; it is

also because we will construct auxiliary invariant percolations from Bernoulli percolation

that will inform us about Bernoulli percolation. In this way, we will show that there is no

infinite cluster a.s. at pc on non-amenable Cayley graphs and show that there is a unique

infinite cluster a.s. at pu on non-amenable planar Cayley graphs. Likewise, we will also

understand what the infinite clusters look like in Bernoulli percolation when there are

infinitely many of them.
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§8.1. The Mass-Transport Principle for Cayley Graphs.

Early forms of the mass-transport technique were used by Liggett (1987), Adams

(1990), and van den Berg and Meester (1991). It was introduced in the study of percolation

by Häggström (1997) and developed further in BLPS (1999b). This method is useful far

beyond Bernoulli percolation. The principle on which it depends is best stated in a form

that does not mention percolation or even probability at all. However, to motivate it, we

first consider probabilistic processes that are invariant with respect to a countable group

Γ, meaning, in its greatest generality, a probability measure P on a space Ω on which Γ

acts in such a way as to preserve P. For example, we could take P := Pbond
p and Ω := 2E,

where E is the edge set of a Cayley graph of Γ. Let F (x, y;ω) ∈ [0,∞] be a function of

x, y ∈ Γ and ω ∈ Ω. Suppose that F is invariant under the diagonal action of Γ; that is,

F (γx, γy; γω) = F (x, y, ω) for all γ ∈ Γ. We think of giving each element x ∈ Γ some initial

mass, possibly depending on ω, then redistributing it so that x sends y the mass F (x, y;ω).

With this terminology, one hopes for “conservation” of mass, at least in expectation. Of

course, the total amount of mass is usually infinite. Nevertheless, it turns out that there

is a sense in which mass is conserved: the expected mass at an element before transport

equals the expected mass at an element afterwards. Since F enters this equation only

in expectation, it is convenient to set f(x, y) := EF (x, y;ω). Then f is also diagonally

invariant, i.e., f(γx, γy) = f(x, y) for all γ, x, y ∈ Γ, because P is invariant. This function

f satisfies the following principle:

The Mass-Transport Principle for Countable Groups. Let Γ be a countable group

and o its identity element. If f : Γ× Γ → [0,∞] is diagonally invariant, then∑
x∈Γ

f(o, x) =
∑
x∈Γ

f(x, o) .

Proof. Just note that f(o, x) = f(x−1o, x−1x) = f(x−1, o) and that summation of f(x−1, o)

over all x−1 is the same as
∑
x∈Γ f(x, o) since inversion is a permutation of Γ. ◀

Before we use the Mass-Transport Principle in a significant way, we examine a few

simple questions to illustrate where it is needed and how it is different from simpler princi-

ples. Let G be a Cayley graph of the infinite group Γ and let P be an invariant percolation,

i.e., an invariant measure on 2V, on 2E, or even on 2V∪E. Let ω be a configuration with

distribution P.

Example 8.1. Could it be that ω is a single vertex a.s.? I.e., is there an invariant way

to pick a vertex at random?
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No: If there were, the assumptions would imply that the probability p of picking x is

the same for all x, whence an infinite sum of p would equal 1, an impossibility.

Example 8.2. Could it be that ω is a finite nonempty vertex set a.s.? I.e., is there an

invariant way to pick a finite set of vertices at random?

No: If there were, then we could pick one of the vertices of the finite set at random

(uniformly), thereby obtaining an invariant probability measure on singletons.

Recall that cluster means connected component of the percolation subgraph.

Example 8.3. The number of finite clusters is P-a.s. 0 or ∞. For if not, then we could

condition on the number of finite clusters being finite and positive, then take the set of

their vertices and arrive at an invariant probability measure on 2V that is concentrated on

finite sets.

Recall that a vertex x is a furcation of a configuration ω if removing x would split

the cluster containing x into at least 3 infinite clusters.

Example 8.4. The number of furcations is P-a.s. 0 or ∞. For the set of furcations has

an invariant distribution on 2V.

Example 8.5. P-a.s. each cluster has 0 or ∞ furcations.

This does not follow from elementary considerations as the previous examples do,

but requires the Mass-Transport Principle. (See Exercise 8.14 for a proof that elementary

considerations do not suffice.) To prove the assertion about furcations, for a vertex x and

a configuration ω, let N(x, ω) be the number of furcations in the cluster K(x) = K(x, ω).

Define F (x, y;ω) to be 0 if N(x, ω) ∈ {0,∞} and otherwise to be 1/N(x, ω) if y is one

of the furcations of K(x). Then F is diagonally invariant, whence the Mass-Transport

Principle applies to f(x, y) := EF (x, y;ω). Since
∑
y F (x, y;ω) ≤ 1, we have∑

x

f(o, x) ≤ 1 . (8.1)

If any cluster has a finite positive number of furcations, then each of them receives in-

finite mass. More precisely, if o is one of a finite number of furcations of K(o), then∑
x F (x, o;ω) = ∞. Therefore, if with positive probability some cluster has a finite pos-

itive number of furcations, then with positive probability o is one of a finite number of

furcations of K(o), and therefore E
[∑

x F (x, o;ω)
]
= ∞. That is,

∑
x f(x, o) = ∞, which

contradicts the Mass-Transport Principle and (8.1).

This is a typical application of the Mass-Transport Principle in that it is qualitative,

not quantitative.

A generalization of Examples 8.2 and 8.5 is the following:

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



Chap. 8: The Mass-Transport Technique and Percolation 302

Example 8.6. If there are infinite clusters with positive probability, then there is no

invariant way to pick a finite nonempty subset from one or more infinite clusters, whether

deterministically or with additional randomness. More precisely, there is no invariant

measure on pairs (ω, ϕ) such that ω has infinite clusters with positive probability and with

the properties that ϕ:V → 2V is a function such that ϕ(x) ⊆ K(x) is finite for all x, is

nonempty for at least one x with |K(x)| = ∞, and such that whenever x and y lie in the

same ω-cluster, ϕ(x) = ϕ(y).

To illustrate a deeper use of the Mass-Transport Principle, we now give another proof

that in the standard coupling of Bernoulli bond percolation on a Cayley graph, G, for all

pc(G) < p1 < p2, a.s. every infinite p2-cluster contains some infinite p1-cluster. (This was

Lemma 7.26. This lemma implies that the two natural definitions of pu are equivalent,

(7.7) and (7.8); the full Theorem 7.21 that we used to deduce (7.8) is not needed.)

Let ω1 ⊆ ω2 be the configurations in the standard coupling of the two Bernoulli(pi)

percolations. Note that (ω1, ω2) is invariant. Write K2(x) for the cluster of x in ω2.

Let η denote the union of all infinite clusters of ω1. Define F
(
x, y; (ω1, ω2)

)
to be 1

if x and y belong to the same ω2-cluster and y is the unique vertex in η that is closest

in ω2 to x; otherwise, define F
(
x, y; (ω1, ω2)

)
:= 0. Note that if there is not a unique

such y, then x does not send any mass anywhere. Now F is diagonally invariant and∑
y F
(
x, y; (ω1, ω2)

)
≤ 1.

Suppose that with positive probability there is an infinite cluster of ω2 that is disjoint

from η. Let A(z, y, e1, e2, . . . , en) be the event that K2(z) is infinite and disjoint from η,

that y ∈ η, and that e1, e2, . . . , en form a path of edges from z to y that lies outside K2(z)∪
η. Whenever there is an infinite cluster of ω2 that is disjoint from η, there must exist two

vertices z and y and some edges e1, e2, . . . , en for which A(z, y, e1, e2, . . . , en) holds. Hence,

there exists z, y, e1, . . . , en such that P
(
A(z, y, e1, . . . , en)

)
> 0. Let h: [0, 1] → [p1, p2]

be affine and surjective. If B denotes the event obtained by replacing each label U(ek)

(k = 1, . . . , n) by h
(
U(ek)

)
on each configuration in A(z, y, e1, . . . , en), then P(B) > 0 by

Lemma 7.24. On the event B, we have F
(
x, y; (ω1, ω2)

)
= 1 for all x ∈ K2(z), whence∑

xEF
(
x, y; (ω1, ω2)

)
= ∞. This contradicts the Mass-Transport Principle.
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§8.2. Beyond Cayley Graphs: Unimodularity.

It would be nice if the Mass-Transport Principle, in the form given in Section 8.1,

held for all transitive graphs. But it does not. For example, if G is the grandparent graph

of Example 7.1 with T having degree 3, then consider the function f(x, y) that is the

indicator of y being the ξ-grandparent of x. To analyze this, we need the result of the

following exercise:

▷ Exercise 8.1.

Show that every automorphism of the grandparent graph G fixes the end ξ and therefore

that f is diagonally invariant under Aut(G).

Although f is diagonally invariant, we have that
∑
x∈V(G) f(o, x) = 1, yet

∑
x∈V(G) f(x, o) =

4. In particular, G is not a Cayley graph.

▷ Exercise 8.2.

Show that the Diestel-Leader graph of Example 7.2 is not a Cayley graph.

Nevertheless, there are many transitive graphs for which the Mass-Transport Principle

does hold, the so-called unimodular graphs, and there is a generalization of the Mass-

Transport Principle that holds for all graphs. The case of unimodular (quasi-transitive)

graphs is the most important case and the one that we will focus on in the rest of this

chapter. Even if we were interested only in Cayley graphs, the use of planar duality for

planar Cayley graphs would force us to consider quasi-transitive graphs, as we will see in

Section 8.5.

We will use the following notation throughout the rest of this chapter. Let G be a

connected locally finite graph and Γ be a group of automorphisms of G. Let S(x) := {γ ∈
Γ ; γx = x} denote the stabilizer of x. Since all points in S(x)y :=

{
γy ; γ ∈ S(x)

}
are

at the same distance from x and G is connected and locally finite, the set S(x)y is finite

for all x and y.

Theorem 8.7. (Mass-Transport Principle) If Γ is a group of automorphisms of a

connected locally finite graph G = (V,E), f :V×V → [0,∞] is invariant under the diagonal

action of Γ, and u,w ∈ V, then∑
z∈Γw

f(u, z) =
∑
y∈Γu

f(y, w)
|S(y)w|
|S(w)y|

. (8.2)

This formula is too complicated to remember, but note the form it takes when Γ acts

transitively:
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Corollary 8.8. If Γ is a transitive group of automorphisms of a connected locally finite

graph G = (V,E), f :V × V → [0,∞] is invariant under the diagonal action of Γ, and

o ∈ V, then ∑
x∈V

f(o, x) =
∑
x∈V

f(x, o)
|S(x)o|
|S(o)x|

. (8.3)

Note how this works to restore “conservation of mass” for the grandparent graph of

Example 7.1: Suppose again that the graph is based on a tree of degree 3. If o is the

ξ-grandparent of x, then |S(x)o| = 1 and |S(o)x| = 4, so that the left-hand side of (8.3) is

the sum of 1 term equal to 1, while the right-hand side is the sum of 4 terms, each equal

to 1/4.

We say* that Γ is unimodular if |S(x)y| = |S(y)x| for all pairs (x, y) such that

y ∈ Γx. We also say that a graph is unimodular when its full automorphism group is. If

Γ is unimodular and also transitive, then (8.3) simplifies to∑
x∈V

f(o, x) =
∑
x∈V

f(x, o) . (8.4)

Thus, all the applications of the Mass-Transport Principle in Section 8.1, which were qual-

itative, apply (with the same proofs) to transitive unimodular graphs. In fact, they apply

as well to all quasi-transitive unimodular graphs since for such graphs, |S(x)y|/|S(y)x| is
bounded over all pairs (x, y) by Theorem 8.10 below, and we may sum (8.2) over all pairs

(u, v) chosen from a complete set of orbit representatives.

The proof of Theorem 8.7 is not particularly pleasant, but its applications will more

than make up for our trouble. To prove Theorem 8.7, let

Γx,y := {γ ∈ Γ ; γx = y} .

Note that for any γ ∈ Γx1,x2 , we have

Γx1,x2 = γS(x1) = S(x2)γ .

Therefore, for all x1, x2, y1 and any γ ∈ Γx1,x2 ,

|Γx1,x2y1| = |γS(x1)y1| = |S(x1)y1| (8.5)

and, writing y2 := γy1, we have

|Γx1,x2y1| = |S(x2)γy1| = |S(x2)y2| . (8.6)

* Although we use the term “unimodular” for a group when our definition is in terms of its action
on a graph, we will see that it really depends only on the group, once we are given a natural topology on
the group that comes from its action on the graph. See the paragraph after (8.10).
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Proof of Theorem 8.7. Let z ∈ Γw, so that w = γz for some γ ∈ Γz,w. If y := γu, then

f(u, z) = f(γu, γz) = f(y, w). That is, f(u, z) = f(y, w) whenever y ∈ Γz,wu. Therefore,

∑
z∈Γw

f(u, z) =
∑
z∈Γw

1

|Γz,wu|
∑

y∈Γz,wu

f(y, w) =
∑
y∈Γu

f(y, w)
∑

z∈Γy,uw

1

|Γz,wu|
,

where our interchange of the order of summation in the last step used

{
(z, y) ; z ∈ Γw, y ∈ Γz,wu

}
=
{
(z, y) ; ∃γ ∈ Γ y = γu, w = γz

}
=
{
(z, y) ; ∃γ ∈ Γ u = γ−1y, z = γ−1w

}
=
{
(z, y) ; y ∈ Γu, z ∈ Γy,uw

}
.

In particular, for such (z, y), we have for all γ ∈ Γz,w that γu = y. Therefore, using (8.6)

and then (8.5), we may rewrite this as

∑
y∈Γu

f(y, w)
|Γy,uw|
|S(w)y|

=
∑
y∈Γu

f(y, w)
|S(y)w|
|S(w)y|

. ◀

▷ Exercise 8.3.

Let Γ be a transitive group of automorphisms of a graph that satisfies (8.4) for all Γ-

invariant f . Show that Γ is unimodular.

▷ Exercise 8.4.

Show that if Γ is a transitive unimodular group of automorphisms and Γ′ is a larger group

of automorphisms of the same graph, then Γ′ is also transitive and unimodular.

By Exercise 8.3 and the Mass-Transport Principle for countable groups, every Cay-

ley graph is unimodular. How do we find other unimodular graphs? Call a group Γ of

automorphisms discrete if all stabilizers are finite. For example, when a group acts on

its Cayley graph, the stabilizers are singletons. We now show that all discrete groups are

unimodular. Recall that [Γ: Γ′] denotes the index of a subgroup Γ′ in a group Γ, i.e., the

number of cosets of Γ′ in Γ.

▷ Exercise 8.5.

Show that for all x and y, we have |S(x)y| = [S(x):S(x) ∩ S(y)].
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Proposition 8.9. If Γ is a discrete group of automorphisms, then Γ is unimodular.

Proof. Suppose that y = γx. Then S(x) and S(y) are conjugate subgroups since γ1 7→
γγ1γ

−1 is a bijection of S(x) to S(y). Thus, |S(x)| = |S(y)|, whence
|S(x)y|
|S(y)x|

=
[S(x):S(x) ∩ S(y)]
[S(y):S(x) ∩ S(y)]

=
|S(x)|/|S(x) ∩ S(y)|
|S(y)|/|S(x) ∩ S(y)|

=
|S(x)|
|S(y)|

= 1 . ◀

Sometimes we can make additional use of the Mass-Transport Principle by employing

the following fact.

Theorem 8.10. If Γ is a group of automorphisms of any connected locally finite graph

G, then there are non-0 numbers µx (x ∈ V) that are unique up to a constant multiple

such that for all x and y,
µx
µy

=
|S(x)y|
|S(y)x|

. (8.7)

Proof. Recall* that subgroup index is multiplicative: if Γ3 is a subgroup of Γ2, which in

turn is a subgroup of Γ1, then

[Γ1: Γ2][Γ2: Γ3] = [Γ1: Γ3] . (8.8)

Applying (8.8) to Γ3 := S(x)∩S(y)∩S(z), Γ2 := S(x)∩S(y), and Γ1 equal to either S(x)

or S(y), we get
[S(x):S(x) ∩ S(y)]
[S(y):S(x) ∩ S(y)]

=
[S(x):S(x) ∩ S(y) ∩ S(z)]
[S(y):S(x) ∩ S(y) ∩ S(z)]

.

There are three forms of this equation arising from the three cyclic permutations of the

ordered triple (x, y, z). Combining them with Exercise 8.5, we obtain the “cocycle” identity

|S(x)y|
|S(y)x|

|S(y)z|
|S(z)y|

=
|S(x)z|
|S(z)x|

(8.9)

for all x, y, z.

Thus, if we fix o ∈ V, choose µo ∈ R \ {0}, and define µx := µo|S(x)o|/|S(o)x|, then
for all x, y, we get

µx
µy

=
µo|S(x)o|/|S(o)x|
µo|S(y)o|/|S(o)y|

=
|S(x)y|
|S(y)x|

by (8.9). This shows the claimed existence of the numbers µx. On the other hand, if

numbers µ′
x (x ∈ V) also satisfy (8.7), then

µx
µ′
x

=
µo|S(x)o|/|S(o)x|
µ′
o|S(x)o|/|S(o)x|

=
µo
µ′
o

for all x, so µ′
x = Cµx for all x, where C := µo/µ

′
o. ◀

Note that Γ is unimodular iff µy = µx whenever y ∈ Γx.

The following exercises makes it easier to check the definition of unimodularity.

* Here is a proof: If A ⊂ Γ1 is a set of coset representatives of Γ1/Γ2, then the map (a,Γ2/Γ3) 7→
aΓ2/Γ3 is a bijection of A× Γ2/Γ3 → Γ1/Γ3.
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▷ Exercise 8.6.

Show that if Γ acts transitively, then Γ is unimodular iff |S(x)y| = |S(y)x| for all edges

[x, y].

▷ Exercise 8.7.

Show that if for all edges [x, y], there is some γ ∈ Γ such that γx = y and γy = x, then Γ

is unimodular.

Using the numbers µx, we may write (8.2) as∑
z∈Γw

f(u, z)µw =
∑
y∈Γu

f(y, w)µy . (8.10)

We now state the relevance of Haar measure for the interested reader. Consider the

closure Γ̄ of Γ if Γ is not already closed, where the topology is defined in Exercise 8.20. This

is a locally compact topological group. As such, it has both a left-invariant Borel measure

and a right-invariant Borel measure, each one being finite on compact sets, called left

Haar and right Haar measures. On countable groups, counting measure serves as Haar

measure. See Exercise 8.22 for a simple construction of Haar measures on automorphism

groups. If there is a left Haar measure that is also right invariant, then the group is

classically called unimodular . This agrees with our definition in the sense that Γ is

unimodular in our sense iff Γ̄ is unimodular in the classical sense. It is not hard to prove

this by imitating the proof of Proposition 8.9 to show that µx is the left-invariant Haar

measure of S(x) in Γ̄. Since discrete groups are countable, this also makes clear why

discrete groups are unimodular. One can also use Haar measure to give a simple proof of

Theorem 8.7; see Section 8.9. In the amenable quasi-transitive case, Exercise 8.31 gives

another interpretation of the weights µx.

Given that there is such a simple form (8.4) of the Mass-Transport Principle for

transitive unimodular graphs, we might hope for almost as simple a form that applies to

quasi-transitive unimodular graphs. Our hopes will be met by (8.12), which is explicitly

written out in our next corollary:

Corollary 8.11. Let Γ be a quasi-transitive group of automorphisms of a connected locally

finite graph, G. Choose a complete set {o1, . . . , oL} of representatives in V of the orbits of

Γ. Let µi be the weight of oi as given by Theorem 8.10. If Γ is unimodular, then whenever

f :V × V → [0,∞] is invariant under the diagonal action of Γ, we have

L∑
i=1

µ−1
i

∑
z∈V

f(oi, z) =
L∑
j=1

µ−1
j

∑
y∈V

f(y, oj) . (8.11)
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Proof. Since Γ is unimodular, µy = µi for y ∈ Γoi. Thus, for each i and j, (8.10) gives∑
z∈Γoj

f(oi, z)µj =
∑
y∈Γoi

f(y, oj)µi ,

i.e.,

µ−1
i

∑
z∈Γoj

f(oi, z) = µ−1
j

∑
y∈Γoi

f(y, oj) .

Adding these equations over all i and j gives the desired result. ◀

Because of this result, in the quasi-transitive unimodular case, we will always assume

that the weights are chosen so that
∑
i µ

−1
i = 1. It then makes sense to think of oi being

picked randomly with probability µ−1
i . If we denote such a random root by ô, then (8.11)

assumes a very simple form:

E
[∑

x

f(ô, x)
]
= E

[∑
x

f(x, ô)
]
. (8.12)

This will be the usual way we apply the Mass-Transport Principle on quasi-transitive

unimodular graphs. We will call such a random root ô normalized . For example, the

weights of the two types of vertices in the graph of Figure 8.1 are 1/5 and 4/5.

Figure 8.1.

To make it even more useful, a converse can be added to Corollary 8.11:
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Proposition 8.12. Let Γ be a quasi-transitive group of automorphisms of a connected

locally finite graph, G. Choose a complete set {o1, . . . , oL} of representatives in V of the

orbits of Γ. Let µi be the weight of oi as given by Theorem 8.10. If there exist numbers

νx ≥ 0 for x ∈ V(G) such that 0 <
∑
x νx <∞ and∑

x∈V

νx
∑
z∈V

f(x, z) =
∑
x∈V

νx
∑
y∈V

f(y, x) (8.13)

whenever f :V×V → [0,∞] is invariant under the diagonal action of Γ, then Γ is unimod-

ular and

µ−1
i =

∑
x∈Γoi

νx (8.14)

for 1 ≤ i ≤ L.

Note that (8.11) is the special case of (8.13) where νx = µ−1
i if x = oi and νx = 0

otherwise.

Proof. Assume that νx are as stated. Define

ai :=
∑
x∈Γoi

νx .

We first show that ai > 0. Let each vertex x send mass 1 to each vertex in Γoi that is

nearest to x. Since the left-hand side of (8.13) is positive, so is the right-hand side. Since

only vertices in Γoi receive mass, it follows that ai > 0, as desired.

To see that Γ is unimodular, consider any j, k and any u ∈ Γoj and v ∈ Γok. Let

f(x, y) := 1Γu,xv(y). It is straightforward to check that f is diagonally invariant under Γ.

Note that

|S(x)z|1Γx(y) = |Γx,yz|

for all x, y, z ∈ V(G) and that

z ∈ Γu,xv ⇐⇒ x ∈ Γv,zu . (8.15)

Therefore, we have

|S(u)v|aj =
∑
y

νy|Γu,yv| =
∑
y

νy
∑
x

1Γu,yv(x)

=
∑
y

νy
∑
x

f(y, x) =
∑
z

νz
∑
x

f(x, z) [by (8.13)]

=
∑
z

νz
∑
x

1Γu,xv(z) =
∑
z

νz
∑
x

1Γv,zu(x) [by (8.15)]

=
∑
z

νz|Γv,zu| = |S(v)u|ak .
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That is,

|S(u)v|aj = |S(v)u|ak . (8.16)

If we take j = k, then we see that Γ is unimodular. In general, comparison of (8.16) with

(8.7) shows (8.14). ◀

Remark 8.13. The proof shows that unimodularity and (8.14) follow from verifying (8.13)

only for those f taking values 0 and 1 and for which f(x, y) = 0 whenever distG(x, y) > M ,

where M is a constant that depends on f .

▷ Exercise 8.8.

Extend Exercise 8.4 to the quasi-transitive case: Show that if Γ is a quasi-transitive uni-

modular group of automorphisms and Γ′ is a larger group of automorphisms of the same

graph, then Γ′ is also quasi-transitive and unimodular.

It is nice to know that when one is in the amenable setting, unimodularity is automatic,

as shown by Soardi and Woess (1990):

Proposition 8.14. (Amenability Implies Unimodularity) Any transitive group Γ

of automorphisms of an amenable graph G is unimodular.

Proof. The idea is the same as that which prevents Ponzi schemes from working: mass

must be conserved approximately on Følner sets, and hence exactly in the whole graph in

the sense of the Mass-Transport Principle.

Let ⟨Fn⟩ be a sequence of finite sets of vertices in G such that |Fn|/|Fn| → 1 as

n→ ∞, where Fn := Fn ∪ ∂VFn is the union of Fn with its exterior vertex boundary.

Fix neighboring vertices x ∼ y. We count the number of pairs (z, w) such that z ∈ Fn

and w ∈ Γx,zy (or equivalently, z ∈ Γy,wx) in two ways: by summing over z first or over

w first. In view of (8.5), this gives

|Fn||S(x)y| =
∑
z∈Fn

∑
w∈Γx,zy

1 ≤
∑
w∈Fn

∑
z∈Γy,wx

1 = |Fn||S(y)x| .

Dividing both sides by Fn and taking a limit, we get |S(x)y| ≤ |S(y)x|. By symmetry and

Exercise 8.6, we are done. ◀

Likewise, amenable quasi-transitive graphs are unimodular: see Exercise 8.30.
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§8.3. Infinite Clusters in Invariant Percolation.

What happens in Bernoulli percolation at pc itself, i.e., is there an infinite cluster a.s.?

Extending the classical conjecture for Euclidean lattices, Benjamini and Schramm (1996b)

made the following conjecture:

Conjecture 8.15. (No Infinite Clusters at Criticality) If G is any quasi-transitive

graph with pc(G) < 1, then θ
(
pc(G)

)
= 0.

In the next section, we will establish this conjecture under the additional hypotheses

that G is non-amenable and unimodular. This will utilize in a crucial way properties of

infinite clusters in invariant percolation processes beyond Bernoulli percolation. This is

the topic of the present section. What is the advantage conferred by non-amenability that

allows a resolution of this conjecture in that case, but not in the amenable case? In essence,

it is that all finite sets have a comparatively large boundary; since clusters are chosen at

random in percolation, this is an advantage compared to knowing, in the amenable case,

that certain large sets have comparatively small boundary. This may appear to be a

tautology at the moment, but our next theorem should begin to clarify its meaning.

We begin with a simple but powerful result on a threshold for having infinite clusters.

Write degK(x) for the degree of x as a vertex in a subgraph K. As in the preceding

chapter, we will use ΦE(G) to mean the expansion constant ΦE(G,1,1).

Theorem 8.16. (Thresholds for Finite Clusters) Let G be a transitive unimodular

graph of degree dG and P be an automorphism-invariant probability measure on 2E. If

P-a.s. all clusters are finite, then

E[degω o] ≤ dG − ΦE(G) .

This was first proved for regular trees by Häggström (1997) and then extended by

BLPS (1999b). Häggström (1997) showed that the threshold is sharp for regular trees.

Of course, it is useless when G is amenable. For Bernoulli percolation, the bound it gives

on pc is worse than Theorem 6.30. But it is extremely useful for a wide variety of other

percolation processes, including those that we will use to study Bernoulli percolation.

We could have stated the theorem more generally with a unimodular group Γ ⊆
Aut(G) acting transitively on G and P being assumed invariant under Γ. In fact, all such

results that we present have similar generalizations, but for simplicity of language, we will

refer just to “invariant percolation” on a transitive or quasi-transitive graph.

To prove Theorem 8.16, define for finite subgraphs K =
(
V(K),E(K)

)
⊂ G

αK :=
1

|V(K)|
∑

x∈V(K)

degK(x) ,
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the average (internal) degree of K. Then set*

α(G) := sup{αK ; K ⊂ G is finite} .

If G is a regular graph of degree dG, then

α(G) + ΦE(G) = dG . (8.17)

This is because we may restrict attention to induced subgraphs, and for induced subgraphs,∑
x∈V(K)

degK(x) + |∂E(G)V(K)| =
∑

x∈V(K)

degG(x) = dG|V(K)| .

Dividing by |V(K)| gives (8.17).
In view of (8.17), we may write the conclusion of Theorem 8.16 as

E[degω o] ≤ α(G) . (8.18)

This inequality is actually rather intuitive: It says that random finite clusters have average

degree no more than the supremum average degree of arbitrary finite subgraphs. Of course,

the first sense of “average” is “expectation”, while the second is “arithmetic mean”. This

is reminiscent of the ergodic theorem, which says that a spatial average (expectation) is

the limit of time averages (arithmetic means).

Proof of Theorem 8.16. We use the Mass-Transport Principle (8.4). Start with mass degω x

at each vertex x and redistribute it equally among the vertices in its clusterK(x) (including

x itself). After transport, the mass at x is αK(x). This is an invariant transport, so that

if f(x, y) denotes the expected mass taken from x and transported to y, then we have

E[degω o] =
∑
x

f(o, x) =
∑
x

f(x, o) = E[αK(o)] .

By definition, αK(o) ≤ α(G), whence (8.18) follows. ◀

One version of Theorem 8.16 for quasi-transitive graphs is as follows.

Corollary 8.17. Let G be a quasi-transitive non-amenable unimodular graph. There is

some ϵ > 0 such that if P is an automorphism-invariant probability measure on 2E with

all clusters finite P-a.s., then for some x ∈ V,

E[degω x] ≤ degG x− ϵ .

* We remark that β(G) = 2/α(G), with β(G) defined as in Section 6.5, except that β was defined
with a liminf, rather than an infimum.
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Proof. Let G′ be a transitive representation of G. Then P induces an invariant percolation

P′ on G′ by letting an edge [x, y] in G′ be open iff x and y are joined by a path of open edges

in G of length at most 2r+ 1 (where r is as in the definition of transitive representation).

If P has a high marginal at all x, then so does P′, whence the conclusion follows easily

from Theorem 8.16. ◀

Some variations on Theorem 8.16 are contained in the following exercises, as well as

in others at the end of the chapter.

▷ Exercise 8.9.

Show that for any invariant percolation P on subgraphs of a transitive unimodular graph

that has only finite clusters a.s., E[degω o | o ∈ ω] ≤ α(G). More generally, let G be

a quasi-transitive unimodular graph with a normalized random root ô. Show that if P

is an invariant percolation on subgraphs of G such that all clusters are finite a.s., then

E[degω ô | ô ∈ ω] ≤ α(G).

▷ Exercise 8.10.

Let P be an invariant percolation on subgraphs of a transitive unimodular graph such that

all clusters are finite trees a.s. Show that E[degω o | o ∈ ω] < 2. More generally, let G be

a quasi-transitive unimodular graph with a normalized random root ô. Show that if P is

an invariant percolation on subgraphs of G such that all clusters are finite trees a.s., then

E[degω ô | ô ∈ ω] < 2.

We now take a look at forest percolations with infinite trees. Trees have proved their

worth to us before in studying Cayley graphs, and they will continue to do so.

Proposition 8.18. Let G be a quasi-transitive unimodular graph with a normalized ran-

dom root ô. Let F be the configuration of an invariant percolation on G, independent of ô,

such that F is a forest, all of whose trees are infinite a.s. The following dichotomy holds:

(i) if each tree in F has 1 or 2 ends a.s., then E
[
degF ô

∣∣ ô ∈ F
]
= 2;

(ii) if some tree in F has at least 3 ends with positive probability, then E
[
degF ô

∣∣ ô ∈ F
]
>

2.

Proof. We use a mass transport that is subtler than our earlier ones. To set it up, let

ξ(x, y;F) be the indicator that there is a ray in F starting at x whose first vertex after x

is y. Let

F (x, y;F) :=

{
2ξ(x, y;F) if ξ(y, x;F) = 0,
ξ(x, y;F) otherwise
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and f(x, y) := E[F (x, y;F)]. Now
∑
x

(
F (o, x;F) + F (x, o;F)

)
= 2

(
degF o

)
1[o∈F], so that∑

x

(
f(o, x) + f(x, o)

)
= 2E[degF o ; o ∈ F]. By (8.12), we obtain that

E
[
degF ô ; ô ∈ F

]
=

1

2
E
[∑

x

(
f(ô, x) + f(x, ô)

)]
= E

[∑
x

f(ô, x)
]
. (8.19)

Now in case (i),
∑
x F (o, x;F) = 2 · 1[o∈F], whence by (8.19), E

[
degF ô ; ô ∈ F

]
=

2P[ô ∈ F]. This gives the desired result.

On the other hand, in case (ii),
∑
x F (o, x;F) ≥ 2 for all o ∈ F and

∑
x F (o, x;F) ≥ 3

for all furcations o ∈ F; note that ô is a furcation with positive probability since F has

trees with at least 3 ends. Therefore, (8.19) yields E[degF ô ; ô ∈ F] > 2P[ô ∈ F]. ◀

As a consequence of this, the number of ends is related to the critical value for Bernoulli

percolation on trees that arise in invariant percolation:

Theorem 8.19. Let G be a quasi-transitive unimodular graph and ô a normalized random

root. Let F be the configuration of an invariant percolation on G, independent of ô, such

that F is a forest a.s. Then the following are equivalent:

(i) some component of F has at least 3 ends with positive probability;

(ii) some component of F has pc < 1 with positive probability;

(iii) E
[
degF ô

∣∣ |K(ô)| = ∞
]
> 2.

Of course, by Theorem 5.15, (ii) is equivalent to saying that some component of F has

branching number > 1 with positive probability.

Proof. Let F′ be the mixed (site and bond) percolation obtained from F by retaining only

those vertices and edges that belong to an infinite cluster. Then we may rewrite (iii) as

E[degF′ ô | ô ∈ F′] > 2.

The implication (i) implies (iii) is immediate from Proposition 8.18.

Now assume (iii). Let p be sufficiently close to 1 that independent Bernoulli(p) bond

percolation on F′ yields a configuration F′′ with E[degF′′ ô | ô ∈ F′′] > 2. (Note that

V(F′′) = V(F′), so that ô ∈ F′′ iff ô ∈ F′.) According to Exercise 8.10, we have that F′′

contains infinite clusters with positive probability, whence (ii) follows.

Finally, (ii) implies (i) trivially. ◀

Corollary 8.20. (BLPS (1999b)) Let G be a quasi-transitive unimodular graph. Let

F be the configuration of an invariant percolation on G such that F is a forest a.s. Then

almost surely every component that has at least 3 ends has pc < 1.

Proof. If not, condition on having some component with at least 3 ends and pc = 1.

Then the collection of all such components gives an invariant percolation that contradicts

Theorem 8.19. ◀
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§8.4. Critical Percolation on Non-Amenable Transitive Unimodular Graphs.

Here we establish Conjecture 8.15 for non-amenable quasi-transitive unimodular graphs.

This was shown by BLPS (1999b), with a more direct proof given in Benjamini, Lyons,

Peres, and Schramm (1999a). The proof here is similar, but partly new.

Theorem 8.21. (No Infinite Clusters at Criticality) If G is a non-amenable quasi-

transitive unimodular graph, then θ
(
pc(G)

)
= 0.

We remark that this also implies that pc(G) < 1; see also Exercise 8.40.

Proof. The proof for site percolation is similar to that for bond, so we treat only bond

percolation.

In light of Theorem 7.5, we must rule out the possibilities that the number of infinite

clusters at criticality is 1 or ∞. We do these separately and use the standard coupling

of percolation arising from i.i.d. uniform [0, 1]-valued random variables U(e) on the edges.

As usual, let ωp consist of the edges e with U(e) < p.

First suppose that there is a unique infinite cluster in ωpc . Let ω′ be that infinite

cluster. The idea is that ω′ is fragile in the sense that pc(ω
′) = 1; we extend this to break

up all of G into finite clusters with high marginal, contradicting Corollary 8.17. To do this,

first pick independently for each x ∈ V(G) uniformly at random one of its nearest vertices

W (x) ∈ ω′, where distance is in G. For ϵ > 0, let ξϵ consist of those edges [x, y] ∈ E such

that W (x) and W (y) belong to the same cluster of ωpc−ϵ. Since all clusters of ωpc−ϵ are

finite a.s., the Mass-Transport Principle gives that all clusters of ξϵ are also finite a.s. (for

each x, transport mass 1 from x to W (x)). But ξϵ ⊆ ξϵ′ for ϵ > ϵ′ and
∪
ϵ ξϵ = E a.s.,

whence limϵ↓0 P
[
[x, y] ∈ ξϵ

]
= 1. Thus, Corollary 8.17 implies that G is amenable.

Now suppose that there are infinitely many infinite clusters in ωpc a.s. By insertion

tolerance, as in the proof of Theorem 7.9, some infinite cluster has at least 3 ends a.s. By

Lemma 7.7, there is a random forest F ⊆ ωpc such that the distribution of the pair (F, ωpc)

is invariant and with positive probability, there is a component of F that has at least three

ends. Since pc
(
ωpc(G)

)
= 1 a.s. by Exercise 5.7 and F ⊆ ωpc , we have pc(F) = 1 a.s. This

contradicts Theorem 8.19. ◀

The method of proof of the first part of Theorem 8.21 shows the following extension:

Proposition 8.22. (BLPS (1999b)) If P is an invariant percolation on a non-amenable

quasi-transitive unimodular graph that has a unique infinite cluster ω′ a.s., then pc(ω
′) < 1

P-a.s. ◀

Sometimes the following generalization of Theorem 8.21 is useful. Given a family

of probability measures µp (0 ≤ p ≤ 1) on, say, 2E, we say that a smooth monotone
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coupling of the family, if it exists, is a random field Z:E → [0, 1] such that for each p, the

law of {e ; Z(e) < p} is µp. (Here, a random field is just a random variable whose values

are functions from E to [0, 1]. Equivalently, it is a collection of random variables Z(e) for

e ∈ E.) Also, let us call a probability measure P weakly insertion tolerant if there is a

function f :E× 2E → 2E such that

(i) for all e and all ω, we have ω ∪ {e} ⊆ f(e, ω);

(ii) for all e and all ω, the difference f(e, ω) \ [ω ∪ {e}] is finite; and
(iii) for all e and each event A of positive probability, the image of A under f(e, •) is an

event of positive probability.

Of course, an insertion tolerant probability measure satisfies this definition with f(e, ω) :=

ω ∪ {e}. Weak deletion tolerance has a similar definition.

Theorem 8.23. Let G be a non-amenable quasi-transitive unimodular graph. Let p 7→ µp

be a family of ergodic weakly insertion-tolerant probability measures on 2E. Suppose that

the family has a smooth monotone coupling by a random field Z whose law is invariant

under automorphisms. Let A be the event that all clusters are finite. If

pc := sup
{
p ; µp(A ) = 1

}
> 0 ,

then µpc(A ) = 1.

▷ Exercise 8.11.

Prove Theorem 8.23.

§8.5. Bernoulli Percolation on Planar Quasi-Transitive Graphs.

For planar non-amenable Cayley graphs, we can answer all the most basic questions

about percolation. The case of infinitely many ends is easy by what we have already

established, since pc < 1 by Theorem 7.20 and (7.1), pu = 1 by Exercise 7.9, and θ(pc) = 0

by Theorem 8.21. The case of two ends is trivial since pc = 1. This section, adapted from

Benjamini and Schramm (2001a), is devoted to the case of one end.

▷ Exercise 8.12.

Show that a plane (properly embedded locally finite) quasi-transitive graph with one end

has no face with an infinite number of sides.
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Planarity is used in order to exploit properties of percolation on the plane dual of

the original graph. However, this dual is not necessarily a Cayley graph; indeed, it is not

necessarily even transitive. For this reason, we will need to go beyond Cayley graphs.

In the setting of Exercise 8.12, the dual of a Cayley graph is always locally finite, quasi-

transitive and unimodular, as we will see. Also, recall from Exercise 6.29 that if G is

non-amenable, then so is G†. Thus, the natural setting preserved under duality is that

of non-amenable plane quasi-transitive graphs. The main theorem of this section is the

following.

Theorem 8.24. (Double Phase Transition) Let G be a non-amenable planar quasi-

transitive graph with one end. Then 0 < pc(G) < pu(G) < 1 and Bernoulli(pu) percolation

on G has a unique infinite cluster a.s.

We need the following fundamental fact whose proof is given in the appendix to this

chapter, Section 8.8.

Theorem 8.25. (Planar Unimodularity) If G is a planar quasi-transitive graph with

one end, then G is unimodular. Furthermore, there is some plane embedding of G such

that G† is quasi-transitive.

We will assume for the rest of this section that

G is a non-amenable plane quasi-transitive graph with one

end, embedded in such a way that G† is quasi-transitive, and

ω is the configuration of an invariant percolation on G.

(8.20)

When more restrictions are needed, we will be explicit about them. We define the dual

configuration ω× on the plane dual graph G† by

ω×(e†) := 1− ω(e) . (8.21)

For a set A of edges, we let A† denote the set of edges e† for e ∈ A. Write N∞ for the

number of infinite clusters of ω and N×
∞ for the number of infinite clusters of ω×. Duality

will severely constrain the possible values of the pair (N∞,N
×
∞). We begin by showing they

cannot both be 0.

Lemma 8.26. If (8.20) holds, then N∞ + N×
∞ ≥ 1 a.s.

Proof. Suppose that N∞ + N×
∞ = 0 with positive probability. Then by conditioning on

that event, we may assume that it holds surely. We are going to create a new invariant

percolation from ω that has very high expected degree, whence has infinite clusters, but

yet cannot have infinite clusters, leading to our desired contradiction.
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Now our assumptions tell us that for each (open) cluster K of ω, there is a unique

infinite component of G\K since K is finite and G has only one end. This means that there

is a unique open component of (∂EK)† that “surrounds” K; this component of (∂EK)† is

contained in some cluster, K ′, of ω×. Since our assumption implies that K ′ is also finite,

this same procedure yields a cluster K ′′ of ω that surrounds K ′ and hence surrounds K.

This allows us to classify clusters by a “rank” as follows.

Let K0 denote the collection of all clusters of ω. Define recursively Kj+1 := {K ′′ ; K ∈
Kj} for j ≥ 0. Since no cluster surrounds infinitely many other clusters, we have

lim supj Kj = ∅. Thus, we may define

r(K) := max{j ; K ∈ Kj}

for all clusters K ∈ K0. Given N ≥ 0, let ωN be the set of those edges whose endpoints

belong to (possibly different) clusters K with r(K) ≤ N , i.e., the “interiors” of the clusters

in KN+1. Then ωN ⊆ ωN+1 for all N and
∪
N ωN = E. Also ωN is an invariant percolation

for each N . Since degωN
o → degG o, it follows from Corollary 8.17 that for sufficiently

large N , with positive probability ωN has infinite clusters. Yet the interiors of the clusters

of KN+1 are finite and disjoint. This is a contradiction. ◀

Our next result is like the Newman-Schulman Theorem 7.5, with planarity substituting

for insertion tolerance.

Lemma 8.27. (BLPS (1999b)) If (8.20) holds, then N∞ ∈ {0, 1,∞} a.s.

Proof. If not, we may condition on 2 ≤ N∞ < ∞. In this case, we may pick uniformly at

random two distinct infinite clusters of ω, call them K1 and K2. Let τ consist of those

edges [x, y] such that x ∈ K1 and y belongs to the component of G \K1 that contains K2.

Then τ † is a bi-infinite path in G† and is an invariant percolation on G†. But the fact that

pc(τ
†) = 1 contradicts Proposition 8.22. ◀

This lemma has the following consequence:

Corollary 8.28. If (8.20) holds, then N∞ + N×
∞ ∈ {0, 1,∞} a.s.

Proof. The idea is that the infinite clusters of ω together with the infinite clusters of ω×

form infinite clusters of an invariant percolation on another plane graph. Then we may

apply Lemma 8.27.

To create this new graph fromG andG′, drawG andG† in the plane in such a way that

every edge e intersects e† in one point, ve, and there are no other intersections of G and G†.

For e ∈ G, write ê for the pair of edges that result from the division of e by ve, and likewise
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for ê†. This defines a new graph Ĝ, whose vertices are V(G) ∪ V(G†) ∪
{
ve ; e ∈ E(G)

}
and whose edges are

∪
e∈E(G)

(
ê ∪ ê†

)
. The proof of Theorem 8.25 shows that Ĝ is quasi-

transitive.

Consider the percolation on Ĝ given by

ω′ :=
∪
e∈ω

ê ∪
∪

e†∈ω×
ê† .

This percolation is invariant under the quasi-transitive action of the unimodular group

Aut(G) on Ĝ. (The proof of Theorem 8.25 shows how Aut(G) acts on Ĝ.) The number of

infinite components of ω′ is N∞ +N×
∞. Applying Lemma 8.27 to ω′, we obtain our desired

conclusion. ◀

Putting these results together, with just a bit more duality, leads to the following

conclusion:

Theorem 8.29. If (8.20) holds, then (N∞,N
×
∞) ∈

{
(1, 0), (0, 1), (1,∞), (∞, 1), (∞,∞)

}
a.s.

Proof. Lemma 8.27 gives N∞,N
×
∞ ∈ {0, 1,∞}. Lemma 8.26 rules out (N∞,N

×
∞) = (0, 0).

Corollary 8.28 rules out (N∞,N
×
∞) = (1, 1). Since every two infinite clusters of ω must be

separated by at least 1 infinite cluster of ω× (namely, the one containing the path τ in the

proof of Lemma 8.27), the case (N∞,N
×
∞) = (∞, 0) is impossible. Dual reasoning shows

that (N∞,N
×
∞) = (0,∞) cannot happen. This leaves the 5 cases mentioned. ◀

We now come to the place where more assumptions on the percolation are needed. In

particular, insertion and deletion tolerance become crucial. In order to treat site percola-

tion as well as bond percolation, we will use the bond percolation ωξ associated to a site

percolation ξ as follows:

ωξ :=
{
[x, y] ; x, y ∈ ξ

}
. (8.22)

The ωN used in the proof of Lemma 8.26 are examples of such associated bond percolations.

Note that even when ξ is Bernoulli percolation, ωξ is neither insertion tolerant nor deletion

tolerant. However, ωξ is still weakly insertion tolerant. More generally, it is clear that

whenever ξ is insertion [resp., deletion] tolerant, then ωξ is weakly insertion [resp., deletion]

tolerant. It is also clear that whenever ξ is ergodic, ωξ is ergodic: if A is an invariant set,

then P
(
{ωξ ; ωξ ∈ A }

)
= P

(
{ω ; ωξ ∈ A }

)
∈ {0, 1}.

Theorem 8.30. Assume (8.20) and that ω is ergodic, weakly insertion tolerant, and

weakly deletion tolerant. Then a.s.

(N∞,N
×
∞) ∈

{
(1, 0), (0, 1), (∞,∞)

}
.

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



Chap. 8: The Mass-Transport Technique and Percolation 320

Proof. By Theorem 8.29, it is enough to rule out the cases (1,∞) and (∞, 1). Let K

be a finite connected subgraph of G. If K intersects distinct infinite clusters of ω, then

ω× \ {e† ; e ∈ E(K)} must have at least 2 infinite clusters by planarity. Define A(K) to

be the event that K intersects distinct infinite clusters of ω. If N∞ = ∞ with positive

probability, then there is some finite subgraph K such that A(K) has positive proba-

bility. Fix some such K and write its edge set as {e1, . . . , en}. Let f(e, ω) be a func-

tion witnessing the weak insertion tolerance. Define f(e,A) :=
{
f(e, ω) ; ω ∈ A

}
. Let

B(K) := f
(
e1, f

(
e2, · · · f(en, A(K)) · · ·

))
. Then B(K) has positive probability and we

have N×
∞ > 1 on B(K) by our observation above. But ergodicity implies that (N∞,N

×
∞)

is an a.s. constant. Hence it is (∞,∞). A dual argument rules out (1,∞); note that weak

insertion tolerance of ω† arises from weak deletion tolerance of ω. ◀

Now we are almost done. Theorem 8.30 allows us to deduce precisely the value of N∞

from the value of N×
∞ and thus, for bond percolation, critical values on G from those on

G†. Site percolation will require a little extra arguing.

Theorem 8.31. If (8.20) holds, then pbondc (G†) + pbondu (G) = 1 and N∞ = 1 Ppu-a.s.

Proof. Let ωp be Bernoulli(p) bond percolation on G. Then ω×
p is Bernoulli(1 − p) bond

percolation on G†. It follows from Theorem 8.30 that

p > pbondu (G) =⇒ N∞ = 1 =⇒ N×
∞ = 0 =⇒ 1− p ≤ pbondc (G†)

and

p < pbondu (G) =⇒ N∞ ̸= 1 =⇒ N×
∞ ̸= 0 =⇒ 1− p ≥ pbondc (G†) .

This gives us pbondc (G†)+pbondu (G) = 1. Furthermore, according to Theorem 8.21, we have

N×
∞ = 0 Pbond,G†

pbond
c (G†)

-a.s., whence Theorem 8.30 tells us that N∞ = 1 Pbond,G
pbond
u (G)

-a.s.

For site percolation, we must prove that N∞ = 1 Psite
pu -a.s. Let ξp be the standard

coupling of site percolation and ωξp the corresponding bond percolation processes. As

above, we may conclude that for p > psiteu (G), we have that
(
ωξp
)×

has no infinite clusters

a.s., while for p < psiteu (G), we have that
(
ωξp
)×

has infinite clusters a.s. Because p 7→(
ωξ1−p

)×
satisfies all the hypotheses of Theorem 8.23, it follows that for p = psiteu (G), we

have that
(
ωξp
)×

has no infinite clusters a.s. Therefore ωξp has a unique infinite cluster

a.s., whence so does ξp. ◀

Proof of Theorem 8.24. We already know that pc > 0 from Proposition 7.12. Applying

this to G† and using Theorem 8.31, we obtain that pbondu < 1. Fix q ∈ [pbondu , 1). In light
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of Proposition 7.14, there is some p < 1 such that for ξ ∼ Psite
p , we have ωξ stochastically

dominates Pbond
q , whence for such p,

(
ωξ
)×

has no infinite clusters a.s. and thus ωξ has

a unique infinite cluster a.s. This proves that psiteu < 1 too. (The result that pu < 1

also follows from Theorem 7.29.) Comparing Theorems 8.21 and 8.31, we see that it is

impossible that pc = pu, whence pc < pu. ◀

§8.6. Properties of Infinite Clusters.

In the proof of Theorem 7.6, we saw that if Bernoulli(p) percolation produces infinitely

many infinite clusters a.s., then a.s. at least one of them has a furcation, whence at least

3 ends. This was a consequence of insertion and deletion tolerance. Likewise, deletion

tolerance implies that if there is a unique infinite cluster (and p < 1), then that cluster

has a unique end a.s.

As the reader might suspect from Example 8.5, one can derive stronger results from

the Mass-Transport Principle. Indeed, the following properties are true quite generally:

Theorem 8.32. Let P be an invariant weakly insertion-tolerant percolation process on

a non-amenable quasi-transitive unimodular graph G. If there are infinitely many infinite

clusters a.s., then a.s. every infinite cluster has continuum many ends, no isolated end,

and is transient for simple random walk.

Here, we are using a topology on the set of ends of a graph, defined as follows. Let G

be a graph with fixed base point o. Let Bn be the ball of radius n about o. Let Ends be

the set of ends of G. Define a metric on Ends by putting

d(ξ, ζ) := inf
{
1/n ; n = 1 or ∀X ∈ ξ ∀Z ∈ ζ ∃ a component C of G \Bn

|X \ C|+ |Z \ C| <∞
}
.

It is easy to verify that this is a metric; in fact, it is an ultrametric, i.e., for any ξ1, ξ2, ξ3 ∈
Ends, we have d(ξ1, ξ3) ≤ max

{
d(ξ1, ξ2), d(ξ2, ξ3)

}
. Since G is locally finite, it is easy to

check that Ends is compact in this metric. Finally, it is easy to see that the topology on

Ends does not depend on choice of base point. A vertex-neighborhood of ξ ∈ Ends is

a set of vertices that, for some n, contains the component of G \ Bn that has an infinite

intersection with every set in ξ.

The set of isolated points in any compact metric space is countable; the non-isolated

points form a perfect subset (the Cantor-Bendixson Theorem), whence, if there are non-

isolated points, they have the cardinality of the continuum (see, e.g., Kuratowski (1966)).
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In the case of site percolation ξ, by transience of ξ we mean transience of ωξ, the

induced subgraph defined in (8.22).

Now that we have explained the terms in Theorem 8.32, we devote the remainder of

this section to proving it. We begin with the following proposition.

Proposition 8.33. Let P be an invariant percolation process on a non-amenable quasi-

transitive unimodular graph G. Almost surely each infinite cluster that has at least 3 ends

has no isolated ends.

Proof. The idea is to send unit mass from each vertex in an isolated end to a nearest

point not in that end, so that some vertex receives infinite mass, which contradicts the

Mass-Transport Principle. However, this is too imprecise to make sense. Thus, for each

n = 1, 2, . . ., we create a new invariant percolation An from ω as follows: An is the union

of all vertex sets A such that there is some cluster K of ω with the properties that K ⊃ A,

the diameter of A is at most n in the metric of K, and K \ A has at least 3 infinite

components. Note that if ξ is an isolated end of a percolation cluster K, then for each

n, some vertex-neighborhood of ξ in K is disjoint from An. Also observe that if K is a

cluster with at least 3 ends, then K intersects An for some n.

Fix some n ≥ 1. Consider the mass transport that sends one unit of mass from

each vertex x in a percolation cluster that intersects An and distributes it equally among

the vertices in An that are closest to x in the metric of K(x). In other words, let C(x)

be the set of vertices in K(x) ∩ An that are closest to x in the metric of ω, and set

F (x, y;ω) := |C(x)|−1
if y ∈ C(x) and otherwise F (x, y;ω) := 0. Then F (x, y;ω) is

invariant under the diagonal action. If ξ is an isolated end of an infinite cluster K that

intersects An, then there is a finite set of vertices B that gets all the mass from all the

vertices in some vertex-neighborhood of ξ. But the Mass-Transport Principle tells us that

the expected mass transported to a vertex is at most 1. Hence, a.s. clusters that intersect

An do not have isolated ends. Since this holds for all n, we gather that a.s. infinite clusters

with isolated ends do not intersect
∪
nAn, whence they have at most two ends. ◀

Corollary 8.34. Let P be an invariant weakly insertion-tolerant bond percolation process

on a non-amenable quasi-transitive unimodular graph G. If there are infinitely many infi-

nite clusters a.s., then a.s. every infinite cluster has continuum many ends and no isolated

end.

Proof. It suffices to prove that there are no isolated ends of clusters. To prove this in turn,

observe that if some cluster has an isolated end with positive probability, then because of

weak insertion tolerance, with positive probability, some cluster will have at least 3 ends

with one of them being isolated. Hence Corollary 8.34 follows from Proposition 8.33. ◀
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We proved a weak form of the following principle in Lemma 7.7.

Lemma 8.35. (BLPS (1999b)) Let P be an invariant bond percolation process on a

non-amenable quasi-transitive unimodular graph G. If a.s. there is a component of ω with

at least three ends, then (on a larger probability space) there is a random forest F ⊂ ω such

that the distribution of the pair (F, ω) is invariant and such that a.s. for each component

K of ω with at least three ends, there is a component of K ∩ F that has infinitely many

ends.

Proof. We begin as in the proof of Lemma 7.7. We use independent uniform [0, 1] random

variables assigned to the edges (independently of ω) to define the free minimal spanning

forest F of ω. This means that an edge e ∈ ω is present in F iff there is no cycle in ω

containing e in which e is assigned the maximum value. As before, we have (a.s.) that F

is a forest with each tree having the same vertex-cardinality as the cluster of ω in which it

lies.

Suppose that K(x) has at least 3 ends with positive probability. Choose any finite

tree T containing x with edge set E(T ) so that with positive probability, T ⊂ K(x) and

K(x) \E(T ) has at least 3 infinite components. Then with positive probability, T ⊂ K(x),

K(x) \E(T ) has at least 3 infinite components, all edges in T are assigned values less than

1/2, and all edges in ∂ET are assigned values greater than 1/2. On this event, F contains

T and T is part of a spanning tree in F with at least 3 ends.

To convert this event of positive probability to an event of probability 1, let rx =

r(x, ω) be the least cardinality r of a tree T in G such that K(x) \T has at least 3 infinite

components, if such an r exists. If not, set r(x, ω) := ∞. Note that r(x, ω) < ∞ iff K(x)

has at least 3 ends. By Example 8.6, if rx is finite, then there are a.s. infinitely many such

trees T in K(x). Therefore, given that K(x) has at least 3 ends, there are a.s. infinitely

many trees T ⊂ K(x) of size rx at pairwise distance at least 2 from each other such that

K(x) \ T has at least 3 infinite components. For such T , the events that all edges in T

are assigned values less than 1/2 and all edges in ∂ET are assigned values greater than 1/2

are independent and have probability bounded below, whence an infinite number of these

events occur a.s. Therefore, there is a component of K(x)∩F that has at least 3 ends a.s.,

whence, by Proposition 8.33, has infinitely many ends a.s. ◀

Proposition 8.36. Let P be an invariant weakly insertion-tolerant percolation process on

a non-amenable quasi-transitive unimodular graph G. If there are infinitely many infinite

clusters a.s., then a.s. each infinite cluster is transient.

Proof. It suffices to consider bond percolation. By Corollary 8.34, every infinite cluster

of ω has infinitely many ends. Consequently, there is an invariant random forest F ⊂ ω

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



Chap. 8: The Mass-Transport Technique and Percolation 324

such that a.s. each infinite cluster K of ω contains a tree of F with infinitely many ends

by Lemma 8.35. By Corollary 8.20, we know that any such tree has pc < 1. Since it

has branching number > 1, it follows that such a tree is transient by Theorem 3.5. The

Rayleigh Monotonicity Law then implies that K is transient. ◀

Theorem 8.32 now follows from Corollary 8.34 and Proposition 8.36.

§8.7. Invariant Percolation on Amenable Graphs.

The Mass-Transport Principle is most useful in the non-amenable setting. In this

section, we give two results that show that non-amenability is in fact necessary for some

of our previous work.

We will use Haar measure for the proofs since it would be artificial and somewhat

cumbersome to avoid it. In particular, given vertices x and y, the set of automorphisms

that take x to y is compact in Aut(G), whence it has finite Haar measure. This means

that we can choose one of its elements at random (via normalized Haar measure). See

Exercise 8.22 for a simple construction of Haar measure on automorphism groups.

▷ Exercise 8.13.

Let G be a transitive unimodular graph and o ∈ V. For each x ∈ V, choose a Haar-random

γx ∈ Aut(G) that takes o to x. Show that for every finite set L ⊂ V, we have

E
∣∣{x ∈ V ; o ∈ γxL}

∣∣ = |L| .

Our first result is for site percolation; for the bond version, see Exercise 8.56.

Theorem 8.37. (Amenability and Finite Percolation) Let G be a quasi-transitive

unimodular graph. Then G is amenable iff for all α < 1, there is an invariant site perco-

lation ω on G with no infinite clusters and such that P[x ∈ ω] > α for all x ∈ V(G).

Proof. We assume that G is transitive and leave the quasi-transitive case to Exercise 8.57.

One direction follows from the site version of Theorem 8.16 on thresholds, which is Exer-

cise 8.37.

Now we prove the converse. Suppose that G is amenable. If G were Zd, we could

randomly center a tiling of G by large cubes and remove the boundaries of the cubes. Since

we do not have such a convenient tiling in general, we instead remove the boundaries of

randomly placed copies of a large set with small boundary. In fact, to make sure that the
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remaining clusters are finite, we will remove such boundaries for larger and larger sets that

are placed more and more rarely.

Fix o ∈ V(G). For a finite set F ⊂ V, consider the following percolation. For each

x ∈ V, choose a random γx ∈ Aut(G) that takes o to x and let ζ be a Bernoulli(1/|F |) site
percolation on G. Choose all γx and ζ independently. Remove the vertices∪

x∈ζ

∂V(γxF ) ,

that is, consider the percolation subgraph

ωF := V \
∪
x∈ζ

∂V(γxF ) .

Then the distribution of ωF is an invariant percolation on G.

We claim that

P[o /∈ ωF ] ≤ |∂VF |/|F | (8.23)

and

P
[
|K(o, ωF )| <∞

]
≥ 1− 1/e , (8.24)

where K(o, ωF ) denotes the component of o in ωF and e is the base of natural logarithms.

Both of these will be proved by using the following calculation: for any L ⊂ V, we have

E
∣∣{x ∈ ζ ; o ∈ γxL}

∣∣ = |L|/|F | . (8.25)

Indeed,

E
∣∣{x ∈ ζ ; o ∈ γxL}

∣∣ =∑
x∈V

P[x ∈ ζ, o ∈ γxL] =
∑
x∈V

P[x ∈ ζ]P[o ∈ γxL]

=
∑
x∈V

P[o ∈ γxL]/|F | = E
∣∣{x ∈ V ; o ∈ γxL}

∣∣/|F | = |L|/|F |

by Exercise 8.13. (Recall that G is unimodular by Proposition 8.14.)

To prove (8.23), note that the probability that o /∈ ωF is at most the expected number

of x ∈ ζ such that o ∈ ∂V(γxF ). But this expectation is exactly the right-hand side of

(8.23) by (8.25) applied to L := ∂VF . To prove (8.24), use the independence to calculate

that

P
[
|K(o, ωF )| <∞

]
≥ P[∃x x ∈ ζ, o ∈ γxF ] = 1−P

[
∀x ¬

(
x ∈ ζ, o ∈ γxF

)]
= 1−

∏
x∈V

(
1−P[x ∈ ζ, o ∈ γxF ]

)
≥ 1− exp

{
−
∑
x∈V

P[x ∈ ζ, o ∈ γxF ]

}
= 1− exp

{
−E
∣∣{x ∈ ζ ; o ∈ γxF}

∣∣} = 1− 1/e
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by (8.25) again, applied to L := F .

Now, since G is amenable, there is a sequence ⟨Fn⟩ of finite sets of vertices with∑
n |∂VFn|/|Fn| < 1 − α. For each n, let ωn = ωFn be the random subgraph from the

percolation just described based on the set Fn. Choose ωn to be independent and consider

the percolation with configuration ω :=
∩
ωn. By (8.23), we have P[o ∈ ω] > α and by

(8.24), we have P
[
|K(o, ω)| <∞

]
= 1. ◀

We now use Theorem 8.37 to establish a converse to Theorem 6.32 on anchored ex-

pansion constants in percolation. This result is due to Häggström, Schonmann, and Steif

(2000), Theorem 2.4(ii), with a rather indirect proof. Our proof is due to O. Schramm

(personal communication).

Corollary 8.38. Let G be a quasi-transitive amenable graph and ω be an invariant bond

percolation on G. Then a.s. every component of ω has anchored expansion constant equal

to 0.

Proof. Again, we do the transitive case and leave the quasi-transitive case to the reader.

For simplicity, we use the anchored expansion constant defined using the internal vertex

boundary, where we define the internal vertex boundary of a set K as ∂intV K :=
{
x ∈

K ; ∃y /∈ K y ∼ x
}
. Choose a sequence αn < 1 with

∑
n(1 − αn) < ∞. Choose a

sequence of independent invariant site percolations ωn, also independent of ω, with no

infinite component and such that P[x ∈ ωn] > αn for all x ∈ V(G). This exists by

Theorem 8.37. Let K(x) denote the component of x in ω and Kn(x) the component of x

in ωn. Since ∂
int
V(K(o)

(
K(o) ∩Kn(o)

)
⊆ ∂intV Kn(o) \ ∂intV K(o), it suffices to prove that a.s.,

lim
n→∞

|∂intV Kn(o) \ ∂intV K(o)|
|K(o) ∩Kn(o)|

= 0 .

Now

E

[
|∂intV Kn(o) \ ∂intV K(o)|

|K(o) ∩Kn(o)|

]
= P[o ∈ ∂intV Kn(o) \ ∂intV K(o)] ≤ P[o ∈ ∂intV Kn(o)]

≤ degG(o)P[o /∈ ωn] < degG(o)(1− αn)

by the Mass-Transport Principle. (For the equality, every point x ∈ ∂intV Kn(x) \ ∂intV K(x)

sends mass 1 split equally among the vertices of its component Kn(x) ∩ K(x). For the

second inequality, x sends mass 1 to y when x ∼ y, x ∈ ωn, and y /∈ ωn.) Therefore

∑
n

E

[
|∂intV Kn(o) \ ∂intV K(o)|

|K(o) ∩Kn(o)|

]
<∞ ,
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whence ∑
n

|∂intV Kn(o) \ ∂intV K(o)|
|K(o) ∩Kn(o)|

<∞ a.s.,

which gives the result. ◀

§8.8. Appendix: Unimodularity of Planar Quasi-Transitive Graphs.

We prove here Theorem 8.25. Our approach is based on some ideas we heard from

O. Schramm. The transitive case is easier to prove, as this proof simplifies to show that

the graph is 3-connected.

We need several lemmas. A graph G = (V,E) is called k-connected if |V| ≥ k + 1

and whenever at most k − 1 vertices are removed from G (together with their incident

edges), the resulting graph is connected. For the next lemmas, let Q(x) denote the set of

vertices that lie in finite components of G \ {x}, and let Q(x, y) denote the set of vertices,

other than Q(x) ∪ Q(y), that lie in finite components of G \ {x, y}. Note that x /∈ Q(x)

and x /∈ Q(x, y).

Lemma 8.39. If G is a quasi-transitive graph, then supx∈V |Q(x)| <∞.

Proof. Since x has finite degree, G \ {x} has a finite number of components, whence Q(x)

is finite. If x and y are in the same orbit, then |Q(x)| = |Q(y)|. Since there are only

finitely many orbits, the result follows. ◀

Lemma 8.40. If G is a quasi-transitive graph with one end, then supx,y∈V |Q(x, y)| <∞.

Proof. Suppose not. Since there are only a finite number of orbits, there must be some x

and yn such that d(x, yn) → ∞ and Q(x, yn) ̸= ∅ for all n. Because of Lemma 8.39, for

all large n, we have x /∈ Q(yn), whence for all large n, there are neighbors an, bn of x that

cannot be joined by a path in G \ {x, yn}, but such that an lies in an infinite component

of G \ {x, yn} and bn can be joined to yn using only vertices in Q(x, yn) ∪ {yn}. There is

some pair of neighbors a, b of x for which a = an and b = bn for infinitely many n. But

then a and b lie in distinct infinite components of G \ {x}, contradicting the assumption

that G has one end. ◀

We partially order the collection of sets Q(x, y) by inclusion.

Lemma 8.41. Let G be any graph. If Q(x, y) and Q(z, w) are maximal and non-empty,

then either {x, y} = {z, w} or Q(x, y) ∩Q(z, w) = ∅. Also,

{x, y, z, w} ∩
(
Q(x, y) ∪Q(z, w)

)
= ∅ . (8.26)
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Proof. Suppose that z ∈ Q(x, y). Then we cannot have w ∈ Q(x, y) since that would imply

Q(z, w) ⊊ Q(x, y). Now there is a path from z to w using only vertices in Q(z, w)∪{z, w}.
Since z ∈ Q(x, y) and w /∈ Q(x, y), this path must include either x or y, say, y. Therefore

y ∈ Q(z, w) ∪ {w}. We cannot have y = w since that would imply Q(z, w) ⊊ Q(x, y).

Thus y ∈ Q(z, w). Consider any infinite simple path starting from any vertex in

Q(x, y) ∪Q(z, w). We claim it must visit x or w. For if not, then it must visit z or y. If

the last vertex among {z, y} that it visits is z, then it must visit x since z ∈ Q(x, y), a

contradiction. If the last vertex among {z, y} that it visits is y, then it must visit w since

y ∈ Q(z, w), a contradiction. This proves our claim, whence Q(x,w) ⊋ Q(x, y) ∪Q(z, w).

But this contradicts maximality of Q(x, y).

Thus, we have proved that z /∈ Q(x, y). By symmetry, we deduce (8.26).

Now suppose that Q(x, y) ∩Q(z, w) ̸= ∅. Choose some a ∈ Q(x, y) ∩Q(z, w). Then

every infinite simple path from a must pass through {x, y} and through {z, w}. Consider
an infinite simple path from a. Without loss of generality, suppose that the first point

among {x, y, z, w} that it visits is z. Then z ∈ Q(x, y) ∪ {x, y}. By the above, z is equal

to x or y, say, x. Now there is also an infinite simple path from a such that the first point

among {x, y, w} is not x. Say it is w. Then w ∈ Q(x, y) ∪ {y}. By the above, w = y and

this proves the lemma. ◀

Every embedding ϕ of a planar graph into the plane induces a cyclic ordering [ϕ(x)]

of the edges incident to any vertex x by looking at the clockwise ordering of these edges

after embedding. Two cyclic orderings are considered the same if they differ only by a

cyclic permutation. Two cyclic orderings are inverses if they can be written in opposite

order from each other.

The following extends a theorem of Whitney (1932):

Lemma 8.42. (Imrich, 1975) If G is a planar 3-connected graph and ϕ and ψ are two

embeddings of G in the plane, then either for all x, we have [ϕ(x)] = [ψ(x)] or for all x,

we have that [ϕ(x)] and [ψ(x)] are inverses.

Proof. Imrich (1975) gives a proof that is valid for graphs that are not necessarily properly

embedded nor locally finite. In order to simplify the proof, we will assume that the graph

is not only properly embedded and locally finite, but also quasi-transitive and has only

one end. This is the only case we will use.

Given any vertices x ̸= y, Menger’s theorem (Exercise 3.16) shows that we can find

three paths joining x and y that are disjoint except at x and y. Comparison of the first

edges e1, e2, e3 and the last edges f1, f2, f3 of these paths shows that the cyclic ordering

of ϕ(ei) is opposite to that of ϕ(fi), and likewise for ψ. Therefore, it suffices to prove that
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for each x separately, we have either [ϕ(x)] = [ψ(x)] or [ϕ(x)] and [ψ(x)] are inverses. For

this, it suffices to show that if e1 and e2 are two edges incident to x and ϕ(e1) is adjacent

to ϕ(e2) in the cyclic ordering [ϕ(x)], then ψ(e1) is adjacent to ψ(e2) in the cyclic ordering

[ψ(x)].

So let ϕ
(
[x, y]

)
and ϕ

(
[x, z]

)
be adjacent in [ϕ(x)]. Assume that ψ

(
[x, y]

)
and ψ

(
[x, z]

)
are not adjacent in [ψ(x)]. Let C be the cycle such that ϕ(C) is the border of the (unique)

face having sides that include both ϕ
(
[x, y]

)
and ϕ

(
[x, z]

)
. (This exists by Exercise 8.12.)

Now by our assumption, there are two neighbors v and w of x such that the cyclic

ordering [ψ(x)] induces the cyclic order ψ(y), ψ(v), ψ(z), ψ(w) on these latter 4 points. The

Jordan curve theorem tells us that the ψ-image of every path from v to w must intersect

ψ(C), i.e., that every path from v to w must intersect C.

However, if we return to the picture provided by ϕ, then since there are 3 paths joining

v to w that are disjoint except at their endpoints, at least 2 of these paths do not contain

x and hence at least one, P ′, is mapped by ϕ to a curve that does not intersect ϕ(C). But

this means P ′ does not intersect C, a contradiction. ◀

Lemma 8.43. If G is a planar 3-connected graph, then Aut(G) is discrete.

Proof. Let x be any vertex. Note that the degree of x is at least 3. By Exercise 8.19, it

suffices to show that only the identity fixes x and all its neighbors. Let ϕ be an embedding

of G in the plane and let γ ∈ Aut(G) fix x and all its neighbors. Then ϕ◦γ is an embedding

of G in the plane that induces the same cyclic ordering of the edges of x as does ϕ. By

Lemma 8.42, it follows that [(ϕ ◦ γ)(y)] = [ϕ(y)] for all y. By induction on the distance of

y to x, it is easy to deduce that γ(y) = y for all y, which proves the claim. ◀

Because of this and the next corollary, every automorphism of a planar 3-connected

graph can be characterized as either orientation preserving or orientation reversing.

Corollary 8.44. If G is a planar 3-connected graph, γ ∈ Aut(G), and ϕ is an embedding

of G in the plane, then either for all x, we have [ϕ(x)] = [ϕ(γx)] or for all x, we have that

[ϕ(x)] and [ϕ(γx)] are inverses.

Proof. Define another embedding ψ of G as follows: Let ψ(x) := ϕ(γx) for x ∈ V(G) and

ψ(e) := ϕ(γe) for e ∈ E(G). The conclusion follows from Lemma 8.42. ◀

The next corollary implies that every γ ∈ Aut(G) induces an element of Aut(G†).

Corollary 8.45. If G is a plane 3-connected graph and γ ∈ Aut(G), then γ maps every

facial cycle to a facial cycle.
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Proof. Let x0, x1, . . . , xn = x0 be the vertices in counter-clockwise order of a facial cycle.

Then for each i ∈ [0, n− 1], the edge [xi, xi+1] is the edge following [xi−1, xi] in the cyclic

order [xi]. Consider the cycle C formed by γx0, γx1, . . . , γxn. If γ is orientation preserving,

then these vertices traverse C in counter-clockwise order, so for each i ∈ [0, n−1], the edge

[γxi, γxi+1] is the edge following [γxi−1, γxi] in the cyclic order [γxi]. This means that C

is facial. The argument is similar when γ is orientation reversing. ◀

Proof of Theorem 8.25. Fix an embedding of G. If G is 3-connected, then let G′ :=

G. Otherwise, let G′ be the graph formed from G by removing all vertices in W :=∪
x,y∈V

(
Q(x) ∪ Q(x, y)

)
and by adding new edges [x, y] between each pair of vertices

x, y /∈ W for which Q(x, y) is maximal and non-empty. Because of Lemma 8.39 and

Lemma 8.40, the graph G′ is not empty and has one end. Since each new edge may

be placed along the trace of a path of edges in G, Lemma 8.41 guarantees that G′ is

planar. Furthermore, by construction, G′ is 3-connected (and quasi-transitive with only

one end). Lemma 8.43 shows that Aut(G′) is discrete, whence every subgroup of Aut(G′)

is unimodular by Proposition 8.9. Now the restriction to V(G′) of an automorphism Γ

of G induces an automorphism of G′. Let Γ be the subgroup of Aut(G′) given by such

restrictions. Since Γ acts quasi-transitively, it is unimodular, whence |S(x)y| = |S(y)x|
for x ∈ V(G′) and y ∈ Γx, where S denotes the stabilizer in Γ. But in addition, for any

pair x, y ∈ V(G′), the set S(x)y is the same for the stabilizer in Γ as for the stabilizer in

Aut(G), and Γx = Aut(G)x. Therefore, Aut(G) is unimodular by Exercise 8.28.

We claim next that (G′)† is quasi-transitive. Fix one vertex xi from each orbit of

Aut(G). Given any face, let x be one of its vertices. Then for some i, there is a γ ∈ Aut(G)

that maps x to xi, whence, by Corollary 8.45, maps the face to a face containing x on its

boundary. That is, there is an induced γ′ ∈ Aut
(
(G′)†

)
that maps the face to one of a

finite set of faces. This proves our claim.

Finally, if G is not 3-connected, then temporarily add a vertex to each face of G′ and

connect such a vertex to each of the vertices on the boundary of that face. Call the new

temporary graph G′′. This graph G′′ produces a triangulation of the region spanned by

all the faces. There is a triangulation of either the euclidean plane or the hyperbolic plane

using geodesic line segments that is isomorphic to G′′; one way to get this is to use circle

packing: see Beardon and Stephenson (1990), He and Schramm (1995), or Babai (1997).

Now use this new embedding of G′ (and forget G′′). We can extend each automorphism

of G′ to an isometry of the (euclidean or hyperbolic) plane. By Selberg’s lemma, there

is a torsion-free finite-index normal subgroup Γ of Aut(G′) (see, e.g., Corollary 7.6.4 of

Ratcliffe (2006)). Since Γ has finite index in Aut(G′), it also acts quasi-transitively on G′.
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The quotient of the plane by Γ is a compact orientable surface inheriting a finite graph H

from G′. Now replace each edge in H by a corresponding Q(x, y) from G and add Q(x) to

each vertex in H that is an image of x ∈ V(G). We may do this in a way that results in

a graph L embedded in the surface. Finally, we lift L to the plane by taking the universal

cover of the surface; this is an embedding of G. Furthermore, a subgroup of isometries

acts quasi-transitively on this embedding, whence the dual of G is quasi-transitive. ◀

Remark 8.46. If G is transitive and has one end, then the construction of G′ in the proof

of Theorem 8.25 must yield all of G (because if x is omitted, then so is the entire orbit

of x). Thus, G is 3-connected. Additional results on connectivity were proved by Mader

(1970) and Watkins (1970).

The last part of the proof of Theorem 8.25 is not self-contained, which means that

our proofs of several results from Section 8.5 are also not self-contained. In order that

Section 8.5 be self-contained, one can avoid that last part by using an induced percolation

on the graph G′ that occurs in the proof of Theorem 8.25 and by appealing more to

Theorem 8.23.

§8.9. Notes.

The proof of uniqueness monotonicity given in Section 8.1 is essentially that of Häggström
and Peres (1999).

The approach we take to unimodularity for automorphism groups of graphs uses the equiv-
alence first observed by Schlichting (1979) and Trofimov (1985). The graph structure is not
important; it suffices that Γ act on a set in such a way that S(x)y is finite for all x, y in the set.
The approach used in BLPS (1999b) was the classical notion of unimodularity. There, the proof
(due to Woess) of Theorem 8.7 was the following:

Second proof of Theorem 8.7. We may assume that Γ is closed. Let µ denote a left Haar measure
on Γ. We prove (8.2) in the form (8.10) with µx = µ(S(x)). We have

∑
z∈Γw

f(u, z)µ(S(w)) =
∑
z∈Γw

f(u, z)µ(Γw,z) =

∫
Γ

f(u, γw) dµ(γ)

=

∫
Γ

f(γ−1u,w) dµ(γ) =
∑
y∈Γu

f(y, w)µ({γ ∈ Γ ; γ−1u = y})

=
∑
y∈Γu

f(y, w)µ(Γy,u) =
∑
y∈Γu

f(y, w)µ(S(y)) . ◀

The idea behind that proof was to average over random elements from Γ that take a given
vertex u to another given vertex y. The proof in the text of Theorem 8.7 can be seen as analogous
to the one for Cayley graphs in Section 8.1; instead of using the bijection x 7→ x−1, we use the fact
that for any u and w, the map S(u)z 7→ S(w)γ−1u from {S(u)z ; z ∈ Γw} → {S(w)y ; y ∈ Γu} is
independent of the element γ ∈ Γw,z that takes w to z, is well-defined, and is a bijection.
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Theorem 8.19 is from BLPS (1999b) and Aldous and Lyons (2007). Using a normalized
random root ô for a unimodular quasi-transitive graph G allows us to treat the randomly rooted
graph (G, ô) virtually the same as a transitive unimodular graph. In fact, this idea holds much
more generally: the graph G can be random as well, not only its root. A probability measure
on rooted graphs is called unimodular if it satisfies the Mass-Transport Principle in the sense
of (8.12), appropriately generalized. Such probability measures have almost all the properties for
percolation that we have seen here, as well as those that we will study in Chapters 10 and 11;
see Aldous and Lyons (2007). These measures arise naturally, not only as clusters of the root in
invariant percolation on a fixed graph or as modified Galton-Watson trees, but also as limits of
uniformly rooted finite graphs. The idea that the Mass-Transport Principle should be defined in
this generality is due to Benjamini and Schramm (2001b). Another approach to the same idea
is taken in ergodic theory, where the focus is more on the actual measure space, now given a
measure-preserving graphed equivalence relation; see Example 9.9 of Aldous and Lyons (2007) for
the definitions and how these ideas relate to each other.

A version of the Mass-Transport Principle holds on continuous spaces as well, such as Eu-
clidean space or hyperbolic space. Namely, let G be a unimodular locally compact topological
group and H be a compact subgroup. For example, G could be the isometry group of a Eu-
clidean or hyperbolic space and H the stabilizer of a point. [To see that such isometry groups
are unimodular, note that every group generated by involutions is unimodular since the value of
the modular function at an involution has square equal to 1 and thus must itself be 1. That the
isometries of Euclidean space form such a group is well known and is proved, e.g., as Theorem
4.1.2 of Ratcliffe (2006). The corresponding result for hyperbolic space is also proved in Chapter
4 of Ratcliffe (2006).] If µ denotes Haar measure on G, then let ν be the push-forward of µ under
the quotient map G→ G/H. Up to a constant factor, ν is the unique G-invariant Borel measure
on the topological homogeneous space G/H that is finite on compact sets (Nachbin (1965), Thm. 1
and Cor. 4 of Chap. III, Sec. 4 or Royden (1988), Theorem 14.25). The following was proved by
Benjamini and Schramm (2001a).

Theorem 8.47. With the notation of the preceding paragraph, let θ be a Borel measure on G/H×
G/H that is invariant under the diagonal action of G. Then θ(A×G/H) = θ(G/H × A) for all
Borel A ⊆ G/H. If θ(A × G/H) < ∞ for some open A, then there is a constant c such that
θ(A×G/H) = cν(A) for all Borel A ⊆ G/H.

Proof. Since G is unimodular, µ(B) = µ(B−1) for all Borel B ⊆ G and µ{g ∈ G ; x ∈ gA} = ν(A)
is the same for all x ∈ G/H given any fixed Borel A ⊆ G/H. For A ⊆ G/H, write θA(C) :=
θ(C ×A). Fix o ∈ G/H. Fubini’s theorem yields that∫
θ((gA)×A) dµ(g) =

∫ ∫
1[x∈gA] dθA(x) dµ(g) = θ(G/H×A)µ{g ; o ∈ gA} = θ(G/H×A)ν(A) .

Since θ((gA) ×A) = θ(A× (g−1A)) by diagonal invariance, a similar computation gives

θ(G/H ×A)ν(A) = θ(A×G/H)ν(A) .

When 0 < ν(A) < ∞, this shows that θ(G/H × A) = θ(A × G/H). In general, the same
equation holds for ν(A) = 0 by taking a decreasing intersection of sets of positive finite measure
and for ν(A) = ∞ by taking an increasing union of sets of positive finite measure. Finally,
A 7→ θ(A×G/H) is a G-invariant measure, whence if finite on some open set, it equals ν up to a
constant factor. ◀
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For a simple illustration of Theorem 8.47, consider an invariant (discrete) point process, Ξ,
on G/H, such as a Poisson process. Since A 7→ E|Ξ ∩ A| is an invariant measure on G/H, it is
equal to a constant times ν; that constant is called the density of Ξ. Suppose that we associate,
in a measurable equivariant way, to each discrete set W in G/H a measurable partition f(W ) of
G/H such that the relation w ∈ A (w ∈ W , A ∈ f(W )) is a bijection of W to f(W ); e.g., this
could be the associated Voronoi partition. Then the expected ν-measure of the part associated
to o given that o ∈ Ξ is equal to the reciprocal of the density of Ξ. More precisely, let N(A) be
the ν-measure of the parts of G/H associated to the points of Ξ ∩ A and let λ be the density of
Ξ. Then

E[N(A)]/E|Ξ ∩A| = 1/λ , (8.27)

whence if A is such that P[|Ξ ∩ A| ≥ 2] = o(ν(A)) as ν(A) → 0, then E[N(A) | Ξ ∩ A ̸= ∅] =
1/λ+o(1). To see this, let P (x) be the part of G/H associated to x (which is empty if x /∈ Ξ) and
let θ(A × B) := E

∑
x∈Ξ∩A ν(P (x) ∩ B). Then θ(A × G/H) = E[N(A)] = θ(G/H × A) = ν(A),

from which the identity (8.27) follows.
Exercise 8.10, Proposition 8.18 and Theorem 8.19 are from BLPS (1999b) in the transitive

case.
Theorem 8.24 was proved in the transitive case by Benjamini and Schramm (2001a). The

quasi-transitive case is new, but not essentially different. This result was proved for certain planar
Cayley graphs earlier by Lalley (1998).

Theorem 8.25 was known in the transitive case (Benjamini and Schramm, 2001a), but the
quasi-transitive case is due to R. Lyons and is published here for the first time.

The history of Theorem 8.32 is as follows. Benjamini and Schramm (1996b) conjectured that
for Bernoulli percolation on any quasi-transitive graph, if there are infinitely many infinite clusters,
then a.s. every infinite cluster has continuum many ends. This was proved by Häggström and Peres
(1999) for transitive unimodular graphs and then by Häggström, Peres, and Schonmann (1999)
in general. This last paper also shows that in the standard coupling of Bernoulli percolation,
a.s. simultaneously all infinite clusters in the non-uniqueness regime have continuum many ends.
Proposition 8.33, which implies that each infinite cluster in that more general setting has 1, 2, or
∞ ends, is from BLPS (1999b). Our proof of Theorem 8.32 is from Lyons and Schramm (1999),
which also proved the statement about transience. It is also true that for any invariant insertion-
tolerant percolation process on a non-amenable quasi-transitive unimodular graph with a unique
infinite cluster a.s., that cluster is transient, but this is more difficult; see Benjamini, Lyons, and
Schramm (1999) for a proof. (In the case of Bernoulli percolation, if Conjecture 7.31 were proven,
then this would also follow from Theorem 8.32 and the Rayleigh Monotonicity Law.) For amenable
transient quasi-transitive graphs, Benjamini, Lyons, and Schramm (1999) conjectured that infinite
clusters are transient a.s. for Bernoulli percolation, following the theorem of Grimmett, Kesten,
and Zhang (1993), who established it in Zd, d ≥ 3. (We gave a proof of part of this result in
Section 5.5. Stronger conjectures were stated in Section 6.7.)

The conclusion of Lemma 8.35, getting an invariant forest whose trees have at least 3 ends,
is useful in geometric group theory: it is analogous to finding a free subgroup (of rank at least 2)
in a non-amenable group. However, it is better than the latter in that the latter does not always
exist. Such a theorem was proved by Gaboriau and Lyons (2009). An exposition of its use is given
by Houdayer (2011).

The following theorem was proved by Benjamini, Lyons, and Schramm (1999):

Theorem 8.48. Let G be a non-amenable transitive unimodular graph. Let ω be an invariant
percolation on G that has infinite clusters a.s. Then in each of the following cases (on a larger
probability space) there is a percolation ω′ ⊂ ω such that ω′ ̸= ∅, ΦE(ω′) > 0 a.s., and the
distribution of the pair (ω′, ω) is invariant:
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(i) ω is Bernoulli percolation;
(ii) ω has a unique infinite cluster a.s.;

(iii) ω has a cluster with at least three ends a.s.;
(iv) E[degω o | o ∈ ω] > α(G) and ω is ergodic.

A slight generalization of Theorem 4.1 and Lemma 4.3 of Benjamini and Schramm (2001a)
is the following:

Theorem 8.49. Let P be an invariant percolation process on a quasi-transitive graph G embedded
in hyperbolic space Hd in such a way that the embedding is a rough isometry. Assume that one
of the four conditions in Theorem 8.48 holds. If there are infinite clusters P-a.s., then P-a.s. the
set of points z in the ideal boundary ∂Hd for which there is an open path with limit z is dense in
∂Hd.

Theorem 8.37 was proved earlier by Ornstein and Weiss (1987) in a more specialized form.
Theorem 5.1 of BLPS (1999b) is somewhat more general than our form of it here, Theorem 8.37.
The reader may have noticed that each time we prove a property of infinite clusters of insertion-
tolerant invariant percolation, when there is more than one infinite cluster all of the clusters
have that property; it was never the case that some do and some don’t. Of course, for some
properties, this is not true, like the property that a cluster contains o. Clearly the interesting
properties for this purpose are those that are automorphism-invariant: A class of subgraphs of G
is called automorphism-invariant if the class is preserved by applying any element of Aut(G)
to each of its member subgraphs. Then we say that a probability measure P on subgraphs
of G has indistinguishable infinite clusters if for every automorphism-invariant property A
of subgraphs, P-a.s. either all components satisfy A or they all do not. The main result of
Lyons and Schramm (1999) is that every insertion-tolerant invariant bond percolation on a quasi-
transitive unimodular graph has indistinguishable infinite clusters. The same proof works for site
percolation and for weakly insertion-tolerant percolation. In fact, a somewhat stronger version
of indistinguishability is proved. In the context of the ergodic theory of equivalence relations
mentioned above, it turns out that indistinguishability is equivalent to ergodicity of the equivalence
relation given by the infinite clusters; see Gaboriau and Lyons (2009).

Indistinguishability has a number of consequences, as shown by Lyons and Schramm (1999),
besides such obvious ones as equality of asymptotic growth rates of clusters. For example, it can
be used to give an extremely short proof of Lemma 7.26 in the unimodular case. It is used to
prove Theorem 7.49(ii) that long-range order is equivalent to uniqueness for Bernoulli percolation.
This is then used to prove that pu < 1 for Kazhdan groups and lamplighter groups. Other uses
of indistinguishability appear in Benjamini, Lyons, and Schramm (1999). An ingenious use of the
Mass-Transport Principle, together with indistinguishability, was given by Timár (2006b), who
proved that two infinite clusters in Bernoulli percolation on a quasi-transitive unimodular graph
can come within distance 1 of each other only finitely many times a.s. Häggström, Peres, and
Schonmann (1999) asked whether this holds for all quasi-transitive graphs; it is still open in the
non-unimodular case.

Indistinguishability does not hold for deletion-tolerant invariant percolation processes, nor for
insertion-tolerant invariant percolation processes on non-unimodular graphs. However, Häggström,
Peres, and Schonmann (1999) show that Bernoulli percolation on all quasi-transitive graphs sat-
isfies a version of indistinguishability restricted to so-called robust properties.

For additional results and questions concerning percolation on non-unimodular graphs, see
Question 3.17 of Lyons and Schramm (1999), Peres, Pete, and Scolnicov (2006), and Timár
(2006c).
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§8.10. Collected In-Text Exercises.

8.1. Let G be the grandparent graph of Example 7.1 with T having degree 3 and f(x, y) be the
indicator that y is the ξ-grandparent of x. Show that every automorphism of G fixes the end ξ
and therefore that f is diagonally invariant under Aut(G).

8.2. Show that the Diestel-Leader graph of Example 7.2 is not a Cayley graph.

8.3. Let Γ be a transitive group of automorphisms of a graph that satisfies (8.4) for all Γ-invariant
f . Show that Γ is unimodular.

8.4. Show that if Γ is a transitive unimodular group of automorphisms and Γ′ is a larger group
of automorphisms of the same graph, then Γ′ is also transitive and unimodular.

8.5. Show that for all x and y, we have |S(x)y| = [S(x):S(x) ∩ S(y)].

8.6. Show that if Γ acts transitively, then Γ is unimodular iff |S(x)y| = |S(y)x| for all edges [x, y].

8.7. Show that if for all edges [x, y], there is some γ ∈ Γ such that γx = y and γy = x, then Γ is
unimodular.

8.8. Extend Exercise 8.4 to the quasi-transitive case: Show that if Γ is a quasi-transitive uni-
modular group of automorphisms and Γ′ is a larger group of automorphisms of the same graph,
then Γ′ is also quasi-transitive and unimodular.

8.9. Show that for any invariant percolation P on subgraphs of a transitive unimodular graph
that has only finite clusters a.s., E[degω o | o ∈ ω] ≤ α(G). More generally, let G be a quasi-
transitive unimodular graph with a normalized random root ô. Show that if P is an invariant
percolation on subgraphs of G such that all clusters are finite a.s., then E[degω ô | ô ∈ ω] ≤ α(G).

8.10. Let P be an invariant percolation on subgraphs of a transitive unimodular graph such that
all clusters are finite trees a.s. Show that E[degω o | o ∈ ω] < 2. More generally, let G be a quasi-
transitive unimodular graph with a normalized random root ô. Show that if P is an invariant
percolation on subgraphs of G such that all clusters are finite trees a.s., then E[degω ô | ô ∈ ω] < 2.

8.11. Prove Theorem 8.23.

8.12. Show that a plane (properly embedded locally finite) quasi-transitive graph with one end
has no face with an infinite number of sides.

8.13. Let G be a transitive unimodular graph and o ∈ V. For each x ∈ V, choose a Haar-random
γx ∈ Aut(G) that takes o to x. Show that for every finite set L ⊂ V, we have

E|{x ∈ V ; o ∈ γxL}| = |L| .
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§8.11. Additional Exercises.

8.14. Prove that the result of Example 8.5 cannot be proved by elementary considerations. Do
this by giving an example of an invariant percolation on a transitive graph such that the number
of furcations in some cluster is a.s. finite and positive.

8.15. Show that an invariant non-empty percolation on a regular tree that is connected a.s. is
the entire tree a.s.

8.16. Show that there is no automorphism-invariant probability measure on the set of ends of a
regular tree with degree at least 3.

8.17. Let Ξ be a random closed subset of ends of a regular tree of degree at least 3, whose law is
automorphism invariant. Show that a.s. either Ξ is empty or its complement is empty.

8.18. Show that the universal cover of any finite undirected graph is a unimodular quasi-transitive
tree. Give an example of a quasi-transitive tree that is not unimodular.

8.19. Show that if Γ is a group of automorphisms of a connected graph and S(x1)∩S(x2)∩ · · · ∩
S(xn) is finite for some x1, x2, . . . , xn, then Γ is discrete.

8.20. Give Aut(G) the weak topology generated by its action on G, in other words, a base of
open sets at γ ∈ Aut(G) consists of the sets {γ′ ∈ Aut(G) ; γ′↾K = γ↾K} for finite K ⊂ V. Show
that this topology is metrizable, that a subgroup is discrete in this topology iff it is discrete in the
sense of Section 8.2, and that if Γ is a closed countable subgroup of Aut(G), then Γ is discrete.

8.21. Let G be a transitive graph with weights µx as in Theorem 8.10.
(a) Show that if f :V × V → [0,∞] is invariant, then∑

x∈V

√
µxf(o, x) =

∑
x∈V

√
µxf(x, o) .

(b) Assign conductances
√
µe− · µe+ to the edges e ∈ E. Show that the function x 7→ logµx is

harmonic on this network.

8.22. If Γ is a topological group and µ is a Borel measure on Γ, then we write Lγµ for the measure
F 7→ µ(γ−1F ) and Rγµ for the measure F 7→ µ(Fγ). We call a Borel measure µ that is finite
on compact sets a left Haar measure if Lγµ = µ for all γ ∈ Γ and a right Haar measure if
Rγµ = µ for all γ ∈ Γ. Here we show how to construct Haar measures on automorphism groups
of graphs.
(a) Let X be a compact metric space. Given ϵ > 0 and A ⊆ X, write Bϵ(A) for the union of

the closed balls of radius ϵ with centers in A. Suppose that Ai (i = 1, 2) are each subsets of
X of minimal cardinality with Bϵ(Ai) = X. Show that there is a bijection f :A1 → A2 such
that dist(x, f(x)) ≤ 2ϵ for all x ∈ A1. Hint: Use Hall’s theorem, Exercise 3.17.

(b) Given a compact metrized group Γ and n ≥ 1, choose An ⊆ Γ of minimal cardinality so that
B1/n(An) = Γ. Define µn :=

∑
x∈An

δ(x)/|An|, where δ(x) is the unit point mass at x. Show
that there is a weak∗-limit point µ of ⟨µn⟩ and that every such limit point is both a right
and left Haar probability measure.

(c) Show that Haar probability measure is unique on every compact group. Hint: Use Fubini’s
theorem.

(d) Let G be a graph and Γ be a closed subgroup of Aut(G). Fix o ∈ V(G). Choose a maximal
set H ⊆ Γ so that γ1o ̸= γ2o for γ1 ̸= γ2 ∈ H. Write µ for the Haar probability measure on
the stabilizer S(o) in Γ. Show that ν :=

∑
γ∈H Rγµ is a left Haar measure on Γ.
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8.23. A perfect matching of a graph G is a subset M of its edges such that each vertex of G
belongs to exactly one edge in M . A graph is called bipartite if its vertex set can be partitioned
into two parts, A and B, such that all edges have one endpoint in A and one in B. A bipartite
graph is called (a, b)-biregular if the degrees in one part are a while the degrees in the other
part are b. Show that if a biregular bipartite quasi-transitive unimodular graph (for example,
a biregular tree) has an invariant percolation that is a perfect matching a.s., then the graph is
regular.

8.24. Let G be a quasi-transitive unimodular graph and ω ⊆ F ⊆ G be random with the law of
(ω,F) invariant under Aut(G). Show that if a.s. F is a forest all of whose trees are infinite and
ω ∩ T is connected for each tree T of F, then a.s. for each tree T of F, we have either ω ∩ T = ∅
or ω ∩ T = T .

8.25. Let G be a quasi-transitive unimodular graph and (Ξ,F) be random with Aut(G)-invariant
law, where F is a forest in G all of whose trees have at least 3 ends and Ξ is a closed set of ends
of (trees in) F. Show that a.s. for each tree T of F, we have either Ξ ∩ ∂T = ∅ or Ξ ∩ ∂T = ∂T .

8.26. Give another proof of Proposition 8.14 by using Exercise 8.3.

8.27. Show that for every d, we have inf ΦV(G) > 0, where the infimum is taken over transitive,
non-unimodular G with degree at most d.

8.28. Show that if Γ is not unimodular and µx are the weights of Theorem 8.10, then supx µx = ∞
and infx µx = 0. In fact, the supremum and infimum may each be taken over any single orbit.

8.29. Let G′ be a transitive representation of a quasi-transitive graph G.
(a) Show that Aut(G′) is unimodular iff Aut(G) is unimodular.
(b) Let Γ act quasi-transitively on G. Show that Γ is unimodular iff Aut(G′) is unimodular.

8.30. Show that Proposition 8.14 is also valid for quasi-transitive automorphism groups.

8.31. Let G be an amenable graph and Γ ⊆ Aut(G) be a quasi-transitive subgroup. Choose a
complete set {o1, . . . , oL} of representatives in V of the orbits of Γ. Choose the weights µoi of
Theorem 8.10 so that

∑
i µ

−1
oi = 1. Show that if Kn is any sequence of finite subsets of vertices

such that |∂VKn|/|Kn| → 0, then for all i,

lim
n→∞

|Γoi ∩Kn|
|Kn|

= µ−1
oi .

See Figure 8.1 for an example.

8.32. Show that if Γ is a compact group of automorphisms of a graph, then Γ is unimodular.

8.33. Call two rooted graphs (rooted) isomorphic if there is a bijection of their vertex sets
preserving adjacency and mapping one root to the other. Our notation for a rooted graph will
be (G, o), where o ∈ V(G) designates the root. For a rooted graph (G, o), let [G, o] denote the
set of rooted graphs that are isomorphic to (G, o). Suppose ⟨Xn⟩ is random walk on a quasi-
transitive network G whose orbit representatives are o1, . . . , oL. Consider the quotient Markov
chain ⟨[G,Xn] ; n ≥ 0⟩ on the finite state space {[G, oi] ; 1 ≤ i ≤ L}.
(a) Show that if G is unimodular and X0 has the distribution of a normalized root biased by

π, i.e., P[X0 = oi] ∝ µ−1
i π(oi), then the quotient Markov chain ⟨[G,Xn]⟩ is stationary

and reversible. For example, if G is the graph in Figure 8.1, then the quotient chain on
{[G, o1], [G, o2]} has a loop at [G, o1], an edge between the two vertices, and two loops at
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[G, o2], where all edges have conductance 1. Thus, the stationary distribution is ⟨2/5, 3/5⟩.
The present claim leads to this stationary distribution as follows: ô = o1 with probability
1/5 and this gets biased by the degree, 8, whereas ô = o2 with probability 4/5, which gets
biased by the degree, 3, giving finally relative weights 8/5 and 3 · 4/5 = 12/5, which are
indeed in the ratio 2 : 3.

(b) Give an example of a non-unimodular quasi-transitive network where the quotient chain has
a reversible measure.

(c) Give an example of a non-unimodular quasi-transitive network where the quotient chain does
not have a reversible measure.

8.34. Sharpen Theorem 8.16 to conclude that E[degω o] < dG − ΦE(G) by showing that there is
some invariant P′ with all clusters finite and with E[degω o] < E′[degω′ o].

8.35. A subset K of the vertices of a graph is called dominating if every vertex is in K or
is adjacent to some vertex of K. Suppose that an invariant site percolation on a transitive
unimodular graph of degree d is a dominating set a.s. Show that o belongs to the percolation with
probability at least 1/(d+ 1).

8.36. Show that for any invariant percolation P on a transitive unimodular graph that has finite
clusters with positive probability, E[degω o | |K(o)| <∞] ≤ α(G).

8.37. Let P be an invariant site percolation on a transitive unimodular graph of degree d such
that all clusters are finite a.s. Show that P[o ∈ ω] < d/(d+ ΦV(G)).

8.38. Let G be a quasi-transitive unimodular graph and ô a normalized random root. Let F be
the configuration of an invariant random spanning forest on G such that a.s. each tree has one
end. (“Spanning” means that the forest includes all vertices of G. We will see important examples
of such spanning forests in Chapters 10 and 11.) For a vertex x, denote by ξ(x) = ⟨ξn(x) ; n ≥ 0⟩
the unique infinite simple path starting at x. If y ∈ ξ(x), call x a descendant of y. Let D(x) be
the (finite) set of all descendants of x.

(a) Show that E[|D(ô)|] = ∞.

(b) Show that E[|{y ; ô = ξn(y)}|] = 1 for each n ≥ 0.

(c) Show that E
[∑

n≥0 1/|D(ξn(ô))|
]

= 1.

(d) Show that E[|D(ξn(ô)) \D(ξn−1(ô))|] = ∞ for each n ≥ 1.

(e) Show that E[|D(ô)|(degF ô− 2)] = ∞.

8.39. Let T be a regular tree of degree at least 3. Show that for every p ∈ (0, 1), there is an
Aut(T )-invariant probability measure on {0, 1}V(T ) such that for all [x, y] ∈ E(T ), the probability
that x is assigned 0 equals 1/2, the probability that x and y are assigned the same label is at least
p, and the probability that two vertices have the same label tends to 1/2 as their mutual distance
tends to infinity.

8.40. Extract from the proof of Theorem 8.21 just enough to prove that pc < 1 for non-amenable
quasi-transitive unimodular graphs.

8.41. Show that if an invariant percolation on a non-amenable quasi-transitive unimodular graph
has a finite number of infinite clusters a.s., then a.s. each of those infinite clusters has pc < 1.

8.42. Let G be the edge graph of the (2, 3, 7)-triangle tessellation of Figure 6.1, i.e., the plane
dual of the Cayley graph there. By Theorem 8.25 and Remark 8.46, it is quasi-transitive and
unimodular. It has 3 vertex-orbits. Find the weight of each vertex that is given by Theorem 8.10.
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8.43. Let G be a plane transitive graph with one end. By Theorem 8.25 and Remark 8.46, its
dual G† is quasi-transitive and unimodular. Find the distribution of a normalized random root
of G†.

8.44. Let G be a plane transitive graph with one end. Every edge e ∈ E(G) intersects e† ∈ E(G†)
in one point, ve. (These are the only intersections of G and G†.) For e ∈ E(G), write ê for the

pair of edges that result from the subdivision of e by ve, and likewise for ê†. This defines a new
quasi-transitive graph Ĝ, whose vertices are V(G)∪V(G†)∪ {ve ; e ∈ E(G)} and whose edges are∪
e∈E(G) (ê ∪ ê†). Show that Ĝ is unimodular and find the distribution of a normalized random

root of Ĝ.

8.45. Let G be the usual Cayley graph of the (p, q, r)-triangle group and G† be its dual, where
1/p+1/q+1/r ≤ 1. This Cayley graph for (p, q, r) = (2, 3, 7) was shown in Figure 6.1. In general,
the group is generated by reflections in the infinitely extended geodesic sides of a Euclidean or
hyperbolic triangle whose interior angles measure π/p, π/q, and π/r. The edge graph of the
tessellation by such triangles is G†. Let F be an invariant random spanning forest of G† such
that all of its trees are infinite and have at most 2 ends a.s. (“Spanning” means that the forest
includes all vertices ofG†.) Let the edges ofG† opposite to the angles of measure π/p, π/q, π/r have
probabilities αp, αq, αr of belonging to F, respectively. Show that αp+αq +αr = 1/p+ 1/q+ 1/r.
Show also that if F× is defined on G as in (8.21), then E[dego F

×] = 3 − 1/p− 1/q − 1/r.

8.46. Let G be a plane transitive graph with one end. Show that

1

µ(G†)
+

1

γ(G)
≤ 1 ,

where µ is the connective constant and γ is defined as in (7.11). Deduce that if G† is regular of
degree d†, then

γ(G) ≥ d† − 1

d† − 2
.

8.47. Let P be an invariant bond percolation on a quasi-transitive unimodular graph such that
all clusters are infinite a.s. Show that E[degω ô] ≥ 2 when ô is a normalized random root.

8.48. Let ω be the configuration of an invariant percolation on a transitive unimodular graph G.
Show that if

(i) some component of ω has at least 3 ends with positive probability,

then

(ii) a.s. every component of ω with at least 3 ends has pc < 1 and

(iii) E
[
degω o | |K(o)| = ∞

]
> 2.

8.49. Give an example of an invariant random forest on a transitive graph where each component
has 3 ends, but the expected degree of each vertex is smaller than 2.

8.50. Give an example of an invariant random forest on a transitive graph where each tree has
one end and the expected degree of each vertex is greater than 2.

8.51. Let ω be an invariant percolation on a quasi-transitive unimodular graph. Suppose that all
components of ω have at least 3 ends a.s. Show that the probability space cannot be enlarged so
as to pick exactly one end from some of the components of ω.
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8.52. Let P be an insertion-tolerant invariant bond percolation on a quasi-transitive unimodular
graph that has infinitely many infinite clusters a.s. Show that a.s. for each infinite cluster, there
are infinitely many edges with one endpoint in that cluster and one endpoint in a different infinite
cluster.

8.53. Let G be a quasi-transitive unimodular graph with pc(G) < pu(G). Show that in the
standard coupling p 7→ ωp of Bernoulli percolation, a.s. for each pair (p1, p2) with pc < p1 < p2 <
pu, we have that every infinite cluster of ωp2 contains infinitely many infinite clusters of ωp1 .

8.54. Let T be a 3-regular tree and fix an end ξ of T . Define W (e) to be independent symmetric
{−1, 1}-valued random variables for e ∈ E(T ). Let Y (x) := maxe∼xW (e). If xξ denotes the
first edge on the ray from x that belongs to ξ, then let Z(x) := maxe∼x, e ̸=xξ W (e). Clearly
Y (x) ≥ Z(x) for all x and the distribution of Y is Aut(T )-invariant.
(a) Show that the distribution of Z is i.i.d.
(b) Show that the distribution of (Y, Z) is not Aut(T )-invariant.
(c) Show that there is a Z′ equal to Z in distribution such that Y ≥ Z′ and the distribution of

(Y, Z′) is Aut(T )-invariant.

8.55. Let ω be an invariant bond percolation on a transitive graph, G, such that all clusters are
finite a.s. Fix o ∈ V. Let K(o) be the cluster of o in ω. Let Z be a uniformly random vertex of
K(o). Recall the notion of rooted isomorphism from Exercise 8.33.
(a) Suppose that G is unimodular. Show that the law of the rooted isomorphism class of

(K(o), Z) is the same as the law of the rooted isomorphism class of (K(o), o).
(b) Give an example on a non-unimodular graph where the result of (a) fails.

8.56. Let G be a quasi-transitive unimodular graph. Show that G is amenable iff for all α < 1,
there is an invariant bond percolation ω on G with no infinite clusters and such that E[degω x] >
α degG x for all x ∈ V(G).

8.57. Theorem 8.37 was proved only in the transitive case. Prove it in the general quasi-transitive
case.
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Chapter 9

Infinite Electrical Networks and Dirichlet Functions

In Chapters 2 and 3, we looked at current flows from a vertex to infinity in order

to analyze transience and recurrence. We never looked at current flows from one vertex

to another in an infinite network, except briefly on recurrent networks in Exercises 2.73

and 2.74. We had no need for that; it also turns out to be more complicated. But those

complications are also quite interesting, as we will see in this chapter. Moreover, we will

ultimately use our work here to answer a question of recurrence again. Namely, given a

transient network, consider the subnetwork formed by the edges that are crossed at least

once by a random walk on the original network. Is this random subnetwork transient or

recurrent? The answer is in the last section of this chapter.

Even more importantly, our work here will be the foundation in the next chapter

for extending the study of uniform spanning trees on finite networks to so-called uniform

spanning forests on infinite networks.

§9.1. Free and Wired Electrical Currents.

We begin by taking a look at currents from one vertex to another on infinite networks.

It turns out that there are two natural ways of defining such currents that correspond to

two ways of taking limits on finite networks. In some sense, these two ways may differ due

to the possibility of current “passing via infinity”. Our approach in this section will be

to give definitions of both these currents using Hilbert space; then we will show how they

correspond to limits of currents on finite graphs.

Let G be a connected network whose conductances c satisfy the usual condition that∑
e−=x c(e) < ∞ for each vertex x ∈ G. Note that this condition guarantees that the

stars
∑
e−=x c(e)

χe of G have finite energy. We assume this condition is satisfied for all

networks in this chapter. We also assume that networks are connected. Let ⋆ denote the

closure of the linear span of the stars and ♢ the closure of the linear span of the cycles of a

graph G = (V,E), both of these closures taking place in the Hilbert space of antisymmetric
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edge functions of finite energy,

ℓ2−(E, r) :=
{
θ : E → R ; ∀e θ(−e) = −θ(e) and

∑
e∈E

θ(e)2r(e) <∞
}
.

Recall that by (2.15), we have
∑
e−=x |θ(e)| <∞ for all x ∈ V and all θ ∈ ℓ2−(E, r).

The exhaustions we considered in Chapter 2 by finite induced networks led to current

in ⋆. Indeed, for a finite induced subnetwork H of G, recall that HW is formed by

identifying the complement of H to a single vertex and that we identify E(HW) with a

subset of E(G). The star space of HW lies in the star space of G since for all x ∈ V(H),

the star of x in HW coincides with the star of x in G, while the star of the new vertex of

HW equals the negative of the sum of the other stars of HW. Therefore, the unit current

flow ia in G from a vertex a to infinity (defined in Proposition 2.12) lies in the star space

of G.

Since every star and every cycle are orthogonal, it is still true (as for finite networks)

that ⋆ ⊥ ♢. However, it is no longer necessarily the case that ℓ2−(E, r) = ⋆⊕ ♢. Thus,

we are led to define two possibly different currents,

ieF := P⊥
♢ χ

e , (9.1)

the unit free current between the endpoints of e (also called the limit current), and

ieW := P⋆χe , (9.2)

the unit wired current between the endpoints of e (also called the minimal current).

▷ Exercise 9.1.

Calculate ieF and ieW in a regular tree.

The names for these currents are explained by the following two propositions. Recall

that for a subnetwork Gn ⊂ G, we identify E(Gn) as a subset of E(G), and also identify

E(GW
n ) as a subset of E(G).

Proposition 9.1. (Free Currents as Limit Currents) Let G be an infinite network

exhausted by finite subnetworks ⟨Gn⟩. Let e be an edge in G1 and in be the unit current

flow in Gn from e− to e+. Then ∥in − ieF∥r → 0 as n→ ∞ and E (ieF) = ieF(e)r(e).

Proof. Decompose ℓ2−(En, r) = ⋆n ⊕ ♢n on Gn into the spaces spanned by the stars and

cycles in Gn and recall that in = χe − P♢n
χe. We may regard the spaces ♢n as lying

in ℓ2−(E, r), where they form an increasing sequence. (Each cycle in Gn lies in Gn+1, but
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the same is not true of the stars.) The closure of
∪
n♢n is ♢. Note that the orthogonal

projection on ♢n of any element of ℓ2−(En, r) is the same as its projection on ♢n in ℓ2−(E, r)

since for θ ∈ ℓ2−(En, r), if θ ⊥ ♢n in ℓ2−(En, r), then also θ ⊥ ♢n in ℓ2−(E, r). Thus, the fact

that ∥in− ieF∥r → 0 follows from the standard result given below in Exercise 9.2. Also, we

have that

ieF(e)r(e) = (ieF, χ
e)r = (ieF, P

⊥
♢ χ

e)r = E (ieF) . ◀

▷ Exercise 9.2.

Let Hn be increasing closed subspaces of a Hilbert space H and Pn be the orthogonal

projection on Hn. Let P be the orthogonal projection on the closure of
∪
Hn. Show that

for all u ∈ H, we have ∥Pnu− Pu∥ → 0 as n→ ∞.

Proposition 9.2. (Wired Currents as Minimal Currents) Let G be an infinite

network exhausted by finite induced subnetworks ⟨Gn⟩. Form GW
n by identifying the com-

plement of Gn to a single vertex. Let e be an edge in G1 and in be the unit current flow

in GW
n from e− to e+. Then ∥in − ieW∥r → 0 as n→ ∞ and E (ieW) = ieW(e)r(e), which is

the minimum energy among all unit flows from e− to e+.

▷ Exercise 9.3.

Prove Proposition 9.2.

Since ⋆ ⊆ ♢⊥, we have E (ieW) ≤ E (ieF) with equality iff ieW = ieF. Therefore,

ieW(e) ≤ ieF(e) with equality iff ieW = ieF . (9.3)

Proposition 9.3. For any network, ieW = ieF for every edge e iff ℓ2−(E, r) = ⋆⊕ ♢.

Proof. Note that ℓ2−(E, r) = ⋆⊕ ♢ is equivalent to P⋆ = P⊥
♢ . Since {χe ; e ∈ E1/2} spans

ℓ2−(E, r), this is also equivalent to P⋆χe = P⊥
♢
χe for all edges e, as desired. ◀

Given two vertices a and z, define the free and wired unit currents from a to z as

ia,zF :=
∑n
k=1 i

ek
F and ia,zW :=

∑n
k=1 i

ek
W, where e1, e2, . . . , en is an oriented path from a to z.

▷ Exercise 9.4.

Show that the choice of path in the definition of the free and wired currents from a to z

does not influence their values.

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



Chap. 9: Infinite Electrical Networks and Dirichlet Functions 344

We call RF(a ↔ z) := E
(
ia,zF

)
and RW(a ↔ z) := E

(
ia,zW

)
the free and wired

effective resistance , respectively, between a and z. Note that these are equal to the

limits of E (in), where in is the unit current flow from a to z on Gn or GW
n , respectively,

since for any sequence of vectors un converging in norm to a vector u, we have ∥un∥ → ∥u∥;
indeed,

∣∣∥un∥ − ∥u∥
∣∣ ≤ ∥un − u∥ by the triangle inequality. Of course, the reciprocals of

the effective resistances are called the free and wired effective conductances.

§9.2. Planar Duality.

In this section, we recall from Section 6.5 the basic notions of duality for planar graphs

and show how the dual graphs give related electrical networks.

A planar graph is one that can be drawn in the plane in such a way that edges do not

cross; an actual such embedding is called a plane graph. If G is a plane graph such that

each bounded set in the plane contains only finitely many vertices of G, then G is said to

be properly embedded in the plane. We will always assume without further mention that

plane graphs are properly embedded. A face of a plane graph is a connected component

of the complement of the graph in the plane. If G is a plane (multi)graph, then the plane

dual G† of G is the (multi)graph formed as follows: The vertices of G† are the faces formed

by G. Two faces of G are joined by an edge in G† precisely when they share an edge in

G. Thus, E(G) and E(G†) are in a natural one-to-one correspondence. Furthermore, if one

draws each vertex of G† in the interior of the corresponding face of G and each edge of G†

so that it crosses only the corresponding edge of G, then the dual of G† is G.

We choose orientations of the edges so that for e ∈ E, the corresponding edge e† of the

dual crosses e from right to left as viewed from the direction of e. Thus, the orientation of

the pair (e, e†) is the same as the usual counter-clockwise orientation of the plane.

If conductances c(e) are assigned to the edges e of G, then we define the conductance

c(e†) of e† to be the resistance r(e). In this case, we will assume without mention that G

is such that
∑

(e†)−=u c(e
†) <∞ for each vertex u ∈ G†, so that the stars of G† have finite

energy.

The bijection e 7→ e† provides a natural isometric isomorphism † : ℓ2−
(
E(G), r

)
→

ℓ2−
(
E(G†), r

)
via θ†(e†) := r(e)θ(e). That is, θ 7→ θ† is a surjective linear map such that

for all θ, ψ ∈ ℓ2−
(
E(G), r

)
, we have θ†, ψ† ∈ ℓ2−

(
E(G†), r

)
and

(θ, ψ)r =
∑

e∈E(G)

θ(e)ψ(e)r(e) =
∑

e†∈E(G†)

θ†(e†)ψ†(e†)r(e†) = (θ†, ψ†)r .

Note that (θ†)† = −θ.
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It is clear that if θ is a star in ℓ2−
(
E(G), r

)
, then θ† is a cycle in ℓ2−

(
E(G†), r

)
. Moreover,

it is easy to see that † induces an isomorphism from the star space on G to the cycle space

on G† and from the cycle space on G to the star space on G†. That’s cute. What is the

implication of this for currents? For an edge e ∈ G, consider the orthogonal decomposition

χe = ieW + θ ,

where ieW ∈ ⋆(G) and θ ∈ ⋆(G)⊥. Applying the map †, we obtain

r(e)χe
†
= (χe)† = (ieW)† + θ† ,

whence

χe
†
= c(e)(ieW)† + c(e)θ† ,

where the first term on the right is a vector in ♢(G†) and the second is in ♢(G†)⊥. It

follows from this and the definition (9.1) that

ie
†

F = c(e)θ† = χe
†
− c(e)(ieW)† .

Likewise, one can check that

ie
†

W = χe
†
− c(e)(ieF)

† .

In particular, we obtain

ie
†

F (e†) = χe
†
(e†)− c(e)(ieW)†(e†) = 1− c(e)r(e)ieW(e) = 1− ieW(e) (9.4)

and

ie
†

W(e†) = 1− ieF(e) .

This has the following curious consequence:

Proposition 9.4. Let G be a plane network and [a, z] be an edge of G. Let the dual edge

be [b, y]. Suppose that the graph G′ obtained by deleting the edge [a, z] from G is connected

and that the graph (G†)′ obtained by deleting the edge [b, y] is connected. Then the free

effective resistance between a and z in G′ equals the wired effective conductance between b

and y in (G†)′.

▷ Exercise 9.5.

Prove Proposition 9.4.
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§9.3. Harmonic Dirichlet Functions.

As we saw from the definitions, wired and free currents are equal iff ℓ2−(E, r) = ⋆⊕♢,

or said another way, iff the orthogonal complement of ⋆⊕♢ in ℓ2−(E, r) is 0. What is this

orthogonal complement? We will identify it and use this identification to develop criteria

for its vanishing. In preparation for applications in the next sections, we then analyze the

limiting behavior of certain functions along a random walk path.

Recall that the gradient of a function f on V is the antisymmetric function

∇f := c df

on E. Ohm’s law in this notation is ∇v = i. Define the space of Dirichlet functions

D :=
{
f ; ∇f ∈ ℓ2−(E, r)

}
.

Given a vertex o ∈ V, we use the inner product on D

⟨f, g⟩ := f(o)g(o) + (∇f,∇g)r = f(o)g(o) + (df, dg)c .

This makes D a Hilbert space, whose norm we denote by ∥•∥D. The choice of o does not

matter in the sense that changing it leads to an equivalent norm: for any x, take a path of

edges ⟨ej ; 1 ≤ j ≤ n⟩ leading from x to o and note that by the Cauchy-Schwarz inequality,

f(x)2 =
[
f(o) +

∑
j

df(ej)
]2 ≤

[
1 +

∑
j

r(ej)
][
f(o)2 +

∑
j

c(ej)df(ej)
2
]

≤
[
1 +

∑
j

r(ej)
]
⟨f, f⟩ ,

whence

f(x)2 + (df, df)c ≤
[
2 +

∑
j

r(ej)
]
⟨f, f⟩ .

The quantity D(f) := ∥∇f∥2r = ∥df∥2c is called the Dirichlet energy of f .* Of course,

the constant functions, which we identify as R, lie in D. Since it is the gradient of a

function that matters most here, we usually work with D/R using the inner product

⟨f + R, g + R⟩ := (df, dg)c .

Then D/R is a Hilbert space.

* The classical Dirichlet energy of a smooth function f in a domain Ω is
∫
Ω |∇f |2 dλ, where dλ is

Lebesgue measure.
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If ϕ : R → R is a contraction (i.e., |ϕ(x)−ϕ(y)| ≤ |x− y| for x, y ∈ R), then f 7→ ϕ ◦ f
maps D to D by decreasing the energy: D(ϕ ◦ f) ≤ D(f). Useful examples include

ϕ(s) := |s| and the truncation maps

ϕN (s) :=

{
s if |s| ≤ N ,
sN/|s| if |s| > N .

Thus, for f ∈ D, there is a sequence ⟨ϕN ◦ f⟩ of bounded functions in D that converge to

f in norm by Lebesgue’s dominated convergence theorem. If f, g ∈ D are both bounded

functions, then

∥d(fg)∥c ≤ ∥f∥∞∥dg∥c + ∥df∥c∥g∥∞ (9.5)

since ∣∣(fg)(x)− (fg)(y)
∣∣ = ∣∣f(x)[g(x)− g(y)] + [f(x)− f(y)]g(y)

∣∣
≤
∥∥f∥∞|g(x)− g(y)|+ ∥g∥∞|f(x)− f(y)|

= |g̃(x)− g̃(y)|+ |f̃(x)− f̃(y)| ,

where g̃ := ∥f∥∞g and f̃ := ∥g∥∞f , whence

∥d(fg)∥c ≤ ∥|dg̃|+ |df̃ |∥c ≤ ∥dg̃∥c + ∥df̃∥c = ∥f∥∞∥dg∥c + ∥df∥c∥g∥∞ .

Recall that ⋆ denotes the closed span of the stars in ℓ2−(E, r) and ♢ the closed span

of the cycles in ℓ2−(E, r). The gradient map ∇:D/R → ♢⊥ is an isometric isomorphism

(since G is connected). Just as we reasoned in Section 2.4, an element θ ∈ (⋆⊕ ♢)⊥ is the

gradient of a harmonic function f ∈ D. Thus, if HD denotes the set of f ∈ D that are

harmonic, we have the orthogonal decomposition

ℓ2−(E, r) = ⋆⊕ ♢⊕ ∇HD . (9.6)

Since ℓ2−(E, r) = ⋆⊕ ♢ iff ∇HD = 0 iff HD = R, we may add the condition that there

are no nonconstant harmonic Dirichlet functions to those in Proposition 9.3:

Theorem 9.5. (Doyle, 1988) Let G be a denumerable network. We have HD = R iff

ieW = ieF for each e ∈ E.

Doyle’s theorem is often stated another way as a criterion for uniqueness of currents.

We call the elements i of ♢⊥ currents (with sources where d∗i > 0 and sinks where

d∗i < 0). We say that currents are unique if whenever i, i′ are currents with d∗i = d∗i′,

we have i = i′. Observe that by subtraction and by (2.8), this is the same as saying that

♢⊥ ∩⋆⊥ = 0, i.e., HD = R. For this reason, the class of networks with unique currents

is often denoted OHD.

Let D0 be the closure in D of the set of f ∈ D with finite support.
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▷ Exercise 9.6.

(a) Show that ∇D0 = ⋆.

(b) Show that D/R = D̃0/R⊕ HD/R, where D̃0 := D0 + R.
(c) Show that currents are unique iff D/R = D̃0/R.
(d) Show that ∥1 −D0∥2D = C (o ↔ ∞)/[1 + C (o ↔ ∞)], where o is the vertex used to

define the inner product on D.

(e) Show that G is recurrent iff 1 ∈ D0.

(f) (Royden Decomposition) Show that if G is transient, then every f ∈ D has a

unique decomposition f = g + h with g ∈ D0 and h ∈ HD. Note that this is not an

orthogonal decomposition.

(g) With the assumption and notation of part (f), show that g(x) = (∇f, ix)r and that

g(x)2 ≤ D(f)G (x, x)/π(x), where ix is the unit current flow from x to infinity (from

Proposition 2.12) and G (•, •) is the Green function.

(h) Show that if G is transient, then ∇ : D0 → ⋆ is invertible with bounded inverse.

This exercise allows us to show that recurrent networks have unique currents. (This

also follows from Exercise 2.74.) Since current cannot go to infinity at all in recurrent

networks, this fits with our intuition that non-unique currents require the ability of current

to pass via infinity. An extension is in Exercise 9.22.

Corollary 9.6. (Recurrence Yields Unique Currents) A network G is recurrent iff

D = D0, in which case currents are unique.

Proof. If D = D0, then 1 ∈ D0, whence G is recurrent by Exercise 9.6(e). Conversely,

suppose that G is recurrent. By Exercise 9.6(e), we have 1 ∈ D0. Thus, there exist

gn → 1 with gn having finite support and 0 ≤ gn ≤ 1. (We use the contraction ϕ(s) :=

s1[0,1](s) + 1(1,∞)(s) if necessary to get the values of gn to be in [0, 1].) Let f ∈ D be

bounded. Then fgn ∈ D by (9.5) and fgn → f in D by the dominated convergence

theorem. Hence f ∈ D0, i.e., D0 contains all bounded Dirichlet functions. Since these

functions are dense in D, we get D0 = D. Finally, when this happens, currents are unique

by Exercise 9.6(c). ◀

Some transient networks also have unique currents. In order to exhibit some of these,

we will use the following criterion, which generalizes a result of Thomassen (1989). It is

analogous to the Nash-Williams criterion. It shows that high connectedness of cutsets,

rather than their small size, can force currents to be unique. This is reasonable given

that the difference between free and wired currents is a matter of whether wiring cutsets

matters in the limit. Let R(x ↔ y ; A) denote the effective resistance between vertices x
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and y in a finite network A. We will use this when A is a subnetwork of G; in this case,

the effective resistance is computed purely in terms of the network A. Let

RD(A) := sup
{
R(x↔ y ; A) ; x, y ∈ V(A)

}
be the “effective-resistance diameter” of A. Note that in the case of unit conductances

on the edges, RD(A) is at most the graph diameter of A. We say that a subnetwork W

separates x from ∞ if every simple infinite path starting at x intersects W in some

vertex.

Theorem 9.7. (Unique Currents from Internal Connectivity) If ⟨Wn⟩ is a se-

quence of pairwise edge-disjoint finite subnetworks of a locally finite network G such that

each [equivalently, some] vertex is separated from ∞ by all but finitely many Wn and such

that ∑
n

1

RD(Wn)
= ∞ , (9.7)

then G has unique currents.

Proof. Let f be any nonconstant harmonic function. We will show that f /∈ D by bounding

the left-hand side of (9.7) in terms of f . Take an edge e0 whose endpoints have different

values for f , i.e., df(e0) ̸= 0. Let n0 be such that Wn separates e0 from infinity for n ≥ n0.

Let Hn be the set of vertices that Wn separates from infinity, including the vertices of

Wn. Because G is locally finite, Hn is finite. Let xn and yn be points of Hn where f

takes its maximum and minimum, respectively, on Hn. By the maximum principle, we

may assume that xn, yn ∈ Wn. Thus, for n ≥ n0, we have f(xn) − f(yn) ≥ |df(e0)|.
Normalize f to take the value 1 at xn and 0 at yn, i.e., define Fn on V to be the function

Fn :=
(
f − f(yn)

)
/
(
f(xn) − f(yn)

)
. Then |dFn| ≤ |df |/|df(e0)|. By Dirichlet’s principle

(Exercise 2.13), we have

1/RD(Wn) ≤ C (xn ↔ yn ; Wn) ≤
∑
e∈Wn

c(e)dFn(e)
2 ≤

∑
e∈Wn

c(e)df(e)2/df(e0)
2 .

Since edges of the networks Wn are disjoint, it follows that∑
n≥n0

1/RD(Wn) ≤
∑
n≥n0

∑
e∈Wn

c(e)df(e)2/df(e0)
2 ≤ ⟨f, f⟩/df(e0)2 .

Therefore our hypothesis implies that f is not Dirichlet. Thus, HD = R, so the conclusion

follows from Theorem 9.5. ◀
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▷ Exercise 9.7.

One can define the product of two networks in various ways. For example, given two

networks Gi = (Vi,Ei) with conductances ci (i = 1, 2), define the cartesian product

G = (V,E) with conductances c by V := V1 × V2,

E := {
(
(x1, x2), (y1, y2)

)
; (x1 = y1, (x2, y2) ∈ E2) or ((x1, y1) ∈ E1, x2 = y2)} ,

and

c
(
(x1, x2), (y1, y2)

)
:=

{
c(x2, y2) if x1 = y1,
c(x1, y1) if x2 = y2.

Show that if Gi are infinite locally finite graphs with unit conductances, then G has unique

currents.

It follows that the usual nearest-neighbor graph on Zd has unique currents for all

d ≥ 1.

If one network is “similar” to another, must they both have unique currents or both

not? One such case that is easy to decide is a graph with two “similar” assignments on

conductances, c and c′:

Proposition 9.8. Let G be a graph with two assignments of conductances, c and c′. If

c ≍ c′, meaning that the ratio c/c′ is bounded and bounded away from 0, then (G, c) has

unique currents iff (G, c′) does.

Proof. From Exercise 9.6(c), currents are unique iff the functions with finite support span

a dense subspace of D/R. Since the two norms on D/R for the different conductances c

and c′ are equivalent, density is the same for both. ◀

This has a very useful extension due to Soardi (1993), analogous to Proposition 2.18.

Theorem 9.9. (Rough Isometry Preserves Unique Currents) Let G and G′ be

two infinite roughly isometric networks with conductances c and c′. If c, c′, c−1, c′−1 are

all bounded and the degrees in G and G′ are all bounded, then G has unique currents iff

G′ does.

Proof. Since c ≍ 1 and c′ ≍ 1, we may assume that actually c = 1 and c′ = 1 by

Proposition 9.8.

Let ϕ : V → V′ be a rough isometry. Suppose first that ϕ is a bijection. We claim

that the map Φ : f + R 7→ f ◦ ϕ−1 + R from D/R to D′/R is an isomorphism of Banach

spaces, where D′ is the space of Dirichlet functions on G′. Since the minimum distance
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between distinct vertices is 1, the fact that ϕ is a bijective rough isometry implies that ϕ

is actually bi-Lipschitz: for some constant γ1, we have

γ−1
1 d(x, y) ≤ d′

(
ϕ(x), ϕ(y)

)
≤ γ1d(x, y)

for x, y ∈ V. For e′ =
(
ϕ(x), ϕ(y)

)
∈ E′, let P(e′) be a path of d(x, y) ≤ γ1 edges in E that

joins x to y. Given e ∈ E and e′ ∈ E′ with e ∈ P(e′), we know that the endpoints of e′

are the ϕ-images of vertices that are within distance γ1 of the endpoints of e. Since the

degrees of G are bounded, there are no more than some constant γ2 possibilities for such

pairs of endpoints of e′. Therefore no edge in E appears in more than γ2 paths of the form

P(e′) for e′ ∈ E′. Thus, for f ∈ D, we have by the Cauchy-Schwarz inequality

∥f ◦ ϕ−1 + R∥2 =
1

2

∑
e′∈E′

∇(f ◦ ϕ−1)(e′)2 =
1

2

∑
e′∈E′

 ∑
e∈P(e′)

∇f(e)

2

≤ γ1
2

∑
e′∈E′

∑
e∈P(e′)

∇f(e)2 ≤ γ1γ2
2

∑
e∈E

∇f(e)2 = γ1γ2∥f + R∥2 .

This shows that Φ is a bounded map; symmetry gives the boundedness of Φ−1, establishing

our claim.

Now clearly Φ is a bijection between the subspaces of functions with finite support.

Hence Φ also gives an isomorphism between D0/R and D′
0/R. Therefore, the result follows

from Exercise 9.6(c).

Now consider the case that ϕ is not a bijection. We will “fluff up” the graphs G and

G′ to extend ϕ to a bijection so as to use the result we have just established. Because

the image of V comes within some fixed distance β of every vertex in G′ and because G′

has bounded degrees, V′ can be partitioned into subsets N ′(ϕ(x)) (x ∈ V) of bounded

cardinality in such a way that every vertex in N ′(ϕ(x)) lies within distance β of ϕ(x)

and so that ϕ(x) ∈ N ′(ϕ(x)). Also, because ϕ does not shrink distances too much and

the degrees in G are bounded, the cardinalities of the preimages ϕ−1(x′) (x′ ∈ V′) are

bounded. For each x′ ∈ ϕ(V), let ψ(x′) denote some vertex in ϕ−1(x′). Create a new

graph G∗ by joining each vertex ψ(x′) (x′ ∈ ϕ(V)) to new vertices v1(x
′), . . . , v|N ′(x′)|−1(x

′)

by new edges. Also, create a new graph G′
∗ by joining each vertex ϕ(x) (x ∈ V) to new

vertices w1(x), . . . , w|ϕ−1(ϕ(x))|−1(x) by new edges. Then G∗ and G′
∗ have bounded degrees.

Define ϕ∗ : G∗ → G′
∗ as follows: For x′ ∈ ϕ(V), let ϕ∗

(
ψ(x′)

)
:= x′ and let ϕ∗ be a

bijection from v1(x
′), . . . , v|N ′(x′)|−1(x

′) to N ′(x′) \ {x′}. For x ∈ V, let ϕ∗ be a bijection

from ϕ−1
(
ϕ(x)

)
\
{
ψ
(
ϕ(x)

)}
to w1(x), . . . , w|ϕ−1(ϕ(x))|−1(x). Then ϕ∗ is a bijective rough

isometry. By the first part of the proof, G∗ has unique currents iff G′
∗ does. Since every
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harmonic function on G∗ has the same value on vi(x
′) as on ψ(x′) (x′ ∈ V′), it follows

that G∗ has unique currents iff G does. The same holds for G′
∗ and G′, which proves the

theorem. ◀

Here’s a simple application. Every finitely generated abelian group is isomorphic to

Zd×Γ for some d and some finite abelian group Γ. Therefore, each of its Cayley graphs is

roughly isometric to the usual graph on Zd, whence has unique currents, according to our

observation after Exercise 9.7. We record this conclusion:

Corollary 9.10. Every Cayley graph of a finitely generated abelian group has unique

currents. More generally, every bounded-degree graph roughly isometric to a Euclidean

space has unique currents.

We’ll see in Exercise 10.11 that amenable transitive graphs also have unique currents.

In the next section, we examine whether currents are unique in graphs roughly iso-

metric to hyperbolic spaces. To do that, we will use the fact that ⟨f(Xn)⟩ converges a.s.

for all f ∈ D on planar transient networks. This is true not only on planar transient

networks, but on all transient networks, as we show next. We begin with the following

exercise, which illustrates a basic technique in the theory of harmonic functions.

▷ Exercise 9.8.

Let G be transient and let f ∈ D0. Show that there is a unique g ∈ D0 having minimal

energy such that g ≥ |f |. Show that this g is superharmonic, meaning that for all

vertices x,

g(x) ≥ 1

π(x)

∑
y∼x

c(x, y)g(y) .

Theorem 9.11. (Dirichlet Functions Along Random Walks) If G is a transient

network, ⟨Xn⟩ the corresponding random walk, and f ∈ D, then ⟨f(Xn)⟩ has a finite limit

a.s. and in L2. Furthermore, if f = fD0 + fHD is the Royden decomposition of f , then

lim f(Xn) = lim fHD(Xn) a.s.

This is due to Ancona, Lyons, and Peres (1999).

Proof. A vague idea of the proof is that fluctuations of f(Xn) use energy of f ; since f has

finite energy, the fluctuations must tend to 0. To make this rigorous, we use the Royden

decomposition of f to reduce the problem to one involving martingales and supermartin-

gales.
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The following notation will be handy:

E f (x) :=
∑
y

p(x, y)[f(y)− f(x)]2 = Ex
[
|f(X1)− f(X0)|2

]
.

Thus, we have

D(f) =
1

2

∑
x∈V

π(x)E f (x) .

Since the vertex o used in defining the norm on D is arbitrary, we may take o = X0.

(We assume that X0 is non-random, without loss of generality.) We first observe that for

any f ∈ D, it is easy to bound the sum of squared increments along the random walk: For

any Markov chain, we have

G (y, o) =
∑
n≥0

Py[τo = n]Ey

[∑
k≥0

1{Xn+k=o}

∣∣∣ τo = n
]

= Py[τo <∞]G (o, o) ≤ G (o, o) .

In our reversible case, Exercise 2.1(c) tells us that π(o)G (o, y) = π(y)G (y, o) ≤ π(y)G (o, o),

whence

∞∑
k=1

E
[
|f(Xk)− f(Xk−1)|2

]
=
∑
y∈V

∞∑
k=1

E
[
|f(Xk)− f(Xk−1)|2

∣∣ Xk−1 = y
]
P[Xk−1 = y]

=
∑
y∈V

E f (y)G (o, y) ≤ G (o, o)

π(o)

∑
y∈V

π(y)E f (y)

= 2
G (o, o)

π(o)
D(f) . (9.8)

Also, we have

E
[
f(Xk)

2 − f(Xk−1)
2
]
= E

[
|f(Xk)− f(Xk−1)|2

]
+ 2E

[(
f(Xk)− f(Xk−1)

)
f(Xk−1)

]
≤ E

[
|f(Xk)− f(Xk−1)|2

]
in case f is harmonic (since then ⟨f(Xn)⟩ is a martingale) or f is superharmonic and

non-negative (since then ⟨f(Xn)⟩ is a supermartingale). In either of these two cases, we

obtain by summing these inequalities for k = 1, . . . , n that

E
[
f(Xn)

2 − f(X0)
2
]
≤

n∑
k=1

E
[
|f(Xk)− f(Xk−1)|2

]
≤ 2

G (o, o)

π(o)
D(f)

by (9.8). That is,

E
[
f(Xn)

2
]
≤ 2

G (o, o)

π(o)
D(f) + f(o)2 (9.9)
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in case f is harmonic or f is superharmonic and non-negative.

It follows from (9.9) applied to fHD that ⟨fHD(Xn)⟩ is a martingale bounded in L2,

whence by Doob’s theorem it converges a.s. and in L2. It remains to show that fD0

converges to 0 a.s. and in L2. Given ϵ > 0, write fD0
= f1 + f2, where f1 is finitely

supported and D(f2) < π(o)ϵ/
(
3G (o, o)

)
. Exercise 9.8 applied to f2 ∈ D0 yields a su-

perharmonic function g ∈ D0 that satisfies g ≥ |f2| and D(g) ≤ D
(
|f2|
)
≤ D(f2). Also,

g(o)2 ≤ G (o, o)D(g)/π(o) by Exercise 9.6(g) applied to g ∈ D0 (that is, g = g+0 is its Roy-

den decomposition). Combining this with (9.9) applied to g, we get that E
[
g(Xn)

2
]
≤ ϵ

for all n. Since ⟨g(Xn)⟩ is a non-negative supermartingale, it converges a.s. and in L2

to a limit whose second moment is at most ϵ. Since |f2(Xn)| ≤ g(Xn), it follows that

both E
[
lim supn→∞ f2(Xn)

2
]
and E

[
f2(Xn)

2
]
are at most ϵ. Now transience implies that

f1(Xn) → 0 a.s. and (by the bounded convergence theorem) E
[
f1(Xn)

2
]
→ 0 as n → ∞.

Therefore, it follows that E
[
lim supn→∞ fD0(Xn)

2
]
≤ ϵ and lim supn→∞ E

[
fD0(Xn)

2
]
≤ ϵ.

Since ϵ was arbitrary, ⟨fD0(Xn)⟩ must tend to 0 a.s. and in L2. This completes the proof.

◀

§9.4. Planar Graphs and Hyperbolic Graphs.

There is a surprising phase transition between dimensions 2 and 3 in hyperbolic space

Hd: currents are not unique for graphs that are roughly isometric to H2, but for d ≥ 3,

currents are unique for graphs that are roughly isometric to Hd. We first treat the case of

H2. It turns out that this non-uniqueness of currents is vastly more general: it holds for

virtually all transient planar graphs!

Theorem 9.12. (Transient Planar Networks Have Non-Unique Currents) Sup-

pose that G is a transient planar network. Let π(x) denote the sum of the conductances of

the edges incident to x. If π(•) is bounded, then currents are not unique.

This theorem is due to Benjamini and Schramm (1996a, 1996c). For simplicity, we

will assume from now on that G is a proper simple plane transient network all

of whose faces have a finite number of sides. Since we can always add edges of

conductance 0, the last assumption here does not lose any generality.

To prove Theorem 9.12, we show that in some sense, random walk on G is like Brow-

nian motion in the hyperbolic disc. Benjamini and Schramm showed this in two geometric

senses: one used circle packing (1996a) and the other used square tiling (1996c). We will

show this in a combinatorial sense that is essentially the same as the approach with square

tiling.
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Our first goal is to establish a (polar) coordinate system on V. Fix a vertex o ∈ V;

this, of course, will be our origin. We will use voltages and currents to assign radii and

angles to the other vertices. Let io be the unit current flow on G from o to ∞ and let v be

the voltage function that is 0 at o and 1 at ∞, i.e., v(x) is the probability that a random

walk started at x will never visit o. Note that the voltage function corresponding to io is

not v but rather E (io)(1− v).

Recall our conventions for plane dual graphs from Section 9.2. Define i×o (e
†) := io(e).

Now any face of G† contains a vertex of G in its interior. If i×o is summed counterclockwise

around a face of G† surrounding x, then we obtain d∗io(x), which is 0 unless x = o, in

which case it is 1. Since any cycle in G† can be written as a sum of cycles surrounding

faces, it follows that the sum of i×o along any cycle is an integer. Therefore, we may define

α:G† → R/Z by picking any vertex o† ∈ G† and, for x† ∈ V(G†), setting α(x†) to be the

sum (mod 1) of i×o along any path in G† from o† to x†.

We now have the essence of the polar coordinates on V, with v giving the radial

distance and α giving the angle; however, α is defined on V†, not on V. In fact, we prefer

to assign to each x ∈ V an arc J(x) of angles in order to get all angles of R/Z. To do this,

let Out(x) :=
{
e ; e− = x, io(e) > 0

}
and In(x) :=

{
e ; e+ = x, io(e) > 0

}
. For example,

In(o) is empty.

Lemma 9.13. For every x ∈ V, the sets Out(x) and In(x) do not interleave, i.e., their

union can be ordered counterclockwise so that no edge of In(x) precedes any edge of Out(x).

Proof. Consider any x and any two edges ⟨y, x⟩, ⟨z, x⟩ ∈ In(x). We have v(y) < v(x) and

v(z) < v(x) by definition of In(x). By Corollary 3.3, there are paths from o to y and o to

z using only vertices with v < v(x). Extend these paths to x by adjoining the edges ⟨y, x⟩
and ⟨z, x⟩, respectively. These two paths from o to x bound one or more regions in the

plane. By the maximum principle, any vertices inside these regions also have v < v(x). In

particular, there can be none that are endpoints of edges in Out(x). This implies what we

want. ◀

If J(e) denotes the closed counterclockwise arc on R/Z from α
(
(e†)−

)
to α

(
(e†)+

)
,

then we let

J(x) :=
∪

e∈Out(x)

J(e) .

By Lemma 9.13, we also have J(x) =
∪
e∈In(x) J(e) for x ̸= o.

This assignment x 7→ J(x) of arcs to vertices gives a nice collection of “rays”: Consider

some ϑ not in the range of α. If ϑ ∈ J(e) for some e ∈ In(x), then there is exactly one

e ∈ Out(x) with ϑ ∈ J(e) by Exercise 3.1. Thus, there is a unique infinite path Pϑ in G
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starting at o and containing only vertices x with ϑ ∈ J(x). Such a path corresponds to

a radial line in the hyperbolic disc. We claim that for every edge e with io(e) > 0, the

Lebesgue measure of {ϑ ; e ∈ Pϑ} is the length of J(e), i.e., io(e). Indeed, consider the

flow ϕ defined to be the expectation of the path Pϑ when ϑ is chosen uniformly at random

in R/Z, just as we created flows from random paths in Section 2.5. Then ϕ is a unit flow

from o and 0 ≤ ϕ(e) ≤ io(e) when io(e) > 0. Therefore, E (ϕ) ≤ E (io), yet i0 has the

minimum energy among all unit flows from o (Proposition 2.12). Hence ϕ = io, which

implies our claim.

We illustrate these coordinates for the edge graph G of the (2,3,7)-triangle tessellation

of the hyperbolic plane, i.e., the dual of the Cayley graph shown in Figure 6.1. This

embedding of G is shown in Figure 9.1; in the left-hand part, each edge of G corresponds

to an annular region, while each vertex of G corresponds to a collection of adjacent arcs.

This is a little confusing, so to make it look like a standard graph, we can place a vertex

in the middle of the arc collection to which it corresponds; this gives the right-hand part

of Figure 9.1.

Figure 9.1. The polar embeddings of the (2,3,7)-triangle tessellation of the hyperbolic plane.

We can also illustrate the coordinates with the square lattice. Although the square

lattice is recurrent, if we make the conductance of each edge ⟨x, y⟩ equal to the maximum

of the distance of x and y to the origin, then it becomes transient. The polar embeddings

of this network are shown in Figure 9.2.

The “rays” Pϑ that we have defined above go from the origin to “radius” 1:
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Figure 9.2. The polar embeddings of the distance-weighted square lattice.

Lemma 9.14. For almost every ϑ ∈ R/Z in the sense of Lebesgue measure, sup{v(x) ; x ∈
Pϑ} = 1.

Proof. Let h(ϑ) := sup{v(x) ; x ∈ Pϑ}. Then h ≤ 1 everywhere. Also,∫
R/Z

h(ϑ) dϑ =

∫
R/Z

∑
e∈Pϑ

|dv(e)| dϑ =
∑

io(e)>0

|dv(e)|io(e) = 1

since |dv(e)| = io(e)r(e)/E (io) (recall that v is not exactly the voltage function correspond-

ing to io). Therefore, h = 1 a.e. ◀

It follows that we can go the other way and assign a vertex to a point in the unit disc:

For 0 ≤ ρ < 1 and for a.e. ϑ, Lemma 9.14 allows us to define x(ρ, ϑ) as the vertex x ∈ Pϑ
where v(x) ≤ ρ and v(x) is maximum. We now come to the key calculation made possible

by our coordinate system.

Lemma 9.15. For every f ∈ D,

f(ϑ) := lim
ρ↑1

f
(
x(ρ, ϑ)

)
exists for Lebesgue-almost every ϑ and satisfies

∥f∥L1 ≤
√
1 + E (io)∥f∥D .

Proof. The Cauchy-Schwarz inequality yields the bound∫
R/Z

∑
e∈Pϑ

|df(e)| dϑ =
∑

io(e)>0

|df(e)|io(e) ≤ ∥df∥c∥io∥r <∞ ,
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whence the integrand is finite a.e. This proves that

lim
ρ↑1

f
(
x(ρ, ϑ)

)
= f(o)− lim

ρ↑1

∑
e∈Pϑ,

v(e+)≤ρ

df(e)

exists a.e. and has L1 norm at most

|f(o)|+ ∥df∥c∥io∥r ≤
√
1 + E (io)∥f∥D

by the Cauchy-Schwarz inequality. ◀

▷ Exercise 9.9.

With f ∈ D and f defined as in Lemma 9.15, show that
∥∥f(x(ρ, •))− f

∥∥
L1 → 0 as ρ ↑ 1.

If f has finite support, then of course f ≡ 0. Since the map f 7→ f from D to

L1 is continuous by Lemma 9.15, it follows that f = 0 a.e. for f ∈ D0. Therefore, if

f = fD0
+ fHD is the Royden decomposition of f (see Exercise 9.6(f)), we have f = fHD

a.e. To show that HD ̸= R, then, it suffices to show that there is a Dirichlet function f

with f not an a.e. constant. An evident candidate for such an f is the angle function, α.

This doesn’t quite work since α is defined on V† rather than on V and since, moreover, α

takes values in R/Z, so we make the following modifications. Let Fx be any face of G with

x as one of its vertices. For ϑ ∈ R/Z, let |ϑ| denote the distance of (any representative of)

ϑ to the integers. Set ψ(x) := |α(Fx)|.

Lemma 9.16. If π(•) is bounded, then ψ ∈ D.

Proof. Let π ≤ M . Given adjacent vertices x, y in G,

there is a path of edges e†1, . . . , e
†
j in G† from Fx to Fy

with each ek incident to either x or y (see Figure 9.3).

Therefore,

dψ(x, y)2 ≤ |α(Fx)− α(Fy)|2 ≤

(
j∑

k=1

|io(ek)|

)2

≤
j∑

k=1

io(ek)
2r(ek)

j∑
k=1

c(ek)

≤ 2M
∑

e−∈{x,y}

io(e)
2r(e)

by the Cauchy-Schwarz inequality. Rewrite this as

 

 

 

  

 x

y

Fx

Fy

Figure 9.3.
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dψ(e)2 ≤M
∑
e′∼e±

io(e
′)2r(e′)

for every edge e, where e′ ∼ e± denotes that e′ is incident to at least one of the endpoints

of e, including the possibility that e′ = e. (Both orientations of e′ are included, which is

why we lost a factor of 2.) It follows that

D(ψ) =
1

2

∑
e∈E

dψ(e)2c(e) ≤ M

2

∑
e∈E

∑
e′∼e±

io(e
′)2r(e′)c(e)

=
M

2

∑
e′∈E

io(e
′)2r(e′)

∑
e∼e′±

c(e) ≤ 4M2E (io) <∞ . ◀

Since α(Fx) ∈ J(x) and J(x) has length tending to zero as the distance from x to o

tends to infinity (by the first inequality of (2.15)), we have that limρ↑1 ψ
(
x(ρ, ϑ)

)
= |ϑ|

for every ϑ for which sup{v(x) ; x ∈ Pϑ} = 1, i.e., for a.e. ϑ. Thus, ψ is the sought-for

Dirichlet function with ψ not an a.e. constant. This proves Theorem 9.12.

We can use our polar coordinates to prove another wonderful result. By Theorem 9.11,

ψ(Xn) = |α(FXn)| converges a.s. when π(•) is bounded. Since the length of J(Xn) → 0

a.s. and J(Xn) ∩ J(Xn+1) ̸= ∅, it follows that α(FXn) also converges a.s. Benjamini and

Schramm (1996c) showed that its limiting distribution is Lebesgue measure. Of course,

the choice of faces Fx has no effect since the lengths of the intervals J(Xn) tend to 0 a.s.

This angle convergence is what we meant by saying that random walk on G is similar to

Brownian motion in the disc.

Theorem 9.17. (Benjamini and Schramm, 1996c) If G is a transient simple plane

network with π(•) bounded, then J(Xn) tends to a point on the circle R/Z a.s. The distri-

bution of the limiting point is Lebesgue measure when X0 = o.

Proof. That J(Xn) tends to a point a.s. follows from the a.s. convergence of α(FXn). To

say that the limiting distribution is Lebesgue measure is to say that for any arc A,

Po[limα(FXn) ∈ A] =

∫
1A(ϑ) dϑ . (9.10)

This is implied by the statement

Eo[lim f(Xn)] =

∫
f(ϑ) dϑ (9.11)

for every Lipschitz function f on R/Z, where f is defined by

f(x) := f
(
α(Fx)

)
. (9.12)
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The reason is that if (9.11) holds for all Lipschitz f , then it also holds for 1A since we can

sandwich 1A arbitrarily closely by Lipschitz functions. This sandwiching gives∫
1A◦(ϑ) dϑ ≤ Po[lim1A◦

(
α(FXn)

)
] ≤ Po[lim1Ā

(
α(FXn)

)
] ≤

∫
1Ā(ϑ) dϑ ,

where A◦ is the interior of A and Ā is the closure of A. In particular, the chance that

limα(FXn) is an endpoint of A is 0, so that (9.10) holds.

To show (9.11), note that the same arguments as we used to prove Lemma 9.16 and

Theorem 9.12 yield that all f as in (9.12) are Dirichlet functions and

lim
ρ↑1

f
(
x(ρ, ϑ)

)
= f(ϑ)

for all ϑ for which sup{v(x) ; x ∈ Pϑ} = 1. Now for any f ∈ D, Theorem 9.11 gives that

Eo[lim f(Xn)] = Eo[lim fHD(Xn)] = limEo[fHD(Xn)] = fHD(o) ,

where we use the convergence in L1 in the middle step. On the other hand, Exercise 9.9

gives ∫
f(ϑ) dϑ = lim

ρ↑1

∫
f
(
x(ρ, ϑ)

)
dϑ = lim

ρ↑1

∫ [
f(o)−

∑
e∈Pϑ,

v(e+)≤ρ

df(e)
]
dϑ

= f(o)− (∇f, io)r = f(o)− fD0(o) = fHD(o)

by Exercise 9.6(g). Comparing these two results gives (9.11). ◀

We may now completely analyze which graphs roughly isometric to a hyperbolic space

have unique currents.

Theorem 9.18. If G is a bounded-degree graph that is roughly isometric to Hd for some

d ≥ 2, then currents are unique on G iff d ≥ 3.

Proof. That graphs roughly isometric to Hd are transient was established in Theorem 2.19;

an example appeared in Figure 2.4. Thus, by Theorems 9.12 and 9.9, they do not have

unique currents when d = 2.

Suppose now that d ≥ 3. By Theorem 9.9, it suffices to prove unique currents for a

particular graph. Choose an origin o ∈ Hd. For each n ≥ 1, choose a maximal 1-separated

set An in the sphere Sn of radius n centered at o. Let G := (V,E) with V :=
∪
nAn and E

the set of pairs of vertices with mutual distance at most 3. Clearly G is roughly isometric
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to Hd. Consider the subgraphs Wn of G induced on An. We claim that they satisfy the

hypotheses of Theorem 9.7.

Elementary hyperbolic geometry shows that Sn is isometric to a Euclidean sphere of

radius rn := αne
βnn for some numbers αn and βn (depending on d) that have positive finite

limits as n → ∞. Let RD(Wn) be the effective resistance diameter of Wn. The random

path method shows, just as in the proof of Proposition 2.15, that RD(Wn) is comparable

to log rn if d = 3 and to a constant if d ≥ 4. Therefore, we have RD(Wn) ≤ Cn for some

constant C. Theorem 9.7 completes the proof. ◀

§9.5. Random Walk Traces.

Consider the network random walk on a locally finite transient network (G, c) when it

starts from some fixed vertex o. The trace of the random walk is the random set of edges

traversed at least once by the random walk. How big can the trace be? We show that

it cannot be very large in that the trace forms a.s. a recurrent graph (for simple random

walk). This result is due to Benjamini, Gurel-Gurevich, and Lyons (2007), from which this

section is taken.

Our proof will demonstrate the following stronger results. Let N(x, y) denote the

number of traversals of the edge [x, y].

Theorem 9.19. (Recurrence of Traces) The network
(
G,E[N ]

)
is recurrent. The

networks (G,N) and (G,1[N>0]) are a.s. recurrent.

By Exercise 2.94, if
(
G,E[N ]

)
is recurrent, then so a.s. is (G,N). Furthermore,

Rayleigh’s Monotonicity Principle implies that when (G,N) is recurrent, so is (G,1[N>0]).

Thus, it remains to prove that
(
G,E[N ]

)
is recurrent.

Recall from Proposition 2.12 that the effective resistance from o to infinity in the

network (G, c) equals

R := G (o, o)/π(o) . (9.13)

Let the voltage function be v(•) throughout this section, where v(o) = 1 and v(•) is 0 at

∞. Then v(x) is the probability of ever visiting o for a random walk starting at x.

Note that

E[N(x, y)] = G (o, x)p(x, y) + G (o, y)p(y, x) =
(
G (o, x)/π(x) + G (o, y)/π(y)

)
c(x, y)

and, by Exercise 2.1 and Proposition 2.12,

π(o)G (o, x) = π(x)G (x, o) = π(x)v(x)G (o, o) .
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Thus, we have (from the definition (9.13))

E[N(x, y)] = Rc(x, y)[v(x) + v(y)] (9.14)

≤ 2Rmax
{
v(x), v(y)

}
c(x, y) . (9.15)

In a finite network (H, c), we write C (A ↔ z;H, c) for the effective conductance

between a subset A of its vertices and a vertex z. Clearly, A ⊂ B ⊂ V implies that

C (A ↔ z;H, c) ≤ C (B ↔ z;H, c). The effective conductance to infinity from an infinite

set A of vertices is defined to be the supremum of the effective conductance from B to

infinity over all finite subsets B ⊂ A.

Lemma 9.20. Let (H, c) be a finite network and a, z ∈ V(H). Let vH be the voltage

function that is 1 at a and 0 at z. For 0 < t < 1, let At be the set of vertices x with

vH(x) ≥ t. Then C (At ↔ z;H, c) ≤ C (a ↔ z;H, c)/t. More generally, for every A ⊂
V(H) \ {z}, we have

C (A↔ z;H, c) ≤ C (a↔ z;H, c)

min
(
vH↾A

) .

Proof. It is easy to prove the result when the voltages at all the internal boundary vertices

of At are equal to t. To compare to this case, we subdivide edges as follows. If any edge

(x, y) is such that vH(x) > t and vH(y) < t, then subdividing the edge (x, y) with a vertex

z by giving resistances

r(x, z) :=
vH(x)− t

vH(x)− vH(y)
r(x, y)

and

r(z, y) :=
t− vH(y)

vH(x)− vH(y)
r(x, y)

will result in a network such that vH(z) = t while no other voltages change (this is the

series law). Doing this for all such edges gives a possibly new graph H ′ and a new set

of vertices A′
t ⊇ At whose internal vertex boundary is a set W ′

t on which the voltage is

identically equal to t. We have C (At ↔ z;H, c) = C (At ↔ z;H ′, c) ≤ C (A′
t ↔ z;H ′, c).

Now C (A′
t ↔ z;H ′, c) = C (a ↔ z;H, c)/t since the current flowing in (H ′, c) from a to

z induces a current from A′
t to z with strength C (a ↔ z;H, c) and voltage difference t.

Therefore, C (At ↔ z;H, c) ≤ C (a↔ z;H, c)/t, as desired.

For a general A, let t := min vH↾A. Since A ⊂ At, we have C (A↔ z;H, c) ≤ C (At ↔
z;H, c). Combined with the inequality just reached, this yields the final conclusion. ◀

For t ∈ (0, 1), let Vt := {x ∈ V ; v(x) < t}. Let Wt be the external vertex boundary of

Vt, i.e., the set of vertices outside Vt that have a neighbor in Vt. Write Gt for the subgraph

of G induced by Vt ∪Wt.
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We will refer to the conductances c as the original ones and the conductances E[N ]

as the new ones for convenience.

Lemma 9.21. The effective conductance from Wt to ∞ in the network
(
Gt,E[N ]

)
is at

most 2.

Proof. Again, we want to compare to the case where v↾Wt ≡ t, so we subdivide. If any edge

(x, y) is such that v(x) > t and v(y) < t, then subdividing the edge (x, y) with a vertex z

as in the proof of Lemma 9.20 and consequently adding z to Wt has the effect of replacing

the edge (x, y) by an edge (z, y) with conductance c(z, y) = c(x, y)[v(x)−v(y)]/[t−v(y)] >
c(x, y) in the original network and, by (9.14), with larger conductance in the corresponding

new network:

E[N(z, y)] = Rc(z, y)[t+ v(y)] = Rc(z, y)[t− v(y) + 2v(y)]

= Rc(x, y)[v(x)− v(y)] + 2Rc(z, y)v(y)

> Rc(x, y)[v(x)− v(y)] + 2Rc(x, y)v(y) = E[N(x, y)] .

Since raising edge conductances clearly raises effective conductance, it suffices to prove

the lemma in the case that v(x) = t for all x ∈ Wt. Thus, we assume this case for the

remainder of the proof.

Suppose that ⟨(Hn, c↾E(Hn)) ; n ≥ 1⟩ is an increasing exhaustion of (G, c) by finite

induced networks that include o. Identify the boundary (in G) of Hn to a single ver-

tex, zn. Let vn be the corresponding voltage functions with vn(o) = 1 and vn(zn) = 0.

Then C (o ↔ zn;Hn, c) ↓ 1/R and vn(x) ↑ v(x) as n → ∞ for all x ∈ V(G). Let A be

a finite subset of Wt. By Lemma 9.20, as soon as A ⊂ V(Hn), we have that the effec-

tive conductance from A to zn in Hn is at most C (o ↔ zn;Hn, c)/min{vn(x) ; x ∈ A}.
Therefore by Rayleigh’s Monotonicity Principle, C (A ↔ ∞;Gt, c) ≤ C (A ↔ ∞;G, c) =

limn→∞ C (A↔ zn;Hn, c) ≤ 1/(Rt). Since this holds for all such A, we have

C (Wt ↔ ∞;Gt, c) ≤ 1/(Rt) . (9.16)

By (9.15), the new conductances on Gt are obtained by multiplying the original con-

ductances by factors that are at most 2Rt. Combining this with (9.16), we obtain that the

new effective conductance from Wt to infinity in Gt is at most 2. ◀

When the complement of Vt is finite for all t, which is the case for “most” networks,

this completes the proof by the following lemma (and by the fact that
∩
t>0 Vt = ∅):

Lemma 9.22. If H is a transient locally finite network, then for all m > 0, there exists

a finite subset K ⊂ V(H) such that for all finite K ′ ⊇ K, the effective conductance from

K ′ to infinity is more than m.
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▷ Exercise 9.10.

Prove this lemma.

Even when the complement of Vt is not finite for all t, this is enough to show that the

network (G,N) is a.s. recurrent: If Xn denotes the position of the random walk on (G, c)

at time n, then v(Xn) → 0 a.s.: it converges a.s. since it is a non-negative supermartingale,

and its expectation tends to the probability that the random walk visits o infinitely often,

i.e., to 0. Thus, the path is a.s. contained in Vt after some time, no matter the value of

t > 0. Let Bn be the ball of radius n about o. By Lemma 9.22, if (G,N) is transient with

probability p > 0, then C (Bn ↔ ∞;G,N) tends in probability, as n → ∞, to a random

variable that is infinite with probability p. In particular, this effective conductance is at

least 6/p with probability at least p/2 for all large n. Fix n with this property. Let t > 0

be such that Vt∩Bn = ∅. Write D for the (random finite) set of endpoints of edges e /∈ Gt

with N(e) > 0. Then C (Wt ↔ ∞;Gt, N) = C (Wt ∪D ↔ ∞;G,N) ≥ C (Bn ↔ ∞;G,N).

However, in combination with Exercise 2.67, this implies that C
(
Wt ↔ ∞;Gt,E[N ]

)
≥

E
[
C (Wt ↔ ∞;Gt, N)

]
≥ (p/2)(6/p) = 3, which contradicts Lemma 9.21.

We now complete the proof that
(
G,E[N ]

)
is recurrent in general. This depends on

the following extension of Lemma 9.22. This lemma will approximate a current flow by a

flow that is 0 on many edges that we’d prefer to ignore.

Lemma 9.23. Let (H, c) be a transient locally finite network, o ∈ V(H), and B ⊂ V(H)

be such that o ∈ B, the induced subgraph H↾B is connected, and the network random walk

on H starting at o visits B only finitely many times a.s. Let i be the unit current flow

on H from o to ∞ and ϵ > 0. Then there is a unit flow θ on H from o to ∞ such that

θ(e) ̸= 0 for only finitely many edges e incident to B and∑
e∈E(H)\(B×B)

θ(e)2r(e) ≤ ϵE (i) +
∑

e∈E(H)\(B×B)

i(e)2r(e) .

Proof. The idea is to take θ to be the unit current flow corresponding to the random walk

conditioned not to visit a very large subset of B that is very far from o. Let H1 := H↾B.

Let B′ ⊂ B be finite with B′ ∋ o and∑
e∈E(H1)∩(B′×B′)

i(e)2r(e) ≥ (1− ϵ/3)
∑

e∈E(H1)

i(e)2r(e) . (9.17)

Given D ⊂ B, let hD(x) be the probability that when the random walk on H starts

from x, it never visits D. Since the random walk visits B only finitely often a.s., there

is some (possibly empty) set D ⊂ B \ B′ such that B \ D is finite and hD(x) ≥ 1 − δ
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for all x ∈ B′, where we will choose δ > 0 later. Enlarge D if necessary to h−1
D (0) so

that hD(x) > 0 for all x /∈ D. Then hD is positive and harmonic off D, so by the

solution to Exercise 2.30, the random walk conditioned never to visit D corresponds to the

conductances c′(e) := c(e)hD(e
−)hD(e

+) on the graph K := H↾
(
V(H) \D

)
. Let θ be the

unit current flow on (K, c′) from o to ∞. We claim that θ satisfies the desired conclusions.

It is clear that θ(e) ̸= 0 for only finitely many edges e incident to B, so it remains to verify

the inequality.

Write πH(o) :=
∑
e∼o c(e) and πK(o) :=

∑
e∼o c

′(e). Since c′ ≤ c everywhere, we may

choose D so that πK(o)/πH(o) ∈ (1 − δ, 1]. We may couple random walks on (K, c′) and

on (H, c) as follows: if the random walk on H never visits D, then the random walks are

the same; otherwise, the random walks are independent. Thus, the random walks starting

at o are identical with probability at least hD(o) ≥ 1−δ. Therefore, the escape probability
from o in K differs from the escape probability in H by at most δ. It follows from (2.4)

that E ′(θ)/E (i) ∈ (1− ϵ/3, 1+ ϵ/3) for an appropriate choice of δ, where E denotes energy

for the conductances c and E ′ denotes energy for the conductances c′.

Now c(e) ≥ c′(e) ≥ (1 − δ)2c(e) for e ∈ E(K) ∩ (B′ × B′). If v denotes the voltage

function on H that is 1 at o and 0 at ∞, and v′ denotes the similar voltage function

on K, then |v′(x) − v(x)| ≤ δ for all x ∈ B′ (by the same coupling as we used in the

previous paragraph, except starting from x this time). Since the voltage function for the

unit current flow θ is E ′(θ)v′, we have θ(e)2r′(e) = E ′(θ)2[v′(e−)− v′(e+)]2c′(e) for every

edge e. A similar relation holds for i on H. Therefore, we may choose δ so that∑
e∈E(K)∩(B′×B′)

θ(e)2r′(e) ≥
∑

e∈E(K)∩(B′×B′)

i(e)2r(e)− ϵE (i)/3 .

We may now put together all our inequalities to achieve the conclusion:∑
e∈E(H)\(B×B)

θ(e)2r(e) ≤
∑

e∈E(H)\(B′×B′)

θ(e)2r(e)

≤
∑

e∈E(H)\(B′×B′)

θ(e)2r′(e)

= E ′(θ)−
∑

e∈E(K)∩(B′×B′)

θ(e)2r′(e)

≤ (1 + ϵ/3)E (i)−
∑

e∈E(K)∩(B′×B′)

i(e)2r(e) + ϵE (i)/3

≤ (1 + ϵ/3)E (i)− (1− ϵ/3)
∑

e∈E(H1)

i(e)2r(e) + ϵE (i)/3

[by (9.17)]

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



Chap. 9: Infinite Electrical Networks and Dirichlet Functions 366

≤ ϵE (i) +
∑

e∈E(H)\(B×B)

i(e)2r(e) . ◀

Proof of Theorem 9.19. The function x 7→ v(x) has finite Dirichlet energy for the original

network, hence for the new (since conductances are multiplied by a bounded factor). As-

sume (for a contradiction) that the new random walk is transient. Then by Theorem 9.11,

⟨v(Xn)⟩ converges a.s., where v is the original voltage function and ⟨Xn⟩ is the new random

walk. Consider t > 0. By Exercise 2.95, the complement of Vt induces a recurrent network

for the original conductances; since the new conductances are at most 2R times the original

ones by (9.15), this recurrence holds also for the new conductances. By Exercise 2.78, it

follows that ⟨v(Xn)⟩ a.s. cannot have a limit > t. Thus, it converges to 0 a.s.

We can therefore apply Lemma 9.23 with H being
(
G,E[N ]

)
and B being the com-

plement of Vt. Here, we choose t so that the unit current flow i on H from o to ∞ satisfies∑
e∈E(Gt)

i(e)2/E[N ] < ϵ. We obtain in this way a unit flow θt from o to ∞ that is non-0

on only finitely many edges incident to B, whence θt restricts to a unit flow on Gt from

(a finite subset of) Wt to ∞. The energy of this restriction is at most ϵR(o ↔ ∞;H) + ϵ

by Lemma 9.23. For sufficiently small ϵ, this contradicts Lemma 9.21. ◀

§9.6. Notes.

Propositions 9.1 and 9.2 go back in some form to Flanders (1971) and Zemanian (1976).
Equation (9.6) is an elementary form of the Hodge decomposition of L2 1-cochains. To see

this, add an oriented 2-cell with boundary θ for each cycle θ in some spanning set of cycles.
Proposition 9.4 is classical in the case of a finite plane network and its dual. The finite case

can also be proved using Kirchhoff’s laws and Ohm’s law, combined with the Max-Flow Min-Cut
Theorem: The cycle law for i implies the node law for i†, while the node law for i implies the
cycle law for i†.

Theorem 9.7 is due to the authors and is published here for the first time. Thomassen (1989)
proved the weaker result for (unweighted) graphs where RD(A) is replaced by the diameter of A.

The product with V := V1×V2 and E := {((x1, x2), (y1, y2)) ; (x1, y1) ∈ E1 and (x2, y2) ∈ E2}
is called the categorical product . Terminology for graph products is not universal; other terms
include “sum” for what we called the cartesian product and “product” for the categorical product.

The proof we have given of Theorem 9.9 was communicated to us by O. Schramm.
Cayley graphs of infinite Kazhdan groups have unique currents: see Bekka and Valette (1997).
Ancona, Lyons, and Peres (1999) also prove a crossing inequality related to Theorem 9.11.
Our proof of Theorem 9.12 was influenced by the proof of a related result by Kenyon (1998).

The tiling associated by Benjamini and Schramm (1996c) to a transient plane network is the
following. We use the notation at the beginning of Section 9.4. Let R := R(o↔ ∞). If io(e) > 0,
then let S(e) := J(e) × [Rv(e−), Rv(e+)] in the cylinder R/Z× [0, R]. Each such S(e) is a square
and the set of all such squares tiles R/Z × [0, R]. For the (2,3,7)-triangle tessellation of the
hyperbolic place, the result is shown in Figure 9.4. This works on finite networks too, of course.
For example, a square tiling of a cylinder arising from a 21 × 21 grid in the plane is shown in
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Figure 9.4. Tilings of cylinders by squares corresponding to the (2,3,7)-
triangle tessellation of the hyperbolic plane on the left and the 21× 21 grid
with current from its center vertex to its boundary vertices on the right.

Figure 9.4. When current flows from one vertex to another on the same face (such as the outer
face), then one can unroll the cylinder to a rectangle, as in Figure 9.5. The polar embeddings of
large pieces of the square lattice have an interesting structure, as shown in Figure 9.6. See Section
II.2 of Bollobás (1998) for more on square tilings, following the original work of Brooks, Smith,
Stone, and Tutte (1940). There are also connections to Riemann’s mapping theorem; see Cannon,
Floyd, and Parry (1994).

▷ Exercise 9.11.

We have seen that in square tilings of cylinders corresponding to planar graphs, the squares
correspond to edges and horizontal segments correspond to vertices. What corresponds to the
faces of the planar graphs?

Theorem 9.18 also follows immediately from a theorem of Holopainen and Soardi (1997),
which says that the property HD = R is preserved under rough isometries between graphs and
manifolds, together with a theorem of Dodziuk (1979), which says that Hd satisfies HD = R iff
d ≥ 3.

The question of existence of nonconstant bounded harmonic functions is very important, but
we only touch on it. The following is due to Blackwell (1955) and later generalized by Choquet
and Deny (1960) and many others. Among the significant papers on the topic are Avez (1974),
Derriennic (1980), Kăımanovich and Vershik (1983), and Varopoulos (1985b). See, e.g., the survey
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Figure 9.5. A tiling of a rectangle by squares corresponding to the 10×10
grid with current from one corner vertex to its opposite corner vertex.

Figure 9.6. The polar embeddings of a 41 × 41 square
grid graph from its center vertex to its boundary vertices.

by Kaimanovich (2001) and the brief account in Section 13.8. We say a function f is µ-harmonic
if for all x, we have f(x) =

∑
µ(g)>0 µ(g)f(xg).

Theorem 9.24. If G is an abelian group and µ is a probability measure on G with countable
support that generates G, then there are no nonconstant bounded µ-harmonic functions.

Proof. (Due to Dynkin and Maljutov (1961).) Let f be a harmonic function. For any element g
of the support of µ, the function wg(x) := f(x) − f(xg) is also harmonic because G is abelian.
If f is not constant, then for some g, the function wg is not identically 0, whence it takes, say, a
positive value. Let M := supwg. If M = ∞, then f is not bounded. Otherwise, for any x, we
have

wg(x) =
∑

µ(h)>0

µ(h)wg(xh) ≤M(1 − µ(g)) + µ(g)wg(xg) ,
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which is to say that
M − wg(xg) ≤ (M − wg(x))/µ(g) .

Iterating this inequality gives for all n ≥ 1,

M − wg(xg
n) ≤ (M − wg(x))/µ(g)n .

Choose x so that M − wg(x) < Mµ(g)n/2. Then wg(xg
k) > M/2 for k = 1, . . . , n, whence

wg(x) + wg(xg) + · · · + wg(xg
n) = f(x) − f(xgn+1) > M(n+ 1)/2. Since n is arbitrary, f is not

bounded. ◀
By Exercise 9.43, if a graph has no non-constant bounded harmonic functions, then it also

has no non-constant Dirichlet harmonic functions. Thus, Theorem 9.24 strengthens Corollary 9.10
for abelian groups.

▷ Exercise 9.12.
Give another proof of Theorem 9.24 using the Krĕın-Milman theorem.

▷ Exercise 9.13.
Give another proof of Theorem 9.24 using the Hewitt-Savage theorem.

▷ Exercise 9.14.
Complete the following alternative proof of Theorem 9.24. Let f be a bounded µ-harmonic
function. Define

un(x) :=
∑

y1,...,yn

(
f(x+

n∑
i=1

yi)− f(x+

n∑
i=2

yi)

)2 n∏
i=1

µ(yi) .

(a) Show that un(x) ≤ un+1(x).
(b) Show that

un(x) =
∑

y1,...,yn

f(x+

n∑
i=1

yi)
2
n∏
i=1

µ(yi) −
∑

y2,...,yn

f(x+

n∑
i=2

yi)
2
n∏
i=2

µ(yi) .

(c) Show that
∑
n un(x) <∞.

(d) Show that u1(x) = 0.

▷ Exercise 9.15.
Show that if G is an abelian group and µ is a probability measure on G with countable support
that generates G, then there are no nonconstant µ-harmonic functions h whose growth is sublinear
in distance, i.e., such that h(x)/dist(o, x) → 0 as dist(o, x) → ∞.

Benjamini, Gurel-Gurevich, and Lyons (2007) suggest that a Brownian analogue of Theo-
rem 9.19 may be true, that is, given Brownian motion on a transient Riemannian manifold, the
1-neighborhood of its trace is recurrent for Brownian motion. For background on recurrence in the
Riemannian context, see, e.g., Section 2.9. It would be interesting to prove similar theorems for
other processes. For example, consider the trace of a branching random walk on a graph G. Then
Benjamini, Gurel-Gurevich, and Lyons (2007) conjecture that almost surely the trace is recurrent
for branching random walk with the same branching law. Partial results have been proved by
Benjamini and Müller (2010).
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§9.7. Collected In-Text Exercises.

9.1. Calculate ieF and ieW in a regular tree.

9.2. Let Hn be increasing closed subspaces of a Hilbert space H and Pn be the orthogonal
projection on Hn. Let P be the orthogonal projection on the closure of

∪
Hn. Show that for all

u ∈ H, we have ∥Pnu− Pu∥ → 0 as n→ ∞.

9.3. Prove Proposition 9.2.

9.4. Show that the choice of path in the definition of the free and wired currents from a to z
does not influence their values.

9.5. Prove Proposition 9.4.

9.6. (a) Show that ∇D0 = ⋆.

(b) Show that D/R = D̃0/R⊕ HD/R, where D̃0 := D0 + R.

(c) Show that currents are unique iff D/R = D̃0/R.
(d) Show that ∥1 − D0∥2D = C (o ↔ ∞)/[1 + C (o ↔ ∞)], where o is the vertex used to define

the inner product on D.
(e) Show that G is recurrent iff 1 ∈ D0.
(f) (Royden Decomposition) Show that if G is transient, then every f ∈ D has a unique

decomposition f = g + h with g ∈ D0 and h ∈ HD. Note that this is not an orthogonal
decomposition.

(g) With the assumption and notation of part (f), show that g(x) = (∇f, ix)r and that g(x)2 ≤
D(f)G (x, x)/π(x), where ix is the unit current flow from x to infinity (from Proposition 2.12)
and G (•, •) is the Green function.

(h) Show that if G is transient, then ∇ : D0 → ⋆ is invertible with bounded inverse.

9.7. One can define the product of two networks in various ways. For example, given two networks
Gi = (Vi,Ei) with conductances ci (i = 1, 2), define the cartesian product G = (V,E) with
conductances c by V := V1 × V2,

E := {((x1, x2), (y1, y2)) ; (x1 = y1, (x2, y2) ∈ E2) or ((x1, y1) ∈ E1, x2 = y2)} ,

and

c((x1, x2), (y1, y2)) :=

{
c(x2, y2) if x1 = y1,
c(x1, y1) if x2 = y2.

Show that if Gi are infinite locally finite graphs with unit conductances, then G has unique
currents.

9.8. Let G be transient and let f ∈ D0. Show that there is a unique g ∈ D0 having minimal
energy such that g ≥ |f |. Show that this g is superharmonic, meaning that for all vertices x,

g(x) ≥ 1

π(x)

∑
y∼x

c(x, y)g(y) .

9.9. With f ∈ D and f defined as in Lemma 9.15, show that ∥f(x(ρ, •))− f∥L1 → 0 as ρ ↑ 1.

9.10. Prove Lemma 9.22.

9.11. We have seen that in square tilings of cylinders corresponding to planar graphs, the squares
correspond to edges and horizontal segments correspond to vertices. What corresponds to the faces
of the planar graphs?
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9.12. Give another proof of Theorem 9.24 using the Krĕın-Milman theorem.

9.13. Give another proof of Theorem 9.24 using the Hewitt-Savage theorem.

9.14. Complete the following alternative proof of Theorem 9.24. Let f be a bounded µ-harmonic
function. Define

un(x) :=
∑

y1,...,yn

(
f(x+

n∑
i=1

yi)− f(x+

n∑
i=2

yi)

)2 n∏
i=1

µ(yi) .

(a) Show that un(x) ≤ un+1(x).
(b) Show that

un(x) =
∑

y1,...,yn

f(x+
n∑
i=1

yi)
2
n∏
i=1

µ(yi) −
∑

y2,...,yn

f(x+
n∑
i=2

yi)
2
n∏
i=2

µ(yi) .

(c) Show that
∑
n un(x) <∞.

(d) Show that u1(x) = 0.

9.15. Show that if G is an abelian group and µ is a probability measure on G with countable
support that generates G, then there are no nonconstant µ-harmonic functions h whose growth is
sublinear in distance, i.e., such that h(x)/dist(o, x) → 0 as dist(o, x) → ∞.

§9.8. Additional Exercises.

9.16. Let G be an infinite network exhausted by finite induced subnetworks ⟨Gn⟩. Form GW
n by

identifying the complement of Gn to a single vertex.
(a) Given θ ∈ ℓ2−(E, r), define f := d∗θ. Let in be the current on GW

n such that d∗in↾V(Gn) =
f↾V(Gn). Show that in → P⋆θ in ℓ2−(E, r).

(b) Let f : V → R and in be the current on GW
n such that d∗in↾V(Gn) = f↾V(Gn). Show that

sup E (in) <∞ iff there is some θ ∈ ℓ2−(E, r) such that f = d∗θ.

9.17. Let G be a network and, if G is recurrent, z ∈ V. Let H be the Hilbert space of functions f
on V with

∑
x,y π(x)G (x, y)f(x)f(y) < ∞ and inner product ⟨f, g⟩ :=

∑
x,y π(x)G (x, y)f(x)g(y),

where G (•, •) is the Green function for random walk, absorbed at z if G is recurrent. Define the
divergence operator by div θ := π−1d∗θ. Show that div : ⋆ → H is an isometric isomorphism.

9.18. Let G be a transient network. Define the space H as in Exercise 9.17 and G , I, and P as
in Exercise 2.24. Show that I −P is a bounded operator from D0 to H with bounded inverse G .

9.19. Let G be a transient network. Show that if u ∈ D0 is superharmonic, then u ≥ 0.

9.20. Let G be a transient network and f ∈ HD. Show that there exist non-negative u1, u2 ∈ HD
such that f = u1 − u2.

9.21. Let u ∈ D. Show that u is superharmonic iff D(u) ≤ D(u+ f) for all non-negative f ∈ D0.

9.22. Show that if G is recurrent, then the only superharmonic Dirichlet functions are the con-
stants. Hint: If u is superharmonic, then use f := u − Pu in Exercise 9.16, where P is the
transition operator defined in Exercise 2.24. Use Exercise 2.59 to show that f = 0.
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9.23. Suppose that there is a finite set K of vertices such that G\K has at least two transient
components, where this notation indicates that K and all edges incident to K are deleted from
G. Show that G has a non-constant harmonic Dirichlet function.

9.24. Find the free and wired effective resistances between arbitrary pairs of vertices in regular
trees.

9.25. Let r and r′ be two assignments of resistances to a graph with r ≤ r′ everywhere. Let a, z
be two vertices in the graph. Show that RF(a↔ z; r) ≤ RF(a↔ z; r′) and that RW(a↔ z; r) ≤
RW(a↔ z; r′).

9.26. Let a and z be distinct vertices in a network. Show that the wired effective resistance
between a and z equals

min {E (θ) ; θ is a unit flow from a to z} ,

while the free effective resistance between a and z equals

min

{
E (θ) ; θ −

k∑
j=1

χej ∈ ♢

}

for any oriented path e1, . . . , ek from a to z.

9.27. Let G be a network with an induced exhaustion ⟨Gn⟩. Suppose that a, z ∈ V(Gn) for all n.
Show that the effective resistance between a and z in Gn is monotone decreasing with limit the
free effective resistance in G, while the effective resistance between a and z in GW

n is monotone
increasing with limit the wired effective resistance in G.

9.28. Let G be an infinite network and x, y ∈ V(G). Show that

RW(x↔ y) ≤ R(x↔ ∞) + R(y ↔ ∞) .

9.29. Let G be a finite plane network. In the notation of Proposition 9.4, show that the maximum
flow from a to z in G′ when the conductances are regarded as capacities is equal to the distance
between b and y in (G†)′ when the resistances are regarded as edge lengths.

9.30. Suppose that G is a plane graph with bounded degree and bounded number of sides of
its faces. Show that G is transient iff G† is transient. On the other hand, give an example of a
recurrent plane graph of bounded degree and with one end whose plane dual is transient.

9.31. Let G be transient, a ∈ V, and f(x) := G (x, a)/π(a). Show that f ∈ D0 and ∇f = ia, the
unit current flow from a to ∞.

9.32. Let BD denote the space of bounded Dirichlet functions with the norm ∥f∥ := ∥f∥∞+∥df∥c.
Show that BD is a commutative Banach algebra (with respect to the pointwise product) and that
BD ∩D0 is a closed ideal.

9.33. Let G be a network.
(a) Show that G is recurrent iff every [or some] star lies in the closed span of the other stars.
(b) Show that if G is transient, then the current flow from any vertex a to infinity corresponding

to unit voltage at a and zero voltage at infinity is the orthogonal projection of the star at a
on the orthocomplement of the other stars. (Here, the current flow is ia/E (ia).)
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9.34. Show that no transient tree has unique currents; use Exercise 2.47 instead of Theorem 9.12.

9.35. Let G be a recurrent network. Show that if θ ∈ ℓ2−(E, r) satisfies
∑
x |d

∗θ(x)| < ∞, then∑
x d

∗θ(x) = 0.

9.36. Show that ∥d(Pf)∥c ≤ ∥df∥c for all f ∈ D, where P is the transition operator defined in
Exercise 2.24.

9.37. Let (G, c) be an infinite network. Show that ΦE(G, c, π) > 0 iff ℓ2(V, π) = D0.

9.38. Let G be a transient network and ix be the unit current flow from x to infinity. Given
θ ∈ ℓ2−(E, r), define F (x) := (θ, ix)r. Show that F ∈ D0 and ∇F = P⋆θ.

9.39. Let G be a transient network and ix be the unit current flow from x to infinity. Show that
ix − iy = ix,yW for all x ̸= y ∈ V.

9.40. Let a ̸= z ∈ V.
(a) Show that if F ∈ D, then (∇F, ia,zF )r = F (a) − F (z).
(b) Show that if F ∈ D0, then (∇F, ia,zW )r = F (a) − F (z).

9.41. Let a and z be distinct vertices in a network. Show that the free effective conductance
between a and z equals

min {D(F ) ; F ∈ D, F (a) = 1, F (z) = 0} ,

while the wired effective conductance between a and z equals

min {D(F ) ; F ∈ D0, F (a) = 1, F (z) = 0} .

9.42. Let a and z be distinct vertices in a network. Show that the free effective conductance
between a and z equals

min

 ∑
e∈E1/2

c(e)ℓ(e)2

 ,

where ℓ is an assignment of non-negative lengths so that the distance from a to z is 1, while the
wired effective conductance between a and z equals

inf

 ∑
e∈E1/2

c(e)ℓ(e)2

 ,

where ℓ is an assignment of non-negative lengths so that the distance from a to z is 1 and so that
all but finitely many edges have length 0.

9.43. Show that the bounded harmonic Dirichlet functions are dense in HD.

9.44. Let G be an infinite graph and H be a finite graph. Consider the cartesian product graph
G×H.
(a) Show that every f ∈ HD(G × H) has the property that it does not depend on the second

coordinate, i.e., f(x, y) = f(x, z) for all x ∈ V(G) and all y, z ∈ V(H).
(b) Show that if e is an edge in G×H that connects (x, y) and (x, z), then YF(e, e) = YW(e, e).
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9.45. Let W ⊆ V be such that for all x ∈ V, random walk started at x eventually visits V \W ,
i.e., Px[τV\W <∞] = 1. Show that if f ∈ D is supported on W and is harmonic at all vertices in
W , then f ≡ 0.

9.46. Prove the following variant of Theorem 9.7. If G is a network such that for every pair P1,P2

of disjoint simple paths, there exist vertices, xn ∈ P1 and yn ∈ P2, and edge-disjoint subgraphs
Hn of G containing both xn and yn with the property that

∑
n C (xn ↔ yn;Hn) = ∞, then G

has unique currents.

9.47. Give an example of a graph with unique currents and with non-constant bounded harmonic
functions.

9.48. Extend Theorem 9.9 to show that under the same assumptions, HD and HD′ have the
same dimensions.

9.49. Suppose that there is a rough embedding from a network G to a network G′ such that each
vertex of G′ is within some constant distance of the image of V(G). Show that if G has unique
currents, then so does G′.

9.50. Show that the result of Exercise 9.8 also holds when G is recurrent.

9.51. Let G be a transient network. Suppose that f ∈ D0, h is harmonic, and |h| ≤ |f |. Prove
that h = 0.

9.52. Give a transient planar network with unique currents.

9.53. Complete an alternative proof of Theorem 9.17 as follows. Show that by subdividing (adding
vertices to) edges as necessary, we may assume that for each k, there is a set of vertices Πk where
v = 1 − 1/k and such that the random walk visits Πk a.s. Show that the harmonic measure on
Πk “converges” to Lebesgue measure on the circle.

9.54. Give an example of two recurrent graphs (V,Ei) (i = 1, 2) on the same vertex set V whose
union (V,E1 ∪E2) is transient. On the other hand, show that on any transient network, the union
of finitely many traces is a.s. recurrent, even if the random walks that produce the traces are
dependent.
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Chapter 10

Uniform Spanning Forests

In Chapter 4, we looked at the remarkable model of uniform spanning trees in finite

(or recurrent) graphs. In this chapter, we extend this model to infinite transient graphs.

We will discover several fascinating things. Besides the intimate connections between

spanning trees, random walks, and electric networks exposed in Chapter 4 and deepened

here, we will also find an intimate connection to harmonic Dirichlet functions. This leads

to an unexpected constancy of expected degree when different generators are used to

form a Cayley graph of a given group. We will see some amazing phase transitions of

uniform spanning forests in Euclidean space as the dimension increases, and then again in

hyperbolic space. Many interesting questions remain open, some of which are collected in

the last section.

It turns out that there are two important ways to extend the ideas of Chapter 4 to

connected infinite graphs. In each case, sometimes we end up with spanning trees, but

other times, with spanning forests, all of whose trees are infinite. Recall that a forest is

a graph all of whose connected components are trees. Some of the results in Sections 10.5

and 10.6 are the most difficult to prove in the entire book, but we hope their interest will

reward the reader’s efforts. Most unattributed results in this chapter are from Benjamini,

Lyons, Peres, and Schramm (2001), hereinafter referred to as BLPS (2001).

§10.1. Limits Over Exhaustions.

How can one define a “uniform” spanning tree on an infinite graph? One natural way

to try is to take the uniform spanning tree on each of a sequence of finite subgraphs that

grow larger and larger so as to exhaust the whole infinite graph, hoping all the while that

the measures on spanning trees have some sort of limit. We saw in Section 4.2 that this

works for recurrent graphs. Luckily for us, this works also on transient graphs. In fact,

there will be two ways to make it work. Here are the details.

Let G be an infinite connected locally finite network; in fact, throughout this chap-

ter, assume our graphs are locally finite . Let Gn = (Vn,En) be finite connected
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subgraphs that exhaust G, i.e., Gn ⊆ Gn+1 and G =
∪
Gn. Let µF

n be the (weighted)

uniform spanning tree probability measure on Gn that is described in Chapter 4 (the su-

perscript F stands for “free” and will be explained below). Given a finite set B of edges,

we have B ⊆ En for large enough n and, for such n, we claim that µF
n[B ⊆ T ] is decreasing

in n, where T denotes the random spanning tree. To see this, let i(e;H) be the current

that flows along e when a unit current is imposed in the network H from the tail to the

head of e. Write B = {e1, . . . , em}. By Kirchhoff’s Effective Resistance Formula, we have

that

µF
n[B ⊆ T ] =

m∏
k=1

µF
n[ek ∈ T | ∀j < k ej ∈ T ] =

m∏
k=1

i
(
ek;Gn/{ej ; j < k}

)
≥

m∏
k=1

i
(
ek;Gn+1/{ej ; j < k}

)
(10.1)

= µF
n+1[B ⊆ T ] ,

where the inequality is from Rayleigh’s Monotonicity Principle. In particular, µF[B ⊆
F] := limn→∞ µF

n[B ⊆ T ] exists. (Here, we denote a random forest by F and a random tree

by T in order to avoid prejudice about whether the forest is a tree or not. We say “forest”

since if B contains a cycle, then by our definition, µF[B ⊆ F] = 0.) It follows that we may

define µF on all elementary cylinder sets (i.e., sets of the form {F ; B1 ⊆ F, B2∩F = ∅}
for finite disjoint sets B1, B2 ⊂ E) by the inclusion-exclusion formula:

µF[B1 ⊆ F, B2 ∩ F = ∅] :=
∑
S⊂B2

µF[B1 ∪ S ⊆ F](−1)|S|

=
∑
S⊂B2

lim
n→∞

µF
n[B1 ∪ S ⊆ F](−1)|S|

= lim
n→∞

µF
n[B1 ⊆ T,B2 ∩ T = ∅] .

This lets us define µF on cylinder sets, i.e., finite (disjoint) unions of elementary cylinder

sets. Again, µF(A ) = limn→∞ µF
n(A ) for cylinder sets A , so these probabilities are

consistent and so, by Kolmogorov’s theorem, uniquely define a probability measure µF on

subgraphs of G. We call µF the free (uniform) spanning forest measure on G, denoted

FSF or FUSF, since clearly it is carried by the set of spanning forests of G. We say that

µF
n converges weakly to FSF. The term “free” will be explained in a moment.

How can it be that the limit FSF is not concentrated on the set of spanning trees of

G? This happens if, for some x, y ∈ V, the µF
n-distributions of the distance in T between

x and y do not form a tight family. For example, if G is the lattice graph Zd, Pemantle
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(1991) proved the remarkable theorem that FSF is concentrated on spanning trees iff d ≤ 4

(see Theorem 10.30).

Now there is another possibility for taking similar limits. In disregarding the com-

plement of Gn, we are (temporarily) disregarding the possibility that a spanning tree or

forest of G may connect the boundary vertices of Gn in ways that would affect the possible

connections within Gn itself. An alternative approach takes the opposite view and forces

all connections outside of Gn: As in the proof of Theorem 2.11 and in Chapter 9, let GW
n

be the graph obtained from Gn by identifying all the vertices of G \Gn to a single vertex,

zn. (The superscript W stands for “wired” since we think of GW
n as having its boundary

“wired” together.) Assume now that each subgraph Gn is an induced subgraph. Let µW
n

be the random spanning tree measure on GW
n . For any finite B ⊂ E and any n with

B ⊂ E(Gn), we have µW
n [B ⊆ T ] ≤ µW

n+1[B ⊆ T ]: This is proved just like the inequality

(10.1), with the key difference that

m∏
k=1

i[ek;G
W
n /{ej ; j < k}] ≤

m∏
k=1

i[ek;G
W
n+1/{ej ; j < k}]

since GW
n may be obtained from GW

n+1 by contracting still more edges (and removing

loops). Thus, we may again define the limiting probability measure µW, called the wired

(uniform) spanning forest and denoted WSF or WUSF. In the case where G is itself a

tree, the free spanning forest is trivially concentrated on just {G}, while the wired spanning

forest is usually more interesting (see Exercise 10.5). In statistical mechanics, measures on

infinite configurations are also defined using limiting procedures similar to those employed

here to define FSF and WSF. One needs to specify boundary conditions, just as we did.

The terms “free” and “wired” have analogous uses there.

As we will see, the wired spanning forest is much better understood than the free

one. For example, there is a direct construction of it that avoids exhaustions: Let G be

a transient network. Define F0 = ∅. Inductively, for each n = 1, 2, . . ., pick a vertex xn

and run a network random walk starting at xn. Stop the walk when it hits Fn−1, if it

does, but otherwise let it run indefinitely. Let Pn denote this walk. Since G is transient,

with probability 1, Pn visits no vertex infinitely often, so its loop-erasure LE(Pn) is well

defined. Set Fn := Fn−1∪LE(Pn) and F :=
∪
n Fn. Assume that the choices of the vertices

xn are made in such a way that {x1, x2, . . .} = V. The same reasoning as in Section 4.1

shows that the resulting distribution on forests is independent of the order in which we

choose starting vertices. This also follows from the result we are about to prove. We will

refer to this method of generating a random spanning forest as Wilson’s method rooted

at infinity (though it was introduced by BLPS (2001)).
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Proposition 10.1. The wired spanning forest on any transient network G is the same as

the random spanning forest generated by Wilson’s method rooted at infinity.

Proof. For any path ⟨xk⟩ that visits no vertex infinitely often, LE
(
⟨xk ; k ≤ K⟩

)
→

LE
(
⟨xk ; k ≥ 0⟩

)
as K → ∞. That is, if LE

(
⟨xk ; k ≤ K⟩

)
= ⟨uKi ; i ≤ mK⟩ and

LE
(
⟨xk ; k ≥ 0⟩

)
= ⟨ui ; i ≥ 0⟩, then for each i and all large K, we have uKi = ui; this

follows from the definition of loop-erasure. SinceG is transient, it follows that LE
(
⟨Xk ; k ≤

K⟩
)
→ LE

(
⟨Xk ; k ≥ 0⟩

)
as K → ∞ a.s., where ⟨Xk⟩ is a random walk starting from any

fixed vertex.

Let Gn be an exhaustion of G by induced subgraphs and GW
n the graph formed by

contracting the vertices outside Gn to a vertex zn. Let T (n) be a random spanning tree

on GW
n and F the limit of T (n) in law. Given e1, . . . , eM ∈ E, let ⟨Xk(ui)⟩ be independent

random walks starting from the endpoints u1, . . . , uL of e1, . . . , eM . Run Wilson’s method

rooted at zn from the vertices u1, . . . , uL in that order; actually, we do not use zn, but

simply stop the random walks once they leave Gn. In this way, we can couple all the

random walks and spanning trees by using the same (infinite) random walk paths from

each uj regardless of n. Let τnj be the time that ⟨Xk(uj)⟩ reaches the portion of the

spanning tree created by the preceding random walks ⟨Xk(ul)⟩ (l < j). Then

P[ei ∈ T (n) for 1 ≤ i ≤M ] = P

[
ei ∈

L∪
j=1

LE
(
⟨Xk(uj) ; k ≤ τnj ⟩

)
for 1 ≤ i ≤M

]
.

Let τj be the stopping times corresponding to Wilson’s method rooted at infinity. We

use the same random walks as we did in Gn. By induction on j, we see that τnj → τj as

n→ ∞, so that

P[ei ∈ F for 1 ≤ i ≤M ] = P

[
ei ∈

L∪
j=1

LE
(
⟨Xk(uj) ; k ≤ τj⟩

)
for 1 ≤ i ≤M

]
.

That is, F has the same law as the random spanning forest generated by Wilson’s method

rooted at infinity. ◀

We will see that in many important cases, such as Zd, the free and wired spanning

forests agree. In fact, such agreement will be crucial to understanding the free spanning

forest.

▷ Exercise 10.1.

The choice of exhaustion ⟨Gn⟩ does not change the resulting measure WSF by the proof of

Proposition 10.1. Show that the choice also does not change the resulting measure FSF.
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An automorphism of a network is an automorphism of the underlying graph that

preserves edge weights.

▷ Exercise 10.2.

Show that FSF and WSF are invariant under any automorphisms that the network may

have.

▷ Exercise 10.3.

Show that if G is an infinite recurrent network, then the wired spanning forest on G is the

same as the free spanning forest, i.e., the random spanning tree of Section 4.2.

▷ Exercise 10.4.

Let G be a network such that there is a finite subset of edges whose removal from G

leaves at least 2 transient components. Show that the free and wired spanning forests are

different on G.

▷ Exercise 10.5.

Let G be a tree with unit conductances. Show that FSF = WSF iff G is recurrent.

Proposition 10.2. Let G be a locally finite network. For both FSF and WSF, all trees are

a.s. infinite.

Proof. A finite tree, if it occurs, must occur with positive probability at some specific

location, meaning that certain specific edges are present and certain other specific edges

surrounding the edges of the tree are absent. But every such event has probability 0 for

the approximations µF
n and µW

n , provided n is large enough, and there are only countably

many such events. ◀

▷ Exercise 10.6.

Let G be an edge-amenable infinite graph as witnessed by the vertex sets ⟨Vn⟩ (see Sec-

tion 4.3). Let Gn be the subgraph induced by Vn.

(a) Let F be any spanning forest all of whose components (trees) are infinite. Show that

if kn denotes the number of trees of F ∩Gn, then kn = o
(
|Vn|

)
.

(b) Let F be a random spanning forest all of whose components (trees) are infinite. Show

that the average degree, in two senses, of vertices is 2:

lim
n→∞

|Vn|−1
∑
x∈Vn

degF(x) = 2 a.s.
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and

lim
n→∞

|Vn|−1
∑
x∈Vn

E[degF(x)] = 2 .

In particular, if G is a transitive graph such as Zd, then every vertex has expected

degree 2 in both the free spanning forest and the wired spanning forest.

▷ Exercise 10.7.

Let (T, c) be a network on a tree and e ∈ T . Show thatWSF[e ∈ F] < 1 iff both components

of T\e are transient.

§10.2. Coupling, Harmonic Dirichlet Functions, and Expected Degree.

Often FSF = WSF; investigating when this happens will leads us to some quite in-

teresting phenomena. In all cases, though, there is a simple inequality between these two

probability measures, namely,

∀e ∈ E FSF[e ∈ F] ≥ WSF[e ∈ F] (10.2)

since given an induced exhaustion Gn, by Rayleigh’s Monotonicity Principle, this is true

for µF
n and µW

n as soon as n is large enough that e ∈ E(Gn). Alternatively, we can write

FSF[e ∈ F] = ieF(e) and WSF[e ∈ F] = ieW(e) (10.3)

by Propositions 9.1 and 9.2 combined with Kirchhoff’s Effective Resistance Formula. In

(9.3), we saw the inequality (10.2) for these currents.

More generally, we claim that for every increasing cylinder set A , we have

FSF(A ) ≥ WSF(A ) . (10.4)

Recall that A is called increasing if ω ∪ {e} ∈ A whenever ω ∈ A . We therefore say

that FSF stochastically dominates WSF and we write FSF ≽ WSF. To show (10.4),

it suffices to show that for each increasing cylinder event A , we have µF
n(A ) ≥ µW

n (A )

as soon as n is large enough that A depends only on the edge set En. Note that Gn is

a subgraph of GW
n . Thus, what we want is a consequence of the following more general

result:
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Lemma 10.3. Let G be a connected subgraph of a finite connected graph H. Let µG and

µH be the corresponding uniform spanning tree measures. Then µG(A ) ≥ µH(A ) for

every increasing event A in the edge set E(G).

Proof. By induction, it suffices to prove this when H has only one more edge, e, than G.

Now

µH(A ) = µH [e ∈ T ]µH [A | e ∈ T ] + µH [e /∈ T ]µH [A | e /∈ T ] .

If µH [e /∈ T ] = 0, then µH(A ) = µG(A ), while if µH [e /∈ T ] > 0, then

µH [A | e ∈ T ] ≤ µH [A | e /∈ T ] = µG(A )

by Theorem 4.6. This gives the result. ◀

▷ Exercise 10.8.

Let G be a graph obtained by identifying some vertices of a finite connected graph H, keep-

ing all edges of H, though some may become loops. Let µG and µH be the corresponding

uniform spanning tree measures. Show that µG(A ) ≤ µH(A ) for every increasing event

A depending on the edges of G.

The stochastic inequality FSF ≽ WSF implies that the two measures, FSF and WSF,

can be monotonically coupled . What this means is that there is a probability measure

on the set {(
F1,F2

)
; Fi is a spanning forest of G and F1 ⊆ F2

}
that projects in the first coordinate to WSF and in the second to FSF. It is easy to see

that the existence of a monotonic coupling implies the stochastic domination inequality.

The converse is surprising. This equivalence between existence of a monotonic coupling

and stochastic domination is quite a general result. In fact, we’ve encountered the notion

of stochastic domination before in Exercise 4.46 and Section 7.4. All these notions can be

unified by considering probability measures on partially ordered sets. In this generality,

we present the two equivalent definitions of stochastic domination on finite sets in the

following theorem. Extension to infinite sets is often straightforward.

Theorem 10.4. (Strassen, 1965) Let (X,≼) be a partially ordered finite set with two

probability measures, µ1 and µ2. Call a subset A ⊆ X increasing if whenever x ∈ A and

x ≼ y, also y ∈ A. The following are equivalent:

(i) There is a probability measure ν on
{
(x, y) ∈ X × X ; x ≼ y

}
whose coordinate

projections are µi.
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(ii) We have µ1(A) ≤ µ2(A) for each increasing subset A ⊆ X.

In case these properties hold, we write µ1 ≼ µ2 and we say that µ1 is stochastically

dominated by µ2. We are interested here in the case where X consists of the subsets of

edges of a finite graph, ordered by ⊆.

Proof. It turns out that this is a special case of the fecund Max-Flow Min-Cut Theorem.

The coupling ν of (i) is a way to distribute the µ1-mass of each point x ∈ X among the

points y ≽ x in such a way as to obtain the distribution of µ2. This is just a more graphic

way of expressing the requirements of (i) that

∀x
∑
y≽x

ν(x, y) = µ1(x) ,

∀y
∑
x≼y

ν(x, y) = µ2(y) .

If we make a directed graph whose vertices are
(
X×{1}

)
∪
(
X×{2}

)
∪{∆1,∆2} with edges

from ∆1 to each vertex of X ×{1}, from each vertex of X ×{2} to ∆2, and from (x, 1) to

(y, 2) whenever x ≼ y, then we can think of ν as a flow from ∆1 to ∆2 by letting ν(x, y)

be the amount of flow on the edge from (x, 1) to (y, 2). To put this into the framework

of the Max-Flow Min-Cut Theorem, let the capacity of the edge joining ∆i with (x, i) be

µi(x) for i = 1, 2, while we set the capacity of all other edges to be 2.

It is evident that the condition (i) is that the maximum flow from ∆1 to ∆2 is 1. We

claim that the condition (ii) is that the minimum cutset sum is 1, from which the theorem

follows. To see this, note that any cutset of minimum sum does not use any edges of the

form ⟨(x, 1), (y, 2)⟩ since these all have capacity 2. Thus, given a minimum cutset sum, let

B × {1} be the set of vertices in X × {1} that are not separated from ∆1 by the cutset.

By minimality, we have that the set of vertices in X × {2} that are separated from ∆2 is

A× {2}, where
A :=

{
y ∈ X ; ∃x ∈ B x ≼ y

}
.

Thus, the cutset sum is µ2(A) + 1− µ1(B). Note that A is an increasing set that contains

B. Thus, we may increase B to A if B ̸= A while not increasing the cutset sum. That

is, minimality again shows that, without loss of generality, B = A, whence the cutset

sum is µ2(A) + 1 − µ1(A). Conversely, every increasing A yields a cutset sum equal to

µ2(A) + 1− µ1(A). Thus, the minimum cutset sum equals 1 iff (ii) holds, as claimed. ◀

Corollary 10.5. On every infinite network G, we have FSF ≽ WSF and there is a mono-

tone coupling (F1,F2) ∈ 2E(G) × 2E(G) with F1 ∼ FSF, F2 ∼ WSF, and F1 ⊇ F2 a.s.
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Proof. We have already proved that FSF ≽ WSF, whence by Theorem 10.4, we may mono-

tonically couple the measures induced by FSF and WSF on any finite subgraph of G. By

taking an exhaustion of G and a weak limit point of these couplings, we obtain a monotone

coupling of FSF and WSF on all of G. ◀

The coupling shows that FSF(A ) ≥ WSF(A ) not only for all increasing cylinder events

A , but for all increasing events A .

Question 10.6. The proof of Corollary 10.5 implicitly involves making a choice of a

coupling for each finite graph in an exhaustion of G. Since there is no “canonical” choice,

we do not necessarily get an invariant coupling in the limit, even though FSF and WSF are

automorphism invariant by Exercise 10.2. Is there a “natural” monotone coupling of FSF

and WSF? In particular, is there a monotone coupling that is invariant under all graph

automorphisms? As we will see soon, FSF = WSF on amenable Cayley graphs, so in that

case, there is nothing to do. Bowen (2004) has proved there is an invariant monotone

coupling for all so-called residually amenable groups. This was extended by Lyons and

Thom (2012) to all so-called sofic groups. On the other hand, there do exist invariant

percolation processes that have monotone couplings but no invariant monotone coupling,

as shown by Mester (2013).

▷ Exercise 10.9.

Show that the number of trees in the free spanning forest on a network is stochastically

dominated by the number in the wired spanning forest on the network. Show that if the

number of trees in the free spanning forest is a.s. finite, then, in distribution, it equals the

number in the wired spanning forest iff FSF = WSF.

So when are the free and wired spanning forests the same? Here is one test.

Proposition 10.7. If E[degF(x)] is the same under FSF and WSF for every x ∈ V, then

FSF = WSF.

Proof. In the monotone coupling described above, the set of edges adjacent to a vertex x

in the WSF is a subset of those adjacent to x in the FSF. The hypothesis implies that for

each x, these two sets coincide a.s. ◀

Note that this proof works for any pair of measures where one stochastically dominates

the other.

Remark 10.8. It follows that if FSF and WSF agree on single-edge probabilities, i.e., if

equality holds in (10.2) for all e ∈ E, then FSF = WSF. This is due to Häggström (1995).
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We may now deduce that FSF = WSF for many graphs, including Cayley graphs of

abelian groups such as Zd. Call a graph or network transitive if for every pair of vertices

x and y, there is an automorphism of the graph or network that takes x to y.

The following is essentially due to Häggström (1995).

Corollary 10.9. On any transitive amenable network, FSF = WSF and in both cases, the

expected degree of every vertex is 2.

Proof. By transitivity and Exercise 10.6, E[degF(x)] = 2 for both FSF and WSF. Apply

Proposition 10.7. ◀

▷ Exercise 10.10.

Give an amenable graph on which FSF ̸= WSF.

The amenability assumption gave not only equality of the two forests, but restricted

their expected degree to 2. What are the expected degrees otherwise?

Proposition 10.10. If G is a transitive network, the WSF-expected degree of every vertex

is 2.

Proof. If G is recurrent, then it is amenable by Theorem 6.7 and the result follows from

Corollary 10.9. So assume that G is transient. Think of the wired spanning forest as

oriented toward infinity from Wilson’s method rooted at infinity; i.e., orient each edge of

the forest in the direction it is last traversed by the associated random walk. We claim that

the law of the orientation does not depend on the choices in Wilson’s method rooted at

infinity. Indeed, since this obviously holds for finite graphs when orienting the tree towards

a fixed root, it follows by taking an exhaustion of G and using the proof of Proposition 10.1.

Alternatively, one can modify the proof of Theorem 4.1 to prove it directly.

Now the out-degree of every vertex in this orientation is 1. Fix a vertex o. We need

to show that the expected in-degree of o is 1. For this, it suffices to prove that for every

neighbor x of o, the probability that the edge ⟨x, o⟩ belongs to the oriented forest is the

same as the probability of the edge ⟨o, x⟩.
Now the probability of the edge ⟨o, x⟩ is

(
π(o)Po[τ

+
o = ∞]

)−1
c(o, x)Px[τo = ∞] by

Exercise 4.27. We have

Px[τo <∞] = Po[τx <∞] (10.5)

since π(x) = π(o) and G (x, x) = G (o, o) by transitivity; see Exercise 2.23. This gives the

result. ◀
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Now what about the expected degree of a vertex in the FSF? This turns out to be

even more interesting than in the WSF. One can show (Lyons, 2009) from (10.3) and

Definition 2.9 of Gaboriau (2005) that the expected degree in an infinite transitive graph

G equals 2 + 2β1(G), where β1(G) is the so-called first ℓ2-Betti number of G. This is

a non-negative real number whose definition was made originally by Atiyah (1976) in a

continuous context, was extended to a discrete context by Dodziuk (1977), was considerably

extended by Cheeger and Gromov (1986), and was made in this context by Gaboriau

(2005). Consider the special case where G is a Cayley graph of an infinite group, Γ. A

marvelous fact is that β1(G) is the same for all Cayley graphs of Γ, so we normally write

β1(Γ) instead. Thus,

EFSF[degF o] = 2 + 2β1(Γ) . (10.6)

For our purposes, we may take (10.6) as a definition of β1(Γ), but we also mention that it

equals the von Neumann dimension of ∇HD(G) with respect to Γ. See Section 10.8 for

definitions and a derivation of (10.6). Here are some known values of first ℓ2-Betti numbers

(see, e.g., Gaboriau (2002), Cheeger and Gromov (1986), and Lück (2009)):

• β1(Γ) = 0 if Γ is finite or amenable

• β1(Γ1 ∗ Γ2) = β1(Γ1) + β1(Γ2) + 1− 1
|Γ1| −

1
|Γ2| if Γi are not trivial

• β1(Γ1 ∗Γ3 Γ2) = β1(Γ1) + β1(Γ2) if Γ3 is amenable and infinite

• β1(Γ2) = [Γ1: Γ2]β1(Γ1) if Γ2 has finite index in Γ1

• β1(Γ) = 2g − 2 if Γ is the fundamental group of an orientable surface of genus g

• β1(Γ) = s − 2 if Γ is torsion free and can be presented with s ≥ 2 generators and 1

non-trivial relation

If we take β1(Γ) = 0 as a definition for finite Γ and (10.6) as a definition for infinite Γ,

then the fact that β1(Γ) = 0 for amenable Γ follows from Exercise 10.6, while the formula

β1(Γ1 ∗ Γ2) = β1(Γ1) + β1(Γ2) + 1 − 1
|Γ1| −

1
|Γ2| follows from taking a generating set for

Γ1 ∗ Γ2 by combining generating sets for Γ1 and Γ2: the restriction of the FSF of Γ1 ∗ Γ2

to each copy of the Cayley graph of, say, Γ1 in the Cayley graph of Γ1 ∗ Γ2 has the same

law as the FSF of just Γ1, which is the uniform spanning tree if Γ1 is finite.

Question 10.11. If G is a Cayley graph of a finitely presented group Γ, is the FSF-

expected degree of o a rational number? Atiyah (1976) has asked whether all the ℓ2-Betti

numbers (not only the first one discussed here) are rational if Γ is finitely presented. Various

generalizations of this question have negative answers; see, e.g., Grabowski (2010).

An important open question is whether β1(Γ) is equal to one less than the cost of Γ,

which is one-half of the infimum of the expected degree in any random connected spanning
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graph of Γ whose law is Γ-invariant (see Gaboriau (2000)). Gaboriau (2002) proved that

β1(Γ) is always at most one less than the cost of Γ. To establish equality, it would therefore

suffice to show that for every ϵ > 0, there is some probability space with two 2E-valued

random variables, F and G, such that the law of F is FSF, the union F ∪ G is connected

and has a Γ-invariant law, and the expected degree of a vertex in G is less than ϵ. In

Chapter 11, we will see that an analogue of this does hold for the free minimal spanning

forest.

Question 10.12. If G is a Cayley graph, F is the FSF on G, and ϵ > 0, is there an invariant

connected percolation ω containing F such that for every edge e, the probability that

e ∈ ω\F is less than ϵ? This question was asked by D. Gaboriau (personal communication,

2001). It is known that whenever G is non-amenable, the union of WSF and independent

Bernoulli(ϵ) percolation is not connected a.s. for small ϵ (see BLPS (2001)). Therefore,

when G is non-amenable and WSF = FSF, we cannot connect the FSF by adding a small

percolation. In Proposition 10.14 below, we describe when WSF = FSF.

One use of the invariance of β1(Γ) with respect to generating sets is to prove uniform

exponential growth of certain Cayley graphs, a question we discussed briefly in Section 3.4.

Recall from that discussion that if a Cayley graph has exponential growth, then so does

every Cayley graph of the same group, yet for some groups, the infimum of the growth

rates is 1, i.e., those groups do not have uniform exponential growth. Here, we show

that if FSF ̸= WSF for a given Cayley graph of a group Γ, then Γ does have uniform

exponential growth. Note that FSF ̸= WSF iff β1(Γ) > 0 by (10.6), Proposition 10.10, and

Proposition 10.7. The argument is an elaboration of Exercise 10.6 and was observed by

Lyons, Pichot, and Vassout (2008). It shows even more than uniform exponential growth,

namely, a uniform expansion property.

Theorem 10.13. (Uniform Expansion) Let G be a Cayley graph of a finitely generated

infinite group Γ with respect to a finite generating set S. For every finite K ⊂ Γ, we have

|∂VK|
|K|

> 2β1(Γ) .

In particular, this implies that finitely generated groups Γ with β1(Γ) > 0 have uniform

exponential growth: if Bn denotes the ball of radius n centered at o, then

|Bn+1|/|Bn| > 1 + 2β1(Γ) ,

so

|Bn| > [1 + 2β1(Γ)]
n .

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



§2. Coupling, Harmonic Dirichlet Functions, and Expected Degree 387

Proof. Let F ∼ FSF. Let F′ be the part of F that touches K, i.e., the edges that are

incident to some vertex of K, together with their endpoints. Let L := V(F′) \K. Since F′

is a forest, ∑
x∈K

degF x ≤
∑

x∈K∪L

degF′ x− |L| = 2|E(F′)| − |L| < 2|V(F′)| − |L|

= 2|K|+ |L| ≤ 2|K|+ |∂K| .

Take the expectation, use the formula (10.6), and divide by |K| to get the result. ◀

We turn now to an electrical criterion for the equality of FSF and WSF. As we saw

in Chapter 9, there are two natural ways of defining currents between vertices of a graph,

corresponding to the two ways of defining spanning forests.

We may add to Proposition 9.3 and Theorem 9.5 as follows:

Proposition 10.14. For any network, the following are equivalent:

(i) FSF = WSF;

(ii) ieW = ieF for every edge e;

(iii) ℓ2−(E) = ⋆⊕ ♢;

(iv) HD = R.

Proof. Use Remark 10.8, (10.3), and (9.3) to deduce that (i) and (ii) are equivalent. The

other equivalences were proved already. ◀

Combining this with Theorem 9.7, we get another proof that FSF = WSF on Zd.

▷ Exercise 10.11.

Show that every transitive amenable network has unique currents.

Let YF(e, e
′) := ieF(e

′) and YW(e, e′) := ieW(e′) be the free and wired transfer-current

matrices.

Theorem 10.15. (Free and Wired Transfer Current Theorems) Given any net-

work G and any distinct edges e1, . . . , ek ∈ G, we have

FSF[e1, . . . , ek ∈ F] = det[YF(ei, ej)]1≤i,j≤k

and

WSF[e1, . . . , ek ∈ F] = det[YW(ei, ej)]1≤i,j≤k .

Proof. This is immediate from the Transfer-Current Theorem of Section 4.2 and Proposi-

tions 9.1 and 9.2. ◀
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Figure 10.1. A uniformly chosen wired spanning tree on a subgraph
of Z2, drawn by Wilson (see Propp and Wilson (1998)).

§10.3. Planar Networks and Euclidean Lattices.

Consider now plane graphs. Examination of Figure 10.1 reveals two spanning trees:

one in white, the other in black on the plane dual graph. (See Section 9.2 for the definition

of dual.) Note that in the dual, the outer boundary of the grid is identified to a single

vertex. In general, suppose that G is a simple plane network whose plane dual G† is locally

finite. Consider an exhaustion of G by subnetworks Gn such that G\V(Gn) has only one

(infinite) component. Let G†
n be the plane dual of Gn. Note that G†

n can be regarded as a

finite subnetwork of G†, but with its outer boundary vertices identified to a single vertex.

Spanning trees T of Gn are in one-to-one correspondence with spanning trees T× of G†
n in

the same way as in Figure 10.1:

e ∈ T ⇐⇒ e† /∈ T× . (10.7)

Furthermore, this correspondence preserves the relative weights of Section 4.1: we have

Ξ(T ) =
∏
e∈T

c(e) =
∏

e† /∈T×
r(e†) =

∏
e†∈T× c(e

†)∏
e†∈G†n c(e

†)
=

Ξ(T×)∏
e†∈G†n c(e

†)
.

Taking n→ ∞, we find that the FSF of G is “dual” to the WSF of G†; that is, the relation

(10.7) transforms one to the other. As a consequence, (10.3) and the definition (10.7)

explain (9.4). Let’s look at this a little more closely for the graph Z2. By recurrence and
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Exercise 10.3, the free and wired spanning forests are the same as the uniform spanning

tree. In particular, P[e ∈ T ] = P[e† ∈ T×]. Since these add to 1, they are equal to 1/2, as

we derived in another fashion in (4.14).

Let’s see what Theorem 10.15 says more explicitly for unit conductances on the hy-

percubic lattice Zd. The case d = 2 was treated already in Section 4.3 and Exercise 4.50.

The transient case d ≥ 3 is actually easier, but the approach is the same as in Section 4.3.

In order to find the transfer currents Y (e1, e2), we will first find voltages, then use i = dv.

When i is a unit flow from x to y, we have d∗i = 1{x} − 1{y}. Hence the voltages satisfy

∆v := d∗dv = 1{x} − 1{y}. We are interested in solving this equation when x := e−1,

y := e+1 and then computing v(e−2 ) − v(e+2). Unlike in the recurrent case of Section 4.3,

however, we can solve ∆v = 1{x}, i.e., the voltage v for a current from x to infinity. Again,

we begin with a formal (i.e., heuristic) derivation of the solution, then prove that the

resulting formula is actually correct.

Let Td := (R/Z)d be the d-dimensional torus. For (x1, . . . , xd) ∈ Zd and (α1, . . . , αd) ∈
Td, write (x1, . . . , xd) · (α1, . . . , αd) := x1α1 + · · ·+ xdαd ∈ R/Z. For a function f on Zd,
define the function f̂ on Td by

f̂(α) :=
∑
x∈Zd

f(x)e−2πix·α .

For example, 1̂{x}(α) = e−2πix·α. Now a formal calculation shows that

∆̂f(α) = f̂(α)φ(α) ,

where

φ
(
(α1, . . . , αd)

)
:= 2d−

d∑
k=1

(e2πiαk + e−2πiαk) = 2d− 2

d∑
k=1

cos 2παk . (10.8)

Hence, to solve ∆f = g, we may try to solve ∆̂f = ĝ by using f̂ := ĝ/φ and then finding f

from f̂ . In fact, a formal calculation shows that we may recover f from f̂ by the formula

f(x) =

∫
Td

f̂(α)e2πix·α dα ,

where the integration is with respect to Lebesgue measure. What makes the transient case

easier is that 1/φ ∈ L1(Td), since

φ(α) = (2π)2|α|2 +O
(
|α|4

)
(10.9)

as |α| → 0 and r 7→ 1/r2 is integrable in Rd for d ≥ 3; here, |α| is the minimal distance in

Rd between the coset α and Zd.
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▷ Exercise 10.12.

(The Riemann-Lebesgue Lemma) Show that if F ∈ L1(Td) and

f(x) =

∫
Td

F (α)e2πix·α dα ,

then lim|x|→∞ f(x) = 0. Hint: This is obvious if F is a trigonometric polynomial ,

i.e., a finite linear combination of functions α 7→ e2πix·α. The Stone-Weierstrass theorem

implies that such functions are dense in L1(Td).

Proposition 10.16. (Voltages on Zd) Let d ≥ 3. Define φ as in (10.8). The voltage

at x when a unit current flows from 0 to infinity in Zd and the voltage is 0 at infinity is

v(x) =

∫
Td

e2πix·α

φ(α)
dα . (10.10)

Proof. Define v′(x) to be the integral on the right-hand side of (10.10). By the analogue

of Exercise 4.9 for d ≥ 3, we have

∆v′(x) =

∫
Td

e2πix·α

φ(α)
φ(α) dα =

∫
Td

e2πix·α dα = 1{0}(x) .

That is, ∆v′ = 1{0}. Since v satisfies the same equation, we have ∆(v′ − v) = 0. In

other words, v′ − v is harmonic at every point in Zd. Furthermore, v′ is bounded in

absolute value by the L1 norm of 1/φ, whence v′ − v is bounded. Since the only bounded

harmonic functions on Zd are the constants (by, say, Theorem 9.24), this means that v′−v
is constant. Now the Riemann-Lebesgue Lemma* (Exercise 10.12) implies that v′ tends

to 0 at infinity. Since v also tends to 0 at infinity (by either Exercise 2.88 and that v′ − v

is constant, or else by Exercise 2.89 and symmetry), this constant is 0. Therefore, v′ = v,

as desired. ◀

Now one can compute

Y (e1, e2) = v(e−2 − e−1 )− v(e+2 − e−1 )− v(e−2 − e+1 ) + v(e+2 − e+1 )

using (10.10).

* One could avoid the Riemann-Lebesgue Lemma by solving the more complicated equation ∆v =
1{x} − 1{y} instead, as in Section 4.3.
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§10.4. Tail Triviality.

How much does the configuration of a uniform spanning forest in one region influence

the configuration in a far away region? Are they asymptotically independent? It turns out

that they are indeed, in several senses.

For a set of edges K ⊆ E, let F (K) denote the σ-field of events depending only on K.

Define the tail σ-field to be the intersection of F (E \K) over all finite K. Triviality of

the tail σ-field means that every tail-measurable event has probability 0 or 1. For example,

Kolmogorov’s 0-1 Law says that the tail σ-field is trivial for independent percolation. More

generally, tail triviality is equivalent to a strong form of asymptotic independence:

Proposition 10.17. (Tail Triviality and Asymptotic Independence) For any prob-

ability measure P, tail triviality is equivalent to

∀A1 ∈ F (E) ∀ϵ > 0 ∃K finite ∀A2 ∈ F (E \K)
∣∣P(A1 ∩ A2)−P(A1)P(A2)

∣∣ < ϵ .

(10.11)

Proof. Suppose first that (10.11) holds. Let A be a tail event. Then we may take A1 :=

A2 := A in (10.11), no matter what ϵ is. This shows that A is independent of itself, i.e.,

is trivial.

For the converse, let P be tail trivial. Let ⟨Kn⟩ be an exhaustion of E. Then T :=∩
n F (E\Kn) is the tail σ-field. The reversed-martingale convergence theorem shows that

for every A1 ∈ F (E), we have

Zn := P
(
A1

∣∣ F (E \Kn)
)
→ P(A1 | T )

not only a.s., but in L1(P). Since the tail is trivial, the limit equals P(A1) a.s. Thus, given

ϵ > 0, there is some n such that E
[
|Zn −P(A1)|

]
< ϵ. Hence, for all A2 ∈ F (E \Kn), we

have∣∣P(A1 ∩A2)−P(A1)P(A2)
∣∣ = ∣∣E[(Zn −P(A1)

)
1A2

]∣∣ ≤ E
[∣∣(Zn −P(A1))1A2

∣∣] < ϵ . ◀

This equivalence shows why the following theorem is interesting.

Theorem 10.18. The WSF and FSF have trivial tail on every network.

Proof. This is a consequence of the fact that the boundary conditions defining WSF and

FSF are each extremal. To see this, let G be an infinite network exhausted by finite

connected induced subnetworks ⟨Gn⟩. Write Gn = (Vn,En). Recall from Section 10.1

that µF
n denotes the uniform spanning tree measure on Gn and µW

n denotes the uniform
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spanning tree measure on the “wired” graph GW
n . Let νn be any “partially wired” measure,

i.e., the uniform spanning tree measure on a graph G∗
n obtained from a finite network G′

n

satisfying Gn ⊂ G′
n ⊂ G by contracting some of the edges in G′

n that are not in Gn.

Lemma 10.3 and Exercise 10.8 give that if B ∈ F (En) is increasing, then

µW
n (B) ≤ νn(B) ≤ µF

n(B) . (10.12)

This is what we meant by “extremality” above.

To see its consequences, let M > n and let A ∈ F (EM \En) be a cylinder event such

that µW
M (A ) > 0. If we condition separately on each possible configuration of edges of

GM \ Gn that is in A and use (10.12) on each of these configurations, then we get that

for each increasing B ∈ F (En
)
, we have

µW
n (B) ≤ µW

M (B | A ) . (10.13)

Fixing A and letting M → ∞ in (10.13) gives

µW
n (B) ≤ WSF(B | A ) . (10.14)

This applies to all cylinder events A ∈ F (E \ En) with WSF(A ) > 0, and therefore the

assumption that A is a cylinder event can be dropped. Thus (10.14) holds for all tail

events A of positive probability. Taking n→ ∞ there gives

WSF(B) ≤ WSF(B | A ) , (10.15)

where B is any increasing cylinder event and A is any tail event. Thus, (10.15) also applies

to the complement A c. Since WSF(B) = WSF(A )WSF(B | A )+WSF(A c)WSF(B | A c),

it follows that WSF(B) = WSF(B | A ). Therefore, every tail event A is independent of

every increasing cylinder event. By inclusion-exclusion, such A is also independent of

every elementary cylinder event, whence of every cylinder event, whence of every event.

That is, A is trivial. The argument for the FSF is similar. ◀

Tail triviality has additional consequences when the underlying graph is a Cayley

graph. More generally, consider graphs that have automorphisms which can move points

arbitrarily far from where they start. If Γ is a group of automorphisms of a network

or graph G, we say that Γ acts on G. Any action extends in the obvious way to an

action on the collection of subnetworks or subgraphs of G. We now want to take limits

at infinity of functions on Γ. What does this mean? A “large” element of Γ is one that

moves points far. To be precise, for an action of Γ on G and a real-valued function f on
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Γ, we write limγ→∞ f(γ) = a to mean that for every ϵ > 0 and every x ∈ V, there is

some N such that for all γ satisfying dist(x, γx) > N , we have |f(γ) − a| < ϵ. Similarly,

lim supγ→∞ f(γ) ≤ a means that for every ϵ > 0 and every x ∈ V, there is some N such

that whenever dist(x, γx) > N , we have f(γ) < a + ϵ. We say that the action is mixing

for a Γ-invariant probability measure P on subnetworks or subgraphs of G if for any pair

of events A and B,

lim
γ→∞

P(A , γB) = P(A )P(B) . (10.16)

We call an action ergodic for P if the only (Γ,P)-invariant events are trivial. Here, an

event A is called (Γ,P)-invariant if P(A △ γA ) = 0 for all γ ∈ Γ. As usual, as long as

there is some infinite orbit, mixing implies ergodicity: if A is an invariant event, then just

take B = A in (10.16). In addition, tail triviality implies mixing: Let A and B be two

events. The equation (10.16) follows immediately from (10.11) in case B is a cylinder. For

general B, let ϵ > 0 and let D be a cylinder such that P(B△D) < ϵ. Since P is invariant

under Γ, we have

|P(A , γB)−P(A )P(B)| ≤ |P(A , γD)−P(A )P(D)|+P
(
A , γ(B △ D)

)
+P(A )P(B △ D)

< |P(A , γD)−P(A )P(D)|+ 2ϵ .

Taking γ to infinity, we get that lim supγ→∞ |P(A , γB) − P(A )P(B)| ≤ 2ϵ. Since ϵ is

arbitrary, the action is mixing.

An interesting consequence of ergodicity is the following: Distinct ergodic invariant

probability measures under any group action are always mutually singular. To see this,

suppose that µ1 and µ2 are both invariant and ergodic probability measures for an action

of a group Γ on a network G. According to the Lebesgue decomposition theorem, there

is a unique pair of measures ν1, ν2 such that µ1 = ν1 + ν2 with ν1 ≪ µ2 and ν2 ⊥ µ2.

Applying any element of Γ, we see that ν1 and ν2 are both Γ-invariant. Choose an event

A with ν1(A c) = 0 and ν2(A ) = 0. Then A is (Γ, ν1)-invariant and (Γ, ν2)-invariant,

whence (Γ, µ1)-invariant, whence µ1-trivial. If µ1(A ) = 0, then µ1 = ν2 ⊥ µ2. On the

other hand, if µ1(A c) = 0, then µ1 = ν1 ≪ µ2. Let f be the Radon-Nikodým derivative of

µ1 with respect to µ2. Then f is measurable with respect to the σ-field of (Γ, µ2)-invariant

events, which is trivial, so f is constant µ2-a.e. That is, µ1 = µ2.

Thus, by Theorem 10.18 and Exercise 10.2, we obtain the following consequences:

Corollary 10.19. Let Γ be a group acting on a network G so that every vertex has an

infinite orbit. Then the action is mixing and ergodic for FSF and for WSF. If WSF and

FSF on G are distinct, then they are singular measures on the space 2E.
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We do not know if the singularity assertion above holds without the hypothesis that

every vertex has an infinite orbit under Aut(G); see Question 10.60.

§10.5. The Number of Trees.

We’ve not yet said much about how the uniform spanning forests look. For example,

when is the free spanning forest or the wired spanning forest of a network a.s. a single tree,

as in the case of recurrent networks? There are few cases where we know the answer for

the free spanning forest; almost all of them come from knowing the answer for the wired

spanning forest and then using some relationship between the two forests, such as their

being equal or being dual. So we begin with the wired spanning forest. In that case, we

have the following answer for the wired spanning forest due to Pemantle (1991).

Proposition 10.20. Let G be any network. The wired spanning forest is a single tree a.s.

iff from every (or some) vertex, random walk and independent loop-erased random walk

intersect infinitely often a.s. Moreover, the chance that two given vertices x and y belong

to the same tree equals the probability that random walk from x intersects independent

loop-erased random walk from y.

This is obvious from Proposition 10.1 (which wasn’t available to Pemantle at the

time), but is otherwise quite striking. How, then, do we decide whether a random walk

and a loop-erased random walk intersect a.s.? Pemantle (1991) used results of Lawler

(1986, 1988) in order to answer this for simple random walk in Zd. However, Lyons, Peres,

and Schramm (2003) later showed that for any transient Markov chain, two independent

paths started at any pair of states intersect infinitely often (i.o.) with probability 1 iff the

loop erasure of one intersects the other i.o. with probability 1. In fact, more is true:

Theorem 10.21. Let ⟨Xm⟩ and ⟨Yn⟩ be independent transient Markov chains on the same

state space V that have the same transition probabilities, but possibly different initial states.

Then given the event that
∣∣{Xm} ∩ {Yn}

∣∣ = ∞, almost surely
∣∣LE⟨Xm⟩ ∩ {Yn}

∣∣ = ∞.

This makes it considerably easier to decide whether the wired spanning forest is a

single tree. Thus:

Theorem 10.22. Let G be any network. The wired spanning forest is a single tree a.s. iff

two independent random walks started at any different states intersect with probability 1.

And how do we decide whether two random walks intersect a.s.? We will give a useful

test in the transitive case. In fact, this will work for Markov chains that may not be

reversible, so we should say what we mean by “transitive” Markov chain:
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Definition 10.23. Let p(•, •) be a transition kernel on a state space V. Suppose that

there is a group Γ of permutations of V that acts transitively (i.e., with a single orbit) and

satisfies p(γx, γy) = p(x, y) for all γ ∈ Γ and x, y ∈ V. Then we call the Markov chain

with transition kernel p(•, •) transitive .

We will use Px0,y0 and Ex0,y0 to denote probability and expectation when independent

Markov chains ⟨Xm⟩ and ⟨Yn⟩ start at x0 and y0, respectively.

In the transitive case, we may use the Green function for our test:

Theorem 10.24. (Intersections of Transitive Markov Chains) Let p(•, •) be the

transition kernel of a transient transitive Markov chain on the countable state space V.

Let X and Y be two independent copies of the Markov chain with initial states x0 and y0.

Let o be a fixed element of V. If ∑
z∈V

G (o, z)2 = ∞ , (10.17)

then Px0,y0

[
|{Xm} ∩ {Yn}| = ∞

]
= Px0,y0

[
|LE⟨Xm⟩ ∩ {Yn}| = ∞

]
= 1, while if (10.17)

fails, then Px0,y0

[
|{Xm} ∩ {Yn}| <∞

]
= 1.

If we specialize still further, we obtain:

Corollary 10.25. (Intersections of Random Walks in Transitive Graphs) Let G

be an infinite, locally finite, vertex-transitive graph. Denote by Vn the number of vertices

in G at distance at most n from a fixed vertex o.

(i) If supn Vn/n
4 = ∞, then two independent sample paths of simple random walk in G

have only finitely many intersections a.s.

(ii) Conversely, if supn Vn/n
4 <∞, then two independent sample paths of simple random

walk in G intersect infinitely often a.s.

These results tell us when the WSF has a single tree. How many trees are there

otherwise? Usually there are infinitely many a.s., but there can be only finitely many:

▷ Exercise 10.13.

Join two copies of the usual nearest-neighbor graph of Z3 by an edge at their origins. How

many trees does the free uniform spanning forest have? How many does the wired uniform

spanning forest have?

To give the general answer, we use the following quantity: let α(w1, . . . , wK) be the

probability that independent random walks started at w1, . . . , wK have no pairwise inter-

sections.

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



Chap. 10: Uniform Spanning Forests 396

Theorem 10.26. (Constant Number of Trees in the WSF) Let G be a connected

network. The number of trees of the WSF is a.s.

sup
{
K ; ∃w1, . . . , wK α(w1, . . . , wK) > 0

}
. (10.18)

Moreover, if the probability is 0 that two independent random walks from every (or some)

vertex x intersect infinitely often, then the number of trees of the WSF is a.s. infinite.

Corollary 10.27. (WSF in Non-Amenable Networks) If (G, c) is a network with

ΦE(G, c, π) > 0 and supx∈V π(x) <∞, then the number of trees of the WSF is a.s. infinite.

Theorem 10.26 tells us that in particular, on any network, the number of trees of

the WSF is equal a.s. to a constant. The case of the free spanning forest (when it differs

from the wired) is quite a puzzle. In particular, we do not know whether the number of

components is deterministic or random:

Question 10.28. Let G be an infinite network. Is the number of trees of the FSF a.s.

constant?

If Aut(G) has an infinite orbit, then the number is deterministic since the number

is invariant under automorphisms and the invariant σ-field is trivial by Corollary 10.19.

Motivated by Theorem 7.5, we can ask whether, in this case, the number of trees is either

1 or ∞:

Question 10.29. (O. Häggström) Let G be a transitive network. By ergodicity, the

number of trees of the FSF is a.s. constant. Is it 1 or ∞ a.s.?

See Theorem 10.54 for one case that is understood completely.

Returning to the WSF, we deduce the following wonderful result of Pemantle (1991),

which is truly stunning without the understanding of the approach using random walks:

Theorem 10.30. (Phase Transition in Zd) The uniform spanning forest on Zd has

one tree a.s. for d ≤ 4 and infinitely many trees a.s. for d ≥ 5.

(Recall that by Corollary 10.9, FSF = WSF on Zd.)
We now prove all the above claims, though sometimes only in special cases. The special

cases always include simple random walk on Zd. In particular, we prove Theorem 10.24,

but not Theorem 10.21.

Nevertheless, we begin with a heuristic argument for Theorem 10.21. On the event

that Xm = Yn, the continuation paths X ′ := ⟨Xj⟩j≥m and Y ′ := ⟨Yk⟩k≥n have the same

distribution, whence the chance is at least 1/2 that Y ′ intersects L := LE⟨X0, . . . , Xm⟩ at an
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earlier point than X ′ ever does, where “earlier” means in the clock of L. On this event, the

earliest intersection point of Y ′ and L will remain in LE⟨Xj⟩j≥0

∩
{Yk}k≥0. The difficulty

in making this heuristic precise lies in selecting a pair (m,n) such that Xm = Yn, given that

such pairs exist. The natural rules for selecting such a pair (e.g., lexicographic ordering)

affect the law of at least one of the continuation paths, and invalidate the argument above;

R. Pemantle (private communication, 1996) showed that this holds for all selection rules.

Our solution to this difficulty is based on applying a second moment argument to a count

of intersections. In the cases we will prove here (Theorem 10.24), we will show that there

is a second moment bound for intersections of X and Y . The general case, Theorem 10.21,

also has a similar second moment bound, as shown by Lyons, Peres, and Schramm (2003),

but this is a little too long to prove here. We will then transfer the second moment bound

for intersections of X and Y to one for intersections of LE⟨X⟩ and Y .

Ultimately, the second moment argument relies on the following widely used inequality.

It allows one to deduce that a random variable has a reasonable chance to be large from

knowing that its first moment is large compared to its second moment. We saw this

inequality in Section 5.5.

The Paley-Zygmund Inequality (1932). Let Z be a random variable and 0 < ϵ < 1.

Then

P
[
Z ≥ ϵE[Z]

]
> (1− ϵ)2

E[Z]2

E[Z2]
.

Proof. Let A be the event that Z ≥ ϵE[Z]. The Cauchy-Schwarz inequality gives

E[Z2]P(A ) = E[Z2]E[12
A ] ≥ E[Z1A ]2 =

(
E[Z]−E[Z1A c ]

)2
>
(
E[Z]− ϵE[Z]

)2
. ◀

We begin with a second moment bound on intersections of two Markov chains that

start at the same state. The calculation leading to (10.20) below follows Le Gall and Rosen

(1991), Lemma 3.1. Denote GN (o, x) :=
∑N
m=0 Po[Xm = x]. Let

IN :=
N∑
m=0

N∑
n=0

1[Xm=Yn] (10.19)

be the number of intersections of X and Y by time N . We’ll be interested in whether

E[IN ] → ∞, and the Paley-Zygmund Inequality will be used to show that IN → ∞ with

reasonable probability when E[IN ] → ∞. For that, we’ll need that the first moment of IN

is large compared to its second moment, which is the purpose of the following lemma.

Lemma 10.31. Let p(•, •) be the transition kernel of a transitive Markov chain on a

countable state space V. Start both Markov chains X,Y at o ∈ V. Then

E[IN ]2

E[I2N ]
≥ 1

4
. (10.20)
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Proof. By transitivity, ∑
w∈V

GN (z, w)2 =
∑
w∈V

GN (o, w)2 (10.21)

for all z ∈ V. We have

IN =
∑
z∈V

N∑
m,n=0

1[Xm=z=Yn] .

Thus,

E[IN ] =
∑
z∈V

N∑
m=0

N∑
n=0

P[Xm = z = Yn]

=
∑
z∈V

N∑
m=0

P[Xm = z] ·
N∑
n=0

P[Yn = z]

=
∑
z∈V

GN (o, z)2 . (10.22)

To estimate the second moment of IN , observe that

N∑
m,j=0

P[Xm = z,Xj = w] =
N∑
m=0

N∑
j=m

P[Xm = z]P[Xj = w | Xm = z]

+
N∑
j=0

N∑
m=j+1

P[Xj = w]P[Xm = z | Xj = w]

≤ GN (o, z)GN (z, w) + GN (o, w)GN (w, z) .

Therefore

E[I2N ] =
∑
z,w∈V

N∑
m,n=0

N∑
j,k=0

P[Xm = z = Yn, Xj = w = Yk]

=
∑
z,w∈V

N∑
m,j=0

P[Xm = z,Xj = w] ·
N∑

n,k=0

P[Yn = z, Yk = w]

≤
∑
z,w∈V

[
GN (o, z)GN (z, w) + GN (o, w)GN (w, z)

]2
≤
∑
z,w∈V

2
[
GN (o, z)2 GN (z, w)2 + GN (o, w)2 GN (w, z)2

]
= 4

∑
z,w∈V

GN (o, z)2 GN (z, w)2 .

Summing first over w and using (10.21), then (10.22), we deduce that

E[I2N ] ≤ 4
(∑
z∈V

GN (o, z)2
)2

= 4E[IN ]2 . ◀

We now extend this to any pair of starting points when (10.17) holds.
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Corollary 10.32. Let p(•, •) be the transition kernel of a transitive Markov chain on a

countable state space V. Start the Markov chains X,Y at o, o′. If (10.17) holds, then

lim inf
N→∞

Eo,o′ [IN ]2

Eo,o′ [I2N ]
≥ 1

4
. (10.23)

Proof. Let aN := Eo,o[IN ]. As in the proof of Lemma 10.31, we have any pair o, o′,

Eo,o′ [I
2
N ] =

∑
z,w∈V

N∑
m,j=0

Po[Xm = z,Xj = w] ·
N∑

n,k=0

Po′ [Yn = z, Yk = w]

≤
∑
z,w∈V

[
GN (o, z)GN (z, w) + GN (o, w)GN (w, z)

]
·
[
GN (o′, z)GN (z, w) + GN (o′, w)GN (w, z)

]
≤
∑
z,w∈V

[
GN (o, z)2 GN (z, w)2 + GN (o, w)2 GN (w, z)2

+ GN (o′, z)2 GN (z, w)2 + GN (o′, w)2 GN (w, z)2
]

= 4a2N , (10.24)

by the elementary inequality

(a+ b)(c+ d) ≤ a2 + b2 + c2 + d2 .

We also have

Eo,o′ [IN ] =
∑

m,n≤N

∑
z∈V

pm(o, z)pn(o
′, z) =

∑
z∈V

GN (o, z)GN (o′, z) ≤ aN (10.25)

by the Cauchy-Schwarz inequality, transitivity, and (10.22).

By (10.17), we have aN → ∞. Let uN (x, y) := Ex,y[IN ]/aN . Thus, uN (x, x) = 1 for

all x and uN (x, y) ≤ 1 for all x, y. Fix r such that pr(o, o
′) > 0. Now

ar+N = ar+Nur+N (o, o) =
∑

m,n≤r+N

Po,o[Xm = Yn]

=
∑

m,n≤N

Po,o[Xm = Yr+n]

+
∑

m≤r+N

∑
n<r

Po,o[Xm = Yn] (10.26)

+
∑

1≤m≤r

∑
n≤N

Po,o[XN+m = Yr+n] .
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The Markov property and (10.25) show that the first of the 3 latter sums is equal to

Eo,o[aNuN (o, Yr)] ≤ aN [pr(o, o
′)uN (o, o′) + 1− pr(o, o

′)] .

The second sum in (10.26) is∑
z∈V

Gr+N (o, z)Gr−1(o, z) ≤
√
ar+Nar−1

by the Cauchy-Schwarz inequality. The third sum in (10.26) is

Eo,o
[∑
z∈V

Gr−1(XN+1, z)GN (Yr, z)
]
≤ √

ar−1aN .

Substituting these bounds in (10.26) yields

1 ≤ (aN/ar+N )
[
pr(o, o

′)uN (o, o′) + 1− pr(o, o
′)
]
+
√
ar−1/ar+N +

√
ar−1aN/ar+N

≤ pr(o, o
′)uN (o, o′) + 1− pr(o, o

′) + o(1)

as N → ∞. This implies that lim infN→∞ uN (o, o′) ≥ 1. Combining this with (10.24)

gives the result. ◀

We now give the crucial step that converts intersections of random walks to intersec-

tions when one of the paths is loop erased.

Lemma 10.33. Let p(•, •) be a transition kernel on a countable state space V that gives a

transient transitive Markov chain. Fix k ≥ 0 and a path ⟨xj⟩0j=−k in V. Let ⟨Xm⟩m≥0 and

⟨Yn⟩n≥0 be independent Markov chains on V with initial states x0 and y0. Set Xj := xj

for −k ≤ j ≤ −1. If (10.17) holds, then the probability that
∣∣LE⟨Xm⟩m≥−k ∩ {Yn}

∣∣ = ∞
is at least 1/16.

Proof. Denote

⟨Lmj ⟩J(m)
j=0 := LE⟨X−k, X−k+1, . . . , Xm⟩ .

When it happens that Xm = Yn, we want to see which of the continuations of X and Y

intersects ⟨Lmj ⟩ earlier. On the event [Xm = Yn], define

j(m,n) := min
{
j ≥ 0 ; Lmj ∈ {Xm, Xm+1, Xm+2, . . .}

}
, (10.27)

i(m,n) := min
{
i ≥ 0 ; Lmi ∈ {Yn, Yn+1, Yn+2, . . .}

}
. (10.28)

Note that the sets on the right-hand sides of (10.27) and (10.28) both contain J(m) if

Xm = Yn. Define j(m,n) := i(m,n) := 0 on the event [Xm ̸= Yn]. When the continuation
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of Y has an earlier intersection than the continuation of X does, then that intersection will

be an intersection of the loop-erasure of X with Y . Thus, let χ(m,n) := 1[i(m,n)≤j(m,n)].

Given [Xm = Yn = z], the continuations ⟨Xm, Xm+1, Xm+2, . . .⟩ and ⟨Yn, Yn+1, Yn+2, . . .⟩
are exchangeable with each other, so for every z ∈ V,

E
[
χ(m,n) | Xm = Yn = z

]
= P

[
i(m,n) ≤ j(m,n) | Xm = Yn = z

]
≥ 1

2
. (10.29)

As we said, if Xm = Yn and i(m,n) ≤ j(m,n), then Lmi(m,n) is in LE⟨Xr⟩∞r=−k
∩
{Yℓ}∞ℓ=0.

Consider the random variables

ΥN :=
N∑
m=0

N∑
n=0

1[Xm=Yn] χ(m,n)

for N ≥ 1. Obviously ΥN ≤ IN everywhere, so

1

E[Υ2
N ]

≥ 1

E[I2N ]
. (10.30)

On the other hand, by conditioning on Xm and Yn and by applying (10.29), we see that

E[ΥN ] =
N∑
m=0

N∑
n=0

E
[
1[Xm=Yn] E

[
χ(m,n) | Xm, Yn

]]
≥ 1

2
E[IN ] . (10.31)

By the Paley-Zygmund Inequality, we have for every ϵ > 0,

P
[
ΥN ≥ ϵE[ΥN ]

]
≥ (1− ϵ)2

E[ΥN ]2

E[Υ2
N ]

.

By (10.30), (10.31), and Corollary 10.32, we conclude that for every ϵ > 0, we have for

large enough N that

P
[
ΥN ≥ ϵE[ΥN ]

]
≥ (1− ϵ)2

E[IN ]2

4E[I2N ]
≥ (1− ϵ)2

16
− ϵ .

Since E[ΥN ] → ∞ by (10.31) and (10.17), it follows that ΥN → ∞ with probability at

least 1/16. On the event that ΥN → ∞, we have
∣∣LE⟨Xm⟩m≥−k ∩ {Yn}

∣∣ = ∞ by the

observation following (10.29). This finishes the proof. ◀

Proof of Theorem 10.24. Suppose that (10.17) holds. We will show that P
[
|LE⟨Xm⟩ ∩

{Yn}| = ∞
]
= 1.

Denote by Λ the event |LE⟨Xm⟩ ∩ {Yn}| = ∞. By Lévy’s 0-1 law, we have that

limn→∞ Px0,y0(Λ | X1, . . . , Xn, Y1, . . . , Yn) = 1Λ a.s. On the other hand,

Px0,y0(Λ | X1, . . . , Xn, Y1, . . . , Yn) = Px0,Yn(Λ | X1, . . . , Xn) ≥ 1/16

by the Markov property and by Lemma 10.33. Thus, 1Λ ≥ 1/16 a.s., which means that

Px0,y0(Λ) = 1, as desired.

Now suppose that (10.17) fails. Then the expected number of pairs (m,n) such that

Xm = Yn is (by the monotone convergence theorem) limN E[IN ] =
∑
z G (o, z)2 <∞. ◀
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▷ Exercise 10.14.

(Parseval’s Identity) Suppose that F ∈ L1(Td) and that f(x) :=
∫
Td F (α)e

2πix·α dα

for x ∈ Zd. Show that
∫
Td |F (α)|2 dα =

∑
Zd |f(x)|2. Hint: Prove that the functions

Gx(α) := e−2πix·α for x ∈ Zd form an orthonormal basis of L2(Td).

Proof of Corollary 10.25. For Zd, the result is easy: We need treat only the transient case.

By Proposition 2.1, (10.17) is equivalent to the voltage function v of Proposition 10.16 not

being square summable. By Exercise 10.14, this in turn is equivalent to 1/φ /∈ L2(Td),
where φ is defined in (10.8). By (10.9), this holds iff d ≤ 4.

The general statement requires certain facts that are beyond the scope of this book,

but otherwise is not hard: For independent simple random walks, reversibility and regu-

larity of G imply that

∑
z

G (o, z)2 = lim
n→∞

Eo,o[IN ] =
∞∑
m=0

∞∑
n=0

Po,o[Xm = Yn]

=
∞∑
m=0

∞∑
n=0

Po[Xm+n = o] =
∞∑
n=0

(n+ 1)Po[Xn = o] . (10.32)

In case (i), the assumption that supn Vn/n
4 = ∞ implies that Vn ≥ cn5 for some c > 0

and all n: see Theorem 5.11 in Woess (2000). Corollary 14.5 in the same reference yields

Px[Xn = x] ≤ Cn−5/2. Thus the sum in (10.32) converges. (In particular, simple random

walk is transient.)

In case (ii), combining the results (14.5), (14.12) and (14.19) in Woess (2000), we infer

that the assumption Vn = O(n4) implies that Px[X2n = x] ≥ cn−2 for some c > 0 and all

n ≥ 1. Thus the series (10.32) diverges.

Hence, both assertions follow from Theorem 10.24. ◀

Proof of Theorem 10.26. Of course, the recurrent case is a consequence of our work in

Chapter 4, so we restrict ourselves to the transient case.

Let ⟨Xn(u) ; n ≥ 0, u ∈ V⟩ be a collection of independent random walks, one starting

at each u ∈ V. Denote the event that Xn(wi) ̸= Xm(wk) for all i ̸= k and n,m ≥ j

by Bj(w1, . . . , wK). Thus, α(w1, . . . , wK) = P[B0(w1, . . . , wK)] and B(w1, . . . , wK) :=∪
j Bj(w1, . . . , wK) is the event that there are only finitely many pairwise intersections

among the random walks starting at w1, . . . , wK . For every j ≥ 0, we have

lim inf
n→∞

α
(
Xn(w1), . . . , Xn(wK)

)
≥ lim
n→∞

P
[
Bj(w1, . . . , wK)

∣∣ ⟨Xm(wi) ; m ≤ n, i ≤ K⟩
]

= 1Bj(w1,...,wK) a.s.
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by Lévy’s 0-1 law. It follows that

lim inf
n→∞

α
(
Xn(w1), . . . , Xn(wK)

)
≥ 1B(w1,...,wK) a.s. (10.33)

First suppose that α(w1, . . . , wK) > 0 for some w1, . . . , wK . Then by (10.33), for

every ϵ > 0, there is an n ∈ N such that α
(
Xn(w1), . . . , Xn(wK)

)
> 1 − ϵ with positive

probability. In particular, there are w′
1, . . . , w

′
K such that α(w′

1, . . . , w
′
K) > 1 − ϵ. Using

Wilson’s method rooted at infinity starting with the vertices w′
1, . . . , w

′
K , this implies that

with probability greater than 1 − ϵ, the number of trees for WSF is at least K. As ϵ > 0

was arbitrary, this implies that the number of trees is WSF-a.s. at least (10.18).

For the converse, suppose that α(w1, . . . , wK) = 0 for all w1, . . . , wK . By (10.33), we

find that there exist a.s. i ̸= j with infinitely many intersections between ⟨Xn(wi)⟩ and

⟨Xn(wj)⟩, whence also between LE⟨Xn(wi)⟩ and ⟨Xn(wj)⟩ by Theorem 10.21 in general

and by Theorem 10.24 in the transitive case. By Wilson’s method rooted at infinity,

the probability that all w1, . . . , wK belong to different trees is 0. Since this holds for all

w1, . . . , wK , it follows that the number of trees is WSF-a.s. at most (10.18).

Moreover, if the probability is zero that two independent random walks X1, X2 inter-

sect i.o. starting at some w ∈ V, then limn→∞ α
(
X1
n, X

2
n

)
= 1 a.s. by (10.33). Therefore

lim
n→∞

α
(
X1
n, . . . , X

k
n

)
= 1

a.s. for any independent random walks X1, . . . , Xk. This implies that the number of

components of WSF is a.s. infinite. ◀

Proof of Corollary 10.27. By Theorem 6.7, the spectral radius ρ of random walk in G

is strictly less than 1. Let d be an upper bound for π(x). Fix o ∈ V and consider

independent random walks X and Y starting at o. Then by reversibility and (6.11),

P[Xm = Yn] ≤ dP[Xm+n = o] ≤ dρm+n. Summing on m and n gives that the expected

number of pairs of times where the two random walks intersect is finite, whence the number

of intersections is finite a.s. Thus, the result follows from the last part of Theorem 10.26.

◀

▷ Exercise 10.15.

Let (T, c) be a network on a tree. Show that WSF[F ̸= T ] = 1 iff there is some edge e ∈ T

such that both components of T \ e are transient iff WSF[F ̸= T ] > 0.
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§10.6. The Size of the Trees.

In the preceding section, we discovered how many trees there are in the wired spanning

forest. Now we ask how big these trees are. Of course, there is more than one way to define

“big”. The most obvious probabilistic notion of “big” is “transient”. In this sense, all the

trees are small:

Theorem 10.34. (Morris, 2003) Let (G, c) be a network. For WSF-a.e. F, all trees T

in F have the property that the wired spanning forest of (T, c) equals T . In particular, if

c(•) is bounded, then (T, c) is recurrent.

To prove Morris’s theorem, we will use the following observation:

Lemma 10.35. Let (G, c) be a transient network and ⟨en⟩ an enumeration of its edges.

Write Gn for the network obtained by contracting the edges e1, e2, . . . , en. For any vertex

x, we have limn→∞ R(x↔ ∞;Gn) = 0.

Proof. Let θ be a unit flow in G from x to ∞ of finite energy. The restriction of θ to

⟨ek ; k > n⟩ is a unit flow in Gn from x to infinity with energy tending to 0 as n → ∞.

Since the energy of any unit flow is an upper bound on the effective resistance by Thomson’s

Principle, the result follows. ◀

We will also use the result of the following exercise:

▷ Exercise 10.16.

Let (T, c) be a transient network on a tree with bounded conductances c(•). Show that

there is some e ∈ T such that both components of T\e are transient (with respect to c).

Proof of Theorem 10.34. Consider any edge e ofG. Let Ae be the event that both endpoints

of e lie in transient components of F\e (with respect to the conductances c(•)). We’ll prove

that WSF[e ∈ F,Ae] = 0. The first part of the theorem then follows from Exercise 10.7,

while the last part follows from Exercise 10.16.

Enumerate the edges of G\e as ⟨en⟩. Let Fn be the σ-field generated by the events

[ek ∈ F] for k < n, where n ≤ ∞. Recall that conditioning on an edge being in the spanning

forest is equivalent to contracting the edge from the original network, while conditioning on

the edge being absent is equivalent to deleting the edge from the original network. Thus,

for n <∞, let Gn be the random network obtained from G by contracting ek when ek ∈ F

and deleting ek otherwise, where we do this for all k < n. Let in be the wired unit current

flow in Gn from the tail to the head of e. Then WSF[e ∈ F | Fn] = in(e) by (10.3). This is

c(e) times the wired effective resistance between e− and e+ in Gn. By Lemma 10.35 and
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Exercise 9.28, this tends to 0 on the event Ae. By Lévy’s martingale convergence theorem,

we obtain WSF[e ∈ F | F∞]1Ae = 0 a.s. Taking the expectation of this equation gives

WSF[e ∈ F,Ae] = 0, as desired. ◀

We now look at another notion of size of trees. Call an infinite path in a tree that

starts at any vertex and does not backtrack a ray . Call two rays equivalent if they have

infinitely many vertices in common. An equivalence class of rays is called an end . How

many ends do the trees of a uniform spanning forest have?

Let’s begin by thinking about the case of the wired uniform spanning forest on a

regular tree of degree d+1. Choose a vertex, o. Begin Wilson’s method rooted at infinity

from o. We obtain a ray ξ from o to start our forest. Now o has d neighbors not in ξ,

x1, . . . , xd. By beginning random walks at each of them in turn, we see that the events

Ai := [xi connected to o] are independent. Furthermore, the resistance from xi to ∞ in

the descendant subtree of xi (we think of o as the parent of xi) is 1/d+1/d2+1/d3+ · · · =
1/(d− 1), whence the probability that random walk started at xi ever hits o is 1/d. This

is the probability of Ai. On the event Ai, we add only the edge [o, xi] to the forest and

then we repeat the analysis from xi. Thus, the tree containing o includes, apart from

the ray ξ, a critical Galton-Watson tree with offspring distribution Binomial(d, 1/d). In

addition, each vertex on ξ has another random subtree attached to it; its first generation has

distribution Binomial(d − 1, 1/d), but subsequent generations yield Galton-Watson trees

with distribution Binomial(d, 1/d). In particular, a.s. every tree added to ξ is finite. This

means that the tree containing o has only one end, the equivalence class of ξ. This analysis

is easily extended to form a complete description of the entire wired spanning forest. In

fact, if we work on the d-ary tree instead of the (d+1)-regular tree, the description is slightly

simpler: each tree in the forest is a size-biased Galton-Watson tree grown from its lowest

vertex, generated from the offspring distribution Binomial(d, 1/d) (see Section 12.1). The

resulting description is due to Häggström (1998), whose work predated Wilson’s algorithm.

Now consider the WSF on general graphs. If we begin Wilson’s algorithm at a vertex

o in a graph, it immediately generates one end of the tree containing o. In order for this

tree to have more than one end, however, we need a succession of “coincidences” to occur,

building up other ends by gradually adding on finite pieces. This is possible (see Exercises

10.17, 10.46, or 10.47), but it suggests that “usually”, the wired spanning forest has trees

with only one end each. Indeed, we will show that this is very often the case.

▷ Exercise 10.17.

Give a transient graph such that the wired uniform spanning forest has a single tree with

more than one end.
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First, we consider the planar recurrent case, which has an amazingly simple analysis:

Theorem 10.36. Suppose that G is a simple plane recurrent network and G† its plane

dual. Assume that G† is locally finite and recurrent. Then the uniform spanning tree on

G has only one end a.s.

Proof. Because both networks are recurrent, their free and wired spanning forests coincide

and are a single tree a.s. We observed in Section 10.3 that the uniform spanning tree T

of G is “dual” to that of G†. If T had at least two ends, the bi-infinite path in T joining

two of them would separate T× into at least two trees. Since we know that T× is a single

tree, this is impossible. ◀

In particular, we have verified the claim in Section 4.3 that the maze in Z2 is connected

and has exactly one way to get to infinity from any square. If we want to get a somewhat

more global picture of the uniform spanning tree in Z2 incorporating the fact that it

has only one end, then we can look at the uniform spanning tree in a wired piece of

the square grid in a similar fashion to Figure 4.5. That is, we can plot the distance to

the outer boundary vertex: see Figure 10.2. Near the middle, this should be similar to

what we would see in the infinite grid, where “distance” is replaced by “horodistance” to

the unique end. Horodistance is defined only up to an additive constant; if we fix the

horodistance to be 0, say, at the origin, then all other horodistances h(x) are determined

by h(x) := dT (x, xn)−dT (0, xn) for all large n, where dT indicates distance in the uniform

spanning tree T and ⟨xn⟩ is a ray that represents the unique end of T .

Similar reasoning shows:

Proposition 10.37. Suppose that G is a simple plane network and G† its plane dual.

Assume that G† is locally finite. If each tree of the WSF of G has only one end a.s., then

the FSF of G† has only one tree a.s. If, in addition, the WSF of G has infinitely many

trees a.s., then the tree of the FSF of G† has infinitely many ends a.s. ◀

This is illustrated for the Cayley graph of Figure 6.1 and its dual in Figure 10.3.

Now we go beyond the planar cases. By Proposition 10.10 and Theorem 8.19, it

follows that if G is a transient transitive unimodular network, almost surely each tree of

the wired spanning forest has one or two ends. It it one or two? This is less easy to decide.

The answer is that each tree of the WSF has only one end a.s. in every quasi-transitive

transient network, as well as in a host of other natural networks. The first result of this

kind was due to Pemantle (1991), who proved it for Zd with d = 3, 4 and also showed that

there are at most two ends per tree for d ≥ 5. BLPS (2001) extended and completed this

for all unimodular transitive networks, showing that each tree has only one end. This was
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Figure 10.2. The distances to the outer boundary in a uniform
spanning tree of a wired 200 × 200 square grid.

Figure 10.3. The FSF of a Cayley graph in the hyperbolic disc, which
is a tree, and its thinner dual WSF, each of whose trees has one end.

then extended to all quasi-transitive transient networks and more by Lyons, Morris, and

Schramm (2008), who found a simpler method of proof that worked in greater generality.

This is the proof we present here. We first prove it for the case of Zd before giving more

general results.
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Lemma 10.38. Let A be an event of positive probability in a probability space and F be

a σ-field. Then P(A | F ) > 0 a.s. given A .

Proof. Let B be the event where P(A | F ) = 0. We want to show that P(B ∩ A ) = 0.

Since B ∈ F , we have by definition of conditional probability that

P(B ∩ A ) = E[1BP(A | F )] = 0 . ◀

Lemma 10.39. Let B(n) be a box in Zd for some d ≥ 3 whose sides are parallel to the

axes and of length n. Then

lim
N→∞

inf
{
C (K ↔ ∞;Zd\B(n)) ; K ⊂ Zd\B(n), |K| = N, n ≥ 0

}
= ∞ .

Proof. Since the effective conductance is monotone increasing in K, it suffices to bound it

from below when all points in K are at pairwise distance at least N from each other and lie

on one side of a hyperplane that includes a face of B(n). Since the effective conductance is

also monotone increasing in the rest of the network (i.e., Rayleigh’s Monotonicity Princi-

ple), it suffices to bound from below the conductance from K to ∞ in G := N×Zd−1. That

G is transient follows from the proof of Pólya’s theorem, or can be deduced from Pólya’s

theorem by reflection. Thus, there exists a unit flow θ of finite energy from the origin to

∞ in G. Write θx for the image of θ under the translation of the origin to x ∈ G. Then

θK :=
∑
x∈K θx/|K| is a unit flow between K and ∞, so it suffices to bound its energy

from above. We claim that the inner product (θx, θy) is small when x and y are far from

each other. Indeed, given ϵ > 0, choose a finite set F ⊂ E(G) such that
∑
e/∈F θ(e)

2 < ϵ2.

Write θx = θ
(1)
x + θ

(2)
x , where θ

(1)
x := θx↾(F + x) and θ

(2)
x := θx↾(F + x)c. Then if the

distance between x and y is so large that (F + x) ∩ (F + y) = ∅, we have

(θx, θy) = (θ(1)x , θ(2)y ) + (θ(2)x , θ(1)y ) + (θ(2)x , θ(2)y ) ≤ 2ϵE (θ)1/2 + ϵ2

by the Cauchy-Schwarz inequality. Therefore, we have

E (θK) =
∑
x∈K

E
(
θx/|K|

)
+

∑
x ̸=y∈K

(θx, θy)/|K|2 = E (θ)/|K|+ o(1) = o(1) ,

as desired. ◀

We need one more simple lemma before proving that the uniform spanning forest in

Zd has one end in each tree a.s. for d ≥ 2.
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Lemma 10.40. Let G be a transient network and F ⊂ E(G) be such that G\F has no

finite components. For e ∈ F , write re := RW(e− ↔ e+;G\F ). Then

WSF[F ∩ F = ∅] ≥
∏
e∈F

1

1 + c(e)re
.

Proof. It suffices to prove the analogous statement for finite networks, so we write T for

the random spanning tree, rather than F. For e ∈ F , we have

P[e ∈ T ] = c(e)R(e− ↔ e+;G) =
c(e)

c(e) + C (e− ↔ e+;G\e)
≤ c(e)

c(e) + C (e− ↔ e+;G\F )

by Kirchhoff’s Effective Resistance Formula and Rayleigh’s Monotonicity Principle. Thus,

P[e /∈ T ] ≥ 1

1 + c(e)R(e− ↔ e+;G\F )
.

If we order F and use this bound one at a time, conditioning each time that the prior

edges of F are not in T and deleting them from G, we get the desired bound. ◀

Recall that the internal vertex boundary of a set K is

∂intV K :=
{
x ∈ K ; ∃y /∈ K y ∼ x

}
.

Theorem 10.41. (One End for Trees in Zd) In Zd with d ≥ 2, every tree in the

uniform spanning forest has only one end a.s.

Proof. The case d = 2 is part of Theorem 10.36, so assume that d ≥ 3 and, thus, that

the graph is transient by Pólya’s theorem. Let Ae be the event that F\e has a finite

component. The way we will show that every tree in F has one end a.s. is to show that

every edge e ∈ E(G) has the property that WSF[Ae | e ∈ F] = 1.

Fix e. Let ⟨Gn⟩ be an exhaustion by boxes that contain e. Let Fn be the σ-field

generated by the events [f ∈ F] for f ∈ E(Gn) \ {e}. Let G′
n be Zd after deleting the edges

of Gn \
(
F ∪ {e}

)
and contracting each edge of Gn ∩

(
F \ {e}

)
. Note that e ∈ G′

n. As in

the proof of Theorem 10.34,

WSF[e ∈ F | Fn] = RW(e− ↔ e+;G′
n) =

1

1 + CW(e− ↔ e+;G′
n\e)

.

Since WSF[e ∈ F | Fn] has a non-0 limit a.s. given e ∈ F by the martingale convergence

theorem and Lemma 10.38, it follows that CW(e− ↔ e+;G′
n\e) is bounded a.s. given e ∈ F.

Let T be the component of F that contains e when e ∈ F and let T := ∅ otherwise. By

combining the previous bound on the wired effective conductance with Lemma 10.39 and
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Exercise 9.28, it follows that there is some finite random N with the following property:

for all n, conditional on the event that e ∈ F, a.s. at least one of the two components

of T\e has at most N vertices on the internal vertex boundary of the box Gn. Suppose

that the component T ′ of e− is such a component, so that e− has degree at most 2dN in

G′
n\e. By Lemma 10.40, it follows that on the event e ∈ F, the conditional probability

that T ′ = T ′ ∩Gn given Fn is at least ϵ2dN for some ϵ > 0 and all large n. In particular,

WSF[Ae | Fn] ≥ ϵ2dN on the event that e ∈ F. Since Ae lies in the σ-field generated by∪
Fn, the limit of these conditional probabilities as n → ∞ is a.s. the indicator of Ae,

whence 1Ae ≥ ϵ2dN1[e∈F] a.s., whence 1Ae ≥ 1[e∈F] a.s., as desired. ◀

We now prove the same for networks with a “reasonable expansion profile”, as defined

in Section 6.6. Recall that |F |c :=
∑
e∈F c(e) for F ⊆ E and |K|π :=

∑
x∈K π(x) for

K ⊆ V. Write

ψ(G, t) := inf
{
|∂EK|c ; t ≤ |K|π <∞

}
.

We need one more lemma, which states that if G has a good expansion profile (in terms

of ψ), then G can be exhausted by finite subgraphs whose complements still have a good

expansion profile.

Lemma 10.42. Let G be an infinite connected network such that

ψ(G, 0+) := lim
t↓0

ψ(G, t) > 0 and lim
t→∞

ψ(G, t) = ∞ . (10.34)

Then G has an exhaustion ⟨Gn⟩ by finite connected induced subgraphs such that∣∣∂EU \ ∂EV(Gn)
∣∣
c
≥
∣∣∂EU ∣∣c/2 (10.35)

for all n and all finite U ⊂ V(G) \ V(Gn) and

ψ
(
G\V(Gn), t

)
≥ ψ(G, t)/2 (10.36)

for all n and t > 0.

Proof. Given K ⊂ V(G) such that its induced subgraph G↾K is connected, let W (K)

be a set L that minimizes |∂EL|c over all finite sets L that contain K ∪ ∂VK; such a

set W (K) exists by our assumptions (10.34) on G. Furthermore, its induced subgraph

G↾W (K) is connected. Let G′ := G\W (K) and write ∂E
′ for the edge-boundary operator

in G′. If U is a finite subset of vertices in G′, then
∣∣∂E′U ∣∣c ≥

∣∣∂EU ∣∣c/2, which is the

same as
∣∣∂EU \ ∂EW (K)

∣∣
c
≥
∣∣∂EU ∣∣c/2, since if not, W (K) ∪ U would have a smaller

edge boundary but larger size than W (K), contradicting the definition of W (K). Thus,

ψ(G′, t) ≥ ψ(G, t)/2 for all t > 0. It follows that we may define an exhaustion having the

desired properties by the recursion K1 :=W
(
{o}
)
and Kn+1 :=W (Kn), where o is a fixed

vertex of G, and Gn := G↾Kn. ◀

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



§6. The Size of the Trees 411

The following theorem shows that expansion at a rate faster than square root guar-

antees one end per tree in the WSF.

Theorem 10.43. (One End for Trees in Expansive Networks) Suppose that G is

an infinite network with π0 := infx∈V π(x) > 0. If ψ(t) := ψ(G, t) has the property that

ψ(t) ≥ f(t) for some increasing function f on [π0,∞) that satisfies 0 ≤ f(t) ≤ t and

f(2t) ≤ αf(t) for some α and ∫ ∞

π0

dt

f(t)2
<∞ ,

then WSF-a.s. every tree has only one end.

Just as we saw that Theorem 6.22 was an easy consequence of Theorem 6.23, so

Theorem 10.43 is easy to deduce from the following version that does not assume any

regularity on ψ(G, t):

Theorem 10.44. Suppose that G is an infinite network. Let ψ(t) := ψ(G, t). Define

s1 := ψ(0+)/2 and sk+1 := sk + ψ(sk)/2 inductively for k ≥ 1. If

ψ(0+) > 0 and
∑
k≥1

1

ψ(sk)
<∞ , (10.37)

then WSF-a.s. every tree has only one end.

Proof. Let Ae be the event that F\e has a finite component. Just as we did in the

proof of Theorem 10.41, we will show that every edge e ∈ E(G) has the property that

WSF[Ae | e ∈ F] = 1. Unfortunately, the proof will be rather lengthier, but it is the same

in spirit.

Our assumptions (10.37) imply those (10.34) of Lemma 10.42. Let ⟨Gn⟩ be an ex-

haustion by finite connected induced subgraphs that contain e and satisfy (10.35) and

(10.36). Let G′
n be G after deleting E(Gn) \ (F ∪ {e}), contracting E(Gn) ∩ (F \ {e}), and

removing any resulting loops. Note that e ∈ G′
n. Let Hn := G′

n\e and write πn for the

corresponding vertex weights in Hn. As in the proof of Theorem 10.41,

WSF[e ∈ F | G′
n] = c(e)RW(e− ↔ e+;G′

n) =
c(e)

c(e) + CW(e− ↔ e+;Hn)
.

Since WSF[e ∈ F | G′
n] has a non-0 limit a.s. given e ∈ F by the martingale convergence

theorem and Lemma 10.38, it follows that

sup
n

CW(e− ↔ e+;Hn) <∞ a.s. (10.38)
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given e ∈ F.

If either of the endpoints of e is isolated in Hn, then Ae occurs. If not, then Hn is

obtained from Ln := G\V(Gn) by adding new vertices and edges. Write π′
n(x) for the sum

of edge weights incident to x in Ln. We claim that for some fixed R < ∞, all n ≥ 1, and

all x, y ∈ V(Ln), we have

RW(x↔ y;Ln) ≤ R . (10.39)

To see this, given x ∈ V(Ln), define r0 := π′
n(x) and rk+1 := rk+ψ(Ln, x, rk)/2 inductively.

Here, as in (6.34), we use the definition

ψ(Ln, x, t) := inf
{
|∂EK|c ; x ∈ K ⊂ V(Ln), Ln↾K is connected, t ≤ |K|π <∞

}
.

We claim that r2k ≥ sk for all k. We prove this by induction on k. Obviously r0 ≥ s0.

Assume that r2k ≥ sk for some k ≥ 0. By (10.36), we have

r2k+2 ≥ r2k+1+ψ(G, r2k+1)/4 ≥ r2k+ψ(G, r2k)/4+ψ(G, r2k)/4 ≥ sk+ψ(G, sk)/2 = sk+1 ,

which completes the proof. Since r2k+1 ≥ sk as well, the bound of Theorem 6.23 (which

applies since ψ(0+) > 0 implies |V(G)|π = ∞) shows that

R(x↔ ∞;Ln) ≤
∑
k

2

ψ(Ln, x, rk)
≤
∑
k

4

ψ(G, rk)
≤
∑
k

8

ψ(G, sk)
.

In combination with Exercise 9.28, this proves (10.39) with R =
∑
k 16/ψ(G, sk). In

addition, the same proof shows that if it happens that π′
n(x) ≥ sm for some m, then

R(x↔ ∞;Ln) ≤
∑
k≥m 8/ψ(G, sk). This tends to 0 as m→ ∞.

Let xn and yn be the endpoints of e in Hn. Consider now RW(xn ↔ ∞;Hn) ≤
RW(xn ↔ ∞; Jn), where Jn is the network formed by adding to Ln the vertex xn together

with the edges joining it to its neighbors in Hn. By (10.35), ψ(Jn, xn, t) = πn(xn) for

t = πn(xn). We claim that

ψ(Jn, xn, t) ≥ ψ(Ln, t/3) (10.40)

for all t ≥ (3/2)πn(xn). Let ∂E
′ denote the edge-boundary operator in Ln. Let π

′′
n denote

the vertex weights in Jn. Consider a finite connected set K of vertices in Jn that strictly

contains xn and with |K|π′′n ≥ (3/2)πn(xn). Let K
′ := K \ {xn}. Then |K ′|π′n ≥ |K|π′′n/3,

while |∂E′K ′|c ≤ |∂EK|c. This proves the claim. An argument similar to the above shows,

therefore, that R(xn ↔ ∞; Jn) is small if πn(xn) is large because the first two terms

in the series of Theorem 6.23 are 2/πn(xn) and 2/ψ
(
Jn, xn, (3/2)πn(xn)

)
, and the latter

is at most 2/ψ
(
Ln, πn(xn)/2

)
by (10.40). The same holds for yn. If both resistances
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were small, then RW(xn ↔ yn;Hn) would also be small by Exercise 9.28, which would

contradict (10.38). Therefore,
{
min{πn(xn), πn(yn)}

}
is bounded a.s. For simplicity, let’s

say that {πn(xn)} is bounded a.s.

Form G′′
n from G′

n by contracting the edges incident to yn (other than e) that lie in F

and by deleting the others. If none lie in F, then Ae occurs, so assume at least one does

belong to F. If F denotes the set of edges of Hn incident to xn, then by Lemma 10.40,

(10.39), and Rayleigh’s Monotonicity Principle, we have

WSF[F ∩ F = ∅ | G′′
n] ≥ exp

{
−
∑
f∈F

c(f)
(
r(e) +R

)}
= exp

{
− πn(xn)

(
r(e) +R

)}
if neither endpoint of e is isolated in Hn. This is bounded away from 0. In particular,

WSF[Ae | G′′
n] is bounded away from 0 a.s. on the event that e ∈ F. Since the limit of these

conditional probabilities as n → ∞ is a.s. the indicator of Ae, the proof is completed as

for Theorem 10.41. ◀

Which (unweighted) graphs satisfy the hypothesis of Theorem 10.43? Of course, all

non-amenable graphs do—with a linear function f . Combining this with Corollary 10.27,

we get a good description of the WSF on bounded-degree non-amenable graphs:

Theorem 10.45. If G is a connected non-amenable graph of bounded degree, then the

WSF a.s. has infinitely many trees, each with one end.

Although it is not obvious, all quasi-transitive transient graphs also satisfy the hypoth-

esis of Theorem 10.43. To show this, we begin with the following lemma due to Coulhon

and Saloff-Coste (1993), Saloff-Coste (1995), and Lyons, Morris, and Schramm (2008).

It extends Theorem 6.25. (Recall from Proposition 8.14 that non-unimodular transitive

graphs are non-amenable, and so satisfy a better inequality that the following one.)

Lemma 10.46. Let G be a unimodular transitive graph. Let ρ(m) be the smallest radius

of a ball in G that contains at least m vertices. Then for all finite K ⊂ V, we have

|∂intV K|
|K|

≥ 1

2ρ
(
2|K|

) .
Proof. Fix a finite set K and let ρ := ρ

(
2|K|

)
. Let B′(x, r) be the punctured ball of radius

r about x, i.e., the ball but missing x itself, and let b := |B′(x, ρ)|. For x, y, z ∈ V(G),

define fk(x, y, z) as the proportion of geodesic (i.e., shortest) paths from x to z whose kth

vertex is y. Let S(x, r) be the sphere of radius r about x. Write qr := |S(x, r)|. Let

Fr,k(x, y) :=
∑
z∈S(x,r) fk(x, y, z). Clearly,

∑
y Fr,k(x, y) = qr for every x ∈ V(G) and
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r ≥ 1. Since Fr,k is invariant under the diagonal action of the automorphism group of G,

the Mass-Transport Principle gives
∑
x Fr,k(x, y) = qr for every y ∈ V(G) and r ≥ 1. Now

we consider the sum

Zr :=
∑
x∈K

∑
z∈S(x,r)\K

∑
y∈∂int

V
K

r−1∑
k=0

fk(x, y, z) .

If we fix x ∈ K and z ∈ S(x, r) \K, then the inner double sum is at least 1, since if we fix

any geodesic path from x to z, it must pass through ∂intV K. It follows that

Zr ≥
∑
x∈K

|S(x, r) \K| ,

whence

Z :=

ρ∑
r=1

Zr ≥
∑
x∈K

|B′(x, ρ) \K| ≥
∑
x∈K

|B′(x, ρ)|/2 = |K|b/2 .

On the other hand, if we do the summation in another order, we find

Zr =
∑

y∈∂int
V
K

r−1∑
k=0

∑
x∈K

∑
z∈S(x,r)\K

fk(x, y, z)

≤
∑

y∈∂int
V
K

r−1∑
k=0

∑
x∈V(G)

∑
z∈S(x,r)

fk(x, y, z)

=
∑

y∈∂int
V
K

r−1∑
k=0

∑
x∈V(G)

Fr,k(x, y)

=
∑

y∈∂int
V
K

r−1∑
k=0

qr = |∂intV K|rqr .

Therefore,

Z ≤
ρ∑
r=1

|∂intV K|rqr ≤ |∂intV K|ρb .

Comparing these upper and lower bounds for Z, we get the desired result. ◀

An immediate consequence of Lemma 10.46 (relying on Proposition 8.14) is the fol-

lowing bound:

Corollary 10.47. If G is a transitive graph with balls of radius n having at least cn3

vertices for some constant c, then

ψ(G, t) ≥ c′t2/3

for some constant c′ and all t ≥ 1. ◀
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As in Theorem 6.27, we may deduce

Corollary 10.48. If G is a transitive graph with balls of radius n having at least cn3

vertices for some constant c, then simple random walk is transient on G. ◀

Since all quasi-transitive transient graphs have at least cubic volume growth by a

theorem of Gromov (1981a) and Trofimov (1985) (see, e.g., Theorem 5.11 of Woess (2000)),

we obtain:

Theorem 10.49. If G is a transient transitive network, then WSF-a.s. every tree has

only one end.

▷ Exercise 10.18.

Show that Theorem 10.49 holds in the quasi-transitive case as well.

Question 10.50. (Lyons, Morris, and Schramm, 2008) If G and G′ are roughly

isometric graphs and the wired spanning forest in G has only one end in each tree a.s.,

then is the same true in G′?

In contrast to Theorem 10.49, we have:

Proposition 10.51. If G is a unimodular transitive network with WSF ̸= FSF, then FSF-

a.s., there is a tree with infinitely many ends—in fact, with branching number > 1.

Proof. We have that EWSF[degF x] = 2 for all x, whence EFSF[degF x] > 2 for all x. Apply

Theorem 8.19 and ergodicity (Corollary 10.19). ◀

Question 10.52. Let G be a transitive network with WSF ̸= FSF. Must all components

of the FSF have infinitely many ends a.s.? Presumably, the answer is “yes”.

In view of Proposition 10.51, this would follow in the unimodular case from a proof

of the following conjecture:

Conjecture 10.53. The components of the FSF on a unimodular transitive graph are

indistinguishable in the sense that for every automorphism-invariant property A of sub-

graphs, either a.s. all components satisfy A or a.s. they all do not. The same holds for the

WSF.

This fails in the nonunimodular setting: see Exercise 10.49.

Finally, we need the fact that graphs roughly isometric to hyperbolic space are non-

amenable; see Proposition F.6.12 of Benedetti and Petronio (1992).

Taking stock, we arrive at the following surprising results:
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Theorem 10.54. Let G be a graph of bounded degree that is roughly isometric to Hd.

(i) If G is a plane graph such that its plane dual is also roughly isometric to H2, then

the WSF of G has infinitely many trees a.s., each having one end a.s., while the FSF

of G has one tree a.s. with infinitely many ends a.s.

(ii) If d ≥ 3, then the WSF = FSF of G has infinitely many trees a.s., each having one

end a.s.

Proof. By Theorem 10.45 and non-amenability of G, the descriptions of the WSF follow

for all d ≥ 2. In case (i), the description of the FSF follows from Proposition 10.37. In

case (ii), it follows from Theorem 9.18 and Proposition 10.14. In the planar case, it suffices

merely to have both G and its dual locally finite and non-amenable. ◀

An example of a self-dual plane Cayley graph roughly isometric to H2 was shown in

Fig. 2.4.

LetG be a proper transient plane graph with bounded degree and a bounded number of

sides to its faces. Recall that Theorem 9.12 and Proposition 10.14 imply that WSF ̸= FSF.

By Theorem 10.26 and Theorem 9.17, WSF has infinitely many trees. If the wired spanning

forest has only one end in each tree, then the end containing any given vertex has a limiting

direction that is distributed according to Lebesgue measure in the parametrization of

Section 9.4. This raises the following question:

Question 10.55. Let G be a proper transient plane graph with bounded degree and

a bounded number of sides to its faces. Does each tree have only one end WSF-a.s.?

Equivalently, is the free spanning forest a single tree a.s.?

Of course, the recurrent case has a positive answer by combining Theorem 10.36

with the fact that G† is roughly isometric to G, and thus that G† is also recurrent by

Theorem 2.17.

Here is a summary of the phase transitions. It is quite surprising that the free spanning

forest undergoes 3 phase transitions as the dimension increases. (We think of hyperbolic

space as having infinitely many Euclidean dimensions, since volume grows exponentially
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in hyperbolic space, but only polynomially in Euclidean space.)

Zd Hd

d 2–4 ≥ 5 2 ≥ 3

FSF: trees 1 ∞ 1 ∞
ends 1 1 ∞ 1

WSF: trees 1 ∞ ∞ ∞
ends 1 1 1 1

Finally, we mention the following beautiful extension of Pemantle’s Theorem 10.30;

see Benjamini, Kesten, Peres, and Schramm (2004).

Theorem 10.56. Identify each tree in the uniform spanning forest on Zd to a single

point. In the induced metric, the diameter of the resulting (locally infinite) graph is a.s.

⌊(d− 1)/4⌋.

§10.7. Loop-Erased Random Walk and Harmonic Measure From Infinity.

Infinite loop-erased random walk is defined in any transient network by chronologically

erasing cycles from the random walk path. This was the first stage in constructing the

WSF via Wilson’s method rooted at infinity. Is there a sensible way to define infinite

loop-erased random walk in a recurrent network? Suppose we try this: run random walk

until it first reaches distance n from its starting point, erase cycles, and take a weak limit

as n→ ∞.

▷ Exercise 10.19.

Show that on a general recurrent network, such a weak limit need not exist.

Despite the discouraging results of that exercise, this approach does work in many

cases. In Z2, weak convergence of these measures was established by Lawler (1988) using

Harnack inequalities (see Lawler (1991), Prop. 7.4.2). Lawler’s approach yields explicit

estimates of the rate of convergence, but is difficult to extend to other networks. Using

spanning trees, however, we can often prove that the limit exists, as shown in the following

exercise.
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▷ Exercise 10.20.

Let ⟨Gn⟩ be an induced exhaustion of a recurrent network G. Consider the network random

walk ⟨Xk ; k ≥ 0⟩ started from o ∈ G. Denote by τn the first exit time of Gn, and let

Ln be the loop erasure of the path ⟨Xk ; 0 ≤ k ≤ τn⟩. Show that if the uniform spanning

tree TG in G has one end a.s., then the random paths Ln converge weakly to the law of

the unique ray from o in TG. In particular, show that this applies if G is a proper plane

network with a locally finite recurrent dual.

Now we go the other way: Instead of walking to infinity, we walk from infinity. More

precisely, we do not try to find a path coming from infinity, but only the hitting distribution

on a finite set of that imagined path. Let A be a finite set of vertices in a recurrent network

G. Denote by τA the hitting time of A, and by hAu the harmonic measure from u on A:

∀B ⊆ A hAu (B) := Pu

[
XτA ∈ B

]
.

If the measures hAu converge as dist(u,A) → ∞, then it is natural to refer to the limit as

harmonic measure from ∞ on A. This convergence fails in some recurrent networks

(e.g., in Z), but it does hold in Z2; see Lawler (1991), Thm. 2.1.3. On transient networks,

wired harmonic measure from infinity always exists: see Exercise 2.48. Here, we show that

on recurrent networks with one end in their uniform spanning tree, harmonic measure from

infinity also exists:

Theorem 10.57. Let G be a recurrent network and A be a finite set of vertices. Suppose

that the uniform spanning tree TG in G has one end a.s. Then the harmonic measures hAu

converge as dist(u,A) → ∞.

Proof. Essentially, we would like to run Wilson’s algorithm with all of A as root. To do

this, let (A,F ) be a tree with F ∩ E(G) = ∅, and form the graph G′ :=
(
V(G),E(G)∪F

)
.

Assign unit conductances to the edges of F . Note that the event that T has one end

belongs to the tail σ-field of Section 10.4. Now TG′ conditioned on TG′ ∩ F = ∅ has the

same distribution as TG. Therefore, tail triviality (Theorem 10.18) tell us that a.s. TG′

has one end. By this fact and similar reasoning, because TG′ conditioned on the event[
TG′ ∩ F = F

]
has the same distribution as TG′/F , also TG′/F has one end a.s.

The path from u to A in TG′/F is constructed by running a random walk from u until

it hits A and then loop erasing. Thus, when dist(u,A) → ∞, the measures hAu must tend

to the conditional distribution, given
[
TG′ ∩ F = F

]
, of the point in A that is closest (in

TG′) to the unique end of TG′ . ◀
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§10.8. Appendix: Von Neumann Dimension and ℓ2-Betti Numbers.

Our goal is to show that the expected degree of the FSF in a Cayley graph depends

only on the group and not on the set of generators. To accomplish this, we will explain

what (10.6) means and why it is true. In particular, we show that the first ℓ2-Betti number

of a Cayley graph depends only on the group.

Let G be the Cayley graph of an infinite group Γ with respect to a finite generating

set S closed under inverses. Write es for the edge joining the identity o to s. By (10.3),

we can express the expected degree in the FSF as

EFSF[degF o] =
∑
s∈S

FSF[es ∈ F] =
∑
s∈S

(
P⊥
♢ χ

es , χes
)
. (10.41)

The idea now is to identify ♢⊥ with a Γ-invariant subspace of ℓ2(Γ× S) ∼= ℓ2(Γ)|S| and to

define von Neumann dimension for Γ-invariant subspaces of ℓ2(Γ)n in general. Note that

Γ acts on ℓ2(Γ)n by (γf)(γ1, . . . , γn) := f(γ−1γ1, . . . , γ
−1γn). To show that EFSF[degF o]

does not depend on S, we define von Neumann dimension still more generally and then

prove its invariance under embeddings.

The identification of a Γ-invariant closed subspace H ⊆ ℓ2−(E), such as ♢⊥, with a

Γ-invariant subspace of ℓ2(Γ × S) goes as follows. Let the standard basis elements of

ℓ2(Γ× S) be {fγ,s ; γ ∈ Γ, s ∈ S}. Identify ℓ2−(E) with the range in ℓ2(Γ× S) of the map

defined by sending χ⟨γ,γs⟩ to the vector (fγ,s − fγs,s−1)/
√
2. This is well defined since it

respects the identity χ⟨γ,γs⟩ = −χ⟨γs,γ⟩. These image vectors form an orthonormal basis

of the range, so the map is an isometry. Then H becomes identified with a Γ-invariant

closed subspace HS . Write Q for the orthogonal projection of ℓ2(Γ × S) onto HS . Since(
fγ,s + fγs,s−1

)
⊥ ℓ2−(E)S , and hence

(
fγ,s + fγs,s−1

)
⊥ HS , we have

Qfo,s = −Qfs,s−1 .

Therefore, the sum we encountered in (10.41) can be written in this more general context

as∑
s∈S

(
PHχ

es , χes
)
=
∑
s∈S

∥Q(fo,s − fs,s−1)/
√
2∥2 =

∑
s∈S

∥
√
2Qfo,s∥2 = 2

∑
s∈S

(
Qfo,s, fo,s

)
.

(10.42)

To motivate the definition of von Neumann dimension, recall first that the ordinary

dimension is the minimal number of vectors needed to span (in an appropriate sense) a

vector or Banach space. When we have a group acting that preserves a vector space, then

the von Neumann dimension has the same intuitive definition as this, but in spanning,
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we are allowed to act via the group. Thus, the von Neumann dimension of ℓ2(Γ) (with

respect to Γ) is 1 and the von Neumann dimension of ℓ2(Γ)2 is 2. However, this does

not help us to see clearly what the von Neumann dimension of a subspace of ℓ2(Γ) is.

So let us reformulate our intuitive definition as the minimal number of vectors needed in

the ordinary sense, but per group element. When Γ is finite, this makes it quite easy

to rigorously define the von Neumann dimension of an invariant subspace H of ℓ2(Γ),

namely, dimΓH := (dimH)/|Γ|. In particular, note that von Neumann dimension is not

always an integer. To extend this idea to infinite groups, make the key observation that

dimH = trPH , the trace of the orthogonal projection to H. When H is invariant, we will

see in a moment that all the diagonal elements of the matrix of PH are the same (in the

standard orthonormal basis of ℓ2(Γ)), whence dimΓH is simply the common value on the

diagonal. This is how we define it in general: when H is a closed Γ-invariant subspace of

ℓ2(Γ), then dimΓH := (PH1{o},1{o}), which is the same as (PH1{γ},1{γ}) for all γ ∈ Γ.

To see that all the diagonal elements of the matrix of PH are the same, let H be a

closed Γ-invariant subspace of ℓ2(Γ). ThenH⊥ is also closed and Γ-invariant since Γ acts on

ℓ2(Γ) by isometries. Thus, for all f ∈ ℓ2(Γ) and all γ ∈ Γ, the equation f = PH(f)+P⊥
H (f)

implies that γf = γPH(f) + γP⊥
H (f) is the orthogonal decomposition of γf with respect

to H ⊕H⊥, i.e.,

PH(γf) = γPH(f) . (10.43)

In particular, (PH1{γ},1{γ}) = (PHγ1{o}, γ1{o}) = (PH1{o},1{o}).

For example, if Γ = Z, then ℓ2(Z) is isometrically isomorphic to L2
(
[0, 1]

)
(with

Lebesgue measure) by the Fourier map L2
(
[0, 1]

)
∋ f 7→ f̂ ∈ ℓ2(Z) (the inverse of the

map used in Section 10.3, as in Exercise 10.38), and it can be shown that Z-invariant
subspaces of ℓ2(Z) correspond under this isomorphism to spaces of the form L2(A) for A

a measurable subset of [0, 1]. Then dimZ L̂2(A) = |A| (the Lebesgue measure of A) since

PL2(A)f = f1A, so dimZ L̂2(A) =
∫ 1

0
(11A)1 = |A|.

We need to extend this notion to closed invariant subspaces H of ℓ2(Γ)n ∼= ℓ2
(
Γ ×

{1, . . . , n}
)
. The matrix (with respect to the standard orthonormal basis) of any linear

operator on this space can be written in block form, where an n× n-block corresponds to

fixing γ, γ′ ∈ Γ and taking all rows corresponding to (γ, i) and all columns corresponding

to (γ′, j), where i, j ∈ {1, . . . , n}. The diagonal blocks are those with γ = γ′. When

H is invariant, the diagonal blocks of the matrix of PH are all the same, whence we

define the von Neumann dimension of H with respect to Γ to be the common trace,

dimΓH :=
∑n
i=1

(
PH1{(o,i)},1{(o,i)}

)
. Thus, the sum in (10.42) equals 2 dimΓHS .

Next we need to show that von Neumann dimension is an intrinsic number, not de-
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pendent on the particular representation as a subspace of any ℓ2(Γ)n. To what, then, is

this dimension intrinsic?* Recall that a Fréchet space is a locally convex topological

vector space whose topology is induced by a complete translation-invariant metric. Define

a Fréchet spaceM to be a Hilbertable Γ-space if Γ acts onM by continuous linear trans-

formations and there exists a Γ-equivariant continuous linear injection α:M → ℓ2(Γ)n for

some finite n whose image, imgα, is closed. Here, to say that α is Γ-equivariant means

that α intertwines the (left) Γ-actions, i.e., α(γf) = γα(f) for all f ∈ M and all γ ∈ Γ.

In this case, we define dimΓM := dimΓ imgα. Clearly, we must show that this does not

depend on the choice of α.

This leads us to revisit the use above of the trace. Let N(Γ) be the von Neumann

algebra of Γ, i.e., the set of Γ-equivariant bounded linear operators on ℓ2(Γ). This includes

orthogonal projections on closed invariant subspaces, as we saw in (10.43).

For ϕ ∈ N(Γ), define trΓ(ϕ) :=
(
ϕ(1{o}),1{o}

)
. We’ll need the following little device:

Given f ∈ ℓ2(Γ), write f̃ for the element of ℓ2(Γ) defined by γ 7→ f
(
γ−1

)
. (We’re taking

complex Hilbert spaces to be general, but real ones suffice for our application.) Note that

for all f, g ∈ ℓ2(Γ), we have (f, g) = (g̃, f̃).

As usual, write ϕ∗ for the adjoint of ϕ. We have that

ϕ∗(1{o}) = ϕ̃(1{o}) (10.44)

since for all γ ∈ Γ,

(
ϕ∗(1{o}),1{γ}

)
=
(
1{o}, ϕ(1{γ})

)
=
(
1{o}, γϕ(1{o})

)
=
(
γ−11{o}, ϕ(1{o})

)
=
(
1{γ−1}, ϕ(1{o})

)
=
(
1̃{γ}, ϕ(1{o})

)
=
(
ϕ̃(1{o}),1{γ}

)
.

This leads to the key property of a trace:

Proposition 10.58. For all ϕ, ψ ∈ N(Γ), we have trΓ(ϕψ) = trΓ(ψϕ).

Proof. By definition and (10.44), we have

trΓ(ϕψ) =
(
ϕ(ψ(1{o})),1{o}

)
=
(
ψ(1{o}), ϕ

∗(1{o})
)
=
(
ψ(1{o}), ϕ̃(1{o})

)
=
(
ϕ(1{o}), ψ̃(1{o})

)
=
(
ϕ(1{o}), ψ

∗(1{o})
)

=
(
ψ(ϕ(1{o})),1{o}

)
= trΓ(ψϕ) . ◀

* One could avoid this question by using the first part of the proof of Theorem 9.9, but one would
still need most of the mathematics that follows.
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We now extend the trace to the algebra Mn(N(Γ)) of Γ-equivariant bounded linear

operators on ℓ2(Γ)n. For ϕ ∈Mn(N(Γ)) and (f1, . . . , fn) ∈ ℓ2(Γ)n, write

ϕ(f1, . . . , fn) =
( n∑
j=1

ϕ1,jfj , . . . ,

n∑
j=1

ϕn,jfj

)
∈ ℓ2(Γ)n .

That is, think of ϕ as an n × n-matrix [ϕi,j ], where ϕi,j ∈ N(Γ). Define trΓ(ϕ) :=∑n
i=1 trΓ(ϕi,i) = trΓ

(∑n
i=1 ϕi,i

)
. From Proposition 10.58, a short calculation reveals that

trΓ(ϕψ) = trΓ(ψϕ) (10.45)

for all ϕ, ψ ∈Mn(N(Γ)).

Given a Hilbertable Γ-space M , choose a Γ-equivariant continuous linear injection

α:M → ℓ2(Γ)n with closed image. Note that imgα is Γ-invariant. Define dimΓM :=

trΓ
(
Pimgα

)
= dimΓ imgα; we must verify that this does not depend on the choice of

α. For example, consider the map α ⊕ 0:M → ℓ2(Γ)n+k for fixed k ≥ 1 induced by the

inclusion f 7→ (f,0) of ℓ2(Γ)n into ℓ2(Γ)n+k. Here, it is easy to see from the definition that

trΓ
(
Pimgα

)
= trΓ

(
Pimg(α⊕0)

)
. Thus, if we have another Γ-equivariant continuous linear

injection β:M → ℓ2(Γ)m with closed image, then in order to show that trΓ
(
Pimg β

)
=

trΓ
(
Pimgα

)
, we may assume that n = m. Now define T := βα−1: imgα → img β. This

is a Γ-equivariant continuous linear bijection by the open mapping theorem, whence its

polar decomposition gives a Γ-equivariant unitary operator U := T (T ∗T )−1/2 that maps

imgα → img β (see Theorem 12.35 of Rudin (1991), for example). Extend U to ϕ :=

U ⊕ 0 ∈ Mn(N(Γ)), where ϕ↾imgα = U and ϕ↾(imgα)⊥ = 0. It is easy to check that

ϕ∗ = U∗ ⊕0 in that ϕ∗↾img β = U∗ and ϕ∗↾(img β)⊥ = 0. From this, it is easy to see that

Pimgα = ϕ∗ϕ and Pimg β = ϕϕ∗, whence (10.45) gives the desired identity.

We have now shown how to define von Neumann dimension for general Hilbertable Γ-

spaces. Clearly dimΓM = dimΓM
′ ifM andM ′ are isomorphic as Hilbertable Γ-spaces,

i.e., if there is a Γ-equivariant continuous linear bijection from M to M ′. The following

properties of von Neumann dimension are not hard to verify, but we will not need them:

dimΓM ≥ 0 with equality iff M = 0 (use the fact that an orthogonal projection P is equal

to P ∗P ); dimΓ(M ⊕M ′) = dimΓM + dimΓM
′; if Γ′ is a subgroup of Γ of index m < ∞,

then dimΓ′M = m dimΓM .

The final step is to define ♢⊥ as a Hilbertable Γ-space in a way that does not depend

on the group generators, S. For a function F : Γ → R and γ ∈ Γ, write ρ(γ)F for the

function γ′ 7→ F (γ′γ) for γ′ ∈ Γ. Let

D(Γ) :=
{
F : Γ → R ; ∀γ

(
ρ(γ)F − F

)
∈ ℓ2(Γ)

}
.
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Then define Z(Γ) to be the vector space of cocycles, i.e.,

Z(Γ) :=
{
z: Γ → ℓ2(Γ) ; ∃F ∈ D(Γ) ∀γ z(γ) = ρ(γ)F − F

}
.

Here, we may always choose F so that F (o) = 0 if we wish, in which case we may recover F

from z by F (γ) = −z(γ−1)(γ). To define a metric on Z(Γ), choose an ordering ⟨γi ; i ≥ 1⟩
of Γ and let the distance between z and z′ be the infimum of ϵ > 0 such that ∥z(γi) −
z′(γi)∥ < ϵ for all i < 1/ϵ. It is not hard to check that Z(Γ) is a Fréchet space. The (left)

action of Γ on Z(Γ) is (γz)(γ′): γ′′ 7→ z(γ′)(γ−1γ′′). It is easy to see that z ∈ Z(Γ) satisfies

z(γγ′) = z(γ) + ρ(γ)z(γ′)

for all γ, γ′ ∈ Γ. (In fact, Z(Γ) equals the space of all maps z: Γ → ℓ2(Γ) that satisfy this

cocycle identity .) Thus, every cocycle is determined by its values on a generating set. In

other words, the map α:Z(Γ) → ℓ2(Γ)S given by z 7→ z↾S is an injection. It is obviously

Γ-equivariant and continuous. It is not hard to check by using the cocycle identity that

imgα is closed, whence Z(Γ) is a Hilbertable Γ-space.

It remains to show that Z(Γ) is isomorphic as a Hilbertable Γ-space to ♢⊥, where

the latter is a Hilbertable Γ-space by virtue of being a Γ-invariant Hilbert subspace of

ℓ2−(E). Note that D = D(Γ). Also, recall that ♢⊥ = ∇D. Thus, define T :♢⊥ → Z(Γ) by

T (θ)(γ) := ρ(γ)F − F when θ = dF . (Recall that all conductances are 1 here.) This is

clearly an isomorphism.

From our earlier calculation (10.41)–(10.42), it follows thatEFSF[degF o] = 2 dimΓ Z(Γ)

does not depend on S. This finishes our main task.

We now explain the connection to Betti numbers. Ordinary Betti numbers are the

dimensions of the cohomology groups with real coefficients. In certain cases of infinite

CW-complexes acted on by a group, Γ, one defines ℓ2-Betti numbers as the von Neumann

dimensions of reduced ℓ2-cohomology Hilbert Γ-spaces. We explain part of this and refer to

Eckmann (2000) for more; there are also higher dimensional analogues of spanning forests

that corresponding to the higher ℓ2-Betti numbers, as shown by Lyons (2009). Define the

space of coboundaries

B(Γ) :=
{
z: Γ → ℓ2(Γ) ; ∃F ∈ ℓ2(Γ) ∀γ z(γ) = ρ(γ)F − F

}
.

The only difference between Z(Γ) and B(Γ) is that in the latter, F is required to belong

to ℓ2(Γ), not just to D(Γ). Since Γ is infinite, this implies that for z ∈ B(Γ), there is a

unique F ∈ ℓ2(Γ) with z(γ) = ρ(γ)F − F . Make B(Γ) into a Hilbert space by defining

the inner product (z, z′) := (F, F ′), where F, F ′ ∈ ℓ2(Γ) correspond to z, z′ ∈ B(Γ) as in
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the definition. Thus, B(Γ) is isomorphic to ℓ2(Γ). On the other hand, the closure of the

inclusion of B(Γ) in Z(Γ) is isomorphic to ⋆ as a Hilbertable Γ-space, whence also B(Γ)

is isomorphic to ⋆; this relies on the polar decomposition and is proved as Lemma 2.5.3

of Eckmann (2000). Thus, 1 = dimΓ ℓ
2(Γ) = dimΓB(Γ) = dimΓ ⋆. (This gives another

way to prove Proposition 10.10 for Cayley graphs.) Since ♢⊥ = ∇HD⊕⋆, it follows that

EFSF[degF o] = 2 dimΓ ∇HD+ 2 = 2dimΓ Z(Γ)/B(Γ) + 2 = 2β1(Γ) + 2 ,

where Z(Γ)/B(Γ) is the first reduced ℓ2-cohomology of Γ and β1(Γ) := dimΓ Z(Γ)/B(Γ)

is the first ℓ2-Betti number of Γ. The reason that Z(Γ) ∼= ♢⊥ has the name of cocycles

is that if one adds a 2-cell to the Cayley graph for every relation in the group, then

♢⊥ is the kernel of the natural coboundary map defined on ℓ2−(E). Similarly, ⋆ is the

closure of the image of the coboundary map defined on ℓ2(V), which accounts for the name

“coboundaries”. (In the case of finite groups, ∇HD = 0, which is why β1(Γ) = 0 when Γ

is finite.)

▷ Exercise 10.21.

Let G be the Cayley graph of Γ with respect to S. Assign positive conductances to the

edges in such a way that they depend only on the generators associated to the edges. Show

that still EFSF[degF o] = 2 + 2β1(Γ).

An extension of the invariance of expected degree of the FSF can be proved by using

the major result of Gaboriau (2002). Namely, let G be a random connected graph whose

vertex set is Γ and whose law is Γ-invariant. Then still E
[
EFSF(G)[degF o | G]

]
= 2+2β1(Γ).

One immediate consequence of this is the resolution of a conjecture made by Benjamini,

Lyons, and Schramm (1999), namely, that if G is a Cayley graph of Γ and ω is an invariant

percolation with a unique infinite cluster, then G has no non-constant harmonic Dirichlet

functions iff ω has no non-constant harmonic Dirichlet functions a.s. See Gaboriau (2005)

for this and for an extension to unimodular quasi-transitive graphs G.
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§10.9. Notes.

The free spanning forest was first suggested by Lyons, but its existence was proved by Pe-
mantle (1991). Pemantle also implicitly proved the existence of the wired spanning forest and
showed that the free and wired uniform spanning forests are the same on Euclidean lattices Zd.
The first explicit construction of the wired spanning forest is due to Häggström (1995).

We have no need for the general theory of weak convergence in defining or analyzing the free
or wired spanning forests. However, since {0, 1}E is compact, it is easy to verify that our notion
of weak convergence coincides with the usual notion for Borel probability measures on topological
spaces.

The version we present of Strassen’s theorem, Theorem 10.4, is only a special case of what
he proved.

The main results in this chapter that come from BLPS (2001) are Theorems 10.15, 10.18,
10.26, 10.36, 10.49, 10.45, 10.54, and 10.57 and Propositions 10.1, 10.10, 10.14, 10.37, and 10.51.
Theorems 10.49, 10.45 and 10.54 were proved there in more restricted versions. The extended
versions proved here are from Lyons, Morris, and Schramm (2008).

Theorems 10.21 and 10.24, Corollary 10.25 and Lemma 10.31 are from Lyons, Peres, and
Schramm (2003). We have modified the more general results of Lyons, Peres, and Schramm (2003)
and simplified their proofs for the special cases presented here in Theorem 10.24, Corollary 10.32,
and Lemma 10.33. For estimates of the transition kernel for group-invariant random walks, such
as those used in the proof of Corollary 10.25, see also Hebisch and Saloff-Coste (1993). The last
part of Theorem 10.34 was conjectured by BLPS (2001).

Theorem 10.36 was first stated without proof for Z2 by Pemantle (1991). It is shown in
BLPS (2001) that the same is true on any recurrent transitive network.

The appendix is based on Lyons (2009) and Eckmann (2000). Although it is known (Bekka
and Valette, 1997) that Kazhdan groups have first ℓ2-Betti number equal to 0, it is not known
that they have cost 1.

Uniform spanning forests help in studying sandpiles on infinite graphs; see Járai and Redig
(2008) and Jarái and Werning (2011).

There are many intriguing open questions related to spanning forests. Besides the ones we
have already given, here are a few more.

Question 10.59. Does each component in the wired spanning forest on an infinite supercritical
Galton-Watson tree have one end a.s.? This is answered positively by Aldous and Lyons (2007)
when the offspring distribution is bounded. If the probability of 0 or 1 offspring is 0, then of
course the result is true by Theorem 10.45.

Question 10.60. Let G be an infinite network such that WSF ̸= FSF on G. Does it follow that
WSF and FSF are mutually singular measures?

This question has a positive answer for trees (there is exactly one component FSF-a.s. on a
tree, while the number of components is a constant WSF-a.s. by Theorem 10.26) and for networks
G where Aut(G) has an infinite orbit (Corollary 10.19).

Question 10.61. (Lyons, Morris, and Schramm, 2008) Is the probability that each tree
has only one end equal to either 0 or 1 for both WSF and FSF? This is true on trees by Theorem
11.1 of BLPS (2001).

Conjecture 10.62. Let To be the component of the identity o in the WSF on a Cayley graph, and
let ξ = ⟨xn ; n ≥ 0⟩ be the unique ray from o in To. The sequence of “bushes” ⟨bn⟩ observed along
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ξ converges in distribution. (Formally, bn is the connected component of xn in T\{xn−1, xn+1},
multiplied on the left by x−1

n .)

§10.10. Collected In-Text Exercises.

10.1. The choice of exhaustion ⟨Gn⟩ does not change the resulting measure WSF by the proof of
Proposition 10.1. Show that the choice also does not change the resulting measure FSF.

10.2. Show that FSF and WSF are invariant under any automorphisms that the network may
have.

10.3. Show that if G is an infinite recurrent network, then the wired spanning forest on G is the
same as the free spanning forest, i.e., the random spanning tree of Section 4.2.

10.4. Let G be a network such that there is a finite subset of edges whose removal from G leaves
at least 2 transient components. Show that the free and wired spanning forests are different on
G.

10.5. Let G be a tree with unit conductances. Show that FSF = WSF iff G is recurrent.

10.6. Let G be an edge-amenable infinite graph as witnessed by the vertex sets ⟨Vn⟩ (see Sec-
tion 4.3). Let Gn be the subgraph induced by Vn.
(a) Let F be any spanning forest all of whose components (trees) are infinite. Show that if kn

denotes the number of trees of F ∩Gn, then kn = o(|Vn|).
(b) Let F be a random spanning forest all of whose components (trees) are infinite. Show that

the average degree, in two senses, of vertices is 2:

lim
n→∞

|Vn|−1
∑
x∈Vn

degF(x) = 2 a.s.

and

lim
n→∞

|Vn|−1
∑
x∈Vn

E[degF(x)] = 2 .

In particular, if G is a transitive graph such as Zd, then every vertex has expected degree 2
in both the free spanning forest and the wired spanning forest.

10.7. Let (T, c) be a network on a tree and e ∈ T . Show that WSF[e ∈ F] < 1 iff both components
of T\e are transient.

10.8. Let G be a graph obtained by identifying some vertices of a finite connected graph H,
keeping all edges of H, though some may become loops. Let µG and µH be the corresponding
uniform spanning tree measures. Show that µG(A ) ≤ µH(A ) for every increasing event A
depending on the edges of G.

10.9. Show that the number of trees in the free spanning forest on a network is stochastically
dominated by the number in the wired spanning forest on the network. Show that if the number
of trees in the free spanning forest is a.s. finite, then, in distribution, it equals the number in the
wired spanning forest iff FSF = WSF.

10.10. Give an amenable graph on which FSF ̸= WSF.
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10.11. Show that every transitive amenable network has unique currents.

10.12. (The Riemann-Lebesgue Lemma) Show that if F ∈ L1(Td) and

f(x) =

∫
Td

F (α)e2πix·α dα ,

then lim|x|→∞ f(x) = 0. Hint: This is obvious if F is a trigonometric polynomial , i.e., a finite
linear combination of functions α 7→ e2πix·α. The Stone-Weierstrass theorem implies that such
functions are dense in L1(Td).

10.13. Join two copies of the usual nearest-neighbor graph of Z3 by an edge at their origins.
How many trees does the free uniform spanning forest have? How many does the wired uniform
spanning forest have?

10.14. (Parseval’s Identity) Suppose that F ∈ L1(Td) and that f(x) :=
∫
Td F (α)e2πix·α dα

for x ∈ Zd. Show that
∫
Td |F (α)|2 dα =

∑
Zd |f(x)|2. Hint: Prove that the functions Gx(α) :=

e−2πix·α for x ∈ Zd form an orthonormal basis of L2(Td).

10.15. Let (T, c) be a network on a tree. Show that WSF[F ̸= T ] = 1 iff there is some edge e ∈ T
such that both components of T \ e are transient iff WSF[F ̸= T ] > 0.

10.16. Let (T, c) be a transient network on a tree with bounded conductances c(•). Show that
there is some e ∈ T such that both components of T\e are transient (with respect to c).

10.17. Give a transient graph such that the wired uniform spanning forest has a single tree with
more than one end.

10.18. Show that Theorem 10.49 holds in the quasi-transitive case as well.

10.19. Consider a random walk until it first reaches distance n from its starting point and erase
cycles. Show that on a general recurrent network, a weak limit of these random paths need not
exist.

10.20. Let ⟨Gn⟩ be an induced exhaustion of a recurrent network G. Consider the network
random walk ⟨Xk ; k ≥ 0⟩ started from o ∈ G. Denote by τn the first exit time of Gn, and let Ln
be the loop erasure of the path ⟨Xk ; 0 ≤ k ≤ τn⟩. Show that if the uniform spanning tree TG in
G has one end a.s., then the random paths Ln converge weakly to the law of the unique ray from
o in TG. In particular, show that this applies if G is a proper plane network with a locally finite
recurrent dual.

10.21. Let G be the Cayley graph of Γ with respect to S. Assign positive conductances to the
edges in such a way that they depend only on the generators associated to the edges. Show that
still EFSF[degF o] = 2 + 2β1(Γ).
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§10.11. Additional Exercises.

10.22. Let ⟨Gn⟩ be an exhaustion of G by finite induced subgraphs. Write Fn for the set of
spanning forests of Gn such that each component tree includes exactly one vertex of the internal
vertex boundary of Gn. Show that WSF is the limit as n→ ∞ of the uniform measure on Fn.

10.23. Show that the FSF of the usual Cayley graph of Z2 ∗ Z3 (shown in Figure 3.3) is a tree
whose branching number equals 1.35+.

10.24. Let G be exhausted by finite induced subgraphs Gn and µF
n be the uniform spanning tree

measure on Gn. Let also µW
n be the uniform spanning tree measure on GW

n . Show that for each

n, we have µF
n ≽ µF

n+1↾2E(Gn) and µW
n ≼ µW

n+1↾2E(GW
n ).

10.25. Consider the free or wired uniform spanning forest measure on an infinite transient network
G. Let X and Y be increasing random variables on {0, 1}E(G) with finite second moments that
depend on disjoint sets of edges. Show that E[XY ] ≤ E[X]E[Y ].

10.26. Let G be a planar Cayley graph. Show that simple random walk on G is transient iff G
is non-amenable iff G has exponential growth.

10.27. Let G be the hyperbolic lattice of degree 3 all of whose faces have the same number of
sides. Show that the probability that the degree of a vertex in the wired uniform spanning forest
on G is 1, 2, or 3 is, respectively, 1/4, 1/2, and 1/4.

10.28. Let (G, c) be a denumerable network with an exhaustion by finite induced subnetworks
Gn. Fix o ∈ V(G1). Let Zn be the canonical Gaussian field on Gn from Exercise 2.125 (with
W = {o} and u(o) = 0 there). Show that the weak limit of Zn exists; it is called the free
canonical Gaussian field . Show that if ZW

n denotes the canonical Gaussian field on the wired
network GW

n , then the weak limit of ZW
n also exists, called the wired canonical Gaussian field

(pinned at o). Let X(e) be independent normal random variables with variance r(e) for e ∈ E1/2.
Show that if io,xF denotes the free unit current flow from o to x, then x 7→

∑
e∈E1/2

io,xF X(e)

converges a.s. and has the law of the free canonical Gaussian field. Similarly, show that if io,xW

denotes the wired unit current flow from o to x, then x 7→
∑
e∈E1/2

io,xW X(e) converges a.s. and

has the law of the wired canonical Gaussian field. Finally, show that the wired and free canonical
Gaussian fields coincide in distribution iff HD = R.

10.29. Consider the canonical Gaussian field Z on Zd with Z(0) = 0, as defined in Exercise 10.28.
Show that {Z(x) ; x ∈ Zd} is a tight collection of random variables iff d ≥ 3.

10.30. Let (G, c) be a transient network with an exhaustion by finite induced subnetworks Gn.
Show that if ZW

n denotes the canonical Gaussian field on the wired network GW
n that is pinned to

be 0 at zn, the vertex resulting from identifying the complement of Gn, then the weak limit of ZW
n

exists, called the wired canonical Gaussian field , which we can think of as “pinned at infinity”.
Show that if ix denotes the unit current flow from x to infinity and X(e) are independent normal
random variables with variance r(e) for e ∈ E1/2, then x 7→

∑
e∈E1/2

ixX(e) converges a.s. and

has the law of the wired canonical Gaussian field. Show that the wired canonical Gaussian field
has a law that is invariant under all automorphisms of (G, c) and that has a trivial tail σ-field.

10.31. Let (G, c) be a transient network with an exhaustion by finite induced subnetworks Gn.
Let X(e) be independent normal random variables with variance r(e) for e ∈ E1/2; put X(−e) :=
−X(e) for e /∈ E1/2. Given random walks starting at each x ∈ V(G), define Sn(x) to be the sum
of X(e) over the edges e traversed by the random walk starting at x until it exits Gn for the
first time. Show that x 7→ limn→∞ E[Sn(x) | X] exists and has the law of the wired canonical
Gaussian field.
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10.32. Let G be an infinite graph and H be a finite graph. Consider the cartesian product graph
G×H. Fix x ∈ V(G) and y ∈ V(H). Show that the free spanning forests F1 in G×H and F2 in
G satisfy

(E[degF1
(x, y)] − 2)|V(H)| = E[degF2

x] − 2 .

10.33. Let G be a plane network all of whose faces have a finite number of sides. Show that G
has unique currents iff its dual G† has unique currents.

10.34. Let G be the hyperbolic lattice of degree 3 all of whose faces have d sides. Show that the
probability that the degree of a vertex in the free uniform spanning forest on G is 1, 2, or 3 is,
respectively, 9/d2, 6/d− 18/d2, and (1 − 3/d)2.

10.35. Let G be a plane regular graph of degree d with regular dual of degree d†. Show that the
FSF-expected degree of each vertex in G is d(1 − 2/d†).

10.36. Let G be the usual Cayley graph of the (p, q, r)-triangle group, where 1/p+1/q+1/r ≤ 1,
shown in Figure 6.1 for (2, 3, 7) and defined in Exercise 8.45. It has 3 generators, which are
reflections in the sides of a fundamental triangle. Show that the expected degree of the FSF of G
is 3 − 1/p− 1/q − 1/r.

10.37. Complete the following outline of an alternative proof of Proposition 10.16. Let ψ(α) :=
1 − φ(α)/(2d), where φ is as defined in (10.8). For all n ∈ N and x ∈ Zd, we have pn(0, x) =∫
Td ψ(α)ne2πix·α dα. Therefore, G (0, x)/(2d) equals the right-hand side of (10.10). Now apply

Proposition 2.1.

10.38. For a function f ∈ L1(Td) and x ∈ Zd, define

f̂(x) :=

∫
Td

f(α)e−2πix·α dα .

Let Y be the transfer-current matrix for the hypercubic lattice Zd. Write uk := 1{k} for the vector

with a 1 in the kth place and 0s elsewhere. Let ekx := [x, x + uk]. Show that Y (e10, e
k
x) = f̂k(x),

where

fk(α1, . . . , αd) :=
(1 − e2πiα1)(1 − e−2πiαk)

4
∑d
j=1 sin2 παj

for 1 ≤ k ≤ d.

10.39. Let d ≥ 3 and let e be any edge of Zd. For n ∈ Z, let Xn be the indicator that e +
(n, n, . . . , n) lies in the uniform spanning forest of Zd. Show that Xn are i.i.d. The same holds
for the other 2d−1 collections of translates given by changing the signs of some of the last d − 1
coordinates.

10.40. Show that if FSF = WSF, then for all cylinder events A and ϵ > 0, there is a finite set of
edges K such that

sup {|WSF[A | B] −WSF[A ]| ; B ∈ F (E \K)} < ϵ .

10.41. For k ≥ 1, we say that an action of Γ on (Ω,P) is mixing of order k (or k-mixing) if
for any events A1, . . . , Ak+1, we have

lim
γ1,...,γk→∞,

∀i ̸=j γiγ
−1
j
→∞

P(A1, γ1A2, γ2A3, . . . , γkAk+1) = P(A1)P(A2) · · ·P(Ak+1) .

Let Γ ⊆ Aut(G) have an infinite orbit and P be a Γ-invariant probability measure on (Ω, 2E(G))
with a trivial tail. Show that P is mixing of all orders.
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10.42. Define IN as in (10.19). Show that E[IkN ] ≤ (k!)2(EIN )k for every k ≥ 1.

10.43. Let α(w1, . . . , wK) be the probability that independent random walks started at w1, . . . , wK
have no pairwise intersections. Let B(w1, . . . , wK) be the event that the number of pairwise in-
tersections among the random walks ⟨Xn(wi)⟩ is finite. Show that

lim
n→∞

α(Xn(w1), . . . , Xn(wK)) = 1B(w1,...,wK) a.s.

10.44. Suppose that the number of components in the WSF is a.s. k < ∞ and that w1, . . . , wk
are vertices such that with positive probability independent random walks started at w1, . . . , wk
have no pairwise intersections. Let {X(wi) ; 1 ≤ i ≤ k} be independent random walks indexed
by their initial states. Consider the random functions

hi(w) := P[Y (w) intersects X(wi) i.o. | X(w1), . . . , X(wk)] ,

where the random walk Y (w) starts at w and is independent of all X(wi). Show that a.s. on the
event that X(w1), . . . , X(wk) have pairwise disjoint paths, the functions {h1, . . . , hk} form a basis
for BH(G), the vector space BH(G) of bounded harmonic functions on G. Deduce that if the
number of components of the WSF is finite a.s., then it a.s. equals the dimension of BH(G).

10.45. It follows from Corollary 10.25 that if two transitive graphs are roughly isometric, then
the a.s. number of trees in the wired spanning forests are the same. Show that this is false without
the assumption of transitivity.

10.46. Consider a d-ary tree with the conductances corresponding to the random walk RWλ.
Show that a.s. all the trees in the wired spanning forest have branching number λ for 1 ≤ λ ≤ d.

10.47. Let (T, c) be an arbitrary tree with arbitrary conductances and root o. For a vertex x ∈ T ,
let α(x) denote the effective conductance of T x (from x to infinity). Consider the independent
percolation on T that keeps the edge e(x) preceding x with probability c(e(x))/[c(e(x)) + α(x)].
(a) Show that the WSF on T has a tree with more than one end with positive probability iff

percolation on T has an infinite cluster a.s.
(b) In the case of WSF on a spherically symmetric tree with unit conductances, show that this

is equivalent to ∑
n

1

|Tn|2ρn

n−1∏
k=1

(
1 +

1

|Tk|ρk

)
<∞ ,

where ρn :=
∑
k>n 1/|Tk|. In particular, show that this holds if |Tn| ≈ na for some a > 1.

(c) Show that for a spherically symmetric tree, a.s. either every tree in the WSF has a single end
or a.s. every tree has infinitely many ends.

10.48. Show that if G is a transitive graph such that the balls of radius r have cardinality
asymptotic to αrd for some positive finite α and d, then the lower bound of Lemma 10.46 is
optimal up to a constant factor. In other words, show that in this case,

lim inf
|K|→∞

ρ(2|K|) |∂
int
V K|
|K| <∞ .

10.49. let G be the grandparent graph of Example 7.1 defined using the end ξ of a regular tree.
Consider the FSF on G×Z. Show that the components are distinguishable by an automorphism-
invariant property.
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10.50. Let G0 be formed by two copies of Z3 joined by an edge [x, y]; put G := G0 × Z. Show
that FSF(G) = WSF(G) and that the spanning forests have exactly two trees a.s.

10.51. Let G be the Cayley graph of the free product Zd ∗ Z2, where Z2 is the group with
two elements, with the obvious generating set. Show that the FSF is connected iff d ≤ 4 and
FSF ̸= WSF for all d > 0.
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Chapter 11

Minimal Spanning Forests

In Chapters 4 and 10, we looked at spanning trees chosen uniformly at random and

their analogues for infinite graphs. We saw that they are intimately connected to random

walks. Another measure on spanning trees and forests has been studied a great deal,

especially in optimization theory. This measure, minimal spanning trees and forests, turns

out to be connected to percolation, rather than to random walks. In fact, one of the

measures on forests is closely tied to critical bond percolation and invasion percolation,

while the other is related to percolation at the uniqueness threshold. However, many

fundamental questions remain open for both types of minimal spanning forest measures.

On the whole, minimal spanning forests share many similarities with uniform spanning

forests. In some cases, we know a result for one measure whose analogue is only conjectured

for the other. Occasionally, there are striking differences between the two settings.

The standard coupling of Bernoulli bond percolation will be ubiquitous in this chapter,

so much that we need some special notation for it. Namely, given labels U :E(G) → R, we’ll
write G[p] for the subgraph formed by the edges {e ; U(e) < p}. (In previous chapters,

we denoted G[p] by ωp, but in this chapter, both G and p often assume more complicated

expressions.) Our treatment is drawn from Lyons, Peres, and Schramm (2006), as are most

of the results.

§11.1. Minimal Spanning Trees.

Let G = (V,E) be a finite connected (multi)graph. Since loops cannot belong to trees,

we will ignore any loops that G may have. Given an injective function, U :E → R, we’ll
refer to U(e) as the label of e. The labelling U induces a total ordering on E, where e < e′

if U(e) < U(e′). We’ll say that e is lower than e′ and that e′ is higher than e when

e < e′.

Define TU to be the subgraph whose vertex set is V and whose edge set consists of

all edges e ∈ E whose endpoints cannot be joined by a path containing only edges strictly

lower than e. We claim that TU is a spanning tree. First, the largest edge in any cycle of
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G is not in TU , whence TU is a forest. Second, if ∅ ̸= A ⊊ V, then the lowest edge of G

connecting A with V \ A must belong to TU , which shows that TU is connected. Thus, it

is a spanning tree.

▷ Exercise 11.1.

Show that among all spanning trees, TU is the unique one that has minimal edge-label

sum,
∑
e∈T U(e).

When ⟨U(e) ; e ∈ E⟩ are independent uniform [0, 1] random variables, U is a.s. injective

and the law of the corresponding spanning tree TU is called simply theminimal spanning

tree (measure). It is a probability measure on 2E. Note that this independent labelling

U induces a uniform random ordering on E.

There is an easy monotonicity principle for the minimal spanning tree measure, which

is analogous to a similar principle, Lemma 10.3 and Exercise 10.8, for uniform spanning

trees:

Proposition 11.1. Let G and H be connected finite graphs. Denote by TG and TH the

corresponding minimal spanning trees. If G is a subgraph of H, then TG stochastically

dominates TH ∩ E(G). On the other hand, if G is obtained by identifying some vertices in

H, then TG is stochastically dominated by TH ∩ E(G).

Proof. We’ll prove the first part, as the second part is virtually identical. Let U(e) be i.i.d.

uniform [0, 1] random variables for e ∈ E(H). We use these labels to construct both TG

and TH . In this coupling, if [x, y] ∈ E(G) is contained in TH , i.e., there is no path in E(H)

joining x and y that uses only lower edges, then a fortiori there is no such path in E(G),

i.e., [x, y] is also contained in TG. That is, TH ∩ E(G) ⊆ TG, which proves the result. ◀

The reader might expect next to see negative correlations for the minimal spanning

tree, as we saw for uniform spanning trees. Surprisingly, however, the presence of two

edges can be positively correlated! To see this, we first present the following formula for

computing probabilities of spanning trees. Let MST denote the minimal spanning tree

measure on a finite connected graph.

Proposition 11.2. Let G be a finite connected graph. Given a set F of edges, let N(F )

be the number of edges of G that do not become loops when each edge in F is contracted.

Note that N(∅) is the number of edges of G that are not loops. Let N ′(e1, . . . , ek) :=∏k−1
j=0 N

(
{e1, . . . , ej}

)
(which does not depend on ek). Let T = {e1, . . . , en} be a spanning

tree of G. Then

MST(T ) =
∑
σ∈Sn

N ′(eσ(1), . . . , eσ(n))
−1 ,
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where Sn is the group of permutations of {1, 2, . . . , n}.

Proof. To make the dependence on G explicit, we write N(F ) = N(G;F ). Note that

N(G/F ;∅) = N(G;F ), where G/F is the graph G with each edge in F contracted. Given

the edge labels U , one to find the minimal spanning tree TU is to choose the lowest edge

e1 that is not a loop, put this in TU , then choose the lowest edge e2 that is not a loop

in G/e1 and put this in TU , etc. This is known as Prim’s algorithm. Our proof involves

simply keeping track of the probabilities as we follow that algorithm.

Given an edge e that is not a loop, the chance that e is the lowest edge in the minimal

spanning tree of G equals N(G;∅)−1. Furthermore, given that this is the case, the ordering

on the non-loops of the edge set of G/e is uniform. Thus, if f is not a loop in G/e, then

the chance that f is the next lowest edge in the minimal spanning tree of G given that e

is the lowest edge in the minimal spanning tree of G equals N(G/e;∅)−1 = N
(
G; {e}

)−1
.

Thus, we may easily condition, contract, and repeat.

Thus, the probability that the minimal spanning tree is T and that eσ(1) < · · · < eσ(n)

is equal to

n−1∏
j=0

N
(
G/{eσ(1), eσ(2), . . . , eσ(j)};∅

)−1
= N ′(eσ(1), . . . , eσ(n))−1

.

Summing this over all possible induced orderings of T gives MST(T ). ◀

An example of a graph where MST has positive correlations is provided by the follow-

ing exercise.

▷ Exercise 11.2.

Construct G as follows. Begin with the complete graph, K4. Let e and f be two of its

edges that do not share endpoints. Replace e by three edges in parallel, e1, e2, and e3,

that have the same endpoints as e. Likewise, replace f by three parallel edges fi. Show

that MST[e1, f1 ∈ T ] > MST[e1 ∈ T ]MST[f1 ∈ T ].

The following difference from the uniform spanning tree must also be kept in mind:

▷ Exercise 11.3.

Show that given an edge, e, the minimal spanning tree measure on G conditioned on the

event not to contain e need not be the same as the minimal spanning tree measure on G\e,
the graph G with e deleted.
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In Figure 11.1, we show the distances to the lower left vertex in a minimal spanning

tree on a 100×100 square grid, as well as the path in the tree that joins the opposite corners.

However, unlike the case of uniform spanning trees (Figure 4.5), it does not seem simple to

sample from the minimal spanning tree distribution conditional on a given distance profile.

Also, the distances seem to be generally lower than for the uniform spanning tree: see the

value for “Df” reported by Wieland and Wilson (2003), Table III.

▷ Exercise 11.4.

Find an example of a finite graph G with vertex o ∈ G such that there are two spanning

trees T, T ′ of G having the properties that for all x, the distance from x to o in T is

the same as in T ′, yet T and T ′ are not equally likely under the minimal spanning tree

measure.

This is all the theory of minimal spanning trees that we’ll need! We can move directly

to infinite graphs.

§11.2. Deterministic Results.

Just as there were for the uniform spanning trees, there are free and wired extensions

to infinite graphs of the minimal spanning trees. Unlike the uniform case, however, the

minimal case can be done without weak limits and, indeed, without probability whatsoever.

We give these deterministic definitions and associated results in this section.

Let G = (V,E) be an infinite connected locally finite graph and U :E → R be an

injective labelling of the edges. Let Ff = Ff(U) = Ff(U,G) be the set of edges e ∈ E such

that in every path in G connecting the endpoints of e there is at least one edge e′ with

U(e′) ≥ U(e). When ⟨U(e) ; e ∈ E⟩ are independent uniform random variables in [0, 1],

the law of Ff (or sometimes, Ff itself) is called the free minimal spanning forest on G

and is denoted by FMSF or FMSF(G).

An extended path joining two vertices x, y ∈ V is either a simple path in G joining

them, or the union of a simple infinite path starting at x and a disjoint simple infinite path

starting at y. (The latter possibility may be considered as a simple path connecting x and

y through ∞.) Let Fw = Fw(U) = Fw(U,G) be the set of edges e ∈ E such that in every

extended path joining the endpoints of e there is at least one edge e′ with U(e′) ≥ U(e).

Again, when U is chosen according to the product measure on [0, 1]E, we call Fw the wired

minimal spanning forest on G. The law of Fw is denoted WMSF or WMSF(G).
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Figure 11.1. The distances to a vertex in a minimal spanning tree
in a 100 × 100 grid and the path between the opposite corners.

▷ Exercise 11.5.

Show that Fw(U) consists of those edges e for which there is a finite set of vertices W ⊂ V

such that e is the least edge joining W to V \W .

Clearly, Fw(U) ⊂ Ff(U). Note that Fw(U) and Ff(U) are indeed forests, since in every

cycle of G the edge e with U(e) maximal is not present in either Ff(U) or in Fw(U). In

addition, all the connected components in Ff(U) and in Fw(U) are infinite. Indeed, the

lowest edge joining any finite vertex set to its complement belongs to both forests.

One of the nice properties that minimal spanning forests have is that there are these

direct definitions on infinite graphs. Although we won’t need this property, one can also
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describe them as weak limits, parallel to the definitions for uniform spanning forests:

▷ Exercise 11.6.

Consider an increasing sequence of finite, nonempty, connected (not necessarily induced)

subgraphs Gn ⊂ G, n ∈ N, such that
∪
nGn = G. For n ∈ N, let GW

n be the graph obtained

from G by identifying the vertices outside of Gn to a single vertex, then removing all

resulting loops based at that vertex. Let Tn(U) and TW
n (U) denote the minimal spanning

trees on Gn and GW
n , respectively, that are induced by the labels U . Show that Ff(U) =

limn→∞ Tn(U) and that Fw(U) = limn→∞ TW
n (U) in the sense that for every e ∈ Ff(U),

we have e ∈ Tn(U) for every sufficiently large n, for every e /∈ Ff(U) we have e /∈ Tn(U)

for every sufficiently large n, and similarly for Fw(U). Deduce that Tn(U) ⇒ FMSF and

TW
n (U) ⇒ WMSF.

It will be useful to make more explicit the comparisons that determine which edges

belong to the two spanning forests. Define

Zf(e) = ZUf (e) := inf
P

max
{
U(e′) ; e′ ∈ P

}
,

where the infimum is over simple paths P in G\e that connect the endpoints of e; if there

are none, the infimum is defined to be ∞. Thus, Ff(U) =
{
e ; U(e) ≤ Zf(e)

}
. In the

random case, since Zf(e) is independent of U(e) and U(e) is a continuous random variable,

we can also write Ff(U) =
{
e ; U(e) < Zf(e)

}
a.s. Similarly, define

Zw(e) = ZUw (e) := inf
P

sup
{
U(e′) ; e′ ∈ P

}
,

where the infimum is over extended paths P in G\e that join the endpoints of e. Again, if

there are no such extended paths, then the infimum is defined to be ∞. Thus,

{
e ; U(e) < Zw(e)

}
⊆ Fw(U) ⊆

{
e ; U(e) ≤ Zw(e)

}
and, in the random case, Fw(U) =

{
e ; U(e) < Zw(e)

}
a.s. The infimum in the definition of

Zw(e) is attained whenever there is some extended path in G\e that connects the endpoints
of e, as we’ll see in the course of proving the next lemma.

It turns out that there are also dual definitions for Zf and Zw. In order to state these,

we use the following terminology: ifW ⊆ V, then the set of edges ∂EW joiningW to V\W
is a cut .
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Lemma 11.3. (Dual Criteria) For any injection U :E → R on any locally finite graph

G, we have

Zf(e) = sup
Π

inf
{
U(e′) ; e′ ∈ Π \ {e}

}
, (11.1)

where the supremum is over all cuts Π that contain e; also, this supremum is attained.

Similarly,

Zw(e) = sup
Π

inf
{
U(e′) ; e′ ∈ Π \ {e}

}
, (11.2)

where now the supremum is over all cuts Π containing e such that Π = ∂EW for some

finite W ⊂ V.

Proof. We first verify (11.1). If P is a simple path in G\e that connects the endpoints

of e and Π is a cut that contains e, then P ∩
(
Π \ {e}

)
̸= ∅, so max

{
U(e′) ; e′ ∈ P

}
≥

inf
{
U(e′) ; e′ ∈ Π \ {e}

}
. This proves one inequality (≥) in (11.1). To prove the reverse

inequality, fix one endpoint x of e, and let W be the vertex set of the component of x

in (G\e)[Zf(e)]. Then Π := ∂EW is a cut that contains e by definition of Zf . Using this

Π in the right-hand side of (11.1) yields the inequality ≤ in (11.1), and shows that the

supremum there is achieved.

The inequality ≥ in (11.2) is proved in the same way as in (11.1). For the other

direction, we dualize the above proof. Let Z denote the right-hand side in (11.2); we may

assume that Z < ∞. Let W be the vertex set of the connected component of one of the

endpoints of e in the set of edges e′ ̸= e such that U(e′) ≤ Z. We clearly have U(e′) > Z

for each e′ ∈ ∂EW \ {e}. Thus, by the definition of Z, the other endpoint of e is in W if W

is finite, in which case there is a path in G\e connecting the endpoints of e that uses only

edges with labels at most Z. The same argument applies with the roles of the endpoints

of e switched. If the sets W corresponding to both endpoints of e are infinite, then there is

an extended path P connecting the endpoints of e in G\e with sup
{
U(e′) ; e′ ∈ P

}
≤ Z.

This completes the proof of (11.2), and also shows that the infimum in the definition of

Zw(e) is attained (when Z <∞). ◀

These lead to interesting and useful representations of the two minimal spanning

forests, the wired one as an increasing union of “small” subtrees and the free one as

a decreasing intersection of “large” supergraphs. (If there are edges with U(e) = Zw(e),

then the representation below misses them; but they a.s. will not occur when U is random.)

Proposition 11.4. Let U :E → R be an injective labelling of the edges of a locally finite

graph G = (V,E). For each p < 1, the edges e with U(e) < pZw(e) form subtrees of

Fw(U) with at most one end each, while the edges e with 1− U(e) > p
[
1− Zf(e)

]
forms a

supergraph of Ff(U) that is connected.
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Proof. Fix p < 1. Write ηp for the graph formed by the edges e with U(e) < pZw(e). For

the assertion on Fw(U), it suffices to show that ηp does not contain any simple bi-infinite

path. Let P be a simple bi-infinite path and α := supe∈P U(e). If P ⊂ ηp, then we would

have, for e ∈ P,

U(e) < pZw(e) ≤ p sup
P
U = pα .

This would imply that α ≤ pα, whence α = 0, which is clearly impossible. So P is not a

subset of ηp, as desired.

Write ξp for the graph formed by the edges e with 1−U(e) > p
[
1− Zf(e)

]
. Consider

any nonempty cut Π in G, and let α := infe∈Π U(e). Then 1−α = supΠ(1−U), so we may

choose e ∈ Π to satisfy 1 − U(e) > p(1 − α). By (11.1), Zf(e) ≥ infΠ\{e} U ≥ α, whence

e ∈ ξp. Since ξp intersects every nonempty cut, it is connected. ◀

The invasion tree T (x) = TU (x) of a vertex x is defined as the increasing union of

the trees tn, where t0 := {x} and tn+1 is tn together with the least edge joining tn to a

vertex not in tn. (If G is finite, we stop when tn contains V.) Invasion trees play a role in

the wired minimal spanning forest similar to the role played by Wilson’s method rooted

at infinity in the wired uniform spanning forest:

▷ Exercise 11.7.

Let U :E → R be an injective labelling of the edges of a locally finite graph G = (V,E).

Show that the union
∪
x∈V TU (x) of all the invasion trees is equal to Fw(U).

Recall from Section 7.5 that the invasion basin I(x) of a vertex x is defined as the

union of the subgraphs Gn, where G0 := {x} and Gn+1 is Gn together with the lowest

edge not in Gn but incident to some vertex in Gn. Note that I(x) has the same vertices

as T (x), but may have additional edges.

While the invasion basins (and trees) starting from different vertices can certainly

differ, they can differ in only finitely many edges when they belong to the same component

of Fw.

Proposition 11.5. Let U :E → R be an injective labelling of the edges of a locally finite

graph G = (V,E). If x and y are vertices in the same component of Fw(U), then the

symmetric differences I(x)△ I(y) and TU (x)△ TU (y) are finite.

Proof. We prove only that |I(x)△I(y)| <∞, since the proof for TU (x)△TU (y) is essentially
the same. It suffices to prove this when e := [x, y] ∈ Fw(U). Consider the connected

components C(x) and C(y) of x and y in G[U(e)]. Not both C(x) and C(y) can be infinite

since e ∈ Fw(U). If both are finite, then invasion from each x and y will fill C(x)∪C(y)∪{e}
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before invading elsewhere, and therefore I(x) = I(y) in this case. Finally, if, say, C(x) is

finite and C(y) is infinite, then I(x) = C(x) ∪ {e} ∪ I(y). ◀

Similarly, changing the edge labels on a finite set can change the free and wired

spanning forests by only finitely many edges. This will be a very useful property for us.

Lemma 11.6. Let G be any infinite locally finite graph with distinct fixed labels U(e) on

its edges. Let F be the corresponding free or wired minimal spanning forest. If the label

U(e) is changed at a single edge e, then the forest changes at most at e and at one other

edge (an edge f with U(f) = Zf(e) or Zw(e), respectively). More generally, if F′ is the

corresponding forest when labels only in K ⊂ E are changed, then |(F△ F′) \K| ≤ |K|.

Proof. Consider first the free minimal spanning forest. Suppose the two values of U(e) are

u1 and u2 with u1 < u2. Let F1 and F2 be the corresponding free minimal spanning forests.

Then F1 \ F2 ⊆ {e}. Suppose that f ∈ F2 \ F1. Then there must be a path P ⊂ G\e
joining the endpoints of e and containing f such that U(f) = maxP U > u1. Suppose that

there were a path P ′ ⊂ G\e joining the endpoints of e such that maxP′ U < U(f). Then

P ∪ P ′ would contain a cycle containing f but not e on which f has the maximum label.

This contradicts f ∈ F2. Therefore, Zf(e) = U(f). Since the labels are distinct, there is

at most one such f .

For the wired minimal spanning forest, the proof is the same, only with “extended

path” replacing “path” and “Zw(e)” replacing “Zf(e)”.

The second conclusion in the lemma follows by induction from the first. ◀

§11.3. Basic Probabilistic Results.

Here are some of the easier analogues of several results on uniform spanning forests:

▷ Exercise 11.8.

Let G be a connected locally finite graph. Prove the following.

(a) If G is edge-amenable, then the average degree of vertices in both the free and wired

minimal spanning forests on G is a.s. 2.

(b) The free and wired minimal spanning forests on G are the same if they have a.s. the

same finite number of trees, or if the expected degree of every vertex is the same for

both measures.

(c) The free and wired minimal spanning forests on G are the same on any transitive

amenable graph and have expected degree 2.
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(d) If Fw is connected a.s. or if each component of Ff has a.s. one end, then WMSF(G) =

FMSF(G).

(e) The measures WMSF(G) and FMSF(G) are invariant under all automorphisms of G,

as is the law of (Fw,Ff).

(f) If G is unimodular and transitive with WMSF(G) ̸= FMSF(G), then a.s. Ff has a

component with uncountably many ends and, in fact, with pc < 1.

When are the free and wired minimal spanning forests the same? Say that a graph G

has almost everywhere uniqueness (of the infinite cluster) if for almost every p ∈ (0, 1)

in the sense of Lebesgue measure, there is a.s. at most one infinite cluster for Bernoulli(p)

percolation on G. This is the analogue for minimal spanning forests of uniqueness of

currents for uniform spanning forests (Proposition 10.14):

Proposition 11.7. On any connected graph G, we have FMSF = WMSF iff G has almost

everywhere uniqueness.

Proof. Let A(e) be the event that the two endpoints of e are in distinct infinite components

of (G\e)[U(e)]. When U is injective, A(e) is the same as the event that e ∈ Ff \ Fw.

Since Fw ⊂ Ff and E is countable, FMSF = WMSF is equivalent to the statement that

P
[
A(e)

]
= 0 for all edges e. Write f(e, p) for the probability that the endpoints of e

belong to distinct infinite clusters with positive probability in Bernoulli(p) percolation

on G\e. Then P
[
A(e)

∣∣ U(e)
]
= f

(
e, U(e)

)
a.s., whence P

[
A(e)

]
=
∫ 1

0
f(e, p) dp. Let

B(e) ⊆ (0, 1) be the set of p for which f(e, p) > 0. Then the preceding identity yields that

B(e) has measure zero iff P
[
A(e)

]
= 0. Insertion and deletion tolerance show that

∪
eB(e)

is the set of p for which Bernoulli(p) percolation gives more than one infinite cluster with

positive probability, whence
∪
eB(e) has Lebesgue measure zero iff almost everywhere

uniqueness holds. It follows that almost everywhere uniqueness holds iff P
[
A(e)

]
= 0 for

all e. ◀

Corollary 11.8. On any graph G, if almost everywhere uniqueness fails, then WMSF is

not a.s. a tree.

Proof. By Exercise 11.8(b), if WMSF is a tree a.s., then WMSF = FMSF. ◀

It is not easy to give a graph on which the FMSF is not a tree a.s., especially if the

graph is transitive. This will be done in Section 11.6.

Another corollary of Proposition 11.7 is the following result of Häggström (1998).

Corollary 11.9. If G is a tree, then the free and wired minimal spanning forests are the

same iff pc(G) = 1.

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



Chap. 11: Minimal Spanning Forests 442

Proof. By Exercise 7.37, only at p = 1 can G[p] have a unique infinite cluster a.s. Thus,

almost everywhere uniqueness is equivalent to pc(G) = 1. ◀

What if we specialize to quasi-transitive graphs? In that setting, Proposition 11.7

and Theorem 7.21 show that FMSF = WMSF iff pc = pu; according to Conjecture 7.31,

this holds iff G is amenable. Of course, for a quasi-transitive amenable G and every

p ∈ [0, 1], there is a.s. at most one infinite cluster in G[p]; see Theorem 7.6. This is slightly

stronger than pc = pu, and gives another proof that for quasi-transitive amenable graphs,

FMSF = WMSF (cf. Exercise 11.8(c)).

Recall that tail triviality is a strong form of asymptotic independence (Section 10.4).

It holds for minimal spanning forests, just as it does for uniform spanning forests (Theo-

rem 10.18):

Theorem 11.10. Both measures WMSF and FMSF have a trivial tail σ-field on every

graph.

Proof. This is really a non-probabilistic result in the following sense. Let F (K) be the

σ-field generated by U(e) for e ∈ K. We will show that the tail σ-field is contained in the

tail σ-field of the labels of the edges,
∩
K finite F (E \K). This implies the desired result

by Kolmogorov’s 0-1 Law.

Let ϕ: [0, 1]E → 2E be the map that assigns the (free or wired) minimal spanning

forest to a configuration of labels. (Actually, ϕ is defined only on the configurations of

distinct labels.) Let A be a tail event of 2E. We claim that ϕ−1(A) lies in the tail σ-field∩
K finite F (E\K). Indeed, for any finite set K of edges and any two labellings U1, U2 that

differ only on K, we know by Lemma 11.6 that ϕ(U1) and ϕ(U2) differ at most on 2|K|
edges, whence both ϕ(Ui) are in A or neither are, i.e., both Ui are in ϕ−1(A) or neither

are. In other words, ϕ−1(A) ∈ F (E \K). ◀

§11.4. Tree Sizes.

Here we prove analogues of results from Section 10.6. There, we gave very general

sufficient conditions for each tree in the wired spanning forest to have one end a.s. We

do not know such a general theorem for the wired minimal spanning forest. Even in

the transitive case, we do not know how to prove this without assuming unimodularity

(Section 8.2) and θ(pc) = 0; recall that θ(p) is the probability that a vertex belongs

to an infinite cluster in Bernoulli(p) percolation and that when G is non-amenable and

unimodular, then it is known that θ(pc) = 0 (Theorem 8.21). On the other hand, we will
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be able to answer the analogue of Question 10.52 in the unimodular case and to prove

analogues of Theorem 10.34 for both the wired and free minimal spanning forests and in

great generality.

We begin by showing that the trees in the WMSF have at most 2 ends each.

Theorem 11.11. (WMSF Expected Degree 2) Let G be a unimodular transitive graph.

Then the WMSF-expected degree of each vertex is 2 and each tree has at most 2 ends a.s.

Proof. Fix p < 1. Write ηp for the graph formed by the edges e with U(e) < pZw(e). By

Proposition 11.4, the trees in ηp have at most one end each, whence by Exercise 8.10 and

Proposition 8.18, the expected degree in ηp is at most 2. Since Fw =
∪
p ηp a.s., the same

follows for Fw. This in turn implies that the trees in Fw have at most 2 ends each a.s.

Finally, Proposition 8.18 implies that the expected degree in WMSF is at least 2. ◀

With the additional hypothesis on critical Bernoulli percolation, we can assert that

the trees have only one end.

Theorem 11.12. (One End) Let G be a unimodular transitive graph. If θ(pc, G) = 0,

then a.s. each component of the WMSF has one end.

Proof. Suppose that θ(pc) = 0. Fix a vertex x. Let e1, e2, . . . be the edges in the in-

vasion tree of x, in the order they are added. Then supn≥k U(en) > pc for every k.

By Theorem 7.22, lim supU(en) = pc. Therefore, there are infinitely many k such that

U(ek) = supn≥k U(en). For each such k, we have that U(en) < U(ek) for all n > k, whence

en is on the other side of ek from x. Thus, the edge ek separates x from ∞ in the invasion

tree of x. It follows that the invasion tree of x a.s. has one end. It also follows that the

limsup of the labels U along that end is equal to pc.

Thus, all invasion trees have one end a.s. Since each pair of invasion trees is either

disjoint or shares all but finitely many vertices by Proposition 11.5, there is a well-defined

special end for each component of Fw, namely, the end of any invasion tree contained in

that component (by Exercise 11.7).

Suppose that with positive probability, the event A occurs that some component has

2 ends. Let the trunk of a component with two ends be the unique bi-infinite path that

it contains. Enumerate the vertices of the trunk as xn (n ∈ Z), with ⟨xn, xn+1⟩ being the

edges of the trunk, oriented towards the special end. Since θ(pc) = 0, we have

ϵ :=
[
sup
n∈Z

U
(
[xn, xn+1]

)
− pc

]
/2 > 0

a.s. on A. By the first paragraph, lim supn→∞ U
(
[xn, xn+1]

)
= pc a.s. Thus, a.s. on A

there is a largest m ∈ Z such that U
(
[xm, xm+1]

)
> pc + ϵ. We can then transport mass 1
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from each vertex in such a component to the vertex xm. The vertex xm would then receive

infinite mass, contradicting the Mass-Transport Principle. Therefore, all components have

only 1 end a.s. ◀

Question 11.13. Let G be a transitive graph whose automorphism group is not unimod-

ular. Does every tree of the WMSF on G have one end a.s.? Are there reasonably general

conditions to guarantee one-ended trees in the WMSF without any homogeneity of the

graph?

Theorem 11.12 gives one relation between the WMSF and critical Bernoulli percola-

tion. Another is an immediate consequence of Theorem 7.22 and Exercise 11.7:

Proposition 11.14. Provided G is quasi-transitive, a.s. for every p > pc(G) and for every

component T of WMSF(G), there is some infinite cluster K of G[p] such that T ∩K has

an infinite connected component. ◀

This is not true for general graphs:

▷ Exercise 11.9.

Give an infinite connected graph G such that for some p > pc(G), with positive probability

there is some component of the WMSF that intersects no infinite cluster of G[p].

Now we answer the analogue of Question 10.52 in the unimodular case. This result is

due to Timár (2006a).

Theorem 11.15. (Infinitely Many Ends) If G is a quasi-transitive unimodular graph

and WMSF ̸= FMSF, then a.s. every tree in Ff has infinitely many ends and contains

infinitely many trees of Fw.

Proof. Suppose that WMSF ̸= FMSF. Then G is non-amenable by Exercise 11.8. Since

Fw ⊆ Ff , each tree of Ff consists of trees of Fw together with edges joining them. By

Example 8.6, the number of edges in a tree of Ff that do not belong to Fw is either 0 or ∞.

By Theorems 11.12 (as extended to quasi-transitive unimodular graphs in Exercise 11.22)

and 8.21, each tree of Fw has one end, so it remains to show that no tree of Ff is a tree of

Fw. Call a tree of Ff that is a tree of Fw lonely . All other trees of Ff have infinitely many

ends. Suppose for a contradiction that there is a lonely tree with positive probability.

By the discussion in Section 11.3, we have pc < pu, so we may choose p ∈ (pc, pu).

In view of Proposition 11.14, we may then choose a finite simple path P with vertices

ordered as ⟨x1, x2, . . . , xn⟩ such that P(A) > 0 for the event A that x1 and xn belong to

distinct infinite clusters of G[p], that x1 belongs to a lonely tree, T , and that T does not
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intersect P except at x1. Let F ⊂ E be the set of edges not in P that have an endpoint in

{x2, . . . , xn−1}. Since T has one end, so does T ∩G[p].
Define A′ to be the event that results from A by changing the labels U(e) for e ∈ F to

p+ (1− p)U(e). This increases all the labels in F and also makes them larger than p. Let

Ff
′ be the new free minimal spanning forest and T ′ be the component of Ff

′ that contains

x1. By Lemma 11.6, Ff
′ △ Ff is finite. Further, T ′ ⊇ T . Therefore, if T ′ is not lonely on

A′, it contains infinitely many ends and an isolated end (the end of T ). Since P(A′) > 0

by Lemma 7.24, this is impossible by Proposition 8.33. Hence, T ′ is lonely on A′.

Define A′′ to be the event that results from A′ by changing the labels U(e) for e ∈ P
to pU(e). This decreases all the labels in P and also makes them smaller than p. Let Ff

′′

be the new free minimal spanning forest and T ′′ be the component of Ff
′′ that contains x1.

By Lemma 11.6, Ff
′′ △ Ff is finite. On A′′, the path P belongs to a single infinite cluster

of G[p]. Further, P ⊂ Ff
′′ on A′′ since all cycles containing an edge of P must contain

an edge with label larger than p. In addition, T ′ ∩ G[p] ⊆ T ′′ for the same reason: Let

e ∈ T ′ ∩G[p] and let C be a cycle containing e. If C ∩P = ∅, then the labels on C are the

same on A′′ as on A′, in which case e is not the highest edge on C since e ∈ T ′, whereas

if C ∩ P ≠ ∅, then C contains an edge labelled more than p, in which case again e is not

the highest edge on C since e ∈ G[p]. Thus, e ∈ T ′′. By symmetry, the intersection of

G[p] with the component of Ff
′ that contains xn has all its edges in Ff

′′, which means that

T ′′ has at least two and hence (by our first paragraph above) infinitely many ends and an

isolated end (the end of T ′). Since P(A′′) > 0 by Lemma 7.24, this is again impossible by

Proposition 8.33. This contradiction proves the theorem. ◀

We believe that unimodularity is not needed for this property:

Conjecture 11.16. If G is a quasi-transitive graph and WMSF ̸= FMSF, then FMSF-a.s.

every tree has infinitely many ends.

Theorem 11.12 and Proposition 11.14 give two relations between the WMSF and crit-

ical Bernoulli percolation. The next result, though not much related to the title of this

section, gives a relation between the FMSF and Bernoulli(pu) percolation. Recall that

pu(G) := inf
{
p ; there is a.s. a unique infinite cluster in Bernoulli(p) percolation

}
for a general graph, G.

Proposition 11.17. Under the standard coupling, a.s. each component of FMSF(G) in-

tersects at most one infinite cluster of G[pu]. Thus, the number of trees in FMSF(G)

is a.s. at least the number of infinite clusters in G[pu]. If G is quasi-transitive with
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pu(G) > pc(G), then a.s. each component of FMSF(G) intersects exactly one infinite clus-

ter of G[pu].

Proof. Let ⟨pj⟩ be a sequence satisfying limj→∞ pj = pu and that is contained in the set of

p ∈ [pu, 1] such that there is a.s. a unique infinite cluster in G[p]. Let P be a finite simple

path in G, and let A be the event that P ⊂ Ff and the endpoints of P are in distinct

infinite pu-clusters. Since a.s. for every j = 1, 2, . . . there is a unique infinite cluster in

G[pj ], a.s. on A there is a path joining the endpoints of P in G[pj ]. Because P ⊂ Ff on

A , we have maxP U ≤ pj a.s. on A . Thus, maxP U ≤ pu a.s. on A . On the other hand,

maxP U ≥ pu a.s. on A since on A , the endpoints of P are in distinct pu components.

This implies P[A ] ≤ P[maxP U = pu] = 0, and the first statement follows.

The second sentence follows from the fact that every vertex belongs to some component

of Ff . Finally, the third sentence follows from Theorem 7.22 and the fact that invasion

trees are contained in the wired minimal spanning forest, which, in turn, is contained in

the free minimal spanning forest. ◀

There is a related conjecture of Benjamini and Schramm (personal communication,

1998):

Conjecture 11.18. Let G be a quasi-transitive non-amenable graph with pu(G) < 1.

Then FMSF is a single tree a.s. iff there is a unique infinite cluster in G[pu] a.s.

We can strengthen this conjecture to say that the number of trees in the FMSF equals

the number of infinite clusters at pu. An even stronger conjecture would be that in the

natural coupling of Bernoulli percolation and the FMSF, each infinite cluster at pu intersects

exactly one component of the FMSF and each component of the FMSF intersects exactly

one infinite cluster at pu.

Question 11.19. Must the number of trees in the FMSF and the WMSF in a quasi-

transitive graph be either 1 or ∞ a.s.? This question for Zd is due to Newman (1997).

We now prove an analogue of Theorem 10.34, which showed that the trees in the

wired uniform spanning forest of a graph are all a.s. recurrent. What is the analogue of

recurrence? It is pc = 1: see Exercise 11.14 for one reason to consider this as a proper

analogue. We show pc = 1, in fact, for something even larger than the trees of the wired

minimal spanning forest. Namely, define the invasion basin of infinity , I(∞) = IU (∞),

as the set of edges [x, y] such that there do not exist disjoint infinite simple paths from x

and y consisting only of edges e satisfying U(e) < U
(
[x, y]

)
. Thus, we have

I(∞) ⊃
∪
x∈V

I(x) ⊃
∪
x∈V

TU (x) = Fw(U) .
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In addition, I(∞) does not contain any edges that join different trees in Fw. For an edge

e, define

ZU∞(e) := Z∞(e) := inf
P

sup
{
U(f) ; f ∈ P \ {e}

}
,

where the infimum is over bi-infinite simple paths that contain e; if there is no such

path P, define Z∞(e) := 1. Similarly to the expression for Fw in terms of Zw, we have{
e ; U(e) < Z∞(e)

}
⊆ I(∞) ⊆

{
e ; U(e) ≤ Z∞(e)

}
and a.s. I(∞) =

{
e ; U(e) < Z∞(e)

}
.

Theorem 11.20. Let G = (V,E) be a graph of bounded degree. Then pc
(
I(∞)

)
= 1 a.s.

Therefore pc(Fw) = 1 a.s.

To prove this, we begin with the following lemma that will provide a coupling between

percolation and invasion that is different from the usual one we work with.

Lemma 11.21. Let G = (V,E) be a locally finite infinite graph and ⟨U(e) ; e ∈ E⟩ be

i.i.d. uniform [0, 1] random variables. Let A ⊂ E be finite. Conditioned on A ⊂ I(∞), the

random variables
U(e)

Z∞(e)
(e ∈ A)

are i.i.d. uniform [0, 1].

The heart of the lemma is that a uniform random variable conditioned on a set of

possible values is uniform on that set. The form of this that we use is in the following

exercise:

▷ Exercise 11.10.

Let ⟨Ui ; 1 ≤ i ≤ k⟩ be a random vector distributed uniformly in [0, 1]k, and let ⟨Zi ; 1 ≤
i ≤ k⟩ be an independent random vector with an arbitrary distribution in (0, 1]k. Then

given Ui < Zi for all 1 ≤ i ≤ k, the conditional law of the vector ⟨Ui/Zi ; 1 ≤ i ≤ k⟩ is

uniform in [0, 1]k.

Proof of Lemma 11.21. Given Exercise 11.10, the essence of the proof is the plausible fact

that Z∞↾I(∞) gives no information about U↾I(∞) other than U ≤ Z∞ on I(∞). This is

reasonable since no edge in I(∞) can be the highest edge in any bi-infinite simple path,

whence its label cannot determine the value of Z∞ anywhere. Let A ⊂ E be finite. Define

Ũ(e) := 0 for e ∈ A and Ũ(e) := U(e) for e /∈ A, and let ZUA := ZU∞↾A denote the restriction

of ZU∞ to A. Certainly ZŨA is independent of U↾A.
We claim that on the event

[
A ⊂ IU (∞)

]
, we have ZUA = ZŨA . Indeed, consider any

bi-infinite simple path P. If e ∈ IU (∞) ∩ P, then U(e) < sup{U(e′) ; e ̸= e′ ∈ P}. Hence,
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for every such P,

sup
P
U = sup

P\A
U = sup

P\A
Ũ = sup

P
Ũ

on the event
[
A ⊂ IU (∞)

]
. This proves the claim.

One consequence is that the symmetric difference of the two events
[
A ⊂ IU (∞)

]
and

[
U↾A < ZŨA

]
has probability 0. Indeed, the second event is contained in the first

event because ZŨA (e) ≤ ZUA (e) for all e ∈ A. For the converse, A ⊂ IU (∞) implies that

U↾A < ZUA a.s. and ZUA = ZŨA , as we saw in the preceding paragraph. Together, these give

the converse.

Thus, the distribution of ⟨U(e)/ZUA (e) ; e ∈ A⟩ conditional on
[
A ⊂ IU (∞)

]
is a.s.

the same as the distribution of ⟨U(e)/ZŨA (e) ; e ∈ A⟩ conditional on
[
U↾A < ZŨA

]
. By

Exercise 11.10, this distribution is uniform on [0, 1]A, as desired. ◀

We also need the following fact.

Lemma 11.22. If a graph H of bounded degree does not contain a simple bi-infinite path,

then pbondc (H) = 1.

Proof. Suppose that H does not contain a simple bi-infinite path. Let x be a vertex of

H. Since every pair of infinite paths from x must share another vertex besides x, then by

Menger’s theorem (Exercise 3.16), there is a vertex y ̸= x that belongs to every infinite

path from x. That is, removal of y from H leaves x in a finite component. We can then

repeat the argument with infinite paths starting at y and eventually find infinitely many

vertices z such that x is in a finite component of H \ {z}. Since H has bounded degree, it

follows that pbondc (H) = 1. (Even without bounded degree, we get that psitec (H) = 1.) ◀

Proof of Theorem 11.20. A random subset ω of E is Bernoulli(p) percolation on I(∞) iff

ω ⊆ I(∞) a.s. and for all finite A ⊂ E, the probability that A ⊆ ω given that A ⊂ I(∞)

is p|A|. Let ηp be the set of edges e satisfying U(e) < pZ∞(e). Lemma 11.21 implies that

ηp has the law of Bernoulli(p) percolation on I(∞). Thus, by Lemma 11.22, it suffices to

show that ηp does not contain any simple bi-infinite path. In fact, this was already shown

for a larger set of edges in Proposition 11.4. ◀

Thinking about planar duality leads one to suspect that a dual statement holds for the

FMSF. (This duality will be explained in the next section.) And indeed, a dual argument

shows that the FMSF is almost connected in the following sense.

Theorem 11.23. Let G be any locally finite connected graph and ϵ ∈ (0, 1). Let Ff be a

configuration of the FMSF and ω be an independent copy of G[ϵ]. Then Ff ∪ω is connected

a.s.
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For this, we use a lemma dual to Lemma 11.21; it will provide a coupling of Ff and

Ff ∪ ω.

Lemma 11.24. Let G = (V,E) be a locally finite infinite graph and ⟨U(e) ; e ∈ E⟩ be i.i.d.

uniform [0, 1] random variables. Let A ⊂ E be a finite set such that P[A ∩ Ff = ∅] > 0.

Let B ⊂ E be a finite set disjoint from A. Conditioned on A ∩ Ff = ∅ and B ⊂ Ff , the

random variables
1− U(e)

1− Zf(e)
(e ∈ A)

are i.i.d. uniform [0, 1].

Proof. Let Ũ(e) := 1 for e ∈ A and Ũ(e) := U(e) for e /∈ A, and let ZUA denote the

restriction of ZUf to A. Consider any cut Π. If e ∈ Π \ Ff(U), then U(e) > ZUf (e) ≥
inf
{
U(e′) ; e′ ∈ Π \ {e}

}
by (11.1). Hence, if A ∩ Ff = ∅, then for every cut Π,

inf
Π
U = inf

Π\A
U = inf

Π\A
Ũ = inf

Π
Ũ ,

and therefore (still assuming that A ∩ Ff = ∅ and using (11.1) again) ZUA = ZŨA . Hence

A ∩ Ff(U) = ∅ implies U > ZŨA on A. Moreover, A ∩ Ff(U) = ∅ is actually equivalent to

U > ZŨA on A, because ZŨA ≥ ZUA . In addition, Ff(U) = Ff(Ũ) on the event A∩Ff(U) = ∅.

Thus, conditioned on A ∩ Ff(U) = ∅ and B ⊂ Ff(U), which is the same as conditioning

on U↾A > ZŨA and B ⊂ Ff(Ũ), the random variables ⟨(1 − U(e))/(1 − Zf(e)) ; e ∈ A⟩ =
⟨(1− U(e))/(1− ZŨA (e)) ; e ∈ A⟩ are i.i.d. uniform in [0, 1] by Exercise 11.10. ◀

Proof of Theorem 11.23. According to Lemma 11.24, Ff ∪ ω has the same law as ξ :={
e ; 1− U(e) ≥ (1− ϵ)[1− Zf(e)]

}
. We saw in Proposition 11.4 that ξ is connected. ◀

Recall that an analogous question about the FUSF, Question 10.12, is open. One

difficulty in trying to provide an analogous solution is to imagine what corresponds to

Bernoulli(ϵ) percolation in the FUSF world.

§11.5. Planar Graphs.

When we add planar duality to our tools, it will be easy to deduce all the major

properties of both the free and wired minimal spanning forests on planar quasi-transitive

graphs.

Recall the definition (10.7)

e ∈ ω ⇐⇒ e† /∈ ω× .
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Proposition 11.25. Let G and G† be proper locally finite dual plane graphs. For any

injection U :E → R, let U†(e†) := 1− U(e). We have

(
Ff(U,G)

)×
=
{
e† ; U†(e†) < ZU

†

w (e†)
}
,

whence
(
Ff(U,G)

)×
= Fw(U

†, G†) if U†(e†) ̸= ZU
†

w (e†) for all e† ∈ E†.

Proof. The Jordan curve theorem implies that a set P ⊂ E \ {e} is a simple path between

the endpoints of e iff the set Π := {f† ; f ∈ P} ∪ {e†} is a cut of a finite set. Thus

ZUf (e) = 1 − ZU
†

w (e†) by (11.2). This means that e† ∈
(
Ff(U,G)

)×
iff e /∈ Ff(U,G) iff

U(e) > ZUf (e) iff U†(e†) < ZU
†

w (e†). ◀

The following corollary is proved in the same way that Proposition 10.37 is proved.

Corollary 11.26. Let G be a proper plane graph with G† locally finite. If each tree of

the WMSF of G has only one end a.s., then the FMSF of G† has only one tree a.s. If, in

addition, the WMSF of G has infinitely many trees a.s., then the tree of the FMSF of G†

has infinitely many ends a.s. ◀

This allows us decide what happens on Z2, a result of Alexander and Molchanov

(1994).

Corollary 11.27. The minimal spanning forest of Z2 is a.s. a tree with one end.

Proof. The hypothesis θ(pc) = 0 of Theorem 11.12 applies by Harris (1960) and Kesten

(1980). Therefore, each tree in the WMSF has one end. By Corollary 11.26, this means

that the FMSF has one tree. On the other hand, the wired and free measures are the same

by Exercise 11.8.

However, we can get by in our proof with less than Kesten’s theorem, namely, with

only Harris’s Theorem 7.17. To see this, consider the labels U†(e†) := 1− U(e) on (Z2)†.

Let U be an injective [0, 1]-labelling where all the (1/2)-clusters in Z2 and (Z2)† are finite

and U(e) ̸= ZUw (e) for all e ∈ E, which happens a.s. for the standard labelling. Suppose

that e is an edge where U(e) ≤ 1/2. We claim that the endpoints of e belong to the same

tree in Fw(U,Z2). Indeed, the invasion basin of e− contains e by our assumption, whence

the invasion tree of e− contains e+.

Therefore, if Fw(U,Z2) contains more than one tree, all edges joining two of its com-

ponents have labels larger than 1/2. If F is the edge boundary of one of the compo-

nents, then F † contains an infinite path with labels all less than 1/2, which contradicts

our assumption. This proves that Fw(U,Z2) is one tree. So is Ff

(
U†, (Z2)†

)
, whence

Fw(U,Z2) =
(
Ff(U

†, G†)
)×

has just one end. ◀
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Similar reasoning shows:

Proposition 11.28. Let G be a connected non-amenable quasi-transitive planar graph

with one end. Then the FMSF on G is a.s. a tree.

The non-amenability assumption can be replaced by the assumption that the planar

dual of G satisfies θ(pc) = 0. The latter assumption is known to hold in many amenable

cases (see Kesten (1982)).

Proof. Let G be such a graph. By Theorem 8.25, Aut(G) is unimodular and we may embed

G so that Aut(G†) is also unimodular. By Exercise 6.29, the graphG† is also non-amenable.

Thus, we may apply Theorem 8.21 to G† to see that θ(pc, G
†) = 0. Theorem 11.12 and

Corollary 11.26 now yield the desired conclusion. ◀

It is amusing to see how we can use minimal spanning forests now to give another

proof of the bond percolation part of Theorem 8.24.

Corollary 11.29. If G is a connected non-amenable quasi-transitive planar graph with

one end, then for bond percolation, pc(G) < pu(G). In addition, there is a unique infinite

cluster in Bernoulli(pu(G)) bond percolation.

Proof. Again, by Theorem 8.25, Aut(G) is unimodular and we may embed G so that

Aut(G†) is also unimodular. By Theorem 7.21 and Proposition 11.7, it suffices to show

that WMSF ̸= FMSF on G. Now if the forests were the same, then they would also

be the same on G†, so that each would be one tree with one end, as in the proof of

Proposition 11.28. But this is impossible by Proposition 8.22.

Furthermore, by Proposition 11.28, the FMSF is a tree on G, whence by the second

sentence of Proposition 11.17, there is a unique infinite cluster in Bernoulli(pu) percolation

on G. ◀

§11.6. Non-Treeable Groups.

We don’t know any good way to tell when the free minimal spanning forest is a.s. a

single tree, even for Zd when d ≥ 3. So far in this chapter, we have not presented a single

example of a Cayley graph where it is not a tree. One way to present such an example

is to use Proposition 11.17 and give a Cayley graph where there are infinite many infinite

clusters in Bernoulli(pu) percolation. In Section 7.9, some examples of such Cayley graphs

were mentioned. As it happens, all of those examples have another surprising property:

they don’t admit any invariant random spanning tree! That, of course, also implies that
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the FMSF is a.s. not a tree. This is the method we use here. The following theorem is due

to Pemantle and Peres (2000).

Theorem 11.30. (Non-Treeable Products) Let Γ and ∆ be infinite countable groups

and G be a Cayley graph of Γ × ∆. If there is a random invariant spanning tree of G,

then G is amenable.

Proof. Let H be a Cayley graph of Γ. We’ll use the spanning tree measure assumed to

exist to create an invariant percolation on H with finite clusters and with expected degree

arbitrarily close to the degree of H; amenability of H (and hence of Γ) then follows from

Theorem 8.16. By symmetry, ∆ is also amenable, whence so is G by Exercise 6.22.

To create this percolation on H, we first define an equivalence relation on Γ. Consider

a fixed spanning tree T of G. Write o for the identities of Γ and ∆. Write Γn for the

points in G that lie within distance n of Γ× {o}. Let Hr denote the points in H that are

within H-distance r of o and let ∆r := Hr × ∆. For n ≥ 1, let δn ∈ ∆ be any element

such that the distance in G from (o, o) to (o, δn) is at least 2n + 1. Given n and r, let

C(T, n, r) ∈ Γ×Γ consist of the pairs (γ, γ′) such that either γ = γ′ or all of the following

four properties hold:

(i) the path in T from (γ, o) to (γ′, o) lies in Γn;

(ii) the path in T from (γ, δn) to (γ′, δn) lies in (o, δn)Γn;

(iii) the path in T from (γ, o) to (γ, δn) lies in (γ, o)∆r; and

(iv) the path in T from (γ′, o) to (γ′, δn) lies in (γ′, o)∆r.

It is easy to see that C(T, n, r) is an equivalence relation for each n and r.

Now let T be random with a Γ×∆-invariant law. Since C
(
(γ, o)T, n, r

)
= γC(T, n, r)

for every γ ∈ Γ, the law of C(T, n, r) is Γ-invariant. The probabilities of the events in

(i) and (ii), which are the same, tend to 1 as n → ∞. Given n, the probabilities of the

events in (iii) and (iv) tend to 1 as r → ∞. Thus, given any pair γ ̸= γ′, we may choose

n and r large enough that P
[
(γ, γ′) ∈ C(T, n, r)

]
is as close as desired to 1. On the

other hand, when (γ, γ′) ∈ C(T, n, r), we may concatenate the paths in T from (γ, o) to

(γ′, o) to (γ′, δn) to (γ, δn) to (γ, o). Since T contains no simple cycles, this means that

(γ, o)∆r ∩ (γ′, o)∆r ̸= ∅, whence γ and γ′ lie within distance 2r of each other. Thus, the

equivalence classes of C(T, n, r) are finite. To make a percolation out of them, just take

C(T, n, r) ∩ E(H). ◀

We do not know much about the number of infinite clusters in Bernoulli(pu) percola-

tion on Cayley graphs. For example, the following is open:

Question 11.31. Let G be a Cayley graph with pu(G) < 1. Both of the following

properties imply that the FMSF on G is a.s. not a tree:
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(i) Bernoulli(pu) percolation has more than one infinite cluster a.s.;

(ii) there is no random invariant spanning tree of G.

Is there any implication between (i) and (ii)?

§11.7. Notes.

Proposition 11.5 was first proved by Chayes, Chayes, and Newman (1985) for Z2, then by
Alexander (1995a) for all Zd, and finally by Lyons, Peres, and Schramm (2006) for general graphs.

Lemma 11.6 is a strengthening due to Lyons, Peres, and Schramm (2006) of Theorem 5.1(i)
of Alexander (1995a).

All other results in this chapter that are not explicitly attributed are due to Lyons, Peres,
and Schramm (2006), although Proposition 11.4 was only implicit there.

A curious comparison of FUSF and FMSF was found by Lyons, Peres, and Schramm (2006),
extending work of Lyons (2000) and Gaboriau (2005): Let deg(µ) denote the expected degree of
a vertex under an automorphism-invariant percolation µ on a transitive graph (so that it is the
same for all vertices).

Proposition 11.32. Let G = (V,E) be a transitive unimodular connected infinite graph of degree
d. Then

deg(FUSF) ≤ deg(FMSF) ≤ 2 + d

∫ pu

pc

θ(p)2 dp .

It is not known whether the same holds on all transitive graphs.
Some examples of particular behaviors of minimal spanning forests are given by Lyons, Peres,

and Schramm (2006); they are somewhat hard to prove, but worth recounting here. Namely, there
are examples of the following: a planar graph whose free and wired minimal spanning forests are
equal and have two components; a planar graph such that the number of trees in the wired
minimal spanning forest is not an a.s. constant; a planar graph such that the number of trees in
the free minimal spanning forest is not an a.s. constant; and a graph for which WUSF ̸= FUSF
and WMSF = FMSF (unlike the situation in Proposition 11.32).

Theorem 11.30 is essentially taken from Pemantle and Peres (2000), which contains general-
izations. A precursor is in Adams (1988). Gaboriau (2000) (Cor. VI.22) shows that non-amenable
groups of cost 1 are not treeable, i.e., they have no invariant random spanning tree; this implies
Theorem 11.30. Cayley graphs of Kazhdan groups also are not treeable; a version of this result
appears in Adams and Spatzier (1990). More generally, a non-amenable group Γ with first ℓ2-
Betti number β1(Γ) = 0 is non-treeable by Gaboriau (2002), Proposition 6.10. Gaboriau (2000)
(Prop. VI.18) shows that if a group contains a non-treeable subgroup, then the group itself is
not treeable. Note that Gaboriau calls a group “arborable” if all its free actions are treeable and
“anti-arborable” if none of them are. It is unknown if there are any other kinds of groups. An ex-
ample given by Gaboriau (2000) (Rem. VI.11) of a non-treeable group is (A⊕B)∗B (B⊕C), where
A,B,C are all isomorphic to Z; this group is non-amenable and has cost 1, yet is an amalgamated
product of treeable groups over Z.

▷ Exercise 11.11.
Call a graph G almost treeable if there exists a sequence of Aut(G)-invariant spanning forests
Fn on G with the property that for all x, y ∈ V(G), we have limn→∞ P[x ↔ y in Fn] = 1. Use
Theorem 7.47 to show that Cayley graphs of Kazhdan groups are not almost treeable.
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A striking use of the minimal spanning tree on a Poisson process in R2 (minimizing distance)
is made by Krikun (2007).

We end with a few more open questions and conjectures.

Conjecture 11.33. The components of the FMSF on a unimodular transitive graph are indistin-
guishable in the sense that for every automorphism-invariant property A of subgraphs, either a.s.
all components satisfy A or a.s. all do not. The same holds for the WMSF.

This surely does not extend to non-unimodular transitive graphs, though we do not have a
proof.

Conjecture 11.34. Let To be the component of the identity o in the WMSF on a Cayley graph
not roughly isometric to Z, and let ξ = ⟨xn ; n ≥ 0⟩ be a ray from o in To. (This ray is conjectured
to be unique since θ(pc) = 0 by Conjecture 8.15.) The sequence of “bushes” ⟨bn⟩ observed along
ξ converges in distribution. (Formally, bn is the connected component of xn in T \ {xn−1, xn+1},
multiplied on the left by x−1

n .)

Question 11.35. For which d is the minimal spanning forest of Zd a.s. a tree? This question is
due to Newman and Stein (1996), who conjecture that the answer is d < 8 or d ≤ 8. Jackson and
Read (2010a, 2010b) suggest instead that the answer is d < 6 or d ≤ 6. This is related to the
number of ground states of the Edwards-Anderson model: see Newman and Stein (2006).

Question 11.36. One may consider the minimal spanning tree on ϵZ2 ⊂ R2 and let ϵ → 0. It
would be interesting to show that the limit exists in various senses. Aizenman, Burchard, Newman,
and Wilson (1999) have shown that a subsequential limit exists. According to simulations of
Wilson (2004a), the scaling limit in a simply connected domain with free or wired boundary
conditions does not have the conformal invariance property one might expect. This contrasts with
the situation of the uniform spanning forest, where the limit exists and is conformally invariant,
as was proved by Lawler, Schramm, and Werner (2004a). Pete (2010) has announced that the
scaling limit does exist; that paper also discusses its conformal non-invariance.

Question 11.37. If G is a graph that is roughly isometric to a tree, then is the free minimal
spanning forest on G a.s. a tree?

§11.8. Collected In-Text Exercises.

11.1. Show that among all spanning trees, TU is the unique one that has minimal edge-label
sum,

∑
e∈T U(e).

11.2. Construct G as follows. Begin with the complete graph, K4. Let e and f be two of
its edges that do not share endpoints. Replace e by three edges in parallel, e1, e2, and e3,
that have the same endpoints as e. Likewise, replace f by three parallel edges fi. Show that
MST[e1, f1 ∈ T ] > MST[e1 ∈ T ]MST[f1 ∈ T ].

11.3. Show that given an edge, e, the minimal spanning tree measure on G conditioned on the
event not to contain e need not be the same as the minimal spanning tree measure on G\e, the
graph G with e deleted.

11.4. Find an example of a finite graph G with vertex o ∈ G such that there are two spanning
trees T, T ′ of G having the properties that for all x, the distance from x to o in T is the same as
in T ′, yet T and T ′ are not equally likely under the minimal spanning tree measure.
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11.5. Show that Fw(U) consists of those edges e for which there is a finite set of vertices W ⊂ V
such that e is the least edge joining W to V \W .

11.6. Consider an increasing sequence of finite, nonempty, connected (not necessarily induced)
subgraphs Gn ⊂ G, n ∈ N, such that

∪
nGn = G. For n ∈ N, let GW

n be the graph obtained
from G by identifying the vertices outside of Gn to a single vertex, then removing all resulting
loops based at that vertex. Let Tn(U) and TW

n (U) denote the minimal spanning trees on Gn and
GW
n , respectively, that are induced by the labels U . Show that Ff(U) = limn→∞ Tn(U) and that

Fw(U) = limn→∞ TW
n (U) in the sense that for every e ∈ Ff(U), we have e ∈ Tn(U) for every

sufficiently large n, for every e /∈ Ff(U) we have e /∈ Tn(U) for every sufficiently large n, and
similarly for Fw(U). Deduce that Tn(U) ⇒ FMSF and TW

n (U) ⇒ WMSF.

11.7. Let U :E → R be an injective labelling of the edges of a locally finite graph G = (V,E).
Show that the union

∪
x∈V TU (x) of all the invasion trees is equal to Fw(U).

11.8. Let G be a connected locally finite graph. Prove the following.

(a) If G is edge-amenable, then the average degree of vertices in both the free and wired minimal
spanning forests on G is a.s. 2.

(b) The free and wired minimal spanning forests on G are the same if they have a.s. the same
finite number of trees, or if the expected degree of every vertex is the same for both measures.

(c) The free and wired minimal spanning forests on G are the same on any transitive amenable
graph and have expected degree 2.

(d) If Fw is connected a.s. or if each component of Ff has a.s. one end, then WMSF(G) =
FMSF(G).

(e) The measures WMSF(G) and FMSF(G) are invariant under all automorphisms of G, as is the
law of (Fw,Ff).

(f) If G is unimodular and transitive with WMSF(G) ̸= FMSF(G), then a.s. Ff has a component
with uncountably many ends and, in fact, with pc < 1.

11.9. Give an infinite connected graph G such that for some p > pc(G), with positive probability
there is some component of the WMSF that intersects no infinite cluster of G[p].

11.10. Let ⟨Ui ; 1 ≤ i ≤ k⟩ be a random vector distributed uniformly in [0, 1]k, and let ⟨Zi ; 1 ≤
i ≤ k⟩ be an independent random vector with an arbitrary distribution in (0, 1]k. Then given
Ui < Zi for all 1 ≤ i ≤ k, the conditional law of the vector ⟨Ui/Zi ; 1 ≤ i ≤ k⟩ is uniform in
[0, 1]k.

11.11. Call a graph G almost treeable if there exists a sequence of Aut(G)-invariant spanning
forests Fn on G with the property that for all x, y ∈ V(G), we have limn→∞ P[x↔ y in Fn] = 1.
Use Theorem 7.47 to show that Cayley graphs of Kazhdan groups are not almost treeable.
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Figure 11.2.

§11.9. Additional Exercises.

11.12. Let G be the graph in Figure 11.2. There are 11 spanning trees of G. Show that under
the minimal spanning tree measure, they are not all equally likely and calculate their probabili-
ties. Show, however, that there are conductances such that the corresponding weighted uniform
spanning tree measure equals the minimal spanning tree measure.

11.13. Let G be a complete graph on 4 vertices (i.e., all pairs of vertices are joined by an edge).
Calculate the minimal spanning tree measure and show that there are no conductances that give
the minimal spanning tree measure as a weighted uniform spanning tree.

11.14. Let G be an infinite locally finite graph. Show that if pc(G) = 1, then for all x, we have
I(x) = G a.s., while if pc(G) < 1, then for all x, we have I(x) ̸= G a.s. Here, I(x) denotes the
invasion basin of x.

11.15. Show that the FMSF of the usual Cayley graph of Z2 ∗ Z3 (as in Figure 3.3) is a tree a.s.
whose branching number equals 1.35+.

11.16. Given a finitely generated group Γ, does the expected degree of a vertex in the FMSF of
a Cayley graph of Γ depend on which Cayley graph is used? As discussed in Section 10.2, the
degree of the FUSF does not depend on the Cayley graph chosen.

11.17. Let T be a 3-regular tree. Calculate the chance that a given vertex is a leaf in the wired
minimal spanning forest on T .

11.18. Show that for the ladder graph of Exercise 4.2, the minimal spanning forest is a tree a.s.
and calculate the chance that the bottom rung of the ladder is in the minimal spanning tree.

11.19. Let f(p) be the probability that two given neighbors in Zd are in different components in
Bernoulli(p) percolation. Show that ∫ 1

0

f(p)

1 − p
dp =

1

d
.

11.20. Let G be a connected graph. Let α(x1, . . . , xK) be the probability that the invasion
basins I(x1), . . . , I(xK) are pairwise vertex-disjoint. Show that the WMSF-essential supremum of
the number of trees is

sup{K ; ∃x1, . . . , xK ∈ V α(x1, . . . , xK) > 0} .

11.21. Show that if we sum the number of ends over all trees in the free minimal spanning forest
of a graph, then we get an a.s. constant, and likewise for the wired minimal spanning forest.
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11.22. Show that if G is a unimodular quasi-transitive graph and θ(pc, G) = 0, then a.s. each
component of the WMSF has one end.

11.23. Show that if G is a quasi-transitive non-amenable unimodular graph, then there are in-
finitely many trees in the WMSF a.s.

11.24. Theorem 11.20 was stated for bounded degree graphs. Prove that if G = (V,E) is an
infinite graph, then the WMSF Fw satisfies pc(Fw) = 1 a.s., and moreover, pc(

∪
v∈V I(v)) = 1 a.s.

11.25. Show that if G is a unimodular transitive locally finite connected graph, then pc(G) <
pu(G) iff pc(Ff) < 1 a.s.

11.26. Let G be a plane regular graph of degree d with regular dual of degree d†. Show that the
FMSF-expected degree of each vertex in G is d(1 − 2/d†).

11.27. Let G be the usual Cayley graph of the (p, q, r)-triangle group, where 1/p+1/q+1/r ≤ 1,
shown in Figure 6.1 for (2, 3, 7) and defined in Exercise 8.45. It has 3 generators, which are
reflections in the sides of a fundamental triangle. Show that the expected degree of the FMSF of
G is 3 − 1/p− 1/q − 1/r.

11.28. Consider the Cayley graph corresponding to the presentation ⟨a, b, c, d | a2, b2, c2, abd−1⟩.
Show that the expected degree of a vertex in the FMSF is 3.

11.29. Give a Cayley graph with pu = 1 on which the FMSF a.s. is not a single tree.
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Chapter 12

Limit Theorems for Galton-Watson Processes

How quickly does a supercritical Galton-Watson branching process grow? In Sec-

tion 5.1, we gave an answer via the Kesten-Stigum Theorem, but its proof was postponed

to the present chapter. How quickly does the survival probability to generation n decay

as n → ∞ in critical and subcritical processes? These are the major questions we answer

in this chapter. A special biasing of the branching process, called size-biasing, transforms

these questions to much easier ones. Size-biased branching processes turn out to be an

example of branching processes with immigration, so we also study those a bit.

This chapter is adapted from Lyons, Pemantle, and Peres (1995a).

§12.1. Size-Biased Trees and Immigration.

Recall from Section 5.1

The Kesten-Stigum Theorem (1966). Let L be the offspring random variable of a

Galton-Watson process with mean m ∈ (1,∞) and martingale limit W . The following are

equivalent:

(i) P[W = 0] = q;

(ii) E[W ] = 1;

(iii) E[L log+ L] <∞.

Although condition (iii) appears technical, there is a conceptual proof of the theorem

that uses only the crudest estimates. The dichotomy of Corollary 5.7 as expanded in the

Kesten-Stigum Theorem turns out to arise from the following elementary dichotomy:

Lemma 12.1. Let X,X1, X2, . . . be non-negative i.i.d. random variables. Then a.s.

lim sup
n→∞

1

n
Xn =

{
0 if E[X] <∞ ,
∞ if E[X] = ∞ .

▷ Exercise 12.1.

Prove this by using the Borel-Cantelli lemma.
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We will use Lemma 12.1 mainly via the following consequence:

▷ Exercise 12.2.

Given X, Xn as in Lemma 12.1, show that if E[X] < ∞, then
∑
n e

Xncn < ∞ a.s. for all

c ∈ (0, 1), while if E[X] = ∞, then
∑
n e

Xncn = ∞ a.s. for all c ∈ (0, 1).

This dichotomy will be applied to an auxiliary random variable. Let L̂ be a random

variable whose distribution is that of size-biased L; i.e.,

P[L̂ = k] =
kpk
m

,

where, as usual, pk := P[L = k]. Note that

E[log L̂] =
1

m
E[L log+ L] .

Lemma 12.1 will be applied to log L̂.

▷ Exercise 12.3.

LetX be a non-negative random variable with 0 < E[X] <∞. We say that X̂ has the size-

biased distribution of X if P
[
X̂ ∈ A

]
= E

[
X1A(X)

]
/E[X] for intervals A ⊆ [0,∞).

Show that this is equivalent to E
[
f(X̂)

]
= E

[
Xf(X)

]
/E[X] for all Borel f : [0,∞) →

[0,∞).

▷ Exercise 12.4.

Suppose that Xn are non-negative random variables such that 0 < E[Xn] < ∞ and

P[Xn > 0]/E[Xn] → 0. Show that the size-biased random variables X̂n tend to infinity in

probability.

We will now define certain “size-biased” random trees, called size-biased Galton-

Watson trees. Note that this process, as well as the usual Galton-Watson process, will

be a way of putting a measure on the space of trees, which we think of as rooted and

labelled, as in Section 5.1. The law of the size-biased random tree will be denoted ĜW,

whereas the law of an ordinary Galton-Watson tree is denoted GW. We will show that

the Kesten-Stigum dichotomy is equivalent to the following: these two measures on the

space of trees are either mutually absolutely continuous or mutually singular.

How can we size bias in a probabilistic manner? Suppose that we have an urn of

balls such that when we reach into the urn and choose a ball uniformly at random, the

probability of picking a ball numbered k is qk. If, for each k, we replace each ball numbered
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k with k balls numbered k, then the new probability of picking a ball numbered k is the

size-biased probability. Thus, a probabilistic way of biasing GW according to Zn is as

follows: Imagine an urn containing trees up to generation n, the number copies of each

tree being proportional to its GW probability. If we count trees according to the sizes of

their nth generations, however, then we find that they are size-biased. Thus, reach in the

urn and pick a vertex uniformly at random from among all vertices in the nth generation

of some tree. We can think of the result as a tree with a path from the root to the nth

generation (ending in the chosen vertex). We will couple these measures for all n, giving

a random infinite tree with an infinite path. The resulting joint distribution will be called

ĜW∗. This motivates the following definitions.

For a tree t with Zn vertices at level n, write Wn(t) := Zn/m
n. For any rooted tree t

and any n ≥ 0, denote by [t]n the set of rooted trees whose first n levels agree with those

of t. (In particular, if the height of t is less than n, then [t]n = {t}.) If v is a vertex at the

nth level of t, then let [t; v]n denote the set of trees with distinguished paths such that

the tree is in [t]n and the path starts from the root, does not backtrack, and goes through

v.

In order to construct ĜW, we will construct a measure ĜW∗ on the set of infinite

trees with infinite distinguished paths; this measure will satisfy

ĜW∗[t; v]n =
1

mn
GW[t]n (12.1)

for all n and all [t; v]n as above. By using the branching property and the fact that

the expected number of children of v is m, it is easy to verify consistency of these finite-

height distributions. Kolmogorov’s existence theorem thus provides such a measure ĜW∗.

However, this verification may be skipped, as we will give a more useful, direct construction

of a measure with these marginals in a moment.

Note that if a measure ĜW∗ satisfying (12.1) exists, then its projection to the space

of trees, which is denoted simply by ĜW, automatically satisfies

ĜW[t]n =Wn(t)GW[t]n (12.2)

for all n and all trees t. It is for this reason that we call ĜW “size-biased”.

How do we define ĜW∗? Assuming still that (12.1) holds, note that the recur-

sive structure of Galton-Watson trees yields a recursion for ĜW∗. Assume that t is a

tree of height at least n + 1 and that the root of t has k children with descendant trees

t(1), t(2), . . . , t(k). Any vertex v in level n+ 1 of t is in one of these, say t(i). Now

GW[t]n+1 = pk

k∏
j=1

GW[t(j)]n = kpk ·
1

k
·GW[t(i)]n ·

∏
j ̸=i

GW[t(j)]n .
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Thus any measure ĜW∗ that satisfies (12.1) must satisfy the recursion

ĜW∗[t; v]n+1 =
kpk
m

· 1
k
· ĜW∗[t

(i); v]n ·
∏
j ̸=i

GW[t(j)]n . (12.3)

Conversely, if a probability measure ĜW∗ on the set of trees with distinguished paths

satisfies this recursion, then by induction it satisfies (12.1); this observation leads to the

following direct construction of ĜW∗.

Recall that L̂ is a random variable whose distribution is that of size-biased L, i.e.,

P[L̂ = k] = kpk/m. To construct a size-biased Galton-Watson tree T̂ , start with an initial

particle v0. Give it a random number L̂1 of children, where L̂1 has the law of L̂. Pick one

of these children at random, v1. Give the other children independently ordinary Galton-

Watson descendant trees and give v1 an independent size-biased number L̂2 of children.

Again, pick one of the children of v1 at random, call it v2, and give the others ordinary

Galton-Watson descendant trees. Continue in this way indefinitely. (See Figure 12.1.)

Note that since L̂ ≥ 1, size-biased Galton-Watson trees are always infinite (there is no

extinction).

      

    

 

 

 

 

 

 

 

 

    

v0

v1L̂1 = 4

v2L̂2 = 3

v3L̂3 = 3

GW GW GW

GW GW

GW GW

Figure 12.1. Schematic representation of size-biased Galton-Watson trees.

Now we can finally define the measure ĜW∗ as the joint distribution of the random

tree T̂ and the random path ⟨v0, v1, v2, . . .⟩. This measure clearly satisfies the recursion

(12.3), and hence also (12.1).
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Note that, given the first n levels of the tree T̂ , the measure ĜW∗ makes the vertex

vn in the random path ⟨v0, v1, . . .⟩ uniformly distributed on the nth level of T̂ ; this is not

obvious from the explicit construction of this random path, but it is immediate from the

formula (12.1) in which the right-hand side does not depend on v.

▷ Exercise 12.5.

Define ĜW∗ formally on a space analogous to the space T of Exercise 5.2 and define ĜW

formally on T .

The vertices off the distinguished path ⟨v0, v1, . . .⟩ of the size-biased tree form a

branching process with immigration . In general, such a process is defined by two dis-

tributions, an offspring distribution and an immigration distribution. The process starts

with no particles, say, and at every generation n ≥ 1, there is an immigration of Yn

particles, where Yn are i.i.d. with the given immigration law. Meanwhile, each particle

has, independently, an ordinary Galton-Watson descendant tree with the given offspring

distribution.

Thus, the ĜW-law of Zn − 1 is the same as that of the generation sizes of an

immigration process with Yn = L̂n − 1. The probabilistic content of the assumption

E[L log+ L] < ∞ will arise in applying Lemma 12.1 to the variables ⟨log+ Yn⟩, since

E
[
log+(L̂− 1)

]
= m−1E

[
L log+(L− 1)

]
.

We will need to take conditional expectations of random variables that might not

have finite means, so let’s recall how this works. Suppose that X ≥ 0 is a random variable

and F is a σ-field. We allow X to take the value +∞. Write X<∞ := X1[X<∞]. Then

(X<∞P)↾F is σ-finite since it is the sum of the finite measures (X1[n≤X<n+1]P)↾F . Since

(X<∞P)↾F ≪ P↾F , it follows that the former has a (finite) Radon-Nikodým derivative

E[X<∞ | F ] with respect to the latter. We define E[X | F ] := E[X<∞ | F ] +∞P[X =

∞ | F ]. If E[X | F ] <∞ a.s., then X <∞ a.s. In other words, if P[X = ∞ | F ] = 0 a.s.,

then P[X = ∞] = 0. This is clear by the usual formula P[X = ∞] = E
[
P[X = ∞ | F ]

]
.

We have the conditional version of Fatou’s lemma: if Xn ≥ 0, then E[lim infn→∞Xn |
F ] ≤ lim infn→∞ E[Xn | F ] a.s. We also have the conditional version of the Monotone

Convergence Theorem: if 0 ≤ Xn ↑ X, then limn→∞ E[Xn | F ] = E[X | F ]. These both

follow from the usual proofs of these results.
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§12.2. Supercritical Processes: Proof of the Kesten-Stigum Theorem.

We mentioned that the Kesten-Stigum dichotomy arises from a dichotomy concerning

mutual singularity of measures. The latter dichotomy involves the following lemma, which

is more or less standard.

Lemma 12.2. Let µ be a finite measure and ν be a probability measure on a σ-field F .

Suppose that Fn are increasing sub-σ-fields whose union generates F and that (µ↾Fn)

is absolutely continuous with respect to (ν↾Fn) with Radon-Nikodým derivative Xn. Set

X := lim supn→∞Xn. Then

µ≪ ν ⇐⇒ X <∞ µ-a.e. ⇐⇒
∫
X dν =

∫
dµ

and

µ ⊥ ν ⇐⇒ X = ∞ µ-a.e. ⇐⇒
∫
X dν = 0 .

Proof. Since ⟨(Xn,Fn)⟩ is a non-negative martingale with respect to ν (see Exercise 12.16),

it converges toX ν-a.s. andX <∞ ν-a.s. We claim that µ has the following decomposition

into a ν-absolutely continuous part and a ν-singular part:

µ = Xν + 1[X=∞]µ . (12.4)

Given this, the lemma follows: For if µ ≪ ν, then X < ∞ µ-a.e.; if X < ∞ µ-a.e., then

by (12.4),
∫
X dν =

∫
dµ; and if

∫
X dν =

∫
dµ, then by (12.4), X <∞ µ-a.e. and µ≪ ν.

On the other hand, if µ ⊥ ν, then by (12.4), µ = 1[X=∞]µ, whence X = ∞ µ-a.e.; if

X = ∞ µ-a.e., then by (12.4),
∫
X dν = 0; and if

∫
X dν = 0, then by (12.4), X = ∞

µ-a.e., whence µ ⊥ ν.

To establish (12.4), suppose first that µ ≪ ν with Radon-Nikodým derivative X̃.

Then Xn is (a version of) the conditional expectation of X̃ given Fn (with respect to ν),

whence Xn → X̃ ν-a.s. by the martingale convergence theorem. In particular, X = X̃

ν-a.s., so the decomposition is simply the definition of Radon-Nikodým derivative.

In order to treat the general case, we use a common trick: define the probability

measure ρ := (µ+ν)/C, where C :=
∫
d(µ+ν). Then µ, ν ≪ ρ, so that we may apply what

we have just shown to the variables Un := d(µ↾Fn)/d(ρ↾Fn) and Vn := d(ν↾Fn)/d(ρ↾Fn).

Let U := lim supUn and V := lim supVn. Since Un + Vn = C ρ-a.s., it follows that

ρ[U = V = 0] = 0 and thus ρ-a.s.

U/V = limUn/ limVn = lim(Un/Vn) = limXn = X
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Therefore, using 3 times what we established in the preceding paragraph, we obtain

µ = Uρ = XV ρ+ 1[V=0]Uρ = Xµ+ 1[X=∞]µ . ◀

The Kesten-Stigum Theorem will be an immediate consequence of the following the-

orem on the growth rate of immigration processes.

Theorem 12.3. (Seneta, 1970) Let Zn be the generation sizes of a Galton-Watson

process with immigration Yn. Let m := E[L] ∈ (1,∞) be the mean of the offspring law and

let Y have the same law as Yn. If E[log+ Y ] < ∞, then limZn/m
n exists and is finite

a.s., while if E[log+ Y ] = ∞, then lim supZn/c
n = ∞ a.s. for every constant c > 0.

Proof. Assume first that E[log+ Y ] = ∞. By Lemma 12.1, lim supYn/c
n = ∞ a.s. Since

Zn ≥ Yn, the result follows.

Now assume that E[log+ Y ] < ∞. Let G be the σ-field generated by {Yk ; k ≥ 1}.
Let Zn,k be the number of descendants at level n of the Yk particles that immigrated

in generation k. Thus, the total number of vertices at level n is
∑n
k=1 Zn,k. With our

notation, we have

E[Zn/m
n | G] = E

[
1

mn

n∑
k=1

Zn,k

∣∣∣∣ G
]
=

n∑
k=1

1

mk
E

[
Zn,k
mn−k

∣∣∣∣ G] .
Note that conditioning on G is just fixing values for all Yk; since Yk are independent of all

other random variables, conditioning on G amounts to using Fubini’s theorem. Now for

k ≤ n, the random variable Zn,k/m
n−k is the (n − k)th element of the ordinary Galton-

Watson martingale sequence starting, however, with Yk particles. Therefore, its conditional

expectation is just Yk and so

E[Zn/m
n | G] =

n∑
k=1

Yk
mk

.

Our assumption gives, by Exercise 12.2, that this series converges a.s. This implies by the

conditional Fatou lemma that E[lim inf Zn/m
n | G] < ∞ a.s., whence lim inf Zn/m

n < ∞
a.s. Finally, since ⟨Zn/mn⟩ is a submartingale when conditioned on G with bounded

expectation (given G), it converges a.s. ◀

Proof of the Kesten-Stigum Theorem. (Lyons, Pemantle, and Peres, 1995a) Rewrite (12.2)

as follows. Let Fn be the σ-field generated by the first n levels of trees. Then (12.2) is

the same as
d(ĜW↾Fn)

d(GW↾Fn)
(t) =Wn(t) . (12.5)
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In order to define W for every infinite tree t, set

W (t) := lim sup
n→∞

Wn(t) .

From (12.5) and Lemma 12.2 follows the key dichotomy:∫
W dGW = 1 ⇐⇒ ĜW ≪ GW ⇐⇒ W <∞ ĜW-a.s., (12.6)

while

W = 0 GW-a.s. ⇐⇒ GW ⊥ ĜW ⇐⇒ W = ∞ ĜW-a.s. (12.7)

This is key because it allows us to change the problem from one about the GW-behavior of

W to one about the ĜW-behavior ofW . Indeed, since the ĜW-behavior ofW is described

by Theorem 12.3, the theorem is immediate: if E[L log+ L] < ∞, i.e., E[log L̂] < ∞,

then W < ∞ ĜW-a.s. by Theorem 12.3, whence
∫
W dGW = 1 by (12.6); while if

E[L log+ L] = ∞, then W = ∞ ĜW-a.s. by Theorem 12.3, whence W = 0 GW-a.s. by

(12.7). ◀

§12.3. Subcritical Processes.

When a Galton-Watson process is subcritical or critical, the questions we asked in

Section 5.1 about rate of growth are inappropriate. Other questions come to mind, however,

such as: How quickly does the process die out? One way to make this question precise is

to ask for the decay rate of P[Zn > 0]. An easy estimate in the subcritical case is

P[Zn > 0] ≤ E[Zn] = mn . (12.8)

We will determine in this section when mn is the right decay rate (up to some factor),

while in the next section, we will treat the critical case.

Theorem 12.4. (Heathcote, Seneta, and Vere-Jones, 1967) For any Galton-

Watson process with 0 < m < ∞, the sequence ⟨P[Zn > 0]/mn⟩ is decreasing. If m < 1,

then the following are equivalent:

(i) limn→∞ P[Zn > 0]/mn > 0;

(ii) supE[Zn | Zn > 0] <∞;

(iii) E[L log+ L] <∞.

The fact that (i) holds when E[L2] <∞ was proved by Kolmogorov (1938).

In order to prove Theorem 12.4, we use an approach analogous to that in the preceding

section: We combine a general lemma with a result on immigration.
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Lemma 12.5. Let ⟨νn⟩ be a sequence of probability measures on the positive integers with

finite means an. Let ν̂n be size-biased, i.e., ν̂n(k) = kνn(k)/an. If {ν̂n} is tight, then

sup an <∞, while if ν̂n → ∞ in distribution, then an → ∞.

▷ Exercise 12.6.

Prove Lemma 12.5.

Theorem 12.6. (Heathcote, 1966) Let Zn be the generation sizes of a Galton-Watson

process with immigration Yn. Let Y have the same law as Yn. Suppose that the mean m

of the offspring random variable L is less than 1. If E[log+ Y ] <∞, then Zn converges in

distribution to a proper* random variable, while if E[log+ Y ] = ∞, then Zn converges in

probability to infinity.

Proof. Let G be the σ-field generated by {Yk ; k ≥ 1}. For any n, let Zn,k be the number of

descendants at level n of the Yk vertices that immigrated in generation k. Thus, the total

number of vertices at level n is Zn =
∑n
k=1 Zn,k. Since the distribution of Zn,k depends

only on n − k, this total Zn has the same distribution as
∑n
k=1 Z2k−1,k. This latter sum

increases in n to some limit Z ′
∞. By Kolmogorov’s zero-one law, Z ′

∞ is a.s. finite or a.s.

infinite. Hence, we need only to show that Z ′
∞ <∞ a.s. iff E[log+ Y ] <∞.

Assume that E[log+ Y ] < ∞. Now E[Z ′
∞ | G] =

∑∞
k=1 Ykm

k−1. By Exercise 12.2,

this sum converges a.s. Therefore, Z ′
∞ is finite a.s.

Now assume that Z ′
∞ <∞ a.s. Writing Z2k−1,k =

∑Yk

i=1 ζk(i), where ζk(i) are the sizes

of generation k − 1 of i.i.d. Galton-Watson branching processes with one initial particle,

we have Z ′
∞ =

∑∞
k=1

∑Yk

i=1 ζk(i) written as a random sum of independent integer-valued

random variables; the latter are still independent conditioned on G. Almost surely only a

finite number of the ζk(i) are at least one, whence by the conditional Borel-Cantelli lemma

with respect to G, we get
∑∞
k=1 YkGW[Zk−1 ≥ 1] < ∞ a.s. Since GW[Zk−1 ≥ 1] ≥

P[L > 0]k−1, it follows from Exercise 12.2 that E[log+ Y ] <∞. ◀

Proof of Theorem 12.4. (Lyons, Pemantle, and Peres, 1995a) Let µn be the law of Zn

conditioned on Zn > 0. For any tree t with Zn(t) > 0, let ξn(t) be the lowest-labelled child

of the root that has at least one descendant in generation n. If Zn(t) > 0, let Hn(t) be the

number of descendants of ξn(t) in generation n; otherwise, let Hn(t) := 0. It is easy to see

that

P[Hn = k | Zn > 0] = P[Hn = k | Zn > 0, ξn = v] = P[Zn−1 = k | Zn−1 > 0]

* i.e., finite a.s.

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



§4. Critical Processes 467

for all children v of the root. Since Hn ≤ Zn, this shows that ⟨µn⟩ increases stochastically
as n increases. Now

P[Zn > 0] =
E[Zn]

E[Zn | Zn > 0]
=

mn∫
x dµn(x)

.

Therefore, ⟨P[Zn > 0]/mn⟩ is decreasing and (i) ⇔ (ii).

Now µ̂n is not only the size-biased version of µn, but also the law of the size-biased

random variable Ẑn. Thus, from Section 12.1, we know that ⟨µ̂n⟩ describes the generation
sizes plus 1 of a process with immigration L̂ − 1. Suppose that m < 1. If (ii) holds, i.e.,

the means of µn are bounded, then by Lemma 12.5, the laws µ̂n do not tend to infinity.

Applying Theorem 12.6 to the associated immigration process, we see that (iii) holds.

Conversely, if (iii) holds, then by Theorem 12.6, ⟨µ̂n⟩ converges, whence is tight. In light

of Lemma 12.5, (ii) follows. ◀

§12.4. Critical Processes.

In the critical case, the easy estimate (12.8) is useless. What then is the rate of decay?

Theorem 12.7. (Kesten, Ney, and Spitzer, 1966) Suppose that m = 1 and let

σ2 := Var(L) = E[L2]− 1. Then we have

(i) Kolmogorov’s estimate: limn→∞ nP[Zn > 0] = 2/σ2;

(ii) Yaglom’s limit law: If σ < ∞, then the conditional distribution of Zn/n given

Zn > 0 converges as n→ ∞ to an exponential law with mean σ2/2 .

Under the assumption that E[L3] < ∞, parts (i) and (ii) of this theorem are due to

Kolmogorov (1938) and Yaglom (1947), respectively. The case where σ = ∞ in (ii) appears

to be open. We give a proof that uses ideas of Lyons, Pemantle, and Peres (1995a)

and Geiger (1999). The exponential limit law in part (ii) will arise from the following

characterization of exponential random variables due to Pakes and Khattree (1992):

▷ Exercise 12.7.

Let A be a non-negative random variable with a positive finite mean and let Â have the

corresponding size-biased distribution. Denote by U a uniform random variable in [0, 1]

that is independent of Â. Prove that U · Â and A have the same distribution iff A has an

exponential distribution.

The size-biased offspring random variable L̂ will arise in the following way:
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▷ Exercise 12.8.

Let L be a random variable taking non-negative integer values with 0 < E[L] <∞ and let

L̂ be its size-biased version. Suppose that for each n, there are events H
(n)
1 , . . . , H

(n)
L that

given L are independent with probability pn > 0 each and that pn → 0 as n → ∞. Let

Yn :=
∑L
i=1 1H(n)

i

be the number of events H
(n)
i that occur. Show that the following hold:

(a) limn→∞ P[Yn = 1 | Yn > 0] = 1;

(b) limn→∞ P[L = k | Yn > 0] = P[L̂ = k];

(c) limn→∞ P[H
(n)
i | Yn > 0, L = k] = 1/k for 1 ≤ i ≤ k.

We will also use the results of the following exercises.

▷ Exercise 12.9.

Suppose that A, An are non-negative random variables with positive finite means such

that An → A in law and Ân → B in law. Show that if B is a proper random variable,

then B has the law of Â.

▷ Exercise 12.10.

Suppose that 0 ≤ Ai ≤ Bi are random variables, that Ai → 0 in probability, and that

Bi are identically distributed with finite mean. Show that
∑n
i=1Ai/n → 0 in probability.

Show that if in addition, Ci,j are random variables with E
[
|Ci,j |

∣∣ Ai] ≤ 1 and Ai takes

integer values, then
∑n
i=1

∑Ai

j=1 Ci,j/n→ 0 in probability.

▷ Exercise 12.11.

Let A be a random variable independent of the random variables B and C. Suppose that

the function x 7→ P[C ≤ x]/P[B ≤ x] is increasing for x > ess inf B, that P[A ≥ B] > 0,

and that P[A ≥ C] > 0. Show that the law of A given that A ≥ B is stochastically

dominated by the law of A given that A ≥ C. Show that the hypothesis on B and C is

satisfied when they are geometric random variables with B having a larger parameter than

C.

Proof of Theorem 12.7. It will be convenient to refer to the lexicographic ordering of

labelled vertices as increasing from left to right. Let Yn be the number of individuals of

the first generation that have a descendant in generation n. Since P[Zn > 0] → 0, it

follows from Exercise 12.8 that P[Yn = 1 | Zn > 0] → 1, that the conditional distribution

of Z1 given Zn > 0 tends to the distribution of the size-biased random variable L̂, and

that the conditional distribution of the left-most individual of the first generation that has

a descendant in generation n tends to a uniform pick among the individuals of the first
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generation. Since each child of the initial progenitor independently has a descendant in

generation n with probability P[Zn−1 > 0], we have that the law of Z1 given that Zn > 0

is the law of Z1 given that Z1 ≥ Dn, where Dn is a geometric random variable independent

of Z1 with mean 1/P[Zn−1 > 0]. Since P[Zn−1 > 0] > P[Zn > 0], Exercise 12.11 implies

that the conditional distribution of Z1 given Zn > 0 stochastically increases with n. Since

P[Z1 ≥ k | Zn > 0] increases with n, the tail formula for expectation and the Monotone

Convergence Theorem yield E[Z1 | Zn > 0] → E
[
L̂
]
= σ2 + 1.

Let unn be the left-most individual in generation n when Zn > 0. Let its ancestors

back to the initial progenitor be unn−1, . . . , u
n
0 , where u

n
i is in generation i. Let X ′

i denote

the number of descendants of uni in generation n that are not descendants of uni+1. Let Xi

be the number of children of uni that are to the right of uni+1. Then Zn = 1 +
∑n−1
i=0 X

′
i

and E[X ′
i | Zn > 0] = E[Xi | Zn > 0] since each of these Xi individuals generates an

independent critical Galton-Watson descendant tree (with offspring law the same as that

of the original process). Therefore,

1

nP[Zn > 0]
=

E[Zn]

nP[Zn > 0]
=

1

n
E[Zn | Zn > 0] =

1

n
+

1

n

n−1∑
i=0

E[Xi | Zn > 0] .

In the first paragraph of the proof, we have seen that the conditional distribution of Xi

given that Zn > 0 tends to that of ⌊U ·L̂⌋, where U denotes a uniform [0, 1]-random variable

that is independent of L̂. Thus, limn→∞ E[Xi | Zn > 0] = E
[
⌊U ·L̂⌋

]
= E

[
L̂−1

]
/2 = σ2/2,

which gives Kolmogorov’s estimate. Actually, we need to justify this passage to the limit for

the expectations. When σ <∞, it follows from the fact that the conditional distributions

of Z1 given Zn > 0 are uniformly integrable (a consequence of the first paragraph) and

that the conditional distribution of Xi given Zn > 0 is dominated by the conditional

distribution of Z1 given that Zn−i+1 > 0, whence the conditional distributions of Xi given

Zn > 0 are uniformly integrable as well. When σ = ∞, the passage to the limit follows

from Fatou’s lemma.

Now suppose that σ < ∞. We are going to compare the conditional distribution

of Zn/n given Zn > 0 with the law of Rn/n, where Rn is the number of individuals in

generation n to the right of vn in the size-biased tree with distinguished path v0, v1, . . ..

Recall that Xi denotes the number of children of uni to the right of uni+1. Since we are

interested in its distribution as n → ∞, we will be explicit and write X
(n)
i := Xi. For

1 ≤ j ≤ X
(n)
i , let S

(n)
i,j be the number of descendants in generation n of the jth child of uni

to the right of uni+1. On the other hand, in the size-biased tree, let X ′′
i be the number of

children of vi to the right of vi+1 and let V
(n)
i,j be the number of descendants in generation

n of the jth child of vi to the right of vi+1. We may couple all these random variables so
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that S
(n)
i,j and V

(n)
i,j are i.i.d. with mean 1 (since they pertain to n − i − 1 generations of

independent critical Galton-Watson trees) and |X(n)
i −X ′′

i | ≤ L̂i+1 with X
(n)
i −X ′′

i → 0

in measure as n→ ∞ (in virtue of the first paragraph). Since

Zn = 1 +
n−1∑
i=0

X
(n)
i∑
j=1

S
(n)
i,j and Rn = 1 +

n−1∑
i=0

X′′i∑
j=1

V
(n)
i,j ,

it follows from Exercise 12.10 that in this coupling, Zn/n − Rn/n → 0 in measure as

n→ ∞.

Now we prove that the limit of Rn/n exists in law and identify it. The ĜW laws of

Zn/n have uniformly bounded means by Exercise 5.28 and so are tight. This implies the

tightness of µn, the GW-conditional distribution of Zn/n given that Zn > 0, and of the

ĜW∗ laws of Rn/n. Therefore, we can find nk → ∞ so that µnk
and the ĜW∗ law of

Rnk
/nk converge to the law of a (proper) random variable A and the ĜW laws of Znk

/nk

converge to the law of a (proper) random variable B. Note that the ĜW law of Zn/n

can also be gotten by size-biasing µn. By virtue of Exercise 12.9, therefore, the variables

Â and B are identically distributed. Since Rn is a uniform pick from {0, 1, . . . , Zn − 1},
we also have that A has the same law as U · B, i.e., as U · Â. By Exercise 12.7, it follows

that A is an exponential random variable with mean σ2/2. In particular, the limit of µnk

is independent of the sequence ⟨nk⟩, and hence we actually have convergence in law of the

whole sequence µn to A, as desired. ◀

§12.5. Notes.

Ideas related to size-biased Galton-Watson trees occur in Hawkes (1981), Joffe and Waugh
(1982), Waymire and Williams (1996), and Chauvin, Rouault, and Wakolbinger (1991). There
have been very many uses since then of these ideas. The generation sizes of size-biased Galton-
Watson trees are known as a Q-process in the case m ≤ 1; see Athreya and Ney (1972), pp. 56–60.

The proof of Theorem 12.3 is that of Asmussen and Hering (1983), pp. 50–51. The proof of
Theorem 12.6 is a slight improvement on Asmussen and Hering (1983), pp. 52–53.

The proof that the law of Z1 given Zn > 0 stochastically increases in n that appears at
the beginning of the proof of Theorem 12.7 is due to Matthias Birkner (personal communication,
2000). A rate of convergence in Yaglom’s limit law is given by Peköz and Röllin (2011), using
Stein’s method and ideas from the proof of Theorem 12.7 given in Lyons, Pemantle, and Peres
(1995a).

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



§6. Collected In-Text Exercises 471

§12.6. Collected In-Text Exercises.

12.1. Prove Lemma 12.1 by using the Borel-Cantelli lemma.

12.2. Given X, Xn as in Lemma 12.1, show that if E[X] < ∞, then
∑
n e

Xncn < ∞ a.s. for all
c ∈ (0, 1), while if E[X] = ∞, then

∑
n e

Xncn = ∞ a.s. for all c ∈ (0, 1).

12.3. Let X be a non-negative random variable with 0 < E[X] < ∞. We say that X̂ has the

size-biased distribution of X if P[X̂ ∈ A] = E[X1A(X)]/E[X] for intervals A ⊆ [0,∞). Show

that this is equivalent to E[f(X̂)] = E[Xf(X)]/E[X] for all Borel f : [0,∞) → [0,∞).

12.4. Suppose that Xn are non-negative random variables such that 0 < E[Xn] <∞ and P[Xn >

0]/E[Xn] → 0. Show that the size-biased random variables X̂n tend to infinity in probability.

12.5. Define ĜW∗ formally on a space analogous to the space T of Exercise 5.2 and define ĜW
formally on T .

12.6. Prove Lemma 12.5.

12.7. Let A be a non-negative random variable with a positive finite mean and let Â have the
corresponding size-biased distribution. Denote by U a uniform random variable in [0, 1] that is

independent of Â. Prove that U · Â and A have the same distribution iff A has an exponential
distribution.

12.8. Let L be a random variable taking non-negative integer values with 0 < E[L] <∞ and let

L̂ be its size-biased version. Suppose that for each n, there are events H
(n)
1 , . . . , H

(n)
L that given L

are independent with probability pn > 0 each and that pn → 0 as n→ ∞. Let Yn :=
∑L
i=1 1H(n)

i

be the number of events H
(n)
i that occur. Show that the following hold:

(a) limn→∞ P[Yn = 1 | Yn > 0] = 1;

(b) limn→∞ P[L = k | Yn > 0] = P[L̂ = k];

(c) limn→∞ P[H
(n)
i | Yn > 0, L = k] = 1/k for 1 ≤ i ≤ k.

12.9. Suppose that A, An are non-negative random variables with positive finite means such that
An → A in law and Ân → B in law. Show that if B is a proper random variable, then B has the
law of Â.

12.10. Suppose that 0 ≤ Ai ≤ Bi are random variables, that Ai → 0 in probability, and that Bi
are identically distributed with finite mean. Show that

∑n
i=1Ai/n→ 0 in probability. Show that

if in addition, Ci,j are random variables with E[|Ci,j | | Ai] ≤ 1 and Ai takes integer values, then∑n
i=1

∑Ai
j=1 Ci,j/n→ 0 in probability.

12.11. Let A be a random variable independent of the random variables B and C. Suppose that
the function x 7→ P[C ≤ x]/P[B ≤ x] is increasing for x > ess inf B, that P[A ≥ B] > 0, and
that P[A ≥ C] > 0. Show that the law of A given that A ≥ B is stochastically dominated by
the law of A given that A ≥ C. Show that the hypothesis on B and C is satisfied when they are
geometric random variables with B having a larger parameter than C.
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§12.7. Additional Exercises.

12.12. Show that if X ∼ Bin(n, p) and p > 0, then X̂ ∼ 1 + Bin(n − 1, p), while if X ∼ Pois(λ)

and λ > 0, then X̂ ∼ 1 + Pois(λ).

12.13. Let X be a mixed binomial random variable, i.e., there are independent events A1, . . . , An
such that X =

∑n
i=1 1Ai . Suppose that P[X > 0] > 0. Let I be a random variable independent of

A1, . . . , An such that P[I = i] = P[Ai]/
∑n
j=1 P[Aj ] for all i. Show that X̂ ∼ 1 +

∑n
i=1 1Ai1[I ̸=i].

12.14. Let X,X1, . . . , Xk be i.i.d. non-negative random variables for some k ≥ 0. Suppose that
0 < E[X] <∞ and let X̂ be an independent random variable with the size-biased distribution of
X. Show that

E

[
k + 1

X̂ +X1 + · · · +Xk

]
=

1

E[X]
.

12.15. Show that if X ≥ 0 and 0 < E[X] < ∞, then X is stochastically dominated by X̂.
Deduce the arithmetic mean-quadratic mean inequality, that E[X]2 ≤ E[X2], and determine
when equality occurs. Deduce the Cauchy-Schwarz inequality from this.

12.16. In the notation of Lemma 12.2, show that ⟨(Xn,Fn)⟩ is a martingale with respect to ν.
Deduce that if µ is a probability measure and

∫
X2
n dν < ∞, then ⟨(Xn,Fn)⟩ is a submartingale

with respect to µ.

12.17. The simplest proof of the Kesten-Stigum Theorem along traditional lines is due to Tanny
(1988). Complete the following outline of this proof. A branching process in varying environ-
ments (BPVE) is one in which the offspring distribution depends on the generation. Namely, if

⟨L(n)
i ; n, i ≥ 1⟩ are independent random variables with values in N such that for each n, the

variables L
(n)
i are identically distributed, then set Z0 := 1 and, inductively, Zn+1 :=

∑Zn
i=1 L

(n+1)
i .

Let mn := E[L
(n)
i ] and Mn :=

∏n
k=1mk. Show that Mn = E[Zn] and that Zn/Mn is a martingale.

Its limit is denoted W .
Given a Galton-Watson branching process ⟨Zn⟩ and a number A > 0, define a BPVE

⟨Zn(A)⟩ by letting the offspring random variables L
(n)
i (A) in generation n have the distribu-

tion of L1[L<Amn]. Write W (A) for the martingale limit of this BPVE. Use the fact that W <∞
a.s. to show that for any ϵ > 0, one can choose A sufficiently large that P[∀n Zn = Zn(A)] > 1−ϵ.
Show that when Zn = Zn(A) for all n, we have

W = W (A)
∏
n≥1

(1 −E[L ; L ≥ Amn]/m) .

Show that this product is 0 iff E[L log+ L] = ∞. Conclude that if E[L log+ L] = ∞, then W = 0
a.s.

For the converse, define a BPVE ⟨Zn(B)⟩ by letting the offspring random variables L
(n)
i (B)

in generation n have the distribution of L1[L<Bm3n/4]. Choose B large enough that Mn(B) :=

E[Zn(B)] > 0 for all n. Show that Zn(B)/Mn(B) is bounded in L2, whence its limit W (B)
has expectation 1. From Zn ≥ Zn(B), conclude that E[W ] ≥ limMn(B)/mn. Show that by
appropriate choice of B, if E[L log+ L] < ∞, then this last limit can be made arbitrarily close to
1.

12.18. Let GW be a subcritical or critical Galton-Watson measure. Show that the limit in
distribution as n→ ∞ of GW conditioned on Zn > 0 is ĜW.
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12.19. Let GW be a critical Galton-Watson measure whose offspring distribution has variance

σ2 <∞. Let X be an exponential random variable with mean σ2/2. Show that the ĜW-laws of

Zn/n tend to the law of X̂ as n→ ∞.

12.20. Let Gn := sup {|u| ; Tn ⊆ Tu} be the generation of the most recent common ancestor of
all individuals in generation n. Show that for a critical Galton-Watson branching process whose
offspring random variable satisfies Var(L) <∞, the conditional distribution of Gn/n given Zn > 0
tends to the uniform distribution on [0, 1].

A traditional proof of Theorem 12.7 observes that P[Zn > 0] = 1 − f (n)(0) and analyzes the
rate at which the iterates of f tend to 1. The following exercises outline such a proof.

12.21. Show that if m = 1, then lims↑1 f
′′(s) = σ2.

12.22. Suppose that m = 1, p1 ̸= 1, and σ <∞.
(a) Define δ(s) := [1 − f(s)]−1 − [1 − s]−1. Show that lims↑1 δ(s) = σ2/2.
(b) Let sn ∈ [0, 1) be such that n(1 − sn) → α ∈ [0,∞]. Show that

lim
n→∞

n[1 − f (n)(sn)] =
1

σ2/2 + α−1
.

(Recall that f (n) denotes the nth iterate of f , not its nth derivative.)

12.23. Use Exercise 12.22 and Laplace transforms to prove Theorem 12.7.

12.24. Consider a Galton-Watson process with m = 1 and Var(L) = ∞. Show that every limit
point as n→ ∞ of the conditional distribution of Zn/n given Zn > 0 has infinite mean.
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Chapter 13

Speed of Random Walks

If a random walk on a network is transient, how quickly does the walk increase its

distance from its starting point? We will be particularly interested in this chapter when

the rate is linear. Since this rate is then the limit of the distance divided by the time, we

call it the speed of the random walk. We’ll look at this on trees and on general graphs.

We’ll also see some relations to problems of embedding finite metric spaces, particularly

graphs, in Euclidean space. In Chapter 16, we study random walk on Galton-Watson trees,

and in particular, their speed.

§13.1. Basic Examples.

If ⟨Sn⟩ is a sum of i.i.d. real-valued random variables, then limn Sn/n could be called its

speed (on the real line) when it exists. Of course, the Strong Law of Large Numbers (SLLN)

says that this limit does exist a.s. and equals the mean increment of Sn—when this mean

is well defined. Actually, the independence of the increments is not needed if we have some

other control of the increments. We present two such general results. Recall that X and

Y are called uncorrelated if they have finite variance and E
[
(X−E[X])(Y −E[Y ])

]
= 0.

Theorem 13.1. (SLLN for Uncorrelated Random Variables) Let ⟨Xn⟩ be a se-

quence of uncorrelated random variables with supnVar(Xn) <∞. Then

1

n

n∑
k=1

(
Xk −E[Xk]

)
→ 0

a.s. as n→ ∞.

Proof. We may clearly assume that E[Xn] = 0 and E[X2
n] ≤ 1 for all n. Write Sn :=∑n

k=1Xk.

We begin with the simple observation that if ⟨Yn⟩ is a sequence of random variables

such that ∑
n

E
[
|Yn|2

]
<∞ ,
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then E
[∑

n |Yn|2
]
<∞, whence

∑
n |Yn|2 <∞ a.s. and Yn → 0 a.s.

Using this, it is easy to verify the SLLN for n → ∞ along the sequence of squares.

Indeed,

E
[
(Sn/n)

2
]
=

1

n2
E
[
|Sn|2

]
=

1

n2

n∑
k=1

E
[
|Xk|2

]
≤ 1

n
.

This is not summable, but if we set Yn := Sn2/n2, we get E
[
|Yn|

]
≤ 1/n2, which is

summable. Therefore, the observation above implies Yn → 0 a.s., i.e., Sn2/n2 → 0 a.s.

To deal with limit over all the integers, consider m2 ≤ n < (m+ 1)2. Then

E

[∣∣∣ Sn
m2

− Sm2

m2

∣∣∣2]= 1

m4
E

[∣∣∣ n∑
k=m2+1

Xk

∣∣∣2] = 1

m4
E

[ n∑
k=m2+1

|Xk|2
]

=
1

m4

n∑
k=m2+1

E
[
|Xk|2

]
≤ 2

m3
,

since the sum has at most 2m terms, each of size at most 1. Thus, write

Zn :=
Sn

m(n)2
−
Sm(n)2

m(n)2
,

where m(n) := ⌊
√
n⌋. Then since each m = m(n) is associated to at most 2m+1 different

values of n, we get

∞∑
n=1

E
[
|Zn|2

]
≤

∞∑
n=1

2

m(n)3
≤
∑
m

(2m+ 1)
2

m3
<∞ ,

so by the initial observation, Zn → 0 a.s. This implies Sn/m(n)2 → 0 a.s., which in turn

implies Sn/n→ 0 a.s., as desired. ◀

As an example, note that martingale increments (i.e., the differences between succes-

sive terms of a martingale) are uncorrelated when they are square integrable.

More refined information for sums of i.i.d. real-valued random variables is given, of

course, by the Central Limit Theorem, or by Chernoff-Cramér’s theorem on large devia-

tions. For the case of simple random walk on Z, the latter implies that given 0 < s < 1,

the chance that the location at time n is at least sn is at most e−nI(s), where

I(s) :=
(1 + s) log(1 + s) + (1− s) log(1− s)

2
(13.1)

(see Billingsley (1995), p. 151, or Dembo and Zeitouni (1998), Exercise 2.2.23(b)). Note

that for small |s|,

I(s) =
s2

2
+O(s4) . (13.2)
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In other situations, one does not have i.i.d. random variables. An extension (though

not as sharp) of Chernoff-Cramér’s theorem is a large deviation inequality due to Hoeffding

(1963) and rediscovered by Azuma (1967). As an upper bound, the Hoeffding-Azuma

inequality is just as sharp to the first two orders in the exponent as the Chernoff-Cramér

theorem for simple random walk on Z.

Theorem 13.2. (Hoeffding-Azuma Inequality) Let ⟨X1, . . . , Xn⟩ be bounded random

variables such that

E
[
Xi1 · · ·Xik

]
= 0 ∀ 1 ≤ i1 < . . . < ik ≤ n

(for instance, independent variables with zero mean, or martingale differences). Then for

all L > 0,

P
[ n∑
i=1

Xi ≥ L
]
≤ exp

(
− L2

2
∑n
i=1 ∥Xi∥2∞

)
.

Proof. We will use the hypothesis in the following form: For any sequences of constants

⟨ai⟩ and ⟨bi⟩, we have

E
[ n∏
i=1

(ai + biXi)
]
=

n∏
i=1

ai . (13.3)

The convexity of the function f(x) := eax implies that for any x ∈ [−1, 1],

eax = f(x) ≤ 1− x

2
f(−1) +

x+ 1

2
f(1) = cosh a+ x sinh a .

Put x := Xi/∥Xi∥∞ and a := t∥Xi∥∞, with t to be chosen later, and multiply over

i = 1, . . . , n:

exp
(
t

n∑
i=1

Xi

)
≤

n∏
i=1

(
cosh

(
t∥Xi∥∞

)
+

Xi

∥Xi∥∞
sinh

(
t∥Xi∥∞

))
.

When we take expectations and use (13.3), we find

E exp
(
t

n∑
i=1

Xi

)
≤

n∏
i=1

cosh
(
t∥Xi∥∞

)
.

Combine this with the elementary bound

coshx =

∞∑
k=0

x2k

(2k)!
≤

∞∑
k=0

x2k

2kk!
= ex

2/2
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to obtain

E exp
(
t
n∑
i=1

Xi

)
≤ exp

(1
2
t2

n∑
i=1

∥Xi∥2∞
)
.

By Markov’s inequality and the above, we have that for all t > 0,

P
[ n∑
i=1

Xi ≥ L
]
= P

[
exp

(
t
n∑
i=1

Xi

)
≥ eLt

]
≤ e−Lt exp

( t2
2

n∑
i=1

∥Xi∥2∞
)
.

By making the (optimal) choice t := L
(∑n

i=1 ∥Xi∥2∞
)−1

, we obtain the required result.

◀

For example, consider simple random walk ⟨Xn⟩ on an infinite tree T starting at its

root, o. When the walk is at x, it has a “push” away from the root equal to

f(x) :=
{
(deg x− 2)/deg x if x ̸= o
1 if x = o.

What we mean by “push” is that ⟨|Xn| − |Xn−1| − f(Xn−1)⟩ is a martingale-difference

sequence. Thus, by either of the above theorems, this sequence obeys the SLLN,

lim
n→∞

1

n

(
|Xn| −

n−1∑
k=1

f(Xk)
)
= 0

a.s. Now the density of times at which the walk visits the root is 0 since the tree is infinite

and has a stationary measure proportional to the degree (see also Exercise 2.44), whence

we may write the above equation as

lim
n→∞

( |Xn|
n

− 1

n

n−1∑
k=1

(1− 2/degXk)
)
= 0 (13.4)

a.s. For example, if T is regular of degree d, then the random walk has a speed of 1− 2/d

a.s. For a more interesting example, suppose that T is the universal cover of a finite

connected graph G with at least one cycle (so that T is infinite). Denote the covering map

by φ:T → G. Then ⟨φ(Xn)⟩ is simple random walk on G, whence the density of times

at which φ(Xk) = y ∈ V(G) equals degG y/
(
2|E(G)|

)
a.s. Of course, degG φ(x) = degT x.

Thus, (13.4) tells us that the speed on T is a.s.

1−
∑

y∈V(G)

deg y

2|E(G)|
(2/deg y) = 1− |V(G)|/|E(G)| = 1− 2/d̄(G) , (13.5)

where d̄(G) := 2|E(G)|/|V(G)| is the average degree in G. Furthermore, by the Hoeffding-

Azuma inequality, the speed is exponentially unlikely to differ much from 1− 2/d̄(G) after
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n steps. Note that the speed is positive iff |E(G)| > |V(G)|, i.e., iff G contains at least two

distinct simple cycles, which is also equivalent to brT > 1.

How does this speed compare to 1−2/(brT+1), which is the speed when T is regular?

To answer this, we need an estimate of brT so that we can compare d̄(G) to brT + 1.

Let H be the graph obtained from G by iteratively removing all vertices (if any) of degree

1 and let T ′ be its universal cover. Then clearly brT ′ = brT while d̄(H) ≥ d̄(G). By

Theorem 3.8, we know that brT ′ = grT ′. Now grT ′ equals the growth rate of the number

N(L) of non-backtracking paths in H of length L (from any starting point) as L→ ∞:

grT ′ = lim
L→∞

N(L)1/L .

To estimate this, let B be the matrix indexed by the oriented edges of H such that

B
(
(x, y), (y, z)

)
= 1 when (x, y), (y, z) ∈ E(H) and x ̸= z, with all other entries of B equal

to 0. Consider a stationary Markov chain on the oriented edges E(H) with stationary

probability measure σ and transition probabilities p(e, f) such that p(e, f) > 0 only if

B(e, f) > 0. Such a chain gives a probability measure on the paths of length L whose

entropy is at most that of the uniform measure, i.e., at most logN(L) (see (6.46)). On

the other hand, this path entropy equals −
∑
e σ(e) log σ(e)−L

∑
e,f σ(e)p(e, f) log p(e, f)

(see Exercise 6.78). Thus, log grT ′ is at least the Markov-chain entropy:

log grT ′ ≥ −
∑
e,f

σ(e)p(e, f) log p(e, f) . (13.6)

Here, given any Markov chain with transition probabilities pi,j and stationary probabilities

πi, its entropy is defined to be

−
∑
i,j

πipi,j log pi,j .

Now choose p
(
(x, y), (y, z)

)
= 1/(deg y − 1) when B

(
(x, y), (y, z)

)
> 0, i.e., simple

non-backtracking random walk. It is easy to verify that σ(x, y) = 1/D(H) is a stationary

probability measure. To calculate the entropy of this Markov chain, suppose e+ = y. Then

−
∑
f

p(e, f) log p(e, f) = log(deg y − 1) .

Since there are deg y such edges e, we get that the entropy equals

D(H)−1
∑

y∈V(H)

(deg y) log(deg y − 1) = d̄(H)−1 1

|V(H)|
∑

y∈V(H)

(deg y) log(deg y − 1) .
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Because the function t 7→ t log(t − 1) is convex for t ≥ 2, it follows that the entropy is at

least d̄(H)−1d̄(H) log
(
d̄(H)− 1

)
= log

(
d̄(H)− 1

)
. Therefore,

brT = grT ′ ≥ d̄(H)− 1 ≥ d̄(G)− 1 .

This result is due to David Wilson (personal communication, 1993), but first appeared in

print in an article by Alon, Hoory, and Linial (2002).

Substitute this bound in (13.5) to obtain that the speed on T is at most 1−2/(brT+1).

For example, if the branching number is an integer, then this shows that the regular tree

of that branching number has the greatest speed among all covering trees of the same

branching number.

Return now to the qualitative results: For covering trees of finite graphs, we have

seen that simple random walk has positive speed iff the tree has growth rate or branching

number larger than 1. For more general trees, are any of these implications still valid? We

consider these questions now.

If every vertex has at least 2 children, then by (13.4), the liminf speed of the random

walk, i.e., lim infn→∞ |Xn|/n, is positive a.s. A more general sufficient condition is given in

Exercise 13.18. However, it does not suffice that brT > 1 for the speed of simple random

walk on T to be positive:

▷ Exercise 13.1.

Show that simple random walk has speed 0 on the tree T formed from a binary tree by

joining a unary tree to every vertex, as in Figure 13.1.

Figure 13.1.

In the other direction, brT > 1 is necessary for positive speed. The following bound

was proved by Peres (1999), Theorem 5.4; see Section 13.8 for a better result due to Virág

(2000b). Note that s 7→ I(s)/s is monotonic increasing on (0, 1) (where I is defined in

(13.1)) since its derivative is −(2s2)−1 log(1− s2).
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Proposition 13.3. If simple random walk on T escapes at a linear rate, then brT > 1.

More precisely, if ⟨Xn⟩ is simple random walk on T and

lim inf
n→∞

|Xn|
n

≥ s > 0

with positive probability, then brT ≥ eI(s)/s.

Proof. We may assume that T has no leaves since leaves only slow the random walk

and do not change the branching number. (The slowing effect of leaves can be proved

rigorously by coupling a random walk ⟨Xn⟩ on T with a random walk ⟨X ′
n⟩ on T ′, where

T ′ is the result of iteratively removing the leaves from T . They can be coupled so that

lim inf |X ′
n|/n ≥ lim inf |Xn|/n by letting ⟨X ′

n⟩ take only the moves of ⟨Xn⟩ that do not

enter T \ T ′.) Given 0 < s′ < s, there is some L such that

q := P
[
∀n ≥ L |Xn| > s′n

]
> 0 . (13.7)

Define a general percolation on T by keeping all edges e(x) with |x| ≤ s′L, as well as those

edges e(x) such that Xn = x for some n < |x|/s′. According to (13.7), the component of

the root in this percolation is infinite with probability at least q. On the other hand, if

|x| > s′L, then P[o ↔ x] is bounded above by the probability that simple random walk

⟨Sk⟩ on Z moves distance at least |x| in fewer than |x|/s′ steps:

P[o↔ x] ≤ P
[

max
n<|x|/s′

|Sn| ≥ |x|
]
. (13.8)

(This is proved rigorously by coupling the random walk on T to a random walk ⟨Yn⟩ on N
by letting ⟨Yn⟩ take only the moves of ⟨Xn⟩ that lie on the shortest path between o and

x.) Now by the reflection principle,

P
[
max
n≤N

|Sn| ≥ j
]
≤ 2P

[
max
n≤N

Sn ≥ j
]
≤ 4P[SN ≥ j] .

We have seen the basic Chernoff-Cramér bound that P[SN ≥ j] ≤ e−NI(j/N). There-

fore, with j := |x| and N the largest integer less than |x|/s′, (13.8) gives P[o ↔ x] ≤
4e−|x|I(s′)/s′ . Here, we used the monotonicity of I(t)/t. In light of Proposition 5.8, this

means that for any cutset Π with all edges at level > s′L, we have

q ≤
∑

e(x)∈Π

4e−|x|I(s′)/s′ .

Therefore, brT ≥ eI(s
′)/s′ . Since this holds for all s′ < s, the result follows. ◀

We will return to random walks on trees in Chapter 16, where we walk on Galton-

Watson trees and, among other things, calculate the speed exactly, as we did here for

covering trees.
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§13.2. The Varopoulos-Carne Bound.

Consider a network random walk. Recall from Section 6.2 that the transition operator

(Pf)(x) :=
∑
y

p(x, y)f(y)

is a bounded self-adjoint operator on ℓ2(V, π). We saw in (6.11) that

∀n pn(x, y) ≤
√
π(y)/π(x)∥P∥nπ . (13.9)

Of course, if the distance between x and y is larger than n, then pn(x, y) = 0. How can

(13.9) be modified to show how pn(x, y) depends on d(x, y)?

The following fundamental inequality does that. It is a generalization and improve-

ment by Carne (1985) of a result of Varopoulos (1985b), which we have improved a bit

more by adding the factor ∥P∥nπ.

Theorem 13.4. (Varopoulos-Carne Bound) For any reversible random walk, we have

pn(x, y) ≤ 2
√
π(y)/π(x) ∥P∥nπ e−d(x,y)

2/(2n) .

Compare this bound to the following bound for simple random walk on Z:∑
|k|≥d

qn(k) ≤ 2e−d
2/(2n) , (13.10)

where qn(k) denotes the probability that simple random walk on Z starting at 0 is at k after

the nth step. The inequality (13.10) is an immediate consequence of the Hoeffding-Azuma

inequality specialized to simple random walk on Z. As it happens, we will use (13.10) to

establish Theorem 13.4.

To prove Theorem 13.4, we need some standard facts from analysis.

Suppose T is a bounded self-adjoint operator on a Hilbert space. Then the spectral

theorem provides a resolution of the identity, a projection-valued measure E, such that

T =

∫ ∥T∥

−∥T∥
s dE(s) .

If Q is a polynomial with real coefficients, then

Q(T ) =

∫ ∥T∥

−∥T∥
Q(s) dE(s) .
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It follows that

∥Q(T )∥ ≤ max
|s|≤∥T∥

|Q(s)| . (13.11)

(See Exercise 13.23 for a proof of this inequality that uses only linear algebra.)

Next, we need the Chebyshev polynomials, Qk for k ∈ Z. These are the unique

polynomials of degree |k| such that

Qk(cos θ) = cos kθ (θ ∈ R) . (13.12)

They satisfy the inequality

|Qk(s)| ≤ 1 whenever − 1 ≤ s ≤ 1 . (13.13)

To prove the existence of such polynomials, take k ≥ 1. Given any complex number z,

there is a number w such that z = (w + w−1)/2. Since

(wk + w−k)/2− (2z)k/2

is a Laurent polynomial of degree k − 1 and is unchanged when w is mapped to w−1,

induction on k shows that there is a unique polynomial Qk such that

Qk(z) = Qk
(
(w + w−1)/2

)
= (wk + w−k)/2 . (13.14)

(Alternatively, expand out (cosx + i sinx)k = cos kx + i sin kx and replace sin2 x by 1 −
cos2 x.) In case z = eiθ, we get (13.12). Furthermore, any polynomial satisfying (13.12)

satisfies (13.14) for infinitely many z, whence for all z. Thus, Qk are unique. Finally, every

s ∈ [−1, 1] is of the form cos θ, so the inequality (13.13) is immediate.

We are now ready to prove the central formula that allows one to deduce information

about P from information about simple random walk on Z. The following formula is a

modification of that proved by Carne (1985).

Lemma 13.5. Let Qk be the Chebyshev polynomials. For any reversible random walk, we

have

Pn = ∥P∥nπ
∑
k∈Z

qn(k)Qk
(
P/∥P∥π

)
. (13.15)

Furthermore,
∥∥Qk(P/∥P∥π)∥∥π ≤ 1 for all k.

Proof. Given z ∈ C, let w be such that z = (w + w−1)/2. By the binomial theorem and

(13.14),

zn =
[
(w + w−1)/2

]n
=
∑
k∈Z

qn(k)w
k =

∑
k∈Z

qn(k)(w
k + w−k)/2 =

∑
k∈Z

qn(k)Qk(z) .

Since this is an identity between polynomials, we may apply it to operators instead of to

complex numbers, substituting P/∥P∥π for z to get (13.15). The final estimate derives

from (13.11) (for T := P/∥P∥π) and (13.13). ◀
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Proof of Theorem 13.4. Fix x, y ∈ V and write d := d(x, y). Consider the unit vectors

fx := 1{x}/
√
π(x). We have

pn(x, y) =
√
π(y)/π(x)(fx, P

nfy)π . (13.16)

When we substitute (13.15) for Pn here, we may exploit the fact that(
fx, Qk

(
P/∥P∥π

)
fy

)
π
= 0 for |k| < d

since Qk has degree |k| and pi(x, y) = 0 for i < d. Furthermore, we may use the bound∣∣∣(fx, Qk(P/∥P∥π)fy)
π

∣∣∣ ≤ ∥∥∥Qk(P/∥P∥π)∥∥∥
π
∥fx∥π∥fy∥π ≤ 1 .

We obtain

pn(x, y) ≤
√
π(y)/π(x) ∥P∥nπ

∑
|k|≥d

qn(k) .

Now use (13.10) to complete the proof. ◀

§13.3. An Application to Mixing Time.

The basic convergence theorem for finite irreducible aperiodic Markov chains ensures

that the distribution at time t of such a chain approaches the stationary distribution as

t→ ∞; the time t required for these distributions to be close (i.e., within some prescribed

distance ϵ) is known as the mixing time. One intuitive interpretation of the mixing time is

that it is the time needed for the chain to “forget” its initial state, i.e., the time t required

for Xt to become approximately independent of X0, no matter what the distribution of

X0. See the formal definition below.

Mixing time is one of the most important parameters describing a finite Markov chain.

It is studied in computer science, where it is often the main component in randomized

algorithms for sampling and counting in combinatorial structures, as well as in statistical

physics; we refer the reader to the books by Aldous and Fill (2002) and Levin, Peres, and

Wilmer (2009) for more information.

The Varopoulos-Carne Theorem has a striking consequence for the mixing time of

a random walk on a graph: It implies a lower bound that is close to the square of the

diameter. To make this precise, we define the notions of total variation distance and

mixing time. For any two probability measures µ and ν on the same measurable space

(Ω,F ), their total variation distance is

∥µ− ν∥TV := sup
A∈F

|µ(A)− ν(A)| .
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(This definition is convenient in probability theory; in analysis, the variation of the signed

measure µ − ν is defined to be twice the above value.) For finite Ω, we take F to be the

collection of all subsets.

▷ Exercise 13.2.

Let Ω be finite. Show that for any two probability measures µ and ν on Ω, we have

∥µ − ν∥TV = 1
2

∑
z∈Ω

(
µ(z) − ν(z)

)
and 1 − ∥µ − ν∥TV =

∑
z∈Ω

(
µ(z) ∧ ν(z)

)
, where

x ∧ y := min{x, y}.

Let V be a finite state space, and let ⟨Xt⟩ be an irreducible Markov chain on V

with transition probabilities p(x, y) and stationary probability measure π. For t ≥ 0, the

distance to stationarity at time t is

δ(t) := max
x∈V

∥pt(x, •)− π∥TV .

Sometimes it is more convenient to work with

δ(t) := max
x,y

∥pt(x, •)− pt(y, •)∥TV .

The following exercise relates these two notions of distance to stationarity to each other

and to the maximum relative distance considered in Section 6.4.

▷ Exercise 13.3.

(a) Show that the two notions of distance to stationarity, δ(•) and δ(•), satisfy

δ(t) ≤ δ(t) ≤ 2δ(t) for t ≥ 0 .

(b) Show that δ(t) = max
x∈V

1

2

∑
y∈V

∣∣pt(x, y)− π(y)
∣∣ ≤ max

x,y∈V

∣∣∣∣pt(x, y)− π(y)

2π(y)

∣∣∣∣ .
For ϵ ∈ (0, 1), define the mixing time

tmix(ϵ) := min{t ≥ 0 ; δ(t) ≤ ϵ} .

Since δ(t) ≤ 2ϵ at time t = tmix(ϵ), we see that if ϵ is small, then at time tmix(ϵ) the chain

has indeed almost “forgotten” its initial state.

Let πmin := minx π(x). Recall the absolute spectral gap g∗ := 1−maxj>1 |λj |, where
1 = λ1 > λ2 ≥ · · · ≥ λn are the eigenvalues of the transition matrix P . (Recall that for

lazy chains, g∗ = 1−λ2.) Theorem 6.13 and Exercise 13.3 imply that δ(t) ≤ e−g∗t/(2πmin),

and this yields a useful upper bound for mixing time.

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



§3. An Application to Mixing Time 485

Corollary 13.6. In every connected network, tmix(ϵ) ≤ 1 +
∣∣ log(2ϵπmin)

∣∣/g∗ for all ϵ ∈
(0, 1). ◀

As usual, we define a graph G on V where [x, y] is an edge iff p(x, y) > 0. Let d(•, •)

denote the corresponding graph distance, and let D be the diameter of G, i.e., the largest

distance between pairs of vertices of G. Fix a, z ∈ V such that d(a, z) = D. Then for t < D
2 ,

the distributions pt(a, •) and pt(z, •) have disjoint supports, so

δ(t) ≥ ∥pt(a, ·)− pt(z, ·)∥TV = 1 .

By Exercise 13.3, δ(t) ≥ 1
2 . This gives a crude lower bound of the mixing time for ϵ < 1

2 :

tmix(ϵ) ≥
D

2
.

Using the Varopoulos-Carne bound, we can derive a sharper inequality under some

extra conditions. A lazy simple random walk on a graph is obtained from simple random

walk by averaging the transition matrix with the identity matrix. In many finite transitive

graphs, e.g., the discrete torus, the mixing time of lazy simple random walk can be bounded

above by a constant multiple of the diameter squared times the degree. It is an open

problem whether such a bound holds for all transitive graphs.* Next, we will prove a

related general lower bound.

Proposition 13.7. Consider random walk on a network G with n vertices and diameter

D. Let π denote the stationary distribution. Then for

t <
D2

12 log n+ 4| log πmin|
,

we have δ(t) > 1− 4/
√
n. Consequently, given any ϵ < 1

2 , if n ≥ 16/(1− 2ϵ)2, then

tmix(ϵ) ≥
D2

12 log n+ 4| log πmin|
.

In particular, for simple random walk (or lazy simple random walk) on an n-vertex simple

graph,

tmix(ϵ) ≥
D2

20 log n
.

* This conjecture was posed by the second author in lectures; earlier, it was proved for certain graphs
of moderate growth by Diaconis and Saloff-Coste (1994).
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Proof. Choose a, z ∈ V = V(G) such that d(a, z) = D. Consider the set A :=
{
y ∈

V ; d(a, y) ≤ d(z, y)
}
. Then it is easy to see that

y ∈ Ac =⇒ d(a, y) ≥ D

2

and

y ∈ A =⇒ d(z, y) ≥ D

2
.

Applying the Varopoulos-Carne bound, we obtain that for every t,

pt(a,A
c) =

∑
y∈Ac

pt(a, y) ≤
∑
y∈Ac

2

√
π(y)

π(a)
exp

{
− d2(a, y)

2t

}
≤ 2nπmin

−1/2e−
D2

8t ,

where in the last step we used that |Ac| ≤ n. Now let t <
D2

12 log n+ 4| log πmin|
. We get

pt(a,A
c) < 2nπmin

−1/2 exp
{−3 log n− | log πmin|

2

}
=

2√
n
.

Similarly, for this value of t, we have pt(z,A) < 2/
√
n, so

pt(z,A
c) > 1− 2√

n
.

Now

δ(t) ≥ pt(z,A
c)− pt(a,A

c) > 1− 2√
n
− 2√

n
= 1− 4√

n

and the first two assertions of the theorem follow. For the last assertion, note that πmin ≥
n−2 in every simple graph. ◀

The bound in Proposition 13.7 is sharp (up to a constant factor) for lazy simple

random walk on expander graphs, as shown in Exercise 13.26.

Combining Proposition 13.7 (for ϵ := 1/4) with Corollary 13.6 yields an upper bound

for the absolute spectral gap g∗ (cf. Corollary 13.26 for an alternative bound).

Corollary 13.8. For every connected network with n ≥ 64 vertices and diameter D,

g∗ ≤
∣∣ log(πmin/2)

∣∣ · (24 log n+ 8| log πmin|
)

D2
.

In particular, for simple random walk on a simple graph,

g∗ ≤ 160 log2 n

D2
. ◀
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The dependence on πmin in Proposition 13.7 is not just an artifact of the proof.

For example, given n > 1, consider the Markov chain on the states {0, 1, . . . , n − 1}
where p(x, x) = 1/2 for all x and p(x, x + 1) = 2p(x, x − 1) = 1/3 if 0 < x < n, while

p(0, 1) = p(n, n− 1) = 1/2; otherwise, p(x, y) = 0. Then D = n− 1, and the mixing time

satisfies tmix ≍ n. Note that for this sequence of chains, πmin decays exponentially in n.

Nevertheless, there is an alternative lower bound for mixing time (Proposition 13.11

below) that does not depend on πmin, where the squared diameter is replaced by the

average squared distance

D̂2 :=
∑
x,y

π(x)π(y)d2(x, y) .

▷ Exercise 13.4.

Prove that in every transitive network, we have D2 ≤ 4D̂2.

Thus for transitive networks, D2 and D̂2 are comparable. For non-transitive networks,

the ratio D/D̂ may be arbitrarily large, e.g., in the case of the chain on {0, 1, . . . , n − 1}
described above, where D̂ ≍ 1 and D = n− 1.

In order to prove our next lower bound on mixing time, we require the following

proposition. It implies, in particular, that a stationary reversible chain on n states can

escape from its starting point at linear rate for at most O(log n) steps. Contrast this with

biased random walk on the n-cycle, a non-reversible chain where linear rate of escape is

maintained for order n steps.

Proposition 13.9. For an n-vertex network with stationary distribution π, we have

Eπd
2(X0, Xt) ≤ 3t log n (13.17)

if n > e4, where we used the notation Eπ :=
∑
x∈V π(x)Ex.

Proof. Fix t. For β > 0, let Aβ :=
{
(x, y) ; d2(x, y) ≥ βt log n

}
. Using the Varopoulos-

Carne bound, we have for every β > 0 that

Pπ

[
d2(X0, Xt) ≥ βt log n

]
=

∑
(x,y)∈Aβ

π(x)pt(x, y) ≤
∑

(x,y)∈Aβ

2
√
π(x)π(y)n−β/2

≤
∑
x,y

(
π(x) + π(y)

)
n−β/2 = 2n1−β/2 .

Thus we have

Eπ

[d2(X0, Xt)

t log n

]
=

∫ ∞

0

Pπ

[
d2(X0, Xt) ≥ βt log n

]
dβ ≤

∫ ∞

0

(
2n1−β/2 ∧ 1

)
dβ

≤ 2 + 2n

∫ ∞

2

n−β/2 dβ = 2 +
4

logn
< 3

if n > e4. ◀
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We will also need the following key property of mixing in reversible Markov chains,

due to Aldous and Fill (2002).

Lemma 13.10. For every connected network and any two vertices x, y, we have for all t

p2t(x, y)

π(y)
≥
(
1− δ(t)

)2
.

Proof. Sum over all possible positions at time t, then use reversibility and Cauchy-Schwarz:

p2t(x, y)

π(y)
=
∑
z

pt(x, z)
pt(z, y)

π(y)
=
(∑

z

pt(x, z)
pt(y, z)

π(z)

)
·
∑
z

π(z)

≥
(∑

z

√
pt(x, z)pt(y, z)

)2
≥
(∑

z

[
pt(x, z) ∧ pt(y, z)

])2
=
(
1− ∥pt(x, ·

)
− pt(y, ·)∥TV

)2
≥
(
1− δ(t)

)2
,

where the last step used Exercise 13.2. ◀

We deduce the following consequence for mixing times.

Proposition 13.11. Let n > e4. For every n-vertex network, we have

tmix(ϵ) ≥
(1− 2ϵ)2

6

D̂2

log n
(13.18)

for all ϵ < 1/2.

At an intuitive level, it is easy to derive (13.18) from (13.17), since for t = tmix(ϵ), the

random variables X0 and Xt should be roughly independent, and therefore Eπ
[
d2(X0, Xt)

]
should be roughly D̂2. The rigorous proof uses Lemma 13.10 as well.

Proof. Let t := tmix(ϵ). On the one hand, (13.17) tells us that

Eπd
2(X0, X2t) ≤ 6t log n (13.19)

for n > e4. On the other hand, δ(t) ≤ 2ϵ < 1 by Exercise 13.3, so Lemma 13.10 implies

that

Eπd
2(X0, X2t) =

∑
x,y

π(x)π(y)
p2t(x, y)

π(y)
d2(x, y)

≥
∑
x,y

π(x)π(y)
(
1− δ(t)

)2
d2(x, y) ≥ (1− 2ϵ)2D̂2. (13.20)

Combining (13.19) and (13.20) gives (13.18). ◀
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§13.4. Branching Number of a Graph.

In Proposition 13.3, we gave an upper bound for the liminf speed of simple random

walk on a tree in terms of the branching number of the tree. Here we do the same for

general graphs. For a connected locally finite graph G, choose some vertex o ∈ G and

define the branching number brG of G as the supremum of those λ ≥ 1 such that there

is a positive flow from o to infinity when the edges have capacities λ−|e|, where distance is

measured from o. By the Max-Flow Min-Cut Theorem, this is the same as

brG = inf

{
λ ≥ 1 ; inf

{∑
e∈Π

λ−|e| ; Π separates o from ∞
}

= 0

}
.

Let M̃n be the number of edges that lead from a vertex at distance n−1 from o to a vertex

at distance n. Then consideration of spherical cutsets shows that

brG ≤ lim inf
n→∞

M̃1/n
n .

We have seen already that when G is a tree, strict inequality may hold here; we can even

have that the left-hand side is 1 while the right-hand side is not.

▷ Exercise 13.5.

Show that brG does not depend on the choice of vertex o.

▷ Exercise 13.6.

Show that if G′ is a subgraph of G, then brG′ ≤ brG.

If G is non-amenable, then brG > 1 by this exercise combined with the result of

Benjamini and Schramm (1997) mentioned at the end of Section 6.1.

Our bound for trees, Proposition 13.3, can be extended to general graphs as follows,

but it is not as good as the one obtained for trees. See Section 13.8 for a better result.

Proposition 13.12. If G is a connected locally finite graph with bounded degree on which

simple random walk has positive speed, then brG > 1. More precisely, if

lim inf
n→∞

|Xn|
n

≥ s

with positive probability, then brG ≥ es/2.

Proof. For s with the property stated, consider 0 < s′ < s′′ < s. There is some L such

that

q := P
[
∀n ≥ L |Xn| > s′′n

]
> 0 . (13.21)
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As in the proof of Proposition 13.3, define a general percolation on G by keeping all

edges e(x) with |x| ≤ s′′L, as well as those edges e(x) such that Xn = x for some n <

|x|/s′′. According to (13.21), the component of the root in this percolation is infinite with

probability at least q. On the other hand, if |x| > s′′L, then by the Varopoulos-Carne

bound,

P[o↔ x] ≤ P
[
∃n < |x|/s′′ Xn = x

]
≤

|x|/s′′∑
n=1

pn(o, x)

≤
|x|/s′′∑
n=1

2
√
deg(x)/deg(o)e−|x|2/(2n) ≤ 2

|x|
s′′

√
deg(x)

deg(o)
e−s

′′|x|/2

< Ce−s
′|x|/2

for some constant C. In light of Proposition 5.8, this means that for any cutset Π, we have

q <
∑

e(x)∈Π

Ce−s
′|x|/2 .

Therefore, brG ≥ es
′/2. Since this holds for all s′ < s, the result follows. ◀

We saw in Exercise 13.1 that the converse of Proposition 13.12 fails for trees. It fails

even for Cayley graphs, which is rather surprising. Recall from Section 3.4 that we call

a subtree T of G rooted at o geodesic if for every vertex x ∈ T , the distance from x to

o is the same in T as in G. Note that for such trees, brT ≤ brG by Exercise 13.6. Let

G1 be the lamplighter group on Z described in Section 7.1. We showed there that G1

has exponential growth rate (1 +
√
5)/2; in fact, the sets Tn there are parts of the nth

levels of a geodesic subtree of G1, whence brG1 = (1+
√
5)/2. On the other hand, simple

random walk has speed 0 on G1, as mentioned in Section 3.4. The geometric reason for this

surprising phenomenon is that G1 has “dead ends”, i.e., elements all of whose neighbors

are closer to o. Indeed, the element
(
0,1[−n,n]

)
is at distance 2n+1 from any element that

is further from o. It takes a long time for simple random walk to escape such dead ends,

just as in Exercise 13.1, it takes a long time for simple random walk to exit the unary

trees. This is also why RWλ has positive speed on G1 for 1 < λ < brG1 (of course, this

is not a proof, only a heuristic) and why the answer to Question 3.11 might be positive in

general.

Of course, for trees T , we earlier established that brT is the critical value of λ sep-

arating transience from recurrence for RWλ on T . Things are not so nice in general

(Exercise 13.29), but we do have some useful relationships. Recall that λc(G) denotes the

critical value of λ separating transience from recurrence for RWλ on G.
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▷ Exercise 13.7.

Show that λc(G) ≤ brG.

It follows from Section 3.4 that when G is a Cayley graph of a finitely generated group

of growth rate b, there is a geodesic spanning tree T of G with brT = b = λc(G). Hence,

we also have brG = b = λc(G). Most of this also holds for many planar graphs, as we

show now. The proof will show how planar graphs are like trees. (For other resemblances

of planar graphs to trees, see Theorems 9.12 and 10.54 and Proposition 11.28.)

Theorem 13.13. (Lyons, 1996) Let G be an infinite connected plane graph of bounded

degree such that only finitely many vertices lie in any bounded region of the plane. Suppose

that G has a geodesic spanning tree T with no leaves. Then λc(G) = brG = brT .

Proof. We first prove that brT = brG. Since brT ≤ brG, it suffices to show that for

λ > brT , we have λ ≥ brG. Given a cutset Π of T , we will define a cutset Π∗ of G whose

corresponding cutset sum is not much larger than that of Π. We may assume that o is at

the origin of the plane and that all vertices in Tn are on the circle of radius n in the plane.

Now every vertex x ∈ T has a descendant subtree T x ⊆ T . For n ≥ |x| > 0, this subtree

cuts off an arc of the circle of radius n; in the clockwise order of T x ∩ Tn, there is a least

element xn and a greatest element xn. Each edge in Π has two endpoints; collect the ones

farther from o in a set W . Define Π∗ to be the collection of edges incident to the set of

vertices

W ∗ := {xn, xn ; x ∈W, n ≥ |x|} .

We claim that since T has no leaves, Π∗ is a cutset of G. For if o = y1, y2, . . . is a path in

G with an infinite number of distinct vertices, let yk be the first vertex belonging to T x for

some x ∈W . Planarity implies that yk ∈W ∗, whence the path intersects Π∗, as desired.

Now let c be the maximum degree of vertices in G. We have∑
e∈Π∗

λ−|e| ≤ c
∑
x∈W∗

λ−|x|+1 ≤ c
∑
x∈W

∑
n≥|x|

2λ−n+1

=
2cλ

λ− 1

∑
x∈W

λ−|x|+1 =
2cλ

λ− 1

∑
e∈Π

λ−|e| .

This makes it evident that brG ≤ brT . It also implies that λc(G) ≤ brG, which we knew

as well from Exercise 13.7.

To finish, it remains to show that λc(G) ≥ brG. Let λ < brG. Since λ < brT , it

follows from Theorem 3.5 that RWλ is transient on T . Therefore, RWλ is also transient

on G. ◀
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§13.5. Markov Type of Metric Spaces.

The remaining sections of this chapter are about sublinear rates of escape or escape

rates that are linear only for a finite time.

In this section, we consider Markov chains in metric spaces and see how quickly they

increase their squared distance in expectation. That is, given a metric space (X, d) and a

finite-state reversible stationary Markov chain ⟨Zt ; t ∈ N⟩ whose state space is a subset of

X, how quickly can E
[
d(Zt, Z0)

2
]
increase in t? Since the chain is stationary, the proper

normalization for the distance is E
[
d(Z1, Z0)

2
]
. It turns out that this notion, invented by

Ball (1992), is connected to many interesting questions in functional analysis. It is more

convenient to relax the notion slightly from Markov chains to functions of Markov chains.

Thus, with Ball, we make the following definition, where the “2” in the name refers to the

exponent.

Definition 13.14. Given a metric space (X, d), we say that X has Markov type 2 if

there exists a constant M < ∞ such that for every positive integer n, every stationary

reversible Markov chain ⟨Zt⟩∞t=0 on {1, . . . , n}, every mapping f : {1, . . . , n} → X, and

every time t ∈ N,

E
[
d
(
f(Zt), f(Z0)

)2] ≤MtE
[
d
(
f(Z1), f(Z0)

)2]
. (13.22)

We will prove that the real line has Markov type 2 (see Exercise 13.8 for a space

that does not have Markov type 2). Since adding the squared coordinates gives squared

distance in higher dimensions, even in Hilbert space, it follows that Hilbert space also has

Markov type 2. This result is due to Ball (1992).

Theorem 13.15. R has Markov type 2 with constant M = 1 in (13.22).

Proof. As in Section 6.2, let P be the transition operator of the Markov chain on {1, . . . , n}
with stationary measure π. We saw in that section that P is a self-adjoint operator in

ℓ2
(
{1, . . . , n}, π

)
. This implies that ℓ2

(
{1, . . . , n}, π

)
has an orthogonal basis of eigenfunc-

tions of P with real eigenvalues. We also saw (Exercise 6.6) that ∥P∥π ≤ 1, whence all

eigenvalues lie in [−1, 1].

The first step is to re-express the left-hand side of (13.22) in terms of the operator P .

We have

Ed
(
f(Zt), f(Z0)

)2
=
∑
i,j

πip
(t)
ij

[
f(i)− f(j)

]2
= 2
(
(I − P t)f, f

)
π
.

In particular,

Ed
(
f(Z1), f(Z0)

)2
= 2
(
(I − P )f, f

)
π
.
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Thus, we want to prove that

(
(I − P t)f, f

)
π
≤ t
(
(I − P )f, f

)
π

for all functions f . Note that if f is an eigenfunction with eigenvalue λ, this reduces to

the inequality (1− λt) ≤ t(1− λ). Since |λ| ≤ 1, this in turn reduces to

1 + λ+ · · ·+ λt−1 ≤ t ,

which is obviously true.

The claim follows for functions f that are not eigenfunctions by taking f =
∑n
j=1 ajfj ,

where {fj} is an orthonormal basis of eigenfunctions:

(
(I −P t)f, f

)
π
=

n∑
j=1

a2j
(
(I −P t)fj , fj

)
π
≤

n∑
j=1

a2j t
(
(I −P )fj , fj

)
π
= t
(
(I −P )f, f

)
π
. ◀

▷ Exercise 13.8.

A collection of metric spaces has uniform Markov type 2 if there exists a constant

M <∞ such that each space in the collection has Markov type 2 with constant M . Prove

that the k-dimensional hypercube graphs {0, 1}k do not have uniform Markov type 2. From

this, construct a space that does not have Markov type 2.

Recall that any tree with edge weights defines a metric on the vertices: the distance

between two vertices in a weighted tree is the sum of the weights along the unique path

between the vertices.

Theorem 13.16. Weighted trees have uniform Markov type 2.

To prove Theorem 13.16 we first prove a lemma.

Lemma 13.17. Let {Zt}∞t=0 be a stationary time reversible Markov chain on {1, . . . , n}
and f : {1, . . . , n} → R. Then, for every time t > 0,

E max
0≤s≤t

[f(Zs)− f(Z0)]
2 ≤ 15tE[f(Z1)− f(Z0)]

2 .

Proof. Let π be the stationary distribution. Define P : L2(π) → L2(π) by (Pf)(i) =

E[f(Zs+1)|Zs = i] =
∑n
j=1 pijf(j). For any s ∈ {0, . . . , t− 1}, let

Ds = f(Zs+1)− (Pf)(Zs) .
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Since E[Ds|Z1, . . . , Zs] = E[Ds|Zs] = 0, the Ds are martingale differences with respect to

the natural filtration of Z1, . . . , Zt. Also, because of time-reversibility,

D̃s = f(Zs−1)− (Pf)(Zs)

are martingale differences with respect to the natural filtration on Zt, . . . , Z1. Note that

Ds − D̃s = f(Zs+1)− f(Zs−1), which implies that for any m,

f(Z2m)− f(Z0) =
m∑
k=1

D2k−1 −
m∑
k=1

D̃2k−1 .

So,

max
0≤s≤t

f(Zs)− f(Z0) ≤ max
m≤t/2

m∑
k=1

D2k−1 + max
m≤t/2

m∑
k=1

−D̃2k−1 + max
ℓ≤t/2

|f(Z2ℓ+1)− f(Z2ℓ)| .

Take squares and use the fact (a + b + c)2 ≤ 3(a2 + b2 + c2), which is implied by the

Cauchy-Schwarz inequality, to get

max
0≤s≤t

|f(Zs)− f(Z0)|2 ≤3 max
m≤t/2

∣∣∣ m∑
k=1

D2k−1

∣∣∣2 + 3 max
m≤t/2

∣∣∣ m∑
k=1

D̃2k−1

∣∣∣2
+ 3

∑
ℓ≤t/2

∣∣∣f(Z2ℓ+1)− f(Z2ℓ)
∣∣∣2 .

We will use Doob’s L2 maximum inequality for martingales (see, e.g., Durrett 1996)

E max
0≤s≤t

M2
s ≤ 4E|Mt|2 .

Consider

Ms+1 =
∑

j≤s,j odd

Dj .

Since Ms is still a martingale, we have

E max
0≤s≤t

|f(Zs)− f(Z0)|2 ≤12E
∣∣∣ ⌊t/2⌋∑
k=1

D2k−1

∣∣∣2 + 12E
∣∣∣ ⌊t/2⌋∑
k=1

D̃2k−1

∣∣∣2
+ 3

∑
0≤ℓ≤t/2

E
∣∣∣f(Z2ℓ+1)− f(Z2ℓ)

∣∣∣2 .
Denote V = E[|f(Z1)− f(Z0)|2], and notice that

D0 = f(Z1)− f(Z0)−E[f(Z1)− f(Z0) | Z0] ,

which implies that D0 is orthogonal to E[f(Z1)−f(Z0) | Z0] in L
2(π). So, by the Pythago-

rian law, for any s we have E[D2
s ] = E[D2

0] ≤ V . Summing everything up gives

E max
0≤s≤t

|f(Zs)− f(Z0)|2 ≤ 6tV + 6tV + 3(t/2 + 1)V ≤ 15tV ,

which concludes our proof. ◀
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Proof of Theorem 13.16. Let T be a weighted tree, {Zj} be a reversible Markov chain on

{1, . . . , n} and F : {1, . . . , n} → T . Choose an arbitrary root and set for any vertex v,

ψ(v) = d(root, v). If v0, . . . , vt is a path in the tree, then

d(v0, vt) ≤ max
0≤j≤t

(|ψ(v0)− ψ(vj)|+ |ψ(vt)− ψ(vj)|) ,

since choosing the closest vertex to the root on the path yields equality.

Let Xj = F (Zj). Connect Xi to Xi+1 by the shortest path for any 0 ≤ i ≤ t − 1 to

get a path between X0 and Xt. Since now the closest vertex to the root can be on any of

the shortest paths between Xj and Xj+1, we get

d(X0, Xt) ≤ max
0≤j<t

(
|ψ(X0)− ψ(Xj)|+ |ψ(Xt)− ψ(Xj)|+ 2d(Xj , Xj+1)

)
.

Square, and use Cauchy-Schwarz again,

d(X0, Xt)
2 ≤ 3 max

0≤j≤t

(
|ψ(X0)− ψ(Xj)|2 + |ψ(Xt)− ψ(Xj)|2

)
+ 12

∑
0≤j<t

d2(Xj , Xj+1) .

By Lemma 13.17 with f = ψF we get,

Ed(X0, Xt)
2 ≤ 90tE|ψ(X0)− ψ(X1)|2 + 6

∑
0≤j≤t

Ed2(Xj , Xj+1) .

Since in any metric space |ψ(X1) − ψ(X0)| ≤ d(X0, X1) and since the Markov chain

is stationary we have Ed(X0, X1) = Ed(Xj , Xj+1) for any j. So

Ed(X0, Xt)
2 ≤ 96tEd(X0, X1)

2 ,

which concludes our proof. ◀

§13.6. Embeddings of Finite Metric Spaces.

If we map one metric space into another, distances can change in various ways. For

example, a homothety merely multiplies all distances by the same constant. Thus, a

homothety does not change the “shape” of the domain space. We can measure changes in

shape, or distortion, by how much some distances change compared to the change in other

distances. This motivates the following definition.
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Definition 13.18. Given metric spaces (X, dX) and (Y, dY ), a mapping f :X → Y has

distortion at most C if there exists a number r > 0 such that for all x1, x2 ∈ X,

rdX(x1, x2) ≤ dY
(
f(x1), f(x2)

)
≤ CrdX(x1, x2) . (13.23)

The infimum of such numbers C is called the distortion of f .

We will consider only the case where Y is Hilbert space and X is finite. In this case,

the infimum of the distortions of all embeddings is a minimum and is called the Hilbert

distortion of X, also called the Euclidean distortion . Usually X will be a finite graph

with the shortest-path metric.

For example, consider X to be a hypercube graph. The distance in the graph is an

ℓ1-metric, while an embedded image in Hilbert space gets an ℓ2-metric. These metrics

are generally incomparable: as norms, they do not induce the same topology (in infinite

dimensions). A finitistic and quantitative version of this inequivalence is that there must

be a fair amount of distortion. The obvious embedding of the hypercube {0, 1}k has

distortion
√
k. Enflo (1969) proved that

√
k is indeed the minimum distortion. We first

prove a weaker version of this result because our method, via random walks and Markov

type, applies in much greater generality. It is inspired by Linial, Magen, and Naor (2002).

Proposition 13.19. (Distortion of Hypercubes) There exists c > 0 such that for all

k, the Hilbert distortion of the hypercube {0, 1}k is at least c
√
k.

Proof. In the solution to Exercise 13.8, we showed that if ⟨Zt⟩ is a simple random walk in

the hypercube, then

Ed(Z0, Zt) ≥
t

2
∀t ≤ k/4 .

Take t := ⌊k/4⌋. By the arithmetic mean-quadratic mean inequality, Ed2(Z0, Zt) ≥ t2/4.

Now let f : {0, 1}k → ℓ2(N) be a map. Assume that (13.23) holds; we may take r = 1

there. We saw that Hilbert space has Markov type 2 with constant M = 1. Therefore, if

we take Z0 to be uniform on the vertices of the hypercube, we obtain

Ed2
(
f(Z0), f(Zt)

)
≤ tEd2

(
f(Z0), f(Z1)

)
≤ C2tEd2(Z0, Z1) = C2t ,

where C is the distortion of f . We conclude

C2t ≥ Ed2
(
f(Z0), f(Zt)

)
≥ Ed2(Z0, Zt) ≥ t2/4 ,

whence C ≥
√
t/2, which implies the result. ◀
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We give another beautiful approach to prove lower bounds on distortion that is flexible

in a different way and also gives Enflo’s sharp result. This approach uses a spectral gap,

similar to that defined in Section 6.4. This method is due to Linial and Magen (2000)

and Newman and Rabinovich (2003) and was refined by Jolissaint and Valette (2011).

The essential difference between Section 6.4 and the approach we are about to explain

is that the Rayleigh quotient Exercise 6.7 was used in Section 6.4 to bound the spectral

gap, whereas here we use the spectral gap to bound the distortion. This will require a

simple observation that extends the Rayleigh quotient from real-valued to Hilbert-space-

valued functions, as well as another observation that relates norms of functions to norms

of differences.

For a finite connected network (G, c) with corresponding transition operator P , write

λ2(P ) for the second largest eigenvalue of P . Thus, 1−λ2(P ) is what we called the spectral

gap in Section 6.4. As we did there, we write π(x) for the stationary probability measure

on V(G). However, we do not want to assume that the conductances are normalized. If

we write γ :=
∑
e∈E1/2

c(e), then π(x) =
∑
e−=x c(e)/(2γ).

Lemma 13.20. Let (G, c) be a finite connected network with transition operator P and

stationary probability measure π. Then for every map f :V → H , where H is a Hilbert

space, we have

(
1− λ2(P )

) ∑
x,y∈V

π(x)π(y)
∥∥f(x)− f(y)

∥∥2 ≤ 1∑
e∈E1/2

c(e)

∑
e∈E1/2

c(e)∥f(e+)− f(e−)∥2 .

Proof. Recall (6.28) for real-valued functions f :V → R:

1− λ2(P ) = min
f⊥1

(
(I − P )f, f

)
π

(f, f)π
.

The numerator here, as we saw earlier, can also be written as
∑
e∈E1/2

c(e)|f(e+) −
f(e−)|2/(2γ) (whether f ⊥ 1 or not). The condition that f ⊥ 1 is inconvenient here,

but we may easily remove it by using f − f̄ in place of f , where f̄ :=
∑
x π(x)f(x). Now

2∥f − f̄∥2π =
∑
x,y∈V π(x)π(y)|f(x)− f(y)|2, whence we can write

(
1− λ2(P )

) ∑
x,y∈V

π(x)π(y)|f(x)− f(y)|2 ≤
∑
e∈E1/2

c(e)|f(e+)− f(e−)|2/γ

for all f :V → R. By considering the coordinates with respect to an orthonormal basis of

H , we see that the same holds for all f :V → H , provided we replace absolute values by

norms. ◀
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Recall that D̂2 is the π-weighted average squared distance between pairs of vertices

in G. The inequality above says that if the π-weighted average squared distance between

images of vertices is at least D̂2 (e.g., if (13.23) holds with r = 1), then the c-weighted

average squared distance between images of neighboring vertices is at least D̂2
(
1−λ2(P )

)
.

In particular, a lower bound for the distortion is D̂
√

1− λ2(P ):

Corollary 13.21. (Spectral Bound on Distortion) Let (G, c) be a finite connected

network with transition operator P and stationary probability measure π. Then the Hilbert

distortion of (G, c) is at least

[(
1− λ2(P )

) ∑
x,y∈V

π(x)π(y)d(x, y)2
]1/2

. ◀

For example, suppose that G is a graph with n vertices and all degrees at most k ≥ 3.

The ball of radius r about any vertex x has at most
(
k(k−1)r−2

)
/(k−2) vertices, which

is < n/2 when r ≤ log(n/2)/ log(k− 1). Therefore D̂ > log(n/2)/
(
2 log(k− 1)

)
. Thus, we

get the following result of Linial, London, and Rabinovich (1995):

Corollary 13.22. (Distortion of Expanders) Let k ≥ 3 be an integer and λ < 1.

There is a constant Ck,λ such that for each graph G on n vertices with λ2(P ) ≤ λ and

maximal degree k, where P stands for the simple random walk transition operator, the

Hilbert distortion of G is at least Ck,λ log n. ◀

Recall that such graphs do exist for arbitrarily large n: see Theorems 6.17 and 6.15.

This result could instead be phrased in terms of the expansion constants: using Theo-

rem 6.15, we have that the distortion of a network with expansion constant Φ∗ is at least

D̂Φ∗/
√
2, where D̂ is as above.

In the special case of transitive networks, such as unweighted Cayley graphs, we can

refine the preceding bounds to be sometimes sharp. Denote by diam(G) the diameter of

G. For a finite Cayley graph G, there is a permutation σ of the vertex set (not necessarily

an automorphism of G) such that d
(
x, σ(x)

)
= diam(G) for all x ∈ V: if d(x, xγ) equals

the diameter for some x and some γ, then it equals the diameter for all x and the same γ,

so we may choose σ(x) := xγ. There is also such a permutation for every transitive graph

G: see Exercise 13.32.

Theorem 13.23. (Spectral Bound on Distortion—Transitive Case) Let (G, c) be

a finite connected transitive network with transition operator P . Then the Hilbert distortion

of G is at least diam(G)
√(

1− λ2(P )
)
/2.
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Proof. Transitivity of the network implies that π(x) = 1/|V| for all vertices x. In the proof

of Lemma 13.20, we saw that for real-valued f ⊥ 1, we have

(
1− λ2(P )

) 1

|V|
∑
x∈V

|f(x)|2 =
(
1− λ2(P )

)
∥f∥2π ≤

∑
e∈E1/2

c(e)|f(e+)− f(e−)|2/(2γ) .

Given a permutation σ of V, consider the unitary operator U on ℓ2(V) defined by U(f) :=

f ◦ σ, and also the identity operator, I. The triangle inequality tells us that ∥I − U∥ ≤ 2,

whence ∑
x∈V

∣∣f(x)− f
(
σ(x)

)∣∣2 ≤ 4
∑
x∈V

|f(x)|2 .

Therefore, we have

1− λ2(P )

|V|
∑
x∈V

∣∣f(x)− f
(
σ(x)

)∣∣2 ≤ 2

γ

∑
e∈E1/2

c(e)|f(e+)− f(e−)|2 .

At this point, it no longer matters whether f ⊥ 1. Furthermore, as before, this inequality

extends to H -valued f if we replace absolute values by norms:

1− λ2(P )

|V|
∑
x∈V

∥∥f(x)− f
(
σ(x)

)∥∥2 ≤ 2

γ

∑
e∈E1/2

c(e)∥f(e+)− f(e−)∥2 . (13.24)

Now take σ so that d
(
x, σ(x)

)
= diam(G) for all x ∈ V. Assume (13.23) holds with

r = 1. Then the left-hand side of (13.24) is at least
(
1 − λ2(P )

)
diam(G)2, while the

right-hand side is at most 2C2. This gives the result. ◀

Some interesting special cases are detailed in the exercises, as well as an extension to

variable edge lengths. We do one example here. The identity embedding of {0, 1}k → Rk

shows that the Hilbert distortion of the k-dimensional hypercube G is at most
√
k. In order

to apply our spectral bound, we must find λ2(P ). The hypercube is a cartesian product

graph, so let’s consider the general problem of the eigenvalues of cartesian product Markov

chains. In other words, let Pi be transition matrices for Markov chains on state spaces Vi for

i = 1, . . . , k. Also, let αi be probabilities summing to 1. Then consider the Markov chain

on the product state space V1 × · · · × Vk with each transition occurring in one coordinate

only; the ith coordinate changes with probability αi, and when it does it uses the transition

matrix Pi. Write P for the transition operator of this Markov chain. It is easy to see that

if fi is an eigenvector of Pi with eigenvalue λi, then (f1, . . . , fk) is an eigenvector of P

with eigenvalue
∑
i αiλi. It follows that the eigenvalues of P include the α-averages of

eigenvalues of Pi, with geometric multiplicities accordingly. If each Pi is reversible, then
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this gives all eigenvalues of P . For the k-dimensional hypercube, simple random walk is

a product Markov chain of this form, where Pi is simple random walk on an edge and all

αi = 1/k. Since the eigenvalues of Pi are ±1, we obtain that 1 − λ2(P ) = 2/k. Since

diam(G) = k, Theorem 13.23 gives Enflo’s result that the distortion of the k-dimensional

hypercube is exactly
√
k.

We now consider metric spaces more general than graphs. What if we know nothing

about the finite metric space X other than its cardinality: how little can we distort X by

embedding in Euclidean space, and how small can we take the dimension of the Euclidean

space to be? Of course, if the space has n points, then its image in Hilbert space spans a

subspace of Hilbert space with dimension at most n, so we may always embed it in Rn just

as well as in Hilbert space. It turns out that the dimension of the co-domain can always

be made much smaller than n without increasing the distortion much: the dimension need

be only O(log n). It turns out that also the distortion need never be more than O(log n).

Both of these theorems are proved via probability: a certain clever random embedding

will give the distortion result, while once the original space of n points is embedded in Rn,
the reduction in dimension can be effectuated by a random linear map, shown to have the

desired property with positive probability.

The dimension-reduction proposition is due to Johnson and Lindenstrauss (1984). It

is now widely used in theoretical computer science. Embeddings of networks, regarded as

metric spaces given by shortest-path distance using the edge labels as lengths, allow one to

use Euclidean geometry and analysis to solve (at least, approximately) discrete optimiza-

tion problems. Although the proofs of many theorems, including Proposition 13.24, are

probabilistic, producing a desired object only with high probability, that still allows one

to construct probabilistic algorithms that work with probability as close to 1 as desired.

One such optimization problem is to find a “sparsest cut”, i.e., to determine a subset of a

network whose edge boundary is as small as possible relative to the product of the size of

the set and the size of its complement; see Naor (2010) for a discussion of its relationship

to embeddings.

Proposition 13.24. (Dimension Reduction) For any 0 < ϵ < 1/2 and any finite

number of distinct points v1, . . . , vn ∈ Rl with the Euclidean metric, there exists a linear

map A : Rl → Rk, where k := ⌈24 log n/ϵ2⌉, that has distortion at most (1 + ϵ)/(1 − ϵ)

when restricted to the n-point space {v1, . . . , vn}.

Proof. Let A := 1√
k

(
Xi,j

)
1≤i≤k,1≤j≤l be a k × l matrix where the entries Xi,j are inde-

pendent standard normal random variables. We prove that with probability at least 1/n,

this map has distortion at most (1 + ϵ)/(1− ϵ).
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Consider a pair vp ̸= vq. Since A is a linear map, the distortion of A on the pair vp, vq

is measured by ∥Au∥, where u := (vp − vq)/∥vp − vq∥ has norm 1. Denote the coordinates

of u by u = (u1, . . . , ul). Clearly,

Au =
1√
k

 l∑
j=1

ujX1,j , · · · ,
l∑

j=1

ujXk,j

 ,

so

∥Au∥2 =
1

k

k∑
i=1

 l∑
j=1

ujXi,j

2

.

Note that for any i the sum
∑l
j=1 ujXi,j is distributed as a standard normal random

variable. So ∥Au∥2 is distributed as 1
k

∑k
i=1 Y

2
i , where Y1, . . . , Yk are independent standard

normal random variables. We wish to show that Au is quite concentrated around its mean.

To achieve that, we compute the moment generating function of Y 2, where Y ∼ N(0, 1).

For any real λ < 1/2, we have

EeλY
2

=
1√
2π

∫ ∞

−∞
eλy

2

e−y
2/2dy =

1√
1− 2λ

,

and using Taylor expansion, we get

φ(λ) :=
∣∣∣ logEeλ(Y 2−1)

∣∣∣ = ∣∣∣−1

2
log(1− 2λ)− λ

∣∣∣
=

∞∑
k=2

2k−1λk

k
≤ 2λ2

[
1 + 2λ+ (2λ)2 + · · ·

]
=

2λ2

1− 2λ
.

Now,

P
[
∥Au∥2 > 1 + ϵ

]
= P

[
eλ
∑k

i=1
(Y 2

j −1) > eλϵk
]
≤ e−λϵkekφ(λ) ≤ exp

(
−λϵk + 2λ2k

1− 2λ

)
.

Choose λ := ϵ/4; this gives that the exponent

−λϵk + 2λ2k

1− 2λ
= −ϵ

2k

4

1/2− ϵ/2

1− ϵ/2
< −ϵ

2k

12

since ϵ < 1/2. With our definition of k := ⌈24 log n/ϵ2⌉, this yields

P
[
∥Au∥2 > 1 + ϵ

]
≤ exp(−ϵ2k/12) ≤ n−2 .

One can prove similarly that

P
[
∥Au∥2 < 1− ϵ

]
≤ n−2 .

Since we have
(
n
2

)
pairs of vectors vp, vq, it follows that with probability at least 1/n,

for all p ̸= q,

(1− ϵ)∥vp − vq∥ ≤ ∥Avp −Avq∥ ≤ (1 + ϵ)∥vp − vq∥ .

In other words, the distortion of A is no more than (1 + ϵ)/(1− ϵ). ◀
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We now prove a theorem of Bourgain (1985) that any metric space on n points can

be embedded in Hilbert space with distortion O(log n); the proof gives an embedding into

Euclidean space of dimension O(log n)2. Corollary 13.22 showed that there are graphs on

n vertices whose distortion is at least a constant times log n.

Theorem 13.25. (Log Upper Bound on Distortion) For all n ≥ 2, every n-point

metric space (X, d) can be embedded in Hilbert space with distortion at most 52 log n.

Proof. We may obviously assume that n ≥ 4. Let α ≥ 60 and put L := ⌈α log n⌉. For each
integer k ≤ n that is a positive power of 2, randomly pick L sets A ⊆ X independently,

by including in A independently each x ∈ X with probability 1/k, i.e., each such set is a

Bernoulli(1/k) site percolation on X. Write m := ⌊log2 n⌋. Then altogether, we obtain

Lm random sets A1, . . . , ALm; they are independent but not identically distributed. Define

the mapping f :X → RLm by

f(x) :=
(
d(x,A1), d(x,A2), . . . , d(x,ALm)

)
. (13.25)

Here, we interpret d(x,∅) := 0. We will show that with probability at least 1−n2−α/20 log n >
0, the distortion of f is at most 52 log n.

By the triangle inequality, for any x, y ∈ X and any Ai ⊂ X we have |d(x,Ai) −
d(y,Ai)| ≤ d(x, y), so

∥f(x)− f(y)∥22 =

Lm∑
i=1

|d(x,Ai)− d(y,Ai)|2 ≤ Lmd(x, y)2 .

For the lower bound, let B(x, r) := {z ∈ X ; d(x, z) ≤ r} and B◦(x, r) := {z ∈
X ; d(x, z) < r} denote the closed and open balls of radius r centered at x. Fix two points

x ̸= y ∈ X. Set r0 := 0. Consider an integer t ≥ 0. If there is some r ≤ d(x, y)/4 such

that both |B(x, r)| ≥ 2t and |B(y, r)| ≥ 2t, then define rt to be the least such r. This gives

us a sequence of radii r0, r1, . . . , rt̂, where t̂ ∈ [0,m] is the largest index for which such an

r exists. Define one more radius, rt̂+1 := d(x, y)/4. Note that B(x, ri) and B(y, rj) are

always disjoint for i, j ≤ t̂+ 1.

Let 1 ≤ t ≤ t̂ + 1. By definition, either |B◦(x, rt)| < 2t or |B◦(y, rt)| < 2t. Let

us assume the former, without loss of generality. Now for any set A ⊆ X, we have that

A ∩ B◦(x, rt) = ∅ ⇐⇒ d(x,A) ≥ rt, and A ∩ B(y, rt−1) ̸= ∅ =⇒ d(y,A) ≤ rt−1.

Therefore, if both conditions hold, then |d(x,A)− d(y,A)| ≥ rt − rt−1. Now, we also have

|B(y, rt−1)| ≥ 2t−1. Suppose A is a Bernoulli(2−t) percolation on X. Then

P[A misses B◦(x, rt)] = (1− 2−t)|B
◦(x,rt)| > (1− 2−t)2

t

≥ 1

4
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and

P[A hits B(y, rt−1)] = 1− (1− 2−t)|B(y,rt−1)| ≥ 1− (1− 2−t)2
t−1

≥ 1− e−1/2 ≥ 1

3
.

Since these two balls are disjoint, these two events are independent, whence such an A

has probability > 1/12 to simultaneously miss B◦(x, rt) and intersect B(y, rt−1). Since

we choose L such sets independently at random, the probability that fewer than L/81 of

them have that last property is less than

e−LI1/12(1/81) < e−L/20 ≤ n−α/20

by (6.37). So with probability at least 1 − n2−α/20 log n, simultaneously for every pair

x ̸= y ∈ X and every t ∈ [1, t̂ + 1], we have at least L/81 sets that satisfy the condition.

In this case,

∥f(x)− f(y)∥22 ≥
t̂+1∑
t=1

L

81
(rt − rt−1)

2 .

Since
∑t̂+1
t=1(rt − rt−1) = rt̂+1 = d(x, y)/4 and 2 · 2t̂ ≤ n, we then have

∥f(x)− f(y)∥22 ≥ L

81

(
d(x, y)

4(t̂+ 1)

)2

(t̂+ 1) =
Ld(x, y)2

362(t̂+ 1)
≥ Ld(x, y)2

362m
.

In this case, the distortion of f is at most 36m < 52 log n, which proves our claim. ◀

If we combine this upper bound on distortion with the lower bound for networks that

we proved earlier (Corollary 13.21) in terms of average distance and spectral gap, we obtain

the following upper bound on the gap:

Corollary 13.26. Let (G, c) be an n-vertex connected network with transition operator P

and stationary probability measure π. Let D̂2 be the π-weighted average squared distance

between pairs of vertices in G. Then

1− λ2(P ) ≤
2704 log2 n

D̂2
. ◀

The advantage of this bound over Corollary 13.8 is that it does not involve πmin;

however, for simple random walk on graphs, the bound in that corollary is better.
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§13.7. Appendix: Ergodic Theorems.

In this section we give proofs of Birkhoff’s Pointwise Ergodic Theorem and Kingman’s

Subadditive Ergodic Theorem. Kingman’s Theorem was used in this chapter to show that

random walks on groups have an asymptotic speed and to prove a Shannon theorem for

entropy. Birkhoff’s Theorem is used in Chapter 16 to analyze speed and harmonic measure

for random walks on Galton-Watson trees.

Let ⟨Xn⟩n≥0 be a real-valued stochastic process. We assume there is a measurable

map T : Ω → Ω, defined on the underlying probability space, such that

(i) T is measure preserving, i.e., P ◦ T−1 = P,

(ii) Xn ◦ T = Xn+1.

Then (Ω,F ,P, T ) is a probability measure-preserving system (see Section 16.1). The

existence of T implies that the process ⟨Xn⟩ is stationary , i.e., for every n, the distribution
of (X0, X1, . . . , Xn) is the same as that of (X1, X2, . . . , Xn+1). The system is ergodic if

every F -measurable f : Ω → R that satisfies f = f ◦ T is constant almost everywhere. In

this case, we simply say that ⟨Xn⟩n≥0 is ergodic.

▷ Exercise 13.9.

(a) Prove that if the random variables Xn are i.i.d., then ⟨Xn⟩ is ergodic.
(b) Let (Ω,F ,P, T ) be a probability measure-preserving system. Let (Λ,G ) be a mea-

surable space, and suppose there are measurable maps Ψ:Ω → Λ and T̃ : Λ → Λ such

that Ψ ◦T = T̃ ◦Ψ. Prove that (Λ,G ,P ◦Ψ−1, T̃ ) is a probability measure-preserving

system. Moreover, prove that if (Ω,F ,P, T ) is ergodic, then so is (Λ,G ,P ◦Ψ−1, T̃ ).

(c) Use (b) to deduce the following statement: if ⟨Xn⟩ is ergodic, g:RN → R is measurable

with respect to the product σ-field, and Yn = g(Xn, Xn+1, . . .), then the process

⟨Yn⟩n≥0 is also ergodic.

For 0 ≤ k < m, define

S[k,m) :=

m−1∑
j=k

Xj .

Theorem 13.27. (Birkhoff’s Ergodic Theorem) Suppose ⟨Xn⟩n≥0 is ergodic and

E
[
|X0|

]
<∞. Then almost surely

lim
n→∞

1

n
S[0, n) = E[X0].

Proof. We may assume that Xn ≥ 0. The general case then follows by writing Xn =

X+
n −X−

n . Let

Ā := lim sup
n→∞

1

n
S[0, n) .

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



§7. Appendix: Ergodic Theorems 505

Since Ā = Ā ◦ T , ergodicity of T implies that Ā ∈ [0,∞] is constant a.s.

Given ϵ > 0, let α := (Ā ∧ 1/ϵ)− ϵ, where x ∧ y := min{x, y}. For each k, define

L(k) := min
{
ℓ ≥ 1 ;

S[k, k + ℓ)

ℓ
≥ α

}
<∞ .

Note that by stationarity, the distribution of L(k) does not depend on k.

First we consider the case where L(k) is uniformly bounded by a constant, M . The

key idea is to break the sum
∑n−1
j=0 Xj into sums over blocks [ki, ki+1) where the average

in each block is at least α, plus a remainder block of length less than M . Let k1 := 0 and

for i ≥ 1, define

ki+1 := ki + L(ki) .

Discarding the remainder block, we obtain for n > M that

n−1∑
j=0

Xj ≥
m∑
i=1

S
[
ki, ki + L(ki)

)
≥

m∑
i=1

L(ki)α ≥ (n−M)α ,

where m := max{i ; ki + L(ki) < n}. The last inequality follows since L(k) ≤M .

Dividing by n and taking liminf on both sides, we deduce that

lim inf
n→∞

1

n

n−1∑
j=0

Xj ≥ lim inf
n→∞

n−M

n
α = α = (Ā ∧ 1/ϵ)− ϵ .

Letting ϵ ↓ 0, it follows that lim infn→∞ S[0, n)/n ≥ Ā, whence limn→∞ S[0, n)/n = Ā.

Now suppose that ⟨L(k)⟩ is unbounded. Given ϵ > 0, define α as before and pick M

so large that P[L(k) > M ] < ϵ for all k (the probability does not depend on k). For each

k, define

X∗
k :=

{
Xk if L(k) ≤M ,
α if L(k) > M .

Also, let

S∗[k,m) :=

m−1∑
j=k

X∗
j and L∗(k) := min

{
ℓ ≥ 1 ;

S∗[k, k + ℓ)

ℓ
≥ α

}
.

Then L∗(k) ≤M . Splitting the sum as in the previous case, we have

n−1∑
j=0

X∗
j ≥ (n−M)α . (13.26)
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Hence nE[X∗
0 ] ≥ (n−M)α. Note that E[X∗

0 ] ≤ E[X0] +αϵ by definition of X∗. It follows

that

E[X0] ≥
n−M

n
α− αϵ .

Letting n → ∞ gives E[X0] ≥ α− αϵ; since α = (Ā ∧ 1/ϵ)− ϵ, by taking ϵ ↓ 0 we deduce

that a.s.

E[X0] ≥ Ā . (13.27)

Next, define Zn := X∗
n − Xn ≥ 0 for all n. Since ⟨Zn⟩ is ergodic, we can apply the

conclusions already obtained to ⟨Zn⟩ in place of ⟨Xn⟩. Thus by (13.27) we find that a.s.,

αϵ ≥ E[Z0] ≥ lim sup
n→∞

1

n

n−1∑
j=0

Zj .

Taking liminf in (13.26), we obtain that a.s.

lim inf
n→∞

1

n

n−1∑
j=0

Xj + lim sup
n→∞

1

n

n−1∑
j=0

Zj ≥ lim inf
n→∞

1

n

n−1∑
j=0

Xj +

n−1∑
j=0

Zj

 ≥ α .

Hence a.s.

lim inf
n→∞

S[0, n)

n
+ αϵ ≥ α ;

letting ϵ ↓ 0 gives lim infn→∞ S[0, n)/n ≥ Ā a.s.

It remains to prove that Ā ≥ E[X0]. If ⟨Xn⟩ is bounded, say Xn ≤ C, then Ā = E[X0]

by Lebesgue’s dominated convergence theorem. In general, for each C > 0, we have a.s.

Ā ≥ lim
n→∞

1

n

n−1∑
j=0

(Xi ∧ C) = E[X0 ∧ C] .

Letting C → ∞ and using the Monotone Convergence Theorem yields Ā ≥ E[X0]. ◀

The method used above to prove Birkhoff’s Ergodic Theorem can also be applied to

prove the Subadditive Ergodic Theorem. The Subadditive Ergodic Theorem has many

applications, e.g., in first-passage percolation and random walk on groups. The version we

present is due to Kingman. (In fact, what we state is the superadditive version.)

Theorem 13.28. (Kingman’s Superadditive Ergodic theorem) Let (Ω,F , ν, T ) be

an ergodic measure-preserving system. Let ⟨Y (m,n) ; 0 ≤ m ≤ n⟩ be a stochastic process

such that for all m ≤ n:

(i) Y (0, n) ≥ Y (0,m) + Y (m,n),
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(ii) Y (m,n) ◦ T = Y (m+ 1, n+ 1),

(iii) E
[
|Y (m,n)|

]
<∞.

Then almost surely the following limit exists:

β := lim
n→∞

Y (0, n)

n
∈ (−∞,∞] .

Moreover, β = limn→∞ E
[
Y (0, n)

]
/n a.s.

Proof. By the superadditivity assumption (i), Y (0, n) ≥ Y (0, n− 1) + Y (n− 1, n), which

inductively yields that Y (0, n) ≥
∑n
k=1 Y (k − 1, k). Applying this to n−m in place of n

and using (ii), we deduce that

Ỹ (m,n) := Y (m,n)−
n∑

k=m+1

Y (k − 1, k) ≥ 0 .

Moreover, the process Ỹ (m,n) satisfies (i), (ii) and (iii) since the process S(m,n) :=∑n
k=m+1 Y (k − 1, k) is additive. Birkhoff’s Ergodic Theorem may be applied to ⟨Y (k −

1, k)⟩k. This reduction allows us to assume that Y (m,n) ≥ 0 since otherwise we may

replace Y by Ỹ .

Let β := lim supn→∞ Y (0, n)/n. Since β = β ◦T , ergodicity ensures that β is constant

almost surely. Given ϵ > 0, let α := (β ∧ 1/ϵ)− ϵ and define

L(k) := min
{
ℓ ≥ 1 ; Y (k, k + ℓ) ≥ ℓα

}
.

Choose M so large that P[L(k) > M ] < ϵ for all k. Define

L∗(k) :=

{
L(k) if L(k) ≤M ,
1 if L(k) > M .

Let k1 := L(0) and ki+1 := ki + L∗(ki). Analogously to the proof of Birkhoff’s Ergodic

Theorem, we have

Y (0, n) ≥ Y (0, k1) + Y (k1, k2) + · · ·+ Y (km−1, km) ≥
[
(n−M)−

n∑
k=0

1[L(k)>M ]

]
α ,

where m := max{i ; ki+L∗(ki) ≤ n}. Since ⟨1[L(k)>M ]⟩k is ergodic, by Birkhoff’s Ergodic

Theorem we have that a.s.

lim inf
n→∞

Y (0, n)

n
≥ α

(
1−P[L(0) > M ]

)
≥ α(1− ϵ) .
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Letting ϵ ↓ 0 and recalling the definition of α, we conclude that lim infn→∞ Y (0, n)/n ≥ β

a.s., whence limn→∞ Y (0, n)/n = β a.s.

It remains to prove that β = limn→∞ E
[
Y (0, n)

]
/n. First, note that limn→∞ E[Y (0, n)]/n

exists by superadditivity (see Exercise 3.9). By Fatou’s lemma,

β ≤ lim inf
n→∞

E[Y (0, n)]

n
= lim
n→∞

E[Y (0, n)]

n
.

To prove the other direction, fix any integer k. By superadditivity, Y (0, kn) ≥ nY (0, k).

Hence a.s.

β = lim
n→∞

Y (0, kn)

kn
≥ Y (0, k)

k
.

Taking expectation and letting k → ∞, we obtain the other inequality. ◀

§13.8. Notes.

Our exposition of Theorem 13.2 follows that of Steele (1997). Another version of Hoeffding’s
inequality for martingales says this:

Theorem 13.29. Let ⟨(Y1,F1), . . . , (Yn,Fn)⟩ be a martingale and

ci := inf {∥Yi − Z∥∞ ; Z ∈ Fi−1} ,

where F0 := {∅,Ω} is the trivial σ-field. Then for all L > 0,

P[Yn −E[Yn] ≥ L] ≤ exp

(
− L2

2
∑n
i=1 c

2
i

)
.

A very useful special case is the following inequality of McDiarmid (1989):

Theorem 13.30. (Bounded-Differences Inequality) Let ⟨Z1, . . . , Zn⟩ be independent ran-
dom variables and f(z1, . . . , zn) be a real-valued function such that

|f(z) − f(z′)| ≤ ai

when the vectors z and z′ differ only in the ith coordinate. Write Y := f(Z1, . . . , Zn). Then for
all L > 0,

P[Y −E[Y ] ≥ L] ≤ exp

(
− 2L2∑n

i=1 a
2
i

)
.

Proof. Put Yi := E[f(Z1, . . . , Zn) | Z1, . . . , Zi] for 0 ≤ i ≤ n, so that Yn = Y . We may apply
Theorem 13.29 to this martingale with ci ≤ ai/2. To see this bound, write Yi = fi(Z1, . . . , Zi).
Define g±i (z1, . . . , zi−1) := sup fi(z1, . . . , zi−1, zi) ± inf fi(z1, . . . , zi−1, zi). Since 0 ≤ g−i ≤ ai, it
follows that ∥Yi − g+i (Z1, . . . , Zi−1)/2∥∞ ≤ ai/2. ◀

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



§8. Notes 509

See McDiarmid (1989) for a proof of Theorem 13.29, variations, and applications.
The first statement of (13.5) was in Lyons, Pemantle, and Peres (1996b). An extension to

the much harder case of directed covers was accomplished by Takacs (1997), while an extension
to the biased random walks RWλ was done by Takacs (1998).

A probabilistic proof of the Varopoulos-Carne bound, Theorem 13.4, was given by Peyre
(2008). The application of this bound to mixing time was prompted by discussions with Itai
Benjamini, James Lee and Manor Mendel.

Varopoulos’s inequality is an important part of the study of group-invariant random walks.
These are Markov chains ⟨Xn⟩ on groups Γ that have the property that the distribution of
X−1
n Xn+1 does not depend on n. For convenience, we start the random walk at the identity,

X0 = o. When the distribution of “increments” is symmetric, i.e., P[X1 = s] = P[X1 = s−1] for
all s, then the walk is reversible: we may define the conductances c(x, xs) := P[X1 = s] on the
Cayley graph G with generating set S := {s ∈ Γ ; P[X1 = s] > 0}. (We may assume that S
generates Γ without loss of generality.)

Much can be said about the fascinating area of group-invariant random walks; we give only
a small taste. Very interesting examples are provided by simple random walk on the lamplighter
groups Gd on Zd, as shown by Kăımanovich and Vershik (1983). These groups have the same
definition as G1 from Section 7.1, but the base group is Zd for d ≥ 1. They are all amenable groups
of exponential growth. But, surprisingly, the speed of simple random walk on Gd is positive iff
d ≥ 3. The reason is that transience of random walk on Zd corresponds to linear growth of the
size of the range: see Exercise 2.112.

Returning to general symmetric group-invariant random walks, let hn be the entropy of the
distribution of Xn. The sequence ⟨hn⟩ is subadditive, whence the limit

H∗ := lim
n→∞

hn
n

exists; it is the Avez entropy of the random walk. We have the following fundamental theorem,
which is a consequence of work of Avez (1974), Derriennic (1980), Kăımanovich and Vershik
(1983), and Varopoulos (1985b):

Theorem 13.31. (Speed, Entropy, and Harmonic Functions on Groups) For a symmet-
ric group-invariant random walk on a network (G, c), the following three properties are equivalent:

(i) The random walk Xn has positive speed, that is, there exists some α > 0 such that

d(X0, Xn)

n
→ α

almost surely.
(ii) H∗ > 0.

(iii) There exists a non-constant bounded harmonic function on (G, c).

A new way to prove part of this theorem is from the following inequality of Benjamini,
Duminil-Copin, Kozma, and Yadin (2012), which makes more explicit results of Erschler and
Karlsson (2010):

Theorem 13.32. For a symmetric group-invariant random walk on a network (G, c) and a har-
monic function f , we have

(E|f(X1) − f(o)|)2 ≤ 4E[f(Xn)2](hn − hn−1) .
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As the promised application, note that if f is not constant, then the left-hand side is not
0, whence if f is also bounded, then hn − hn−1 is bounded away from 0, whence H∗ ̸= 0. This
proves (iii) implies (ii) of Theorem 13.31.

A related inequality is due to Erschler and Karlsson (2010), as sharpened by Benjamini,
Duminil-Copin, Kozma, and Yadin (2011) (who also provide an extension to a wider setting): Let
µn denote the distribution of Xn.

Theorem 13.33. For a symmetric group-invariant random walk on a network (G, c), we have

∑
s∈S

∑
x∈Γ

(µn(sx) − µn(x))
2

µn(sx) + µn(x)
≤ 2|S|(hn+1 − hn) .

Proposition 13.12 is due to Peres (1997), unpublished. The inequalities of Propositions 13.3
and 13.12 were sharpened in remarkable work of Virág (2000b, 2002). In the first paper, he proved
that if RWλ is considered instead of simple random walk, then we have the bound

brG− λ

brG+ λ
≥ s (13.28)

for all graphs G, where s is the essential supremum of the liminf speed. In other words, the liminf
speed is a.s. at most the left-hand side of (13.28). In fact, he defined the branching number for
networks and proved that

brG− 1

brG+ 1
≥ s (13.29)

holds for all networks. Here, for a network (G, c), its branching number is

brG = inf

{
λ > 0 ; inf

{∑
e∈Π

c(e)λ−|e| ; Π separates o from ∞
}

= 0

}
.

Thus, if Gλ is the network on the graph G corresponding to RWλ, then brGλ = (brG)/λ, so that
(13.29) includes (13.28). In this same first paper, Virág defined a more refined notion of branching
number, the essential branching number

essbrG = inf

{
λ > 0 ; inf

{ ∑
e∈∂EW

c(e)λ−|e| ; the random walk from o a.s. leaves W

}
= 0

}
,

where W is a set of vertices, possibly infinite. When W is restricted to be finite, this is simply
another form of the definition of branching number for a network. Virág (2000b) showed that

essbrG− 1

essbrG+ 1
∨ 0 ≥ s .

In his second paper, Virág proved an inequality analogous to (13.29) that relates limsup speed to
a notion of upper growth for general networks.

Naor, Peres, Schramm, and Sheffield (2006) showed that Lp spaces for p > 2 also have
Markov type 2, as conjectured by Ball, as do trees, word-hyperbolic groups and simply connected
Riemannian manifolds of pinched negative curvature. A key technique is a theorem of T. Lyons
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and Zhang (1994) that decomposes a Markov chain into a difference of a forward and a backward
martingale.

Theorem 13.23 and Exercise 13.36 are straightforward extensions of a special case of the
main result of Jolissaint and Valette (2011).

Our proof of Proposition 13.24 is a small variant of the original proof; it was known to
many people shortly after the original paper appeared. A version of it was published by Indyk
and Motwani (1999). For more variants and history, see Matoušek (2008). The dependence
of the smallest dimension on ϵ is not known, even up to constants. Alon (2003) shows that
embedding a simplex on n points with distortion at most 1 + ϵ requires a space of dimension at
least c logn/(ϵ2 log(1/ϵ)) for some constant c.

An easier implementation of dimension reduction, Proposition 13.24, uses random variables
Xi,j that independently take the values ±1 with probability 1/2 each. That this is possible
was first noted by Achlioptas and McSherry (2001, 2007). Actually, it is possible to use random
variables that have the distribution of a random variable X for which there exists a constant C > 0
such that EeλX ≤ eCλ

2

(for X = ±1 with probability 1/2 each, we have EeλX = cosh(λ) ≤ eλ
2/2).

This is proved by the following argument due to Assaf Naor (personal communication, 2004):
Let Xi be i.i.d. with the same distribution as X and set Y :=

∑k
i=1 uiXi with

∑k
j=1 u

2
j = 1.

Take Z to be a standard normal random variable independent of {Xi}. Recall that for all real α

we have EeαZ = eα
2/2. Since Y and Z are independent, using Fubini’s Theorem we get that for

any λ < C/4,

EeλY
2

= Ee(
√
2λY )2/2 = Ee

√
2λY Z = Ee

∑k
i=1

√
2λuiXiZ = EE

[
e
∑k

i=1

√
2λuiXiZ

∣∣∣∣ Z]
≤ EeC

∑k
i=1 2λu2

iZ
2

= Ee2CλZ
2

=
1√

1 − 4Cλ
.

Then the rest of the argument is the same as Proposition 13.24.
Our exposition of the proof of Theorem 13.25 follows Linial, London, and Rabinovich (1995),

but the idea is the same as the original proof of Bourgain. Embeddings of the sort (13.25) are
known as Fréchet embeddings. For more on the use of embeddings in computer science, see
Chapter 15 of Matoušek (2002).

The following theorem was proved by Benjamini, Lyons, and Schramm (1999):

Theorem 13.34. (Speed on Percolation Clusters) Let G be a non-amenable transitive
unimodular graph. Let ω be an invariant percolation on G. Then simple random walk on some
infinite cluster of ω has positive speed with positive probability in each of the following cases:

(i) ω is Bernoulli percolation that has infinite components a.s.;
(ii) ω has a unique infinite cluster a.s.;

(iii) ω has a cluster with at least three ends with positive probability;
(iv) E[degω o | o ∈ ω] > α(G).

Equivariant maps f : Γ → H , where Γ is a group and H is a Hilbert space on which Γ acts by
isometries, are also related to speed of random walks. For example, let α#(Γ) be the supremum
of α for which there exists some equivariant f and c > 0 with ∥f(x) − f(y)∥ ≥ cdG(x, y)α,
where G is a Cayley graph of Γ (it doesn’t matter which one); α#(Γ) is called the equivariant
Hilbert compression exponent of Γ. Let β∗(Γ) be the supremum of β for which simple random
walk ⟨Xn⟩ on some Cayley graph G of Γ satisfies E[dG(X0, Xn)] ≥ cnβ for some c > 0 and all
n ≥ 0. Then α#(Γ)β∗(Γ) ≤ 1/2; see Naor and Peres (2008). For another example, Lee and
Peres (2011) prove that on every amenable transitive graph G, there is a non-constant Aut(G)-
equivariant harmonic map V(G) → H . Following an idea of Erschler, they show that this implies
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that E[dG(X0, Xn)2] ≥ n/ degG(o) for simple random walk ⟨Xn⟩. Although simple random walk
on non-amenable Cayley graphs escapes at positive (linear) speed, the same inequality without
a group-dependent constant is not known for them (except for non-Kazhdan groups, which is
precisely the class of infinite groups that admit a non-constant equivariant harmonic map).

Our proof of Theorem 13.27 follows the lines of Katznelson and Weiss (1982) and Keane
(1995), who were in turn inspired by Kamae (1982); see also Shields (1987). The proof of King-
man’s Theorem along the same lines that we present follows Steele (1997). A different concise
proof of the Birkhoff Theorem is given in Ross and Peköz (2007); this proof does not generalize
as easily to the subadditive case.

§13.9. Collected In-Text Exercises.

13.1. Show that simple random walk has speed 0 on the tree T formed from a binary tree by
joining a unary tree to every vertex, as in Figure 13.1.

13.2. Let Ω be finite. Show that for any two probability measures µ and ν on Ω, we have
∥µ − ν∥TV = 1

2

∑
z∈Ω (µ(z) − ν(z)) and 1 − ∥µ − ν∥TV =

∑
z∈Ω (µ(z) ∧ ν(z)), where x ∧ y :=

min{x, y}.

13.3. (a) Show that the two notions of distance to stationarity, δ(•) and δ(•), satisfy

δ(t) ≤ δ(t) ≤ 2δ(t) for t ≥ 0 .

(b) Show that δ(t) = max
x∈V

1

2

∑
y∈V

|pt(x, y) − π(y)| ≤ max
x,y∈V

∣∣∣∣pt(x, y) − π(y)

2π(y)

∣∣∣∣ .
13.4. Prove that in every transitive network, we have D2 ≤ 4D̂2.

13.5. Show that brG does not depend on the choice of vertex o.

13.6. Show that if G′ is a subgraph of G, then brG′ ≤ brG.

13.7. Show that λc(G) ≤ brG.

13.8. A collection of metric spaces has uniform Markov type 2 if there exists a constantM <∞
such that each space in the collection has Markov type 2 with constant M . Prove that the k-
dimensional hypercube graphs {0, 1}k do not have uniform Markov type 2. From this, construct
a space that does not have Markov type 2.

13.9. (a) Prove that if the random variables Xn are i.i.d., then ⟨Xn⟩ is ergodic.
(b) Let (Ω,F ,P, T ) be a probability measure-preserving system. Let (Λ,G ) be a measurable

space, and suppose there are measurable maps Ψ: Ω → Λ and T̃ : Λ → Λ such that Ψ ◦ T =
T̃ ◦ Ψ. Prove that (Λ,G ,P ◦ Ψ−1, T̃ ) is a probability measure-preserving system. Moreover,

prove that if (Ω,F ,P, T ) is ergodic, then so is (Λ,G ,P ◦ Ψ−1, T̃ ).
(c) Use (b) to deduce the following statement: if ⟨Xn⟩ is ergodic, g:RN → R is measurable with

respect to the product σ-field, and Yn = g(Xn,Xn+1, . . .), then the process ⟨Yn⟩n≥0 is also
ergodic.
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§13.10. Additional Exercises.

13.10. Does expected distance from the starting point always increase monotonically for a random
walk? If the whole graph is a single edge, then the answer is no; perhaps we want to make an
assumption on the walk, such as that it is lazy , i.e., for any vertex x we have that p(x, x) ≥ 1/2.
Still, if we take a binary tree of large height and then identify the leaves to a single vertex
which we join to the root by a new edge, then for (lazy) simple random walk starting at the
root, the expected distance from the root will increase for a while, but will eventually be small,
approximately

∑
n≥1 n/2

n = 2. This suggests that we might want to take expectation over a
stationary starting distribution. However, this is still not enough, though it does suffice for the
distance not to go down by a factor of more than 2.
(a) Show that the expected distance of simple random walk on the usual Cayley graph of Zd is

monotonic.
(b) Consider a cycle on N points to which we add new edges of conductance 2−N between

every pair of points whose distance in the cycle is at least
√
N . If cN denotes the sum of

conductances at a vertex in this network, then add a loop at each vertex of conductance
cN . For this new (transitive) network, where N is large and fixed, show that the expected
distance of this lazy random walk is not monotone in the number of steps.

(c) Given a finite connected network, let X = ⟨Xn⟩ be the associated network random walk
with X0 having the stationary probability distribution. Write d(x, y) for the graph distance
between two vertices x and y in the network. Define D(n) := E[d(X0,Xn)]. Show that for
j, k ≥ 0, we have D(j + k) = E[d(Xj , X

′
k) | X0 = X ′

0] when X ′ is an independent copy of X.
(d) In the setting of part (c), show that if 0 ≤ k ≤ min{m,n}, then D(n) ≤ D(m)+D(m+n−2k).

In particular, if n = 2k, then D(n) ≤ 2D(m) and if n = 2k+1, then D(n) ≤ D(m)+D(m+1)
and D(n) ≤ 2D(m) + 1.

(e) In the setting of part (c), show that if X is lazy, then there is a stationary random walk Y
on another network so that for all n ≥ 0, we have Xn = Y2n.

(f) Deduce that in the setting of part (c), if X is lazy, then D(n) ≤ 2D(m) whenever m ≥ n/2.

13.11. Show that any submartingale ⟨Yn⟩ with bounded increments satisfies lim infn→∞ Yn/n ≥
0.

13.12. Extend Theorem 13.1 beyond the uncorrelated case as follows.
(a) Show that if an ≥ 0 satisfy

∑
n an/n < ∞, then there exists an increasing sequence of

integers nk such that
∑
k ank <∞ and limk→∞ nk+1/nk = 1.

(b) Show that if Xn are random variables with |Xn| ≤ 1 a.s. and

∑
n

1

n
E

[∣∣∣∣ 1n
n∑
k=1

Xk

∣∣∣∣2
]
<∞ ,

then
∑n
k=1Xk/n→ 0 a.s.

13.13. Extend Theorem 13.1 beyond the uncorrelated case as follows.
(a) Show that if an ≥ 0 satisfy

∑
n an/n < ∞, then there exists an increasing sequence of

integers nk such that
∑
k a

2
nk

<∞ and
∑
k (nk+1/nk − 1)

2
<∞.

(b) Show that if Xn are random variables with E[X2
n] ≤ 1 and

∑
n

1

n
E

[∣∣∣∣ 1n
n∑
k=1

Xk

∣∣∣∣2
]1/2

<∞ ,

then
∑n
k=1Xk/n→ 0 a.s.
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13.14. Extend Theorem 13.2 to show that under the same hypotheses,

P(A ) ≤ e−L
2/(2

∑n
i=1 ∥Xi∥2∞)

whenever A is an event such that E
[∑n

i=1Xi | A
]
≥ L.

13.15. Let ⟨X1, . . . , Xn⟩ be bounded random variables such that their partial sums Sk =
∑k
i=1Xi

form a supermartingale. Then the Hoeffding-Azuma inequality holds, i.e., for all L > 0,

P[Sn ≥ L] ≤ exp

(
− L2

2
∑n
i=1 ∥Xi∥2∞

)
.

13.16. Let G be a finite directed graph such that at every vertex x, the number of edges going out
from x equals the number of edges coming into x, which we denote by d(x). Let b(G) denote the
maximum growth rate of the directed covers of G (the maximum is taken over possible starting
vertices of paths). Show that b(G) ≥

∑
x∈V d(x)/|V|.

13.17. Suppose that G is a finite directed graph such that there is a (directed) path from each
vertex to each other vertex. Show that there is a stationary Markov chain on the vertices of G
such that the transition probability from x to y is positive only if (x, y) ∈ E(G) and such that the
entropy of the Markov chain equals the log of the growth rate of the directed cover of G.

13.18. Let T be a tree and N an integer such that for every vertex u, there is some vertex x ≥ u
with at least two children and with |x| < |u| + N . Show that if ⟨Xn⟩ is simple random walk on
T , then

lim inf
n→∞

|Xn|
n

≥ 1

3N
a.s.

13.19. One might expect that the speed of RWλ would be monotonic decreasing in λ. But this
is not the case, even in simple examples: Let T be a binary tree to every vertex of which is joined
a unary tree as in Figure 13.1. Show that for 1 ≤ λ ≤ 2, the speed is

(2 − λ)(λ− 1)

λ2 + 3λ− 2
,

which is maximized at λ = 4/3.

13.20. Find a finite connected graph who universal cover has the property that the speed of RWλ

is not monotonic.

13.21. Consider the directed graph shown in Figure 13.2. Let T be one of its directed covers
(shown in Figure 3.2). Why is T called the Fibonacci tree? Show that the speed of RWλ on T is

(
√
λ+ 1 + 2)(

√
λ+ 1 − λ)√

λ+ 1(2 + λ+
√
λ+ 1)

for 0 ≤ λ < (
√

5 + 1)/2.

Figure 13.2. A directed graph whose cover is the Fibonacci tree.
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13.22. Identify the binary tree with the set of all finite sequences of 0s and 1s. Let the conductance
of an edge be x+ 1 when its vertex furthest from the root ends in x, where x ∈ {0, 1}. Calculate
the speed of the corresponding random walk.

13.23. Prove (13.11) by reducing to the spectral theorem from linear algebra on finite-dimensional
spaces as follows. Let Hn be finite-dimensional subspaces increasing to the entire Hilbert space.
Let An be the orthogonal projection onto Hn. Then An converges to the identity operator in the
strong operator topology, i.e., Anf converges to f in norm for every f . Since An has norm 1,
it follows that AnTAn converges to T in the strong operator topology. Furthermore, AnTAn is
really a self-adjoint operator of norm at most ∥T∥ on Hn. Since Q(AnTAn) converges to Q(T )
in the strong operator topology and thus ∥Q(AnTAn)∥ → ∥Q(T )∥, the result can be applied to
AnTAn and then deduced for T .

13.24. Suppose that (G, c) is a network with π bounded above. Suppose that for all large r, the
balls B(o, r) have cardinality at most Ard for some finite constants A, d. Show that the network
random walk ⟨Xn⟩ obeys

lim sup
n→∞

|Xn|√
n logn

≤
√
d a.s.

13.25. Suppose that (G, c) is a network with π bounded above. Suppose that for all large r, the
balls B(o, r) have cardinality at most ArdeBr

α

for some finite constants A,B, d, α, with 0 < α ≤ 1.
Show that the network random walk ⟨Xn⟩ obeys

lim sup
n→∞

|Xn|
n1/(2−α) ≤ (2B)1/(2−α) a.s.

13.26. Let ⟨Gn⟩ be a (k, c)-expander family as defined before Theorem 6.17, i.e., Gn is a regular
graph of degree k with n vertices and expansion at least c. We use the notation xn ≍ yn to mean
that the ratio yn/xn is bounded above and below by positive constants. Show that diam(Gn) ≍
logn and the mixing time of the lazy simple random walk on Gn satisfies tmix(Gn) ≍ logn, where
the implied constants depend only on k and c.

13.27. Show that for any network and any vertex a, there is a random time τ such that the
network random walk ⟨Xt⟩ satisfies Pa[Xτ = •] = π(•), the stationary distribution, and Eaτ ≤
4tmix(1/4).

13.28. Show that the hypothesis of bounded degree in Proposition 13.12 is necessary.

13.29. Give an example of a graph G of bounded degree such that λc(G) < br(G).

13.30. Show that a metric space (X, d) has Markov type 2 iff there exists a constant M < ∞
such that for every reversible Markov chain ⟨Zt⟩∞t=0 with a stationary probability measure on a
countable state space W , every mapping f : W → X, and every time t ∈ N,

E

[
d(f(Zt), f(Z0))

2

]
≤MtE

[
d(f(Z1), f(Z0))

2

]
.

13.31. Show that there is a constant c > 0 such that for all graphs G with all degrees at least 3
and girth at least g, the Hilbert distortion of G is at least c

√
g. Here, girth is the length of the

smallest simple cycle.

13.32. Let G be a finite connected transitive graph of diameter D. Show that there is a permu-
tation σ of V such that for all x ∈ V, we have d(x, σ(x)) = D.
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13.33. Let G be a finite connected graph with maximum degree k ≥ 3. Show that there exists a
permutation σ of V such that for all x ∈ V, we have d(x, σ(x)) > log (|V|/2)/(2 log(k − 1)). Hint:
Choose σ at random, not quite uniformly.

13.34. Let (G, c) be a finite connected network. Define the network Laplacian ∆G to be the
V × V matrix whose (x, y) entry is −c(x, y) if x ̸= y and is π(x) if x = y. Another way to define
∆G is that for a function f on V, we have ∆G(f) = d∗cdf . In particular, (∆G(f), f) = ∥df∥2c ≥ 0
and ∆G is self-adjoint on ℓ2(V). Thus, the eigenvalues of ∆G are non-negative. Since each
row sum of ∆G is 0, the smallest eigenvalue is 0; denote the next smallest by λ1(G, c). Write
c̄ := 2

∑
e∈E1/2

c(e)/|V|. Show that for every permutation σ of V and every map f :V → H ,

where H is a Hilbert space, we have

λ1(G, c)

2c̄
· 1

|V|
∑
x∈V

∥f(x) − f(σ(x))∥2 ≤ 1∑
e∈E1/2

c(e)

∑
e∈E1/2

c(e)∥f(e+) − f(e−)∥2 . (13.30)

13.35. Let (G, c) be a finite connected network. Write c̄ := 2
∑
e∈E1/2

c(e)/|V|. Show that for

every map f :V → H , where H is a Hilbert space, we have

λ1(G, c)

2c̄
· 1

|V|2
∑
x,y∈V

∥f(x) − f(y)∥2 ≤ 1∑
e∈E1/2

c(e)

∑
e∈E1/2

c(e)∥f(e+) − f(e−)∥2 .

Show that if D̂2 is the average squared distance between pairs of vertices in G, then the distortion
is at least D̂

√
λ1(G, c)/(2c̄).

13.36. Let (G, c) be a finite connected network. Let λ1(G) be as in Exercise 13.34. Consider a
permutation σ of V; define the displacement of σ to be

d̂(σ) :=

√
1

|V|
∑
x∈V

d(x, σ(x))
2
.

Then define the maximal displacement of G to be

d̂(G) := max
σ

d̂(σ) .

Write c̄ := 2
∑
e∈E1/2

c(e)/|V|. Show that the Hilbert distortion of G is at least d̂(G)
√
λ1(G, c)/(2c̄).

13.37. Let (G, c) be a network. Let ∆G be the corresponding Laplacian and λ1 be its smallest
positive eigenvalue. Give each edge e the length ℓ(e) and use the induced shortest-path metric dℓ
on V. Define the associated displacement of a permutation σ by

d̂(σ, ℓ) :=

√
1

|V|
∑
x∈V

dℓ(x, σ(x))
2

and the maximal displacement d̂(G, ℓ) := maxσ d̂(σ, ℓ) accordingly. Show that the Hilbert distor-

tion of (V, dℓ) is at least d̂(G, ℓ)
√
λ1/(2c̃), where c̃ := 2

∑
e∈E1/2

c(e)ℓ(e)2/|V|.
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13.38. Let G be the k-dimensional hypercube graph, but give all edges in direction i the length
ℓi (1 ≤ i ≤ k). Show that the Hilbert distortion of G (in the sense of Exercise 13.37) equals
(ℓ1 + · · · + ℓk)/

√
ℓ21 + · · · + ℓ2k.

13.39. Show that the Hilbert distortion of the cycle on 2n vertices equals n sin (π/(2n)) for every
integer n ≥ 1.

13.40. Suppose that the Hilbert distortion of G equals CG := d̂(G)
√
λ1(G)/(2c̄(G)), with nota-

tion as in Exercise 13.36. Show that the Hilbert distortion of the n-fold cartesian product G×n

of G with itself equals CG
√
n.

13.41. Let G be the cartesian product of a 3-cycle and an edge. Show that the Hilbert distortion
of the n-fold cartesian product G×n of G with itself equals

√
n.

13.42. Suppose that Gi for i = 1, 2 are transitive networks on two Cayley graphs of the same

diameter δ that have Hilbert distortion Ci := δ
√
(1 − λ2(Pi))/2. Show that the Hilbert distortion

of G1 ×G2 equals 2
√
C1C2/(C1 + C2).

13.43. Let G be the cartesian product of a 6-cycle and the 3-dimensional hypercube. Calculate
the Hilbert distortion of the n-fold cartesian product G×n of G with itself.

13.44. There is a more general version of the Birkhoff Ergodic Theorem that does not require
ergodicity. Suppose ⟨Xn⟩n≥0 is a stationary process and E[|X0|] < ∞. Then almost surely, the
partial sums satisfy

lim
n→∞

1

n
S[0, n) = E[X0 | I ] ,

where I is the invariant σ-field {A ∈ F ; T−1(A) = A}.
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Chapter 14

Hausdorff Dimension

How do we capture the intrinsic dimension of a geometric object (such as a curve, a

surface, or a body)? What if the intrinsic dimension seems not to be an integer? There

are various notions of dimension that can answer these questions; for many purposes,

Hausdorff dimension is the most important one. In Chapter 1, we saw that the Hausdorff

dimension of the boundary of a tree is merely the logarithm of the branching number of

the tree. We also saw how we can use trees to represent closed sets in Euclidean space

and thereby capture their Hausdorff dimension. In this chapter, we develop these ideas

in greater depth and give several applications. For example, we will use our work on

Galton-Watson networks from Section 5.9 to analyze random fractals, such as the zero-set

of one-dimensional Brownian motion.

§14.1. Basics.

Suppose that we have an open bounded subset of Euclidean space. One way we can

infer its dimension is via scaling: when we scale the subset by a homothety with factor r, its

volume changes by a factor rd, where d is the dimension. A disadvantage of this approach

is that it requires moving outside the object itself: it is not measured intrinsically.

Another approach is to cover the object by small sets, leaving the object itself un-

changed. If E is a bounded set in Euclidean space, let N(E, ϵ) be the number of closed balls

of diameter at most ϵ required to cover E. Then when E is d-dimensional, N(E, ϵ) ≈ C/ϵd.

To get at d, then, look at logN(E, ϵ)/ log (1/ϵ) and take some kind of limit as ϵ→ 0. This

gives the upper and lower Minkowski dimensions:

dimME := lim sup
ϵ→0

logN(E, ϵ)

log(1/ϵ)
, (14.1)

dimME := lim inf
ϵ→0

logN(E, ϵ)

log(1/ϵ)
. (14.2)

The lower Minkowski dimension is often called simply the Minkowski dimension. Note

that we could use cubes instead of balls, or even b-adic cubes

[a1b
−n, (a1+1)b−n]× [a2b

−n, (a2+1)b−n]×· · ·× [adb
−n, (ad+1)b−n] (ai ∈ Z, n ∈ N) ,
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and not change these dimensions. For future reference, we call n the order of a b-adic

cube if the sides of the cube have length b−n.

Since balls are defined in any metric space, these definitions (14.1), (14.2) make sense

in any metric space E. Thus, they are intrinsic. It is clear that the Minkowski dimension

of a singleton is 0.

Example 14.1. Let E be the standard middle-thirds Cantor set,

E :=
{∑
n≥1

xn3
−n ; xn ∈ {0, 2}

}
.

To calculate the Minkowski dimensions of E, it is convenient to use triadic intervals, of

course. We have that N(E, 3−n) = 2n, so for ϵ = 3−n, we have

logN(E, ϵ)

log(1/ϵ)
=

log 2

log 3
.

Thus, the upper and lower Minkowski dimensions are both log 2/ log 3.

One problem with Minkowski dimension is that an unbounded set will have infinite

Minkowski dimension. But things are even worse than this:

Example 14.2. Let E := {1/n ; n ≥ 1}. Given ϵ ∈ (0, 1), let k be such that 1/k2 ≈ ϵ.

Then it takes about 1/
√
ϵ intervals of length ϵ to cover E ∩ [0, 1/k] and about 1/

√
ϵ more

to cover the k points in E ∩ [1/k, 1]. It can be shown that, indeed, N(E, ϵ) ≈ 2/
√
ϵ, so

that dimME = 1/2.

This example shows that a bounded countable union of sets of Minkowski dimension 0

may have positive Minkowski dimension, even when the union consists entirely of isolated

points. For this reason, Minkowski dimensions are not entirely suitable for measuring the

dimension of a set.

So we consider yet another approach. In what dimension should we measure the size of

E? Note that a surface has infinite 1-dimensional measure but zero 3-dimensional measure.

How do we measure size in an arbitrary dimension? Define Hausdorff α-dimensional

(outer) measure by

Hα(E) := lim
ϵ→0

inf
{ ∞∑
i=1

(diamEi)
α ; E ⊆

∞∪
i=1

Ei, ∀i diamEi < ϵ
}
;

here, the sets Ei are unrestricted except for their diameter. The limit in this definition

exists because the infimum is taken over smaller classes of sets as ϵ decreases. Note that,

up to a bounded factor, the restriction of Hd to Borel sets in Rd is d-dimensional Lebesgue

measure, Ld.
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▷ Exercise 14.1.

Show that for any E ⊆ Rd, there exists a real number α0 such that α < α0 ⇒ Hα(E) = +∞
and α > α0 ⇒ Hα(E) = 0.

The number α0 of the preceding exercise is called the Hausdorff dimension of E,

denoted dimHE or simply dimE. We can also write

dimE = inf

{
α ; inf

{ ∞∑
i=1

(diamEi)
α ; E ⊆

∪
i

Ei

}
= 0

}
since the only way the sum of (diamEi)

α can be small is when all diamEi are small. Again,

these definitions make sense in any metric space (in some circumstances, you may need

to recall that the infimum of the empty set is +∞). In Rd, we could restrict ourselves to

covers by open sets, spheres or b-adic cubes; this would change Hα by at most a bounded

factor, and so would leave the dimension unchanged. Also, dimE ≤ dimME for any E: if

E ⊆
∪N(E,ϵ)
i=1 Ei with diamEi ≤ ϵ, then

N(E,ϵ)∑
i=1

(diamEi)
α ≤

N(E,ϵ)∑
i=1

ϵα = N(E, ϵ)ϵα .

Thus, if α > dimME, we get Hα(E) = 0. Indeed, Minkowski dimension is useful mostly

as an upper bound on Hausdorff dimension.

Example 14.3. Let E be the standard middle-thirds Cantor set again. For an upper

bound on its Hausdorff dimension, we use the Minkowski dimension, log 2/ log 3. For a

lower bound, let µ be the Cantor-Lebesgue measure, i.e., the law of
∑
n≥1Xn3

−n when

Xn are i.i.d. with P[Xn = 0] = P[Xn = 2] = 1/2. Let Ei be triadic intervals whose union

covers E. If µ(Ei) ̸= 0 and Ei has diameter 3−n, we have

(diamEi)
log 2/ log 3 = 2−n = µ(Ei) .

Therefore, ∑
i

(diamEi)
log 2/ log 3 ≥

∑
i

µ(Ei) ≥ µ(E) = 1 .

(Except for wasteful covers, these inequalities are equalities.) This shows that dimE ≥
log 2/ log 3. Therefore, the Hausdorff dimension is in fact equal to the Minkowski dimension

in this case.

Example 14.4. If E := {1/n ; n ≥ 1}, then dimE = 0: For any α, ϵ > 0, we may cover

E by the sets Ei := [1/i, 1/i+ (ϵ/2i)1/α], showing that Hα(E) < ϵ.

Example 14.5. Let E be the Cantor middle-thirds set. The set E×E is called the planar

Cantor set. We have dim(E×E) = dimM(E×E) = log 4/ log 3. To prove this, note that it
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requires 4n triadic squares of order n to cover E ×E, whence dimM(E ×E) = log 4/ log 3.

On the other hand, if µ is the Cantor-Lebesgue measure, then µ×µ is supported by E×E.

If Ei are triadic squares covering E × E, then as in Example 14.3,∑
i

(diamEi)
log 4/ log 3 ≥

∑
i

(µ× µ)(Ei) ≥ (µ× µ)(E × E) = 1 .

Hence dim(E × E) ≥ log 4/ log 3.

▷ Exercise 14.2.

The Sierpinski carpet is the set

E :=

{(∑
n

xn3
−n,

∑
n

yn3
−n
)
; xn, yn ∈ {0, 1, 2}, ∀n xn ̸= 1 or yn ̸= 1

}
.

That is, the unit square is divided into its nine triadic subsquares of order 1 and the interior

of the middle one is removed. This process is repeated on each of the remaining 8 squares,

and so on. Show that dimE = dimME = log 8/ log 3.

▷ Exercise 14.3.

The Sierpinski gasket is the set obtained by partitioning an equilateral triangle into four

congruent pieces and removing the interior of the middle one, then repeating this process

ad infinitum on the remaining pieces, as in Figures 14.1 and 14.2. Show that its Hausdorff

dimension is log 3/ log 2.

Figure 14.1. The first three stages of the construction of the Sierpinski gasket.

▷ Exercise 14.4.

Show that for any sets En, dim
(∪∞

n=1En
)
= supdimEn.

▷ Exercise 14.5.

Show that if E1 ⊇ E2 ⊇ · · ·, then dim
∩
En ≤ limdimEn.
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Figure 14.2. The Sierpinski gasket, drawn by O. Schramm.

One can extend the notion of Hausdorff measures to other gauge functions h:R+ →
R+ in place of h(t) := tα. One requires merely that h be continuous and increasing

and that h(0+) = 0. This allows for finer examination of the size of E in cases when

HdimE(E) ∈ {0,∞}.

§14.2. Coding by Trees.

There are general ways to associate rooted trees to bounded sets in Rd and vice versa.

We start with the simplest case, closed sets in [0, 1]. We described this case in Section 1.10,

following Furstenberg (1970). Namely, consider the system of b-adic subintervals of [0, 1].

Given a tree T , suppose that we associate to each x ∈ Tn a b-adic interval Ix ⊆ [0, 1] of order

n in such a way that |Ix∩Iy| ≤ 1 for |x| = |y|, x ̸= y, and that Ix is contained in Iz when z

is the parent of x. Then the tree T codes (in base b) the closed set E :=
∩
n≥0

∪
x∈Tn

Ix.

Each ray in T corresponds to a point in E, though this correspondence might not be

injective. Nevertheless, we can think of the boundary of T (i.e., the set of all rays of T ) as

representing E.

Example: The Cantor middle-thirds set for the base b = 3 is associated to the binary

tree, shown in Figure 14.3. Note that if, instead of always taking out the middle third in

the construction of the set, we took out the last third, we could still code it by the binary

tree, but with different 3-adic intervals associated to the vertices of the tree. However, if

we code in base 2, we get a different tree, as in Figures 14.4 and 14.5.
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Figure 14.3. The Furstenberg coding of the Cantor middle-thirds set in base 3.

Figure 14.4. The Furstenberg coding of the Cantor middle-thirds set in base 2.

Figure 14.5. The tree of the Furstenberg coding of the Cantor middle-
thirds set in base 2. The tree has branching number 2log 2/ log 3 = 1.55−.
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If T codes E in base b, then we claim that

brT = bdimE , (14.3)

grT = bdimM E , (14.4)

grT = bdim
M E . (14.5)

For note that a cover of E by b-adic intervals is essentially the same as a cutset of T . If

the interval Ix is associated to the vertex x ∈ T , then diam Ix = b−|x|. Thus,

dimE = inf
{
α ; inf

Π

∑
e∈Π

b−α|e| = 0
}
.

Comparing this with the formula (3.4) for the branching number gives (14.3).

▷ Exercise 14.6.

Deduce (14.4) and (14.5) in the same way.

Therefore, a tree that codes a set determines the dimension of the set, and the place-

ment of particular digits in the coding doesn’t influence the dimension. Recall from Sec-

tion 1.10 that there is a maximal tree T[b](E) that codes a given closed set, E. Its boundary

differs from the boundary of any tree T that codes E by at most countably many rays,

whence the two boundaries have the same Hausdorff dimension and the two trees have

the same branching number. Since the branching number of a tree is a kind of average

number of children per vertex, and since vertices of a tree that codes E correspond to

b-adic intervals that intersect E, we may say that if a given b-adic interval intersects E,

then on “average”, the number of b-adic subintervals intersecting E of order one greater

than the given interval is bdimE .

Example 14.6. We may easily rederive the Hausdorff and Minkowski dimensions of the

Cantor middle-thirds set, E. Since E is coded by a binary tree, it has branching num-

ber and growth 2. From (14.3) and (14.4), it follows that the Hausdorff and Minkowski

dimensions of E are both log 2/ log 3.

In the context of ergodic theory, important examples are given by closed subsets

E ⊆ [0, 1] that are invariant under the map s 7→ bs (mod 1), i.e., bE ⊆ E (mod 1). This

condition of invariance is equivalent to the condition that T[b](E) be 0-subperiodic; indeed,

this was Furstenberg’s original motivation for studying such trees.

▷ Exercise 14.7.

Reinterpret Theorems 3.5 and 5.15 as theorems on random walks on b-adic intervals inter-

secting E and on random b-adic possible coverings of E.
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There is a more general way than b-adic coding to relate trees to certain types of sets.

Let T be a tree with root o; suppose that to each vertex x ∈ V(T ) there is associated a

compact non-empty set Ix ⊆ Rd. Denote the interior of a set I by int I and the parent of

x by
↼
x. Suppose that the following properties hold:

Ix = int Ix , (14.6)

x ̸= o =⇒ Ix ⊆ I↼
x
, (14.7)

↼
y =

↼
x and y ̸= x =⇒ int Iy ∩ int Ix = ∅ , (14.8)

∀ξ ∈ ∂T lim
x∈ξ

diam Ix = 0 , (14.9)

C1 := inf
x ̸=o

diam Ix
diam I↼

x

> 0 , (14.10)

C2 := inf
x

Ld(int Ix)
(diam Ix)d

> 0 . (14.11)

For example, if the sets Ix are b-adic cubes of order |x|, this is just a multidimensional

version of the previous coding. For the Sierpinski gasket (Exercise 14.3), no b-adic coding is

natural, but equilateral triangles give natural sets Ix. Similarly, for the von Koch snowflake

(Figure 14.6), natural sets to use are again equilateral triangles (see Figure 14.7).

Figure 14.6. The first three stages of the construction of the von Koch snowflake.

▷ Exercise 14.8.

Prove that under the conditions (14.6)–(14.11),

lim
n→∞

max
|x|=n

diam Ix = 0 .
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Figure 14.7. Each side of the von Koch snowflake is coded by a 4-ary
tree, each vertex of which is associated to an equilateral triangle. The
children of a vertex have triangles on the base of the parent triangle. The
sets Ix for one side are shown for the root and the next two generations.

We may associate the following set to T and I•:

IT :=
∪
ξ∈∂T

∩
x∈ξ

Ix .

If T is locally finite (as it must be when C1 and C2 are positive), then we also have

IT =
∩
n≥1

∪
|x|=n

Ix . (14.12)

▷ Exercise 14.9.

Prove (14.12) (if T is locally finite).

For example, IT[b](E) = E.

The sets ⟨Ix ; x ∈ T ⟩ are actually the only ones we need consider in determining

dim IT or even, up to a bounded factor, Hα(IT ):

Theorem 14.7. (Transference of Hausdorff Dimension and Measure) If (14.6)–

(14.11) hold, then

dim IT = inf
{
α ; inf

Π

∑
e(x)∈Π

(diam Ix)
α = 0

}
. (14.13)

In fact, for α > 0, we have

Hα(IT ) ≤ lim inf
d(0,Π)→∞

∑
e(x)∈Π

(diam Ix)
α ≤ CHα(IT ) , (14.14)

where

C3 :=
4d

C2Cd1
.

To prove Theorem 14.7, we need a little geometric fact about Euclidean space:
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Lemma 14.8. Let E and Oi (1 ≤ i ≤ n) be subsets of Rd such that Oi are open and

disjoint, Oi ∩ E ̸= ∅, diamOi ≤ diamE, and Ld(Oi) ≥ C(diamE)d. Then n ≤ 4d/C.

Proof. Fix x0 ∈ E and let B be the closed ball centered at x0 with radius 2 ·diamE. Then

Oi ⊆ B, whence

(4 diamE)d ≥ Ld(B) ≥
n∑
i=1

Ld(Oi) ≥ nC(diamE)d . ◀

▷ Exercise 14.10.

Prove the left-hand inequality of (14.14).

Proof of Theorem 14.7. For the right-hand inequality of (14.14), consider a cover by sets

of positive diameter

IT ⊆
∞∪
i=1

Ei .

Without loss of generality, we may assume that diamEi < diam Io for each i. Thus, the

set

Πi :=
{
e(x) ; diam Ix ≤ diamEi < diam I↼

x

}
is not empty. In fact, Πi is a cutset, so

IT ∩ Ei ⊆ IT ⊆
∪

e(x)∈Πi

Ix .

Also, for e(x) ∈ Πi, we have

Ld(int Ix) ≥ C2(diam Ix)
d ≥ C2C

d
1 (diam I↼

x
)d > C2C

d
1 (diamEi)

d ,

whence by Lemma 14.8,

Π′
i :=

{
e(x) ∈ Πi ; Ix ∩ Ei ̸= ∅

}
has at most C3 = 4d/(C2C

d
1 ) elements. Now

IT ⊆
∞∪
i=1

(
Ei ∩

∪
e(x)∈Π′

i

Ix

)
⊆
∪
i

∪
e(x)∈Π′

i

Ix

and the cutset Π :=
∪∞
i=1 Π

′
i satisfies∑

e(x)∈Π

(diam Ix)
α ≤

∑
i, e(x)∈Π′

i

(diam Ix)
α ≤

∑
i, e(x)∈Π′

i

(diamEi)
α ≤ C3

∑
i

(diamEi)
α . ◀
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Example 14.9. For two-dimensional coding by b-adic squares, we have diam Ix =
√
2b−|x|.

In this case, (14.13) says that

dim IT =
dim ∂T

log b
,

which is actually the same as (14.3), the one-dimensional coding formula. The ran-

dom fractal percolation set Qb(p) studied in Theorem 5.33 is coded by the cluster of

the root under Bernoulli(p) percolation on a b2-ary tree, provided that cluster is infinite

(so that Qb(p) ̸= ∅). Therefore, Theorem 14.7 and Corollary 5.10 give that dimQb(p) =

logb(pb
2) = 2 + logb p a.s. given that Qb(p) ̸= ∅.

§14.3. Galton-Watson Fractals.

Example 14.9 showed how to compute the Hausdorff dimension of fractal percolation

in the plane, a simple process corresponding to Bernoulli percolation. In this section, we

combine the transference Theorem 14.7 with Falconer’s Theorem 5.35 on Galton-Watson

networks to determine the dimension of more general random fractals. Thus, suppose that

the sets Ix are randomly assigned to a Galton-Watson tree in such a way that the regularity

conditions

Ix = int Ix ,

x ̸= o =⇒ Ix ⊆ I↼
x
,

↼
y =

↼
x and y ̸= x =⇒ int Iy ∩ int Ix = ∅ ,

inf
x

Ld(int Ix)/(diam Ix)
d > 0

are satisfied a.s. and their normalized diameters c
(
e(x)

)
:= diam Ix/diam I0 are the capac-

ities of a Galton-Watson network with generating random variable L := (L,A1, . . . , AL),

0 < Ai < 1 a.s. Because Galton-Watson trees can have leaves, we denote by T ′ the subtree

of T that consists of vertices with infinite lines of descent. (You might want to glance at

the examples following the proof of the theorem at this point.) The following result is due

to Falconer (1986) and Mauldin and Williams (1986).

Theorem 14.10. (Dimension of Galton-Watson Fractals) Almost surely on nonex-

tinction,

dim IT ′ = min

{
α ; E

[ L∑
i=1

Aαi

]
≤ 1

}
.
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Proof. Since Io ⊇
∪

|x|=1 Ix and ⟨int Ix ; |x| = 1⟩ are disjoint, Ld(Io) ≥
∑

Ld(int Ix),
whence

(diam Io)
d ≥ Ld(Io) ≥ C2

∑
(diam Ix)

d = C2(diam Io)
d
∑
|x|=1

Adx ,

and so E
[∑L

i=1A
d
i

]
≤ 1/C2. By Lebesgue’s dominated convergence theorem, α 7→

E
[∑L

1 A
α
i

]
is continuous on [d,∞] and has limit 0 at ∞, so there is some α such that

E
[∑L

1 A
α
i

]
≤ 1. Since α 7→ E

[∑L
1 A

α
i

]
is continuous from the right on [0,∞) by the

Monotone Convergence Theorem, it follows that the minimum written in the theorem

statement exists.

To prove that this minimum is the Hausdorff dimension of IT ′ , assume first that

∃ϵ > 0 ∀i ϵ ≤ Ai ≤ 1− ϵ a.s. Then the last regularity conditions, (14.9) and (14.10), are

satisfied a.s.: ∀ξ ∈ ∂T ′ limx∈ξ diam Ix = 0,

inf
x ̸=o

diam Ix
diam I↼

x

= inf
x ̸=o

Ax ≥ ϵ.

Hence Theorem 14.7 assures us that

dim IT ′ = inf

{
α ; inf

Π

∑
e(x)∈Π

(diam Ix)
α = 0

}

= inf

{
α ; inf

Π

∑
e∈Π

c(e)α = 0

}
.

Now the capacities ⟨c(e)α⟩ come from a Galton-Watson network with L (α) := (L,Aα1 , . . . , A
α
L),

whence Falconer’s Theorem 5.35 says that unless
∑L

1 A
α
i = 1 a.s.,

inf
Π

∑
e∈Π

c(e)α = 0 a.s. if E
[ L∑

1

Aαi

]
≤ 1

while

inf
Π

∑
e∈Π

c(e)α > 0 a.s. if E
[ L∑

1

Aαi

]
> 1 .

This gives the result since there is at most one exceptional value of α where
∑L

1 A
α
i = 1

a.s.

For the general case, note that

E
[ L∑

1

Aαi
]
≤ 1 =⇒ inf

Π

∑
c(e)α = 0 a.s. =⇒ Hα(IT ′) = 0 a.s.,
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except possibly for one exceptional value of α that we may ignore. For the other direction,

consider the Galton-Watson subnetwork T(ϵ) consisting of those branches with ϵ ≤ Ai ≤
1− ϵ. Thus IT ′

(ϵ)
⊆ IT ′ . From the above, we have

E
[ L∑

1

Aαi 1ϵ≤Ai≤1−ϵ

]
> 1 =⇒ Hα(IT ′

(ϵ)
) > 0 a.s. on nonextinction of T(ϵ)

=⇒ Hα(IT ′) > 0 a.s. on nonextinction of T(ϵ) .

Since P[T ′
(ϵ) ̸= ∅] → P[T ′ ̸= ∅] as ϵ→ 0 by Exercise 5.23 and

E
[ L∑

1

Aαi

]
= lim
ϵ→0

E
[ L∑

1

Aαi 1ϵ≤Ai≤1−ϵ

]
by the Monotone Convergence Theorem, it follows that E

[∑
Aαi
]
> 1 ⇒ Hα(IT ′) > 0 a.s.

on T ′ ̸= ∅. ◀

Remark 14.11. By Falconer’s theorem, Hα(IT ′) = 0 a.s. unless
∑L

1 A
α
i = 1 a.s., where

α := dim IT ′ , in which case Hα(IT ′) =
(
diam Io

)α
a.s.

Example 14.12. Divide [0, 1] into 3 equal parts and keep each independently with prob-

ability p. Repeat this with the remaining intervals ad infinitum. The Galton-Watson

network comes from the random variable L = (L,A1, . . . , AL), where L is a Bin(3, p)-

random variable, so that E[sL] = (1 − p + ps)3, and Ai ≡ 1/3. Thus extinction is a.s. iff

p ≤ 1/3, while for p > 1/3, the probability of extinction q satisfies (1 − p + pq)3 = q and

a.s. on nonextinction,

dim IT ′ = min

{
α ; E

[ L∑
1

Aαi

]
≤ 1

}
= min

{
α ; (1/3)α3p ≤ 1

}
= 1 + log p/ log 3 .

Example 14.13. Remove from [0, 1] a central portion leaving two intervals of random

length A1 = A2 ∈ (0, 1/2). Repeat on the remaining intervals ad infinitum. Here L ≡ 2.

There is no extinction and a.s. dim IT is the root of

1 = E[Aα1 +Aα2 ] = 2E[Aα1 ] .

For example, if A1 is uniform on (0, 1/2), then

E[Aα1 ] = 2

∫ 1/2

0

tα dt =
1

2α(α+ 1)
,
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whence dim IT ≈ 0.457.

Example 14.14. Suppose M and N are random integers with M ≥ 2 and 0 ≤ N ≤M2.

Divide the unit square into M2 equal squares and keep N of them (in some manner). Re-

peat on the remaining squares ad infinitum. The probability of extinction of the associated

Galton-Watson network is a root of E[sN ] = s and a.s. on nonextinction,

dim IT ′ = min
{
α ; E[N/M2α] ≤ 1

}
.

By selecting the squares appropriately, one can have infinite connectivity of IT ′ .

Example 14.15. Here, we consider the zero set E of Brownian motion Bt on R. That

is, E := {t ; Bt = 0}. To find dimE, we may restrict to an interval [0, t0] where Bt0 = 0,

such as the largest t ≤ 2 with Bt = 0. Of course, t0 is random. By scale invariance of Bt

and of Hausdorff dimension, the time t0 makes no difference. So let’s condition on B1 = 0.

This is known as Brownian bridge . Calculation of finite-dimensional marginals shows

Bt given B1 = 0 to have the same law as B0
t := Bt − tB1. One way to construct E is as

follows. From [0, 1], remove the interval (τ1, τ2), where τ1 := max
{
t ≤ 1

2 ; B
0
t = 0

}
and

τ2 := min
{
t ≥ 1

2 ; B
0
t = 0

}
. Independence and scaling shows that E is obtained as the

iteration of this process. That is, E = IT , where T is the binary tree and A1 := τ1 and

A2 := 1−τ2 are the lengths of the surviving intervals. One can show that the joint density

of A1 and A2 is

P[A1 ∈ da1, A2 ∈ da2] =
1

2π

1√
a1a2(1− a1 − a2)3

da1 da2 (a1, a2 ∈ [0, 1/2]) .

Straightforward calculus then shows that E[A
1/2
1 + A

1/2
2 ] = 1, so dimE = 1/2 a.s. This

result is due to Taylor (1955), but this method is due to Graf, Mauldin, and Williams

(1988).

More examples of the use of Theorem 14.10 can be found in Mauldin and Williams

(1986).
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§14.4. Hölder Exponent.

There is an intrinsic metric on the boundary of a tree; when we use it to compute

the Hausdorff dimension of the boundary, we find a simple relationship to the Hausdorff

dimension of a set coded by T with b-adic intervals. This ability to work purely on the

tree for much of the calculation has advantages and also suggests interesting extensions,

which we begin to study here.

For any tree T with root o, consider ξ, η ∈ ∂T . Define ξ ∧ η to be the vertex common

to both ξ and η that is furthest from o if ξ ̸= η and ξ∧η := ξ if ξ = η. Write |ξ| = ∞. Now

use these notations to define a metric on the boundary ∂T by d(ξ, η) := e−|ξ∧η| (ξ ̸= η).

With this metric, we can consider dimE for E ⊆ ∂T . To compute Hausdorff dimensions

of subsets of ∂T , it suffices to consider covers by sets of the form

βx := {ξ ∈ ∂T ; x ∈ ξ} (14.15)

since any subset of ∂T is contained in such a special set of the same diameter. (Namely,

if F ⊆ ∂T and x :=
∧
ξ∈F ξ, in the obvious extension of the ∧ notation, then F ⊆ βx and

diamF = diamβx.)

▷ Exercise 14.11.

What is diamβx?

In the particular case E = ∂T , we have

dim ∂T = log brT (14.16)

as in Section 1.8. More generally, when E ⊆ ∂T is closed and T (E) denotes the set of

vertices that belong to some ray in E, then

dimE = log brT (E) .

By the transference Theorem 14.7, we have

Corollary 14.16. If the sets Ix of Section 14.2 are b-adic cubes of order |x| in Rd, then

dim IT = dim ∂T/ log b . ◀

When this corollary is applied to a tree T that b-adically codes a set E, we obtain

(14.3) again by (14.16).
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We now consider extensions of the ideas of Hausdorff dimension. Let T be an infinite

locally finite rooted tree and µ be a Borel probability measure on ∂T . A subset E ⊆ ∂T

is a carrier of µ if µ(E) = 1. Even if the support of µ is ∂T , there may still be “much

smaller” carriers of µ. That is, there may be sets E ⊆ ∂T with dimE < dim ∂T and

µ(E) = 1. This suggests defining the dimension of µ as

dimµ := min
{
dimE ; µ(E) = 1

}
. (14.17)

▷ Exercise 14.12.

Show that this minimum exists.

▷ Exercise 14.13.

Let T be an infinite locally finite tree. Show that there is a one-to-one correspondence

between unit flows θ from o to ∂T and Borel probability measures µ on ∂T satisfying

θ(x) = µ(βx) .

Here and in the sequel, we write θ(x) for θ(
↼
x, x).

The dimension of a measure is most often computed not by using the definition, but

by calculating pointwise information, and then using the following theorem of Billingsley

(1965). For a ray ξ = ⟨ξ1, ξ2, . . .⟩ ∈ ∂T , define the Hölder exponent of µ at ξ to be

Hö(µ)(ξ) := lim inf
n→∞

1

n
log

1

µ
(
βξn
) .

For example, if T is the m-ary tree, θ(x) := m−|x|, and µ is the probability measure

corresponding to the unit flow θ, then the Hölder exponent of µ is everywhere logm.

Theorem 14.17. (Dimension and Hölder Exponent) For any Borel probability mea-

sure µ on the boundary of a tree,

dimµ = µ- ess supHö(µ) .

Proof. Let d := µ- ess supHö(µ). We first exhibit a carrier of µ whose dimension is at most

d. Then we show that every carrier of µ has dimension at least d. Let θ be the unit flow

that corresponds to µ as in Exercise 14.13.

Given k ∈ N and α > d, let

E(k, α) : =
{
ξ ∈ ∂T ; ∃n ≥ k (1/n) log

(
1/θ(ξn)

)
≤ α

}
=
{
ξ ∈ ∂T ; ∃n ≥ k e−nα ≤ θ(ξn)

}
.
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Then clearly
∩
α

∩
k E(k, α) is a carrier of µ. To show that it has Hausdorff dimension at

most d, it suffices, by Exercise 14.5, to show that dim
∩
k E(k, α) ≤ α. Clearly E(k, α) is

open, so is a countable union of disjoint sets of the form (14.15), call them βxi , with all

|xi| ≥ k and

(diamβxi)
α ≤ e−|xi|α ≤ µ(βxi) .

Since ∑
i

(diamβxi)
α ≤

∑
i

µ(βxi) ≤ 1

and the sets βxi also cover
∩
k E(k, α), it follows that Hα

(∩
k E(k, α)

)
≤ 1. This implies

our desired inequality dim
∩
k E(k, α) ≤ α.

For the other direction, suppose that F is a carrier of µ. For k ∈ N and α < d, let

F (k, α) :=
{
ξ ∈ F ; ∀n ≥ k (1/n) log

(
1/θ(ξn)

)
≥ α

}
.

Then µ
(
F (k, α)

)
> 0 for sufficiently large k. Fix such a k. To show that dimF ≥ d, it

suffices to show that dimF (k, α) ≥ α. Indeed, reasoning similar to that in the preceding

paragraph shows that Hα

(
F (k, α)

)
≥ µ

(
F (k, α)

)
, which completes the proof. ◀

Example 14.18. For an example of the calculation of Hölder exponent, let T be an infinite

rooted tree without leaves (except possibly the root). Consider the harmonic measure of

simple non-backtracking random walk on T , which is the random walk that starts at

the root and chooses randomly (uniformly) among the children of the present vertex as the

next vertex. The corresponding harmonic measure on ∂T is called visibility measure ,

denoted VIST , and corresponds to the equally-splitting flow . Suppose now that T is

a Galton-Watson tree starting, as usual, with one particle and having L children, where

L > 0 a.s. Identifying measure and flow, we have that VIST is a flow on the random tree

T . Let GW denote the distribution of Galton-Watson trees. The probability measure

that corresponds to choosing a Galton-Watson tree T at random followed by a ray of ∂T

chosen according to VIST will be denoted VIS×GW. Formally, this is

(VIS×GW)(F ) :=

∫ ∫
1F (ξ, T ) dVIST (ξ) dGW(T ) .

Since
1

n
log

1

VIST (ξn)
=

1

n

n−1∑
k=0

log
VIST (ξk)

VIST (ξk+1)

and the random variables VIST (ξk−1)/VIST (ξk) are VIS×GW-i.i.d. with the same distri-

bution as L, the strong law of large numbers gives

Hö(VIST )(ξ) = E[logL] for VIS×GW-a.e. (ξ, T ) .
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Thus dimVIST = E[logL] for GW-a.e. tree T . Jensen’s inequality (or the arithmetic

mean-geometric mean inequality) shows that this dimension is less than logm except in

the deterministic case L = m a.s. Recall that the Hausdorff dimension of the full boundary

∂T is logm a.s. by Corollary 5.10.

§14.5. Derived Trees.

This section is based on some ideas of Furstenberg; see Furstenberg (2008) for this

in the context of Euclidean sets. In the context of Euclidean sets coded by trees, it is

important to view trees as (rooted and) labelled, as in Section 5.1. However, since our

interest centers more on the trees themselves, we will not label the trees; that is, we

consider rooted trees equal if they are rooted isomorphic.

Most of the time, for the sake of compactness, we need to restrict our trees to have

uniformly bounded degree. Thus, fix an integer r and let T be the r-ary tree. We will

consider only subtrees of T rooted at the root of T and that have no leaves (other than

possibly the root). Recall that for a tree T and vertex v ∈ T , we denote by T v the subtree

of T formed from the descendants of v. We view T v as a rooted subtree of T with v

identified with the root of T. Given a unit flow θ on T and a vertex v ∈ T , the conditional

flow through v is defined to be the unit flow

θv(x) := θ(x)/θ(v) for x ≥ v

on T v when θ(v) ̸= 0. The class of subtrees of T is given the natural topology as in

Exercise 5.2. This class is compact. For a subtree T , let D(T ) denote the closure of the

set of its descendant trees, {T v ; v ∈ T}. We call these trees the derived trees of T . For

example, D(T) = {T}.

▷ Exercise 14.14.

Let T code the set {0} ∪ {1/n ; n ≥ 1} in base r. Show that T ∈ D(T ).

▷ Exercise 14.15.

Show that if T ∗ ∈ D(T ), then D(T ∗) ⊆ D(T ).

Define

T vn := {x ∈ T v ; |x| ≤ |v|+ n} ,

Mn(v) := |∂LT vn | = |{x ∈ T v; |x| = |v|+ n}| ,
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dim sup ∂T := lim
n→∞

max
v∈T

1

n
logMn(v) , (14.18)

dim inf ∂T := lim
n→∞

min
v∈T

1

n
logMn(v) . (14.19)

▷ Exercise 14.16.

Show that these limits exist.

Clearly,

dim ∂T ≤ dimM ∂T = lim inf
n→∞

1

n
logMn(o) ≤ dim sup ∂T . (14.20)

Also, if α < dim inf ∂T , then there is some n such that

min
v∈T

1

n
logMn(v) > α ,

i.e., Mn(v) ≥ ⌈eαn⌉ for all v ∈ T . Thus, in the notation of Exercise 3.25, T [n] contains a

⌈eαn⌉-ary subtree. Therefore dim ∂T [n] ≥ log⌈eαn⌉ ≥ αn, whence dim ∂T ≥ α. Thus, we

obtain

dim ∂T ≥ dim inf ∂T . (14.21)

Since for any T ∗ ∈ D(T ), v ∈ T ∗, and n ≥ 0, there is some w ∈ T such that Twn =

(T ∗)vn, we have dim inf ∂T ≤ dim inf ∂T ∗ and dim sup ∂T ∗ ≤ dim sup ∂T . Combining these

inequalities with (14.20) and (14.21) as applied to T ∗, we arrive at

Proposition 14.19. For any T ∗ ∈ D(T ), we have

dim inf ∂T ≤ dim ∂T ∗ ≤ dim sup ∂T . ◀

▷ Exercise 14.17.

Show that if T is subperiodic, then dim ∂T = dim sup ∂T , while if T is superperiodic, then

dim ∂T = dim inf ∂T .

Proposition 14.19 is sharp in a strong sense, as shown by the following theorem of

Furstenberg (compare Theorem 5.1 of Furstenberg (2008)):

Theorem 14.20. If T is a tree of uniformly bounded degree, then there exist T ∗ ∈ D(T )

and a unit flow θ∗ on T ∗ such that

dim ∂T ∗ = dim sup ∂T , (14.22)
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∀x ∈ T ∗ \ {o} 1

|x|
log

1

θ∗(x)
≥ dim sup ∂T , (14.23)

and for θ∗-a.e. ξ ∈ ∂T ∗

Hö(θ∗)(ξ) = dim sup ∂T . (14.24)

Similarly, there exist T ∗∗ ∈ D(T ) and a unit flow θ∗∗ on T ∗∗ such that

dim ∂T ∗∗ = dim inf ∂T (14.25)

and

∀x ∈ T ∗∗ \ {o} 1

|x|
log

1

θ∗∗(x)
≤ dim inf ∂T . (14.26)

Proof. (Ledrappier and Peres) We concentrate first on (14.23): the idea is to find T ∗ as

the support of θ∗ and to find θ∗ as the limit of flows on finite trees. We claim that for any

positive integer L and any α < dim sup ∂T , there is some vertex v ∈ T and some unit flow

θ on T vL (from v to ∂LT
v
L) such that

∀x ∈ T vL \ {v} 1

|x| − |v|
log

1

θ(x)
≥ α . (14.27)

Suppose for a contradiction that this is not the case for some L and α. By choice of α,

there are v and n so that Mn(v)
1/n > eα. Since rL/n → 1 as n → ∞, we may choose v

and n so that n is a multiple of L and

Mn(v)
1/n > eαrL/n . (14.28)

(Recall that r is the degree of the root of T.) Let θ be the flow on T vn such that

∀x ∈ ∂LT
v
n \ {v} θ(x) = 1/Mn(v) .

Then θ restricts to a flow on T vL, whence, by our assumption that (14.27) fails,

∃x1 ∈ T vL θ(x1) > e−(|x1|−|v|)α .

By similar reasoning, define a finite sequence ⟨xk⟩ inductively as follows. Provided |xk| −
|v| ≤ n− L, choose xk+1 ∈ T xk

L such that θxk(xk+1) > e−(|xk+1|−|xk|)α. Let the last index

thereby achieved on ⟨xk⟩ be K. Then, using x0 := v, we have

θ(xK) =

K−1∏
k=0

θxk(xk+1) > e−(|xK |−|v|)α ≥ e−nα >
rL

Mn(v)
,
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where in the last step we have used (14.28). On the other hand, since |v|+ n− |xK | < L,

we have

θ(xK) =

∣∣∂LT xK

|v|+n−|xK |
∣∣

Mn(v)
<

rL

Mn(v)
.

As these two inequalities contradict each other, our claim is established.

For j ≥ 1, there is thus some unit flow θj on some T
vj
j such that

∀x ∈ T
vj
j \ {vj}

1

|x| − |vj |
log

1

θj(x)
≥
(
1− 1

j

)
dim sup ∂T . (14.29)

Identifying T
vj
j with a rooted subtree of T identifies θj with a unit flow on T. By taking

a subsequence if necessary, we may assume that these flows θj have an edgewise limit

θ∗. Those edges where θ∗j > 0 for infinitely many j form a tree T ∗ ∈ D(T ) such that

θ∗ is a unit flow on T ∗. Because of (14.29), we obtain (14.23). By definition of Hölder

exponent, this means that Hö(θ∗) ≥ dim sup ∂T . On the other hand, Theorem 14.17 gives

Hö(θ∗) ≤ dim sup ∂T ∗ ≤ dim sup ∂T , whence (14.22) and (14.24) follow.

The proof of (14.26) is parallel to that of (14.23) and we omit it. To deduce (14.25),

let

M∗∗
n := |{x ∈ T ∗∗ ; |x| = n}|

and α := dim inf ∂T . By (14.26), we have

1 = θ∗∗(0) =
∑
|v|=n

θ∗∗(v) ≥
∑
|v|=n

e−αn =M∗∗
n e−αn ,

so that
1

n
logM∗∗

n ≤ α .

Therefore, dim ∂T ∗∗ ≤ α. The other inequality follows from Proposition 14.19. (We deduce

that also dimM ∂T = α.) ◀

The first part of Theorem 14.20 allows us to give another proof of Furstenberg’s

important Theorem 3.8: If T is subperiodic, then every T ∗ ∈ D(T ) is isomorphic to a

subtree of a descendant subtree T v. In particular,

dim ∂T ∗ ≤ dim ∂T .

On the other hand, if T ∗ ∈ D(T ) satisfies (14.22), then

dim ∂T ≥ dim ∂T ∗ = dim sup ∂T ≥ dimM ∂T ≥ dim ∂T .

Therefore, dim ∂T = dimM ∂T , as desired.
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§14.6. Notes.

There is much more one can say about Hausdorff dimension. Some good books to consult
are Edgar (1990), Falconer (1990), Mattila (1995), Pesin (1997), and Barreira (2008).

As noted by Virág (2000b), the essential branching number essbrT of a tree T (Section 13.8)
is related to the Hausdorff dimension of harmonic measure µ for simple random walk on the tree
by the inequality

essbrT ≤ edimµ .

Strict inequality can hold.

§14.7. Collected In-Text Exercises.

14.1. Show that for any E ⊆ Rd, there exists a real number α0 such that α < α0 ⇒ Hα(E) = +∞
and α > α0 ⇒ Hα(E) = 0.

14.2. The Sierpinski carpet is the set

E :=

{(∑
n

xn3−n,
∑
n

yn3−n
)

; xn, yn ∈ {0, 1, 2}, ∀n xn ̸= 1 or yn ̸= 1

}
.

That is, the unit square is divided into its nine triadic subsquares of order 1 and the interior of
the middle one is removed. This process is repeated on each of the remaining 8 squares, and so
on. Show that dimE = dimME = log 8/ log 3.

14.3. The Sierpinski gasket is the set obtained by partitioning an equilateral triangle into
four congruent pieces and removing the interior of the middle one, then repeating this process ad
infinitum on the remaining pieces, as in Figures 14.1 and 14.2. Show that its Hausdorff dimension
is log 3/ log 2.

14.4. Show that for any sets En, dim (
∪∞
n=1 En) = sup dimEn.

14.5. Show that if E1 ⊇ E2 ⊇ · · ·, then dim
∩
En ≤ lim dimEn.

14.6. Deduce (14.4) and (14.5) in the same way as we deduced (14.3).

14.7. Reinterpret Theorems 3.5 and 5.15 as theorems on random walks on b-adic intervals inter-
secting E and on random b-adic possible coverings of E.

14.8. Prove that under the conditions (14.6)–(14.11),

lim
n→∞

max
|x|=n

diam Ix = 0 .

14.9. Prove (14.12) (if T is locally finite).

14.10. Prove the left-hand inequality of (14.14).

14.11. What is diamβx of (14.15)?

14.12. Show that the minimum of (14.17) exists.
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14.13. Let T be an infinite locally finite tree. Show that there is a one-to-one correspondence
between unit flows θ from o to ∂T and Borel probability measures µ on ∂T satisfying

θ(x) = µ(βx) .

Here and in the sequel, we write θ(x) for θ(
↼
x, x).

14.14. Let T code the set {0} ∪ {1/n ; n ≥ 1} in base r. Show that T ∈ D(T ).

14.15. Show that if T ∗ ∈ D(T ), then D(T ∗) ⊆ D(T ).

14.16. Show that the limits in (14.18) and (14.19) exist.

14.17. Show that if T is subperiodic, then dim ∂T = dim sup ∂T , while if T is superperiodic,
then dim ∂T = dim inf ∂T .

§14.8. Additional Exercises.

14.18. Let Ω ⊆ R2 be open and non-empty and f : Ω → R be Lipschitz. Show that the Hausdorff
dimension of the graph of f is 2.

14.19. Let E :=

{∑
n≥1 xn2−n ; xn ∈ {0, 1}, ∀n xnxn+1 = 0

}
. What is dimE?

14.20. Suppose that E ⊆ [0, 1] is closed and bE ⊆ E (mod 1). Show that dimHE = dimME and
HdimH E(E) > 0.

14.21. Is there a subperiodic tree of exponential growth whose boundary has infinite Hausdorff
measure in its dimension?

14.22. Consider fractal percolation in the unit square with parameters b and p > b−2. Recall
from Example 14.9 that the fractal percolation set Qb(p) has Hausdorff dimension logb(pb

2) a.s.
on the event that it is non-empty. Let Γ denote the union of all connected components of Qb(p)
that have at least two points.
(a) Show that dim Γ is a.s. constant on the event that Qb(p) is non-empty.
(b) Show that dim Γ < logb(pb

−2) a.s. Hint: For the case b = 3, consider removing every square
at level k such that at level k + 1 only the central subsquare is retained.

14.23. Let m > 1. Show that for γ < 1,

max

{
dim IT ′ ; ∥L∥∞ <∞, E[L] = m, E

[ L∑
1

Ai

]
= γ

}
=

(
1 − log γ

logm

)−1

< 1 ,

where the maximum is over all Galton-Watson fractals IT ′ corresponding to random variables
(L,A1, . . . , AL) as in Section 14.3, while for m > γ > 1,

min

{
dim IT ′ ; ∥L∥∞ <∞, E[L] = m, E

[ L∑
1

Ai

]
= γ

}
=

(
1 − log γ

logm

)−1

> 1 ,

with equality in each case iff ∀i Ai = γ/m a.s. What if γ = 1?
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Figure 14.8.

14.24. To create (the top side of) a random von Koch curve E, begin with the unit interval.
Replace the middle portion of random length ∈ (0, 1/3) by the other two sides of an equilateral
triangle, as in Figure 14.8. Repeat this process proportionally and independently on each of the
remaining 4 pieces, etc. Of course, here, the associated Galton-Watson network has no extinction.
Show that if the length is uniform on (0, 1/3), then dimE ≈ 1.144 a.s.

14.25. Create a random Cantor set E in [0, 1] by removing a middle interval between two points
chosen independently uniformly on [0, 1]. Repeat indefinitely proportionally and independently
on the remaining intervals. Show that dimE = (

√
17 − 3)/2 a.s.

14.26. Let T be a Galton-Watson tree with offspring random variable L having mean m > 1.
Show that the Hausdorff measure of ∂T in dimension logm is 0 a.s. except when L is constant.

14.27. Fix a positive integer d and an integer b ≥ 2. Consider d-dimensional b-adic codings of
closed sets E ⊆ [0, 1]d. For a subtree T of the bd-ary tree that contains the root, write QT for the
closed subset of [0, 1]d coded by the rays of T . For 0 ≤ p ≤ 1, write Qd,b(p) for the corresponding
random closed set QT when T is the component of the root for Bernoulli(p) percolation on the
bd-ary tree. Consider any closed subset Λ ⊆ [0, 1]d and any β > 0.
(a) Show that if dimH Λ < β, then Λ ∩Qd,b(b−β) = ∅ a.s.
(b) Show that if dimH Λ > β, then Λ ∩Qd,b(b−β) ̸= ∅ with positive probability.
(c) Show that if dimH Λ > β, then dimH (Λ∩Qd,b(b−β)) ≤ dimH Λ−β a.s., and that the essential

supremum of the left-hand side is equal to the right-hand side.

14.28. Let 1 ≤ k < d be integers and γ > 0 be real. Let L be a linear transformation from Rd
onto Rk and let Q = Qd,b(b

−γ) be as in Exercise 14.27.
(a) Show that if d − γ > k, then the image L(Q) has positive k-dimensional Lebesgue measure

a.s. given that Q ̸= ∅.
(b) Show that if 0 < d− γ ≤ k, then dimH L(Q) = d− γ a.s. given that Q ̸= ∅.

14.29. (a) Suppose that µ is a probability measure on Rd such that the measure of every b-adic
cube of order n is at most Cb−nα for some constants C and α. Show that there is a constant
C′ such that the µ-measure of every ball of radius r is at most C′rα.

(b) The Frostman exponent of a probability measure µ on Rd is

Frost(µ) := sup

{
α ∈ R ; sup

x∈Rd,r>0

µ(Br(x))/rα <∞
}
,

where Br(x) is the ball of radius r centered at x. Show that the Hausdorff dimension of
every compact set is the supremum of the Frostman exponents of the probability measures
it supports.

14.30. Given a probability vector ⟨pi ; 1 ≤ i ≤ k⟩, the capacities of the Galton-Watson network
generated on a k-ary tree by the non-random vector (k, p1, p2, . . . , pk) as in Section 5.9 define a unit
flow θ where the flow along every edge equals the capacity of that edge. The flow θ corresponds
to a probability measure µ on the boundary. Show that

dimµ =
∑
i

pi log
1

pi
.
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14.31. Let p(•, •) be the transition probabilities of a finite-state irreducible Markov chain. Let
π(•) be the stationary probability distribution. The directed graph G associated to this chain has
for vertices the states and for edges all (x, y) for which p(x, y) > 0. Let T be the directed cover
of G (see Section 3.3). Define the unit flow

θ(⟨x1, . . . , xn+1⟩) := π(x1)

n∏
i=1

p(xi, xi+1) .

Let µ be the corresponding probability measure on ∂T . Show that

dimµ =
∑
x

π(x)
∑
y

p(x, y) log
1

p(x, y)
.

14.32. Let pk > 0 (1 ≤ k ≤ r) satisfy
∑r
k=1 pk = 1. Let GW be the Galton-Watson measure on

trees with offspring distribution ⟨pk⟩. Show that for GW-a.e. T , D(T ) is equal to the set of all
subtrees of the r-ary tree T.

14.33. Let T be the tree of Exercise 3.33 with N = 0 and α = 1/3. Show that dim inf ∂T =
1
3

log 3 + 2
3

log 3
2

and dim sup ∂T = log 2.

14.34. Let pk ≥ 0 (k ≥ 1) satisfy
∑∞
k=1 pk = 1. Let GW be the Galton-Watson measure on trees

with offspring distribution ⟨pk⟩. Show that for GW-a.e. T , dim sup ∂T = log sup{k ; pk > 0} and
dim inf ∂T = log min{k ; pk > 0}. Here, we use the same definitions of dim sup and dim inf as in
(14.18) and (14.19), even though the degrees may not be bounded.

14.35. Is there a tree T such that brT > 1 and such that every derived tree of T is amenable?

14.36. Let T code the Cantor middle-thirds set in base 2. Show that dim sup ∂T = (log 2)2/ log 3.
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Chapter 15

Capacity

One refinement of Hausdorff dimension is, of course, Hausdorff measure. Another is

capacity. The latter turns out to be more widely related to probability than the former.

The notion of capacity will lead to important reformulations of our theorems concerning

random walk and percolation on trees. As one consequence, we will be able to deduce

a classical relationship of Hausdorff dimension and capacity in Euclidean space. Since

capacity also is intimately related to Brownian motion, we will be able to solve problems

about Brownian motion by using our work on percolation on trees: capacity translates one

domain to the other.

§15.1. Definitions.

We call a function Ψ on a rooted tree T such that Ψ ≥ 0 and x → y ⇒ Ψ(x) ≤ Ψ(y)

a gauge . For a gauge Ψ, extend Ψ to ∂T by Ψ(ξ) := limx∈ξ Ψ(x) and define the kernel

K := ∂T × ∂T → [0,∞] by

K(ξ, η) := Ψ(ξ ∧ η) ,

where, as in Section 14.4, ξ ∧ η is the vertex common to both ξ and η that is furthest from

o if ξ ̸= η and ξ ∧ η := ξ if ξ = η.

A common gauge is Ψ(x) := λ|x| or Ψ(x) := λ|x|/(λ− 1) for λ > 1. Using r
(
e(x)

)
:=

λ|x|−1(λ−1) or r
(
e(x)

)
:= λ|x|−1, we see that these gauges are special cases of the following

assignment of a gauge to conductances (and resistances):

Ψ(x) := Ψ(o) +
∑

o<u≤x

r
(
e(u)

)
. (15.1)

For another example, r ≡ 1 corresponds to Ψ(x) = Ψ(o) + |x|, whence K(ξ, η) = Ψ(o) −
log d(ξ, η) for the distance on ∂T defined in Section 14.4. Furthermore, given a gauge Ψ,

we can implicitly define conductances by (15.1).

Write Prob(∂T ) for the set of Borel probability measures on ∂T . Fix a kernel, K.

Given µ ∈ Prob(∂T ), its potential is the function

Vµ(ξ) :=

∫
∂T

K(ξ, η) dµ(η)
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and its energy is the number

E (µ) :=

∫
∂T×∂T

K d(µ× µ) =

∫
∂T

Vµ(ξ) dµ(ξ) .

The capacity of E ⊆ ∂T measures inversely how small the energy can be of a probability

measure on E, that is,

capE :=
[
inf
{
E (µ) ; µ ∈ Prob(∂T ), µ(∂T \ E) = 0

}]−1

.

When E = ∅, then we define capE := 0. These definitions are made similarly for

any topological space X in place of ∂T and any Borel function K:X×X → [0,∞].

The concepts of potential, energy and capacity come from physics. For example, if µ is

a distribution of electric charge in space and K(x, y) is one over the distance between x and

y (we ignore physical constants and units), then Vµ is the electric potential generated by

µ (its negative gradient is the electric field) and E (µ) is the electrostatic potential energy

inherent in this configuration. If a unit charge is placed on a perfect conductor, then it

will distribute itself to minimize its energy; the reciprocal of that energy is the capacitance

of the conductor.

Recall from Exercise 14.13 that Borel probabilities µ on ∂T are in 1-1 correspondence

with unit flows θ on T via

θ(x) = µ
(
{ξ ; x ∈ ξ}

)
.

Here, as in Chapter 14, we will abbreviate θ
(
e(x)

)
as θ(x). For convenience,

set θ(o) := 1. We may express Vµ and E (µ) in terms of θ as follows. Set

Φ(x) :=

{
Ψ(x)−Ψ(

↼
x) if x ̸= o,

Ψ(o) if x = o.

(Recall that
↼
x is the parent of x.) Thus, Φ(x) is the resistance of e(x) for x ̸= o when

(15.1) holds.

Proposition 15.1. (Lyons, 1990) With the preceding notation, we have

∀ξ ∈ ∂T Vµ(ξ) =
∑
x∈ξ

Φ(x)θ(x)

and

E (µ) =
∑
x∈T

Φ(x)θ(x)2.
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Proof. Since Ψ(x) =
∑
u≤xΦ(u) and Ψ(ξ) =

∑
x∈ξ Φ(x), we have

Vµ(ξ) =

∫
∂T

K(ξ, η) dµ(η) =

∫
∂T

Ψ(ξ ∧ η) dµ(η) =
∫
∂T

∑
x≤ξ∧η

Φ(x) dµ(η)

=

∫
∂T

∑
x∈ξ

Φ(x)1[x∈η] dµ(η) =
∑
x∈ξ

Φ(x)

∫
∂T

1[x∈η] dµ(η) =
∑
x∈ξ

Φ(x)θ(x) .

Now integrate to get

E (µ) =

∫
∂T

Vµ dµ =

∫
∂T

∑
x∈ξ

Φ(x)θ(x) dµ(ξ) =
∑
x∈T

Φ(x)θ(x)µ
(
{ξ ; x ∈ ξ}

)
. ◀

When conductances determine Ψ through (15.1) and the equation Ψ(o) := 0, we have

Φ(x) = r
(
e(x)

)
and thus E (µ) = E (θ), as we defined energy of flows in Section 2.4. In

particular, cap ∂T = C (o ↔ ∞); when this is positive, E (µ) is minimum when E (θ) is

minimum and, hence, E (•) has a unique minimum corresponding to unit current flow. If

i denotes unit current flow and µi the corresponding measure on ∂T , then µi gives the

distribution of current “outflow” on ∂T . Probabilistically, this is harmonic measure for

the random walk, i.e., the “hitting” distribution on ∂T : by Proposition 2.12, given an edge

e(x), we have

µi
(
{ξ ; x ∈ ξ}

)
= i
(
e(x)

)
= E[number of transitions from

↼
x to x

− number of transitions from x to
↼
x]

= P
[
random walk enters and eventually stays in T x

]
.

To summarize:

Theorem 15.2. (Random Walk and Capacity) Given conductances on a tree T ,

the associated random walk is transient iff the capacity of ∂T is positive in the associated

gauge. The unit flow corresponds to the harmonic measure on ∂T , which minimizes the

energy.

In this context, Theorem 3.5 becomes

brT = inf
{
λ > 1 ; cap ∂T = 0 in the gauge Ψ(u) = λ|u|

}
.

Although brT has a similar definition via Hausdorff measures, it is capacity, not Hausdorff

measure, in the critical gauge that determines the type of critical random walk, RWbrT .
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Write v(ξ) := limx∈ξ v(x). Then from Proposition 15.1, we have

Vµi(ξ) =
∑
o<u∈ξ

i
(
e(u)

)
r
(
e(u)

)
=
∑
o<u∈ξ

[
v(

↼
u)− v(u)

]
= v(o)− v(ξ)

= E (i)− v(ξ) = E (µi)− v(ξ) = (cap ∂T )−1 − v(ξ) .

In particular, ∀ξ Vµi(ξ) ≤ (cap ∂T )−1. Since
∫
Vµi dµi = (cap ∂T )−1, it follows that

Vµi(ξ) = (cap ∂T )−1 for µi-a.e. ξ. One can show more, that Vµi(ξ) = (cap ∂T )−1, i.e.,

v(ξ) = 0, except for a set of ξ of capacity 0 (Lyons, 1990). This further justifies thinking

of the electrical network T as “grounded at ∞”.

§15.2. Percolation on Trees.

Let px be survival probabilities for independent percolation, as in Section 5.3. Consider

the gauge

Ψ(x) := P[o↔ x]−1 =
∏

o<u≤x

p−1
u .

Note that

Ψ(o) = 1 .

If we define resistances by

r
(
e(u)

)
:= Ψ(u)−Ψ(

↼
u) ,

then Ψ(x) is one plus the resistance between o and x. Thus, (5.12) holds. Because Ψ(o) = 1

but i(o) does not enter in E (i), we have

E (µi) = 1 + E (i) = 1 + C (o↔ ∞)−1 ,

whence

cap ∂T = E (µi)−1 =
C (o↔ ∞)

1 + C (o↔ ∞)
.

We may therefore rewrite Theorem 5.24 as

cap ∂T ≤ P[o↔ ∂T ] ≤ 2 cap ∂T . (15.2)

These inequalities are easily generalized to subsets of ∂T (Lyons, 1992):

Theorem 15.3. (Tree Percolation and Capacity) For Borel E ⊆ ∂T , we have

capE ≤ P[o↔ E] ≤ 2 capE.

Proof. If E is closed, let T(E) := {u ; ∃ξ ∈ E u ∈ ξ}. Then T(E) is a subtree of T with

∂T(E) = E. Hence the result follows from (15.2). The general case follows from the theory

of Choquet capacities, which we omit (see Lyons (1992)). ◀
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▷ Exercise 15.1.

Show that if px ≡ p ∈ (0, 1) and T is spherically symmetric, then

cap ∂T =

(
1 + (1− p)

∞∑
n=1

1

pn|Tn|

)−1

.

Thus, P[o↔ ∂T ] > 0 iff
∑∞
n=1

1
pn|Tn| <∞.

If we specialize to trees coding closed sets, as in Sections 1.10 and 14.2, and take

pu ≡ p, the result that P[o↔ ∂T ] > 0 iff cap ∂T > 0 is due to Fan (1989, 1990).

§15.3. Euclidean Space.

Like Hausdorff dimension in Euclidean space, capacity in Euclidean space is also

related to trees. We treat first the case of R1.

Consider a closed set E ⊆ [0, 1] and a kernel

K(x, y) := f
(
|x− y|

)
,

where f ≥ 0 and f is decreasing. Here, f is called the gauge function. We denote the

capacity of E with respect to this kernel by capf (E).

▷ Exercise 15.2.

Suppose that f and g are two gauge functions such that f/c1− c2 ≤ g ≤ c1f + c2 for some

constants c1 and c2. Show that for all E, capf (E) > 0 iff capg(E) > 0.

The gauge functions f(z) = z−α (α > 0) or f(z) = log+ 1/z are so frequently used

that the corresponding capacities have their own notation, capα and cap0, respectively.

For any set E, there is a critical α0 such that capα(E) > 0 for α < α0 and capα(E) = 0

for α > α0. In fact, α0 = dimE. This result is due to Frostman (1935); we will deduce it

from our work on trees. We will also show the following result.

Theorem 15.4. Let E ⊆ [0, 1] be closed. If T codes E in base b, then critical homesick

random walk on T is transient iff capdimE(E) > 0. In particular, this does not depend on

b.

This result is a slight generalization of one due to Benjamini and Peres (1992), who

stated this for simple random walk and cap0E. That case bears a curious relation to a result

of Kakutani (1944): cap0E > 0 iff Brownian motion in R2 hits E a.s.; see Lemma 15.10.

To prove Theorem 15.4, we will use the following important proposition that relates

energy on trees to energy in Euclidean space. It is due to Benjamini and Peres (1992), as

extended by Pemantle and Peres (1995b).
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Proposition 15.5. (Energy and Capacity Transference in R) Let E ⊆ [0, 1] be

closed and T code E in base b. Let rn > 0. Give T the resistances r
(
e(u)

)
:= r|u| for

u ∈ V(T ) and suppose that f ≥ 0 is decreasing and satisfies

∀n f(b−n) =
∑

1≤k≤n

rk and f(0) =
∞∑
n=1

rn .

If ν ∈ Prob(E) and µ ∈ Prob(∂T ) satisfy θ(u) = ν(Iu) for u ∈ V(T ), where θ is the flow

corresponding to µ and Iu is the b-ary interval corresponding to u, then

1

2
E c(θ) ≤ E f (ν) ≤ 3bE c(θ) .

Hence, (T, c) is transient iff capf (E) > 0.

Proof of Theorem 15.4. Critical random walk uses the resistances r
(
e(u)

)
= λ

|u|
c , where

λc = brT = bdimE . Hence, set rn := bn dimE and choose any f as in Proposition 15.5.

According to the proposition, RWλc is transient iff capfE > 0. Since there are constants c1

and c2 such that f(z)/c1 − c2 ≤ zdimE ≤ c1f(z) + c2 when dimE > 0 and f(z)/c1 − c2 ≤
log+ 1/z ≤ c1f(z) + c2 when dimE = 0, we have capfE > 0 iff capdimE(E) > 0 by

Exercise 15.2. ◀

Corollary 15.6. (Frostman, 1935) dimE = inf
{
α ; capα(E) = 0

}
.

▷ Exercise 15.3.

Prove Corollary 15.6.

Although we have just shown that the base used for coding E does not affect transience

of critical random walk, the following question is open:

Question 15.7. Let E be the Cantor middle-thirds set, µb harmonic measure of simple

random walk on T[b](E), and νb the corresponding measure on E. Thus ν3 is Cantor-

Lebesgue measure. Is ν2 ⊥ ν3?

Proof of Proposition 15.5. If t ≤ b−N , then f(t) ≥ f(b−N ), whence

f(t) ≥
∑
n≥1

rn1{b−n≥t} ,

so

E f (ν) =

∫ ∫
f
(
|x− y|

)
dν(x) dν(y) ≥

∫ ∫ ∑
n≥1

rn1{|x−y|≤b−n} dν(x) dν(y)

=
∑
n≥1

rn(ν × ν)
{
|x− y| ≤ b−n

}
.
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Now {
|x− y| ≤ b−n

}
⊇
bn−1∪
k=0

Ink × Ink , (15.3)

where Ink :=
[
k
bn ,

k+1
bn

]
, and each point in the right-hand side lies in at most 2 of the terms

in the union, whence

E f (ν) ≥
1

2

∑
n≥1

rn
∑
k

(
νInk

)2
=

1

2

∑
n≥1

rn
∑
|u|=n

θ(u)2 =
1

2
E c(θ) .

On the other hand, f(t) ≤ f(b−N ) when t ≥ b−N , i.e.,

f(t) ≤
∑
n≥1

rn1{b−n+1>t} .

Therefore

E f (ν) =

∫ ∫
f
(
|x− y|

)
dν(x) dν(y) ≤

∫ ∫ ∑
n≥1

rn1{|x−y|<b−n+1} dν(x) dν(y)

=
∑
n≥1

rn(ν × ν)
{
|x− y| < b−n+1

}
.

Now

{
|x− y| ≤ b−n

}
⊆
bn−1∪
k=0

(
Ink × (Ink ∪ Ink−1 ∪ Ink+1)

)
. (15.4)

(See Figure 15.1.) This gives the bound

(ν × ν)
{
|x− y| ≤ b−n

}
≤
bn−1∑
k=0

(νInk )(νI
n
k + νInk−1 + νInk+1) .

Figure 15.1.

The cross terms are estimated by the following inequality:

AB ≤ A2 +B2

2
.

Thus

(ν × ν)
{
|x− y| ≤ b−n

}
≤
bn−1∑
k=0

(νInk )
2 +

bn−1∑
k=0

(νInk )
2 +

bn−1∑
k=0

(νInk−1)
2 + (νInk+1)

2

2

≤ 3
∑
|u|=n

(νIu)
2 = 3

∑
|u|=n

θ(u)2 ,
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whence by the arithmetic-quadratic mean inequality (or the Cauchy-Schwarz inequality),

E f (ν) ≤ 3
∑
n≥1

rn
∑

|u|=n−1

θ(u)2 =
∑
n≥1

rn
∑

|u|=n−1

(∑
u→x

θ(x)

)2

≤ 3b
∑
n≥1

rn
∑

|u|=n−1

∑
u→x

θ(x)2 = 3bE c(θ) . ◀

The situation in higher dimensional Euclidean space is very similar. Denote the Eu-

clidean distance between x and y by |x− y|. Consider a closed set E ⊆ [0, 1]d and a kernel

K(x, y) := f
(
|x− y|

)
, where f ≥ 0 and f is decreasing. Again, f is called the gauge

function and we denote the capacity of E with respect to f by capf (E). To code E by

a tree T , we now use b-adic cubes in [0, 1]d. Again, the transference principle is due to

Pemantle and Peres (1995b).

Proposition 15.8. (Energy and Capacity Transference in Rd) Let E ⊆ [0, 1]d be

closed and T code E in base b. Let rn > 0 satisfy
∑
rn = ∞. Give T the resistances

r
(
e(u)

)
:= r|u| and suppose that f is decreasing and satisfies

∀n f(b−n) =
∑

1≤k≤n

rk and f(0) =
∞∑
n=1

rn .

If ν ∈ Prob(E) and µ ∈ Prob(∂T ) satisfy θ(u) = ν(Iu), where θ is the flow corresponding

to µ and Iu is the b-ary cube corresponding to u, then

2−dE c(θ) ≤ E f (ν) ≤ 3dbd(1+ℓ)E c(θ) ,

where ℓ := (1/2) logb d.

▷ Exercise 15.4.

Prove Proposition 15.8.
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§15.4. Fractal Percolation and Brownian Intersections.

In this section, we will consider a special case, known as fractal percolation, of the

Galton-Watson fractals defined in Example 14.14. We will see how the use of capacity can

help us understand intersection properties of Brownian motion traces in Rd by transferring

the question to these much simpler fractal percolation sets. Moreover, the fractal percola-

tion sets will help analyze capacity. In Section 5.7, we studied connectivity properties of

fractal percolation sets in the plane. Here we consider them in greater generality, both in

dimension and in survival probability at each generation.

Given integers d, b ≥ 2 and numbers pn ∈ [0, 1] (n ≥ 1), consider the natural tiling of

the unit cube [0, 1]d by bd closed cubes of side 1/b. Let Z1 be a random subcollection of

these cubes, where each cube has probability p1 of belonging to Z1, and these events are

mutually independent. (Thus the cardinality |Z1| of Z1 is a binomial random variable.)

In general, if Zn is a collection of cubes of side b−n, tile each cube Q ∈ Zn by bd closed

subcubes of side b−n−1 (with disjoint interiors) and include each of these subcubes in Zn+1

with probability pn+1 (independently). Finally, define

An := An,d,b(pn,Zn−1) :=
∪

Zn and Qd
(
⟨pn⟩

)
:= Qd,b

(
⟨pn⟩

)
:=

∞∩
n=1

An .

In the construction of Qd
(
⟨pn⟩

)
, the cardinalities |Zn| of Zn form a branching process in

a varying environment, where the offspring distribution at level n is Bin(bd, pn). When

pn ≡ p, the cardinalities form a Galton-Watson branching process. Alternatively, the

successive subdivisions into b-ary subcubes define a natural mapping from a bd-ary tree

to the unit cube; the construction of Qd
(
⟨pn⟩

)
corresponds to performing independent

percolation with parameter pn at level n on this tree and considering the set of infinite

paths emanating from the root in its percolation cluster. The process ⟨An ; n ≥ 1⟩ is called
fractal percolation , while Qd

(
⟨pn⟩

)
is the limit set . When pn ≡ p, we write Qd(p) for

Qd
(
⟨pn⟩

)
.

▷ Exercise 15.5.

(a) Show that pn ≤ b−d for all n implies that Qd,b
(
⟨pn⟩

)
= ∅ a.s.

(b) Characterize the sequences ⟨pn⟩ for which Qd
(
⟨pn⟩

)
has positive volume with positive

probability.

The main result in this section, from Peres (1996), is that the Brownian trace is

“intersection equivalent” to the limit set of fractal percolation for an appropriate choice

of parameters ⟨pn⟩. We will obtain as easy corollaries facts about Brownian motion, for

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



Chap. 15: Capacity 552

example, that two traces in 3-space intersect, but not three traces. Here, the trace of

Brownian motion ⟨Bt⟩ is the set of its values for t belonging to some given interval. This

is a random set, by which we mean the following.

Definition 15.9. A random set A is a measurable function ω 7→ A(ω) on a measurable

space Ω whose values are sets; measurability means that for every closed Λ, the outcomes

ω where A(ω)∩Λ ̸= ∅ form an event (i.e., a measurable subset of Ω). Two random (Borel)

sets A and B in Rd are intersection equivalent in a set U if there exist constants C1, C2

such that for every closed* set Λ ⊆ U , we have

C1P[A ∩ Λ ̸= ∅] ≤ P[B ∩ Λ ̸= ∅] ≤ C2P[A ∩ Λ ̸= ∅] , (15.5)

which we write as

P[A ∩ Λ ̸= ∅] ≍ P[B ∩ Λ ̸= ∅] .

We need a few basic facts about Brownian motion. For more information on Brownian

motion, see the book by Mörters and Peres (2010). Further references can also be found in

the notes at the end of this chapter. If gd is the d-dimensional radial potential function,

gd(r) :=

{
log+(r−1) if d = 2,
r2−d if d ≥ 3,

then the kernel Gd(x, y) = cdgd
(
|x− y|

)
, where cd > 0 is a constant given in Exercise 15.6,

is called the Green kernel for Brownian motion. This is the continuous analogue of the

Green function for Markov chains: As Exercise 15.6 shows, the expected 1-dimensional

Lebesgue measure of the time that Brownian motion spends in a set turns out to be ab-

solutely continuous with respect to d-dimensional Lebesgue measure, and its density at y

when started at x is the Green kernel Gd(x, y). Actually, in two dimensions, (neighbor-

hood) recurrence of Brownian motion means that we need to kill it at some finite time.

If we kill it at a random time with an exponential distribution, then it remains a Markov

process. It is not hard to compare properties of the exponentially-killed process to one

that is killed at a fixed time: see Exercise 15.13.

▷ Exercise 15.6.

Let pt(x, y) := (2πt)−d/2 exp
(
−|x− y|2/(2t)

)
be the Brownian transition density function,

and for d ≥ 3, define Gd(x, y) :=
∫∞
0
pt(x, y) dt for x, y ∈ Rd.

* Intersection equivalence of A and B implies that (15.5) holds for all Borel sets Λ by the Choquet
Capacitability Theorem (see Carleson (1967), p. 3, or Dellacherie and Meyer (1978), III.28).
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(a) Show that Gd(x, y) = cdgd
(
|x− y|

)
, with a constant 0 < cd <∞.

(b) Define FA(x) :=
∫
A
Gd(x, z) dz for Borel sets A ⊆ Rd. Show that FA(x) is the expected

time the Brownian motion started at x spends in A.

(c) Show that x 7→ Gd(0, x) is harmonic on Rd \ {0}, in other words, has zero Laplacian

there. Equivalently, if B ⊂ Rd \ {0} is a ball, then the average value (with respect to

Lebesgue measure) of Gd(0, x) over x ∈ B is equal to the value at the center of the

ball.

(d) Consider Brownian motion ⟨Bt⟩ in R2, killed at a random time with an exponential

distribution with parameter 1. In other words, let τ be an Exponential(1) random

time, independent of the Brownian motion. The expected occupation measure νx for

Bt started at x and killed at time τ is defined by νx(A) := E
∫ τ
0
1A(Bt) dt for Borel

sets A in R2. Show that νx(A) =
∫
A
G∗

2(x, y) dy, where G
∗
2(x, y) :=

∫∞
0
pt(x, y)e

−t dt.

(e) Show that in 2 dimensions, G∗
2(x, y) ∼ −

(
1/π

)
log |x− y| for |x− y| ↓ 0.

The following is a classical result relating the hitting probability of a set Λ by Brownian

motion to the capacity of Λ in the Green kernel. It is the key to our understanding in this

section of Brownian motion. A proof using the so-called Martin kernel and the second-

moment method was found by Benjamini, Pemantle, and Peres (1995); see Section 15.6.

We will write cap( • ; f) := cap f (•) to make it easier to see the gauge function f , which

will be crucial in what follows and which will change many times.

Lemma 15.10. If ⟨Bt⟩ is Brownian motion (killed at an exponential time for d = 2), and

the initial distribution ν of B0 has a bounded density on Rd, then

Pν [∃t ≥ 0 Bt ∈ Λ] ≍ cap(Λ; gd) (15.6)

for all Borel sets Λ ⊂ [0, 1]d.

A picture of Brownian motion in the plane is convincing that there are double points

a.s., i.e., points that are visited at least twice by the Brownian motion. What about in

higher dimensions? What about points of greater multiplicity? Which sets contain double

points with positive probability? Because of the independence of increments in Brownian

motion, it is intuitive that the questions have the same answers as asking whether two (or

more) independent Brownian motions intersect. We will later prove (partly) that these are

indeed equivalent. So let B and B′ be two independent Brownian motions, and write [B]

for the trace {Bt ; t ≥ 0}.

For which Λ is P
[
Λ ∩ [B] ∩ [B′] ̸= ∅

]
> 0 ?
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Evans (1987) and Tongring (1988) gave a sufficient condition:

If cap(Λ; g2d) > 0, then P
[
Λ ∩ [B] ∩ [B′] ̸= ∅

]
> 0 .

Later Fitzsimmons and Salisbury (1989) showed that cap(Λ; g2d) > 0 is also necessary.

Moreover, they showed that in dimension d = 2, if B(i) are independent Brownian motions,

then

cap(Λ; gk2 ) > 0 if and only if P
[
Λ ∩ [B(1)] ∩ · · · ∩ [B(k)] ̸= ∅

]
> 0 .

Chris Bishop (personal communication, 1994) then made the following conjecture in every

dimension:

P
[
cap(Λ ∩ [B]; f) > 0

]
> 0 if and only if cap(Λ; fgd) > 0 (15.7)

whenever f is a non-negative, decreasing function. Iteration of (15.7) implies the preceding

results on multiple intersections. We will establish all of the above.

In order to do so, we will relate gauge functions used for kernels on Euclidean space

to fractal percolation in the following way. If f ≥ 0 is a decreasing function and pn ∈ [0, 1]

satisfy

p1 · · · pn = min
{
f(b−n)−1, 1

}
, (15.8)

then the limit set of fractal percolation with retention probability pn at level n will be

denoted by Qd[f ].

Note that the numbers ⟨pn⟩ satisfying (15.8) for f = gd are pn = b2−d if d ≥ 3,
p1 = 1/ log b, pn = (n− 1)/n for n ≥ 2 if d = 2 and b ≥ 3,
p1 = 1, p2 = 1/(2 log 2), pn = (n− 1)/n for n ≥ 3 if d = 2 and b = 2.

Consider the canonical map Υ from the boundary ∂T of the bd-ary tree T onto [0, 1]d.

Let ω be the percolation on T that has probability pn of retaining an edge e when e joins

vertices at level n − 1 to vertices at level n. Write ∂oω for the set of open rays from the

root of T . Then the image of ∂oω under Υ has the same law as Qd
(
⟨pn⟩

)
. Moreover, for

every closed Λ ⊆ [0, 1]d, the probability that Qd
(
⟨pn⟩

)
∩Λ ̸= ∅ equals the probability that

Υ−1(Λ) ∩ ∂oω ̸= ∅. This fact, along with the percolation result Theorem 15.3 and the

transfer result Proposition 15.5, are the ingredients behind the following theorem.

Theorem 15.11. (Peres, 1996) Let f ≥ 0 be a decreasing function. Then for all closed

sets Λ ⊆ [0, 1]d,

cap(Λ; f) ≍ P
[
Λ ∩Qd[f ] ̸= ∅

]
. (15.9)
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For f = gd in particular, Qd[gd] is intersection equivalent in [0, 1]d to the Brownian trace:

If B is Brownian motion with initial distribution ν that has a bounded density, stopped at

an exponential time when d = 2, and [B] := {Bt ; t ≥ 0}, then for all closed Λ ⊆ [0, 1]d,

P
[
Λ ∩Qd[gd] ̸= ∅

]
≍ P

[
Λ ∩ [B] ̸= ∅

]
. (15.10)

Proof. Let ⟨pn⟩ be determined by (15.8). Let P̃ be the independent percolation on T with

retention probability pn for each edge joining level n− 1 to level n. Define the gauge Ψ on

T by Ψ(x) := max
{
f(b−|x|), 1

}
. By Theorem 15.3,

P
[
Qd[f ] ∩ Λ ̸= ∅

]
= P̃

[
o↔ Υ−1(Λ)

]
≍ cap

(
Υ−1(Λ);Ψ

)
, (15.11)

where the constants in ≍ on the right-hand side are 1 and 2. On the other hand, Propo-

sition 15.5 says that

cap
(
Υ−1(Λ);Ψ

)
≍ cap(Λ; f) . (15.12)

Combining (15.11) and (15.12) yields (15.9). From (15.9) and (15.6), we get (15.10). ◀

In order to apply the preceding theorem to intersections of several random sets, we

use the following two lemmas.

Lemma 15.12. Suppose that A1, . . . , Ak, F1, . . . , Fk are independent random closed* sets,

with Ai intersection equivalent to Fi for 1 ≤ i ≤ k. Then A1 ∩A2 ∩ · · · ∩Ak is intersection

equivalent to F1 ∩ F2 ∩ · · · ∩ Fk.

Proof. By induction, reduce to the case k = 2. It clearly suffices to show that A1 ∩ A2 is

intersection equivalent to F1 ∩A2, and this is done by conditioning on A2:

P[A1 ∩A2 ∩ Λ ̸= ∅] = E
[
P[A1 ∩A2 ∩ Λ ̸= ∅ |A2]

]
≍ E

[
P[F1 ∩A2 ∩ Λ ̸= ∅ |A2]

]
= P [F1 ∩A2 ∩ Λ ̸= ∅] . ◀

Lemma 15.13. For any 0 < p, q < 1, if Qd(p) and Q′
d(q) are independent, then their

intersection Qd(p) ∩Q′
d(q) has the same distribution as Qd(pq).

Proof. This is immediate from the construction of Qd(p). ◀

Now we can reap the corollaries. In what follows, Brownian paths will be started

either from arbitrary fixed points, or from initial distributions that have bounded densities

in the unit cube [0, 1]d. The proof of the first corollary was first completed in Dvoret-

zky, Erdős, Kakutani, and Taylor (1957), following earlier work of Dvoretzky, Erdös, and

* In fact, Ai and Fi may be taken to be Borel by the Choquet Capacitability Theorem, as before.
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Kakutani (1950). A proof using the renormalization group method was given by Aizen-

man (1985). (In fact, the earlier authors phrased their results in terms of multiple points,

but their proofs show these results about intersections as well.) Compare the following to

Corollary 10.25 and note the difference in 4 dimensions. The reason for the difference is

analogous to the difference between recurrence of 2-dimensional random walk and neigh-

borhood recurrence of 2-dimensional Brownian motion: while two 4-dimensional Brownian

motions do get arbitrarily close to each other, they do not meet, while each time two

random walks get close, then they will meet with positive probability.

Corollary 15.14. (Dvoretzky, Erdős, Kakutani, Taylor)

(i) For all d ≥ 4, two independent Brownian traces in Rd are disjoint a.s. except, of

course, at their starting point if they are identical.

(ii) In R3, two independent Brownian traces intersect a.s., but three traces a.s. have no

points of mutual intersection (except, possibly, their starting point).

(iii) In R2, any finite number of independent Brownian traces have nonempty mutual in-

tersection almost surely.

Proof. (i) It suffices to prove the case d = 4 since for d ≥ 5, the first 4 coordinates of

Brownian motion in Rd give Brownian motion in R4. Fix ϵ > 0. The distribution of

Bϵ has bounded density. By Theorem 15.11 and Lemma 15.12, the intersection of two

independent copies of {Bt ; t ≥ ϵ} is intersection equivalent to the intersection of two

independent copies of Q4,b(b
−2); by Lemma 15.13, this latter intersection is intersection

equivalent to Q4,b(b
−4). But Q4,b(b

−4) is a.s. empty because critical branching processes

die out. Thus two independent copies of {Bt ; t ≥ ϵ} are a.s. disjoint. This argument

actually worked for fractal percolation in any cube of any size (not just the unit cube),

whence two independent copies of {Bt ; t ≥ ϵ} are a.s. disjoint. Since ϵ is arbitrary, the

claim follows.

(ii) Since {Bt ; t ≥ ϵ} is intersection equivalent to Q3,b(b
−1) in the unit cube, the

intersection of three independent Brownian traces (from any time ϵ > 0 on) is intersection

equivalent in the cube to the intersection of three independent copies of Q3(b
−1), which

has the same distribution as Q3(b
−3). Again, a critical branching process is obtained, and

hence the triple intersection is a.s. empty.

On the other hand, the intersection of two independent copies of {Bt ; t ≥ ϵ} is

intersection equivalent to Q3,b(b
−2) in the unit cube for any positive ϵ. Since Q3(b

−2) is

defined by a supercritical branching process, we have p(ϵ,∞) > 0, where

p(u, v) := P
[
{Bt ; u < t < v} ∩ {B′

s ; u < s < v} ≠ ∅
]
.
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Here, B′ is an independent copy of B. Suppose now first that the two Brownian motions

are started from the origin; we will show that p(1,∞) = 1. Note that p(ϵ,∞) ↑ p(0,∞) as

ϵ ↓ 0, hence p(0,∞) > 0. Furthermore, p(0, v) → p(0,∞) as v → ∞. On the other hand,

by Brownian scaling*, p(0, v) is independent of v > 0 and p(u,∞) is independent of u > 0.

Therefore, p(0, v) = p(u,∞) = p(0,∞) > 0 for all u, v > 0, and

lim
v↓0

p(0, v) = P
[
0 = inf

{
v > 0 ; {Bt ; 0 < t < v} ∩ {B′

s ; 0 < s < v} ̸= ∅
}]

> 0 .

This last positive probability, by Blumenthal’s 0-1 law (see Durrett (2005), Section 7.2, or

Mörters and Peres (2010), Section 2.1), has to be 1, thus p(0, 1) = p(1,∞) = p(0,∞) = 1.

When the Brownian motions are started at other points, or from any initial distri-

butions, then at unit time, their joint distribution is absolutely continuous with respect

to the joint distribution of Brownian motions at unit time, started from the origin. For

these latter Brownian motions, we know already that p(1,∞) = 1, so we have this for the

original motions as well. ◀

▷ Exercise 15.7.

Prove part (iii) of the above Corollary.

We now show how Theorem 15.11 leads to a proof of (15.7).

Corollary 15.15. Let f and h be non-negative and decreasing functions. If a random

closed set A in [0, 1]d satisfies

P[A ∩ Λ ̸= ∅] ≍ cap(Λ;h) (15.13)

for all closed Λ ⊆ [0, 1]d, then

E
[
cap(A ∩ Λ; f)

]
≍ cap(Λ; fh) (15.14)

for all closed Λ ⊆ [0, 1]d. In particular, for each Λ,

P
[
cap(A ∩ Λ; f) > 0

]
> 0 if and only if cap(Λ; fh) > 0

and (15.7) follows by putting A := [B] and h := gd.

Proof. Enlarge the probability space on which A is defined to include two independent

fractal percolations, Qd[f ] and Qd[h]. Because

P
[
A ∩ Λ ∩Qd[f ] ̸= ∅

]
= E

[
P
[
A ∩ Λ ∩Qd[f ] ̸= ∅

∣∣ A]] ,
* That is, for a > 0, the distribution of t 7→ aBt/a2 is the same as that of t 7→ Bt.
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and by Theorem 15.11

P
[
A ∩ Λ ∩Qd[f ] ̸= ∅ | A

]
≍ cap(A ∩ Λ; f) ,

we have

E
[
cap(A ∩ Λ; f)

]
≍ P

[
A ∩ Λ ∩Qd[f ] ̸= ∅

]
. (15.15)

Conditioning on Qd[f ], and then using (15.13) with Λ ∩Qd[f ] in place of Λ gives

P
[
A ∩ Λ ∩Qd[f ] ̸= ∅

]
≍ E

[
cap(Λ ∩Qd[f ];h)

]
. (15.16)

Conditioning on Qd[f ] and then applying Theorem 15.11 yields

E
[
cap
(
Λ ∩Qd[f ];h

)]
≍ P

[
Λ ∩Qd[f ] ∩Qd[h] ̸= ∅

]
. (15.17)

Note that Qd[f ] ∩Qd[h] has the same distribution as Qd[fh] if f, h ≥ 1; otherwise, this is

true of the functions f ∨ 1 and h ∨ 1. In either case, Theorem 15.11 implies that

P
[
Λ ∩Qd[f ] ∩Qd[h] ̸= ∅

]
≍ cap(Λ; fh) . (15.18)

Combining (15.15), (15.16), (15.17) and (15.18) proves (15.14). ◀

Remark 15.16. We have assumed in the statement of Corollary 15.15 that A 7→ cap(A∩
Λ; f) is measurable. When f is continuous, this follows from the Fekete-Szegő Theorem to

come later in Theorem 15.18(ii). In the notation there, cap(A ∩ Λ; f) = limn→∞Dn(A ∩
Λ)−1 and it is not hard to see that A 7→ Dn(A ∩ Λ) is continuous. Without any real loss

of generality, one can assume that f is continuous since we are interested in capacity only

up to a bounded factor. However, one can show measurability in general.

We finish this section by showing how the intersection of several independent copies

of Brownian motion is related to multiple points of a single Brownian motion.

Corollary 15.17. Consider Brownian motion in dimension d ≥ 2. Then almost surely

(i) if d ≥ 4, no double points exist, i.e., Brownian motion is injective;

(ii) if d = 3, double points exist, but triple points fail to exist;

(iii) if d = 2, points of multiplicity at least k exist for every finite k.

Proof. We prove (i) and the first part of (ii). The rest is plausible from Corollary 15.14,

and a full proof can be found in Mörters and Peres (2010), Theorem 9.22.

Let ⟨Bt ; t ≥ 0⟩ be a Brownian motion. To show part (i), it suffices to show that for

any rational α > 0, almost surely, there exist no times (t1, t2) with 0 ≤ t1 < α < t2 and
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Bt1 = Bt2 . Fix such an α. The Brownian motions ⟨B(1)
t ; t > 0⟩ and ⟨B(2)

t ; 0 < t ≤ α⟩
given by

B
(1)
t := Bα+t −Bα and B

(2)
t := Bα−t −Bα

are independent and hence, by Corollary 15.14, a.s. they do not intersect. This proves the

statement.

To show existence of double points in d ≤ 3, we consider the independent Brownian

motions ⟨B(1)
t ; 0 < t ≤ 1⟩ and ⟨B(2)

t ; 0 < t ≤ 1⟩ given by

B
(1)
t = B1+t −B1 and B

(2)
t = B1−t −B1

to see that the two traces intersect with positive probability; in fact, this probability is

one by Blumenthal’s 0-1 law. ◀

A remarkable extension of Corollary 15.17(c) was proved by Le Gall (1987) concerning

infinite multiplicity. Namely, for each totally disconnected compact set K ⊂ R, there is

a.s. some x ∈ R2 such that the time set A(x) := {t ≥ 0 ; Bt = x} has the same order type

as K, i.e., A(x) is homeomorphic to K via a monotonic increasing function.

§15.5. Generalized Diameters and Average Meeting Height on Trees.

There are amusing alternative definitions of capacity that we present in some gen-

erality and then specialize to trees. Suppose that X is a compact Hausdorff* space and

K : X × X → [0,∞] is continuous and symmetric. Let Prob(X) denote the set of Borel

probability measures on X. For µ ∈ Prob(X), set

Vµ(x) :=

∫
X

K(x, y) dµ(y) , E (µ) :=

∫
X×X

K d(µ× µ) ,

E (X) := inf
{
E (µ) ; µ ∈ Prob(X)

}
, cap(X) := E (X)−1

as before, and define the Chebyshev constants

Mn(X) := max
x1,...,xn∈X

min
x∈X

1

n

n∑
k=1

K(x, xk) ,

and the generalized diameters

Dn(X) := min
x1,...,xn∈X

1(
n
2

) ∑
1≤j<k≤n

K(xj , xk) .

To see where generalized diameters get their name, consider the case n = 2 and K(x, y) =

1/d(x, y) for a metric space. When generalized diameters were first named, however, the

kernel was log 1/d(x, y). See p. 37 of Carleson (1967) for the classical case.

* We will have need only of metric spaces, but the proofs are no simpler than for Hausdorff spaces.
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Theorem 15.18. Let X be compact and Hausdorff and K be continuous and symmetric.

(i) We have

E (X) = inf
{
∥Vµ∥L∞(µ) ; µ ∈ Prob(X)

}
.

If E (X) <∞, then for some µ ∈ Prob(X), we have Vµ = E (X) µ-a.e.

(ii) (Fekete-Szegő Theorem) We have

Dn(X) ↑ E (X) = lim
n→∞

inf
{
Mn(X̂) ; X̂ ⊆ X is compact

}
.

If E (X) < ∞, then for some µ ∈ Prob(X) there is a compact set X̂ ⊆ X such that

Vµ↾X̂ ≤ E (X) and µ(X̂) = 1; for any such µ and X̂, we have Mn(X̂) ≤ E (X) for

all n and E (X) = limn→∞Mn(X̂).

See the notes at the end of this chapter for a proof.

We are interested in the case that X is the boundary of a tree T andK(ξ, η) = Ψ(ξ∧η)
corresponds to conductances on T as in Section 15.1. In that case, there is a measure µ,

namely, harmonic measure for the network random walk on T , such that Vµ ≤ E (∂T )

everywhere (see the end of Section 15.1). Hence by the Fekete-Szegő theorem,

E (∂T ) = limDn(∂T ) = limMn(∂T ) ,

with Dn(∂T ) ≤ E (∂T ) and Mn(∂T ) ≤ E (∂T ). We will transfer this from the boundary to

the vertices of T to obtain the following theorem.

Theorem 15.19. (Benjamini and Peres, 1992) If ∀ξ ∈ ∂T
∑
o̸=x∈ξ r

(
e(x)

)
= ∞

and T is locally finite, then the following are equivalent:

(i) R(o↔ ∞) <∞;

(ii) ∃A <∞ ∀n ≥ 1 ∃ distinct x1, . . . , xn ∈ T such that(
n

2

)−1 ∑
1≤j<k≤n

R(o↔ xj ∧ xk) ≤ A ;

(iii) ∃A <∞ ∀n ≥ 1 ∀x1, . . . , xn ∈ T ∃u ∈ T ∀k u ̸≤ xk and

1

n

n∑
k=1

R(o↔ u ∧ xk) ≤ A .

Here, the effective resistance between vertices is the free effective resistance, which is

just the sum of the resistances of the edges between the vertices.
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In the case of simple random walk, i.e., c ≡ 1, we have R(o↔ x∧ u) = |x∧ u|. Thus,
the quantities in (ii) and (iii) are average meeting heights.

For example, consider simple random walk on the unary tree. This is recurrent,

whence the three conditions in Theorem 15.19 are false. Indeed, it is not hard to see that

given n distinct vertices, the average in (ii) is at least (n + 1)/2, while even for n = 1,

there is no bound on the quantity in (iii).

For a more interesting example, consider simple random walk on the binary tree, T .

Now the three conditions are true. To illustrate (ii), suppose that n = 2ℓ is a power of

2. Choose x1, . . . , xn to be the ℓth level of T . Then the quantity in (ii) is approximately

equal to 1. To see that (iii) holds with A = 1, suppose that H := ⟨x1, . . . , xn⟩ is given.

Choose a child u1 of the root of T such that Tu1 contains at most half of H. Then choose

a child u2 of u1 such that Tu2 contains at most half of H ∩Tu1 . Continue in this way until

we reach a vertex uj with H ∩ Tuj = ∅. Let u := uj . Since u ∧ x = o for x ∈ H \ Tu1 ,

these vertices x contribute 0 to the left-hand side of (iii). Similarly, the vertices in H \Tu2

contribute at most 1/4 to the left-hand side of (iii), and so on.

Remark. The proof will show that the smallest possible A in (ii), as well as in (iii), is

R(o↔ ∞).

Proof of Theorem 15.19. Assume (i). Use K(ξ, η) := R(o ↔ ξ ∧ η). Then Dn(∂T ) ≤
E (∂T ), so ∃ξ1, . . . , ξn ∈ ∂T such that(

n

2

)−1∑
j<k

R(o↔ ξj ∧ ξk) ≤ E (∂T ) .

From the hypothesis that ∀ξ ∈ ∂T R(o ↔ ξ) = ∞, the ξk are distinct. Hence there

exist distinct xk ∈ ξk such that xj ∧ xk = ξj ∧ ξk, namely, pick xk ∈ ξk such that

|xk| > maxi̸=j |ξi ∧ ξj |. This gives (ii) with A = E (∂T ).

For the remainder of the proof of the theorem, we will need new trees T ∗ and T ∗∗,

created by adding a ray to each leaf or vertex of T , respectively, with all new edges having

conductance 1. Since ∂T ∗ \ ∂T and ∂T ∗∗ \ ∂T are countable and K(ξ, ξ) ≡ ∞, we have

E (∂T ∗) = E (∂T ∗∗) = E (∂T ).

Assume (i) again. Given x1, . . . , xn ∈ T , let ξk ∈ ∂T ∗ be such that xk ∈ ξk. Since, as

we noted before the statement of the theorem, Mn(∂T
∗) ≤ E (∂T ∗) = E (∂T ), there exists

η ∈ ∂T ∗ such that

1

n

n∑
k=1

R(o↔ η ∧ ξk) ≤ E (∂T ) .

Then ∀k η ̸= ξk, so ∃u ∈ η ∩ T such that ∀k u∧ xk ≤ η ∧ ξk and u ̸≤ xk. This gives (iii).
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Now assume (iii). Given ξ1, . . . , ξn ∈ ∂T ∗, choose xk ∈ ξk ∩ T so that in case ξk ∈
∂T ∗ \ ∂T , then xk ∈ T ∗ \ T , while if not, then |xk| is so large that R(o ↔ xk) > nA.

Let u be as asserted in (iii). Then ∀k u ̸≥ xk. Choose η ∈ ∂T ∗ such that u ∈ η. Then

∀k η ∧ ξk = u ∧ xk, so
1

n

n∑
k=1

R(o↔ η ∧ ξk) ≤ A .

Therefore E (∂T ∗) ≤ A, so R(o↔ ∞;T ) <∞.

Finally, assume (ii). Given n, let x1, . . . , xn be as in (ii). Choose ξk ∈ ∂T ∗∗ \ ∂T such

that xk ∈ ξk. Then ∀j < k ξj ∧ ξk = xj ∧ xk, whence(
n

2

)−1∑
j<k

R(o↔ ξj ∧ ξk) ≤ A .

Therefore E (∂T ∗∗) ≤ A, so R(o↔ ∞;T ) <∞. ◀

§15.6. Notes.

For general background on Brownian motion, see Mörters and Peres (2010). Other nice
references on potential theory are Bass (1995), Port and Stone (1978), and Sznitman (1998).

As noted by Benjamini, Pemantle, and Peres (1995), capacity in the Martin kernel

Kd(x, y) := Gd(x, y)/Gd(0, y)

is better suited for studying Brownian hitting probabilities than the Green kernel Gd(x, y). (In
two dimensions, we use G∗

2(x, y), but we will not indicate this by our notation. Also, Kd is not
symmetric, but we will use it only in a symmetric fashion, so it could be replaced by (Kd(x, y) +
Kd(y, x))/2.) The reason is that while the Green kernel, and hence the corresponding capacity,
are translation invariant, the hitting probability of a set Λ by standard d-dimensional Brownian
motion is not translation invariant, but is invariant under scaling for d ≥ 3. This scale-invariance is
shared by the Martin kernel Kd(x, y). In particular, using the second-moment method, Benjamini,
Pemantle, and Peres (1995) proved the following result, where the constants (1/2 and 1) are the
best possible. The case d = 2 is spelled out in Mörters and Peres (2010):

Theorem 15.20. Let Bt be Brownian motion started at 0 in Rd for d ≥ 3, or in R2 but killed at
an exponential time, and let Kd be the corresponding Martin kernel. Then, for any closed set Λ
in Rd,

1

2
cap(Λ;Kd) ≤ P[∃t ≥ 0 Bt ∈ Λ] ≤ cap(Λ;Kd) . (15.19)

If the Brownian motion is started according to the measure ν, then (15.19) remains true with the
Martin kernel Kd(x, y) := Gd(x, y)/Gd(ν, y), where

Gd(ν, y) =

∫
Gd(x, y) dν(x) . (15.20)

See Exercise 15.10 for a discrete version. From Theorem 15.20, Lemma 15.10 is immediate:

Proof of Lemma 15.10. By Theorem 15.20, it is enough to show that the ratio of the Martin kernel
to the Green kernel is bounded above and below. By definition of the Martin kernel, it suffices to
check that the Greenian potential Gd(ν, y) defined in (15.20) is bounded. This is clearly the case
when ν has a bounded density. ◀
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▷ Exercise 15.8.
Let [B] be the trace of Brownian motion started at 0 in Rd for d ≥ 3, or in R2 but killed at an
exponential time. Let Λ ⊂ Rd \ {0} be closed. Show that P[|[B] ∩ Λ| ∈ {0, 2ℵ0}] = 1.

The proof of Bishop’s conjecture (15.7) is published here for the first time (Corollary 15.15).
Now we prove Theorem 15.18.

Proof of Theorem 15.18. (i) Since E (µ) = ∥Vµ∥L1(µ) ≤ ∥Vµ∥L∞(µ), we have E (X) ≤ infµ ∥Vµ∥L∞(µ).
On the other hand, hand, suppose that E (X) <∞ (since otherwise certainly E (X) ≥ infµ ∥Vµ∥L∞(µ)).
The space Prob(X) is Hausdorff and compact under the weak* topology. The definition of
Hausdorff is equivalent to the diagonal ∆ := {(µ, µ) ∈ Prob(X) × Prob(X)} being closed in
Prob(X) × Prob(X). Since ∀t ∈ R K ∧ t ∈ C(X ×X), we have

∆ ∩
{

(µ, ν) ∈ Prob(X) × Prob(X) ;

∫
K ∧ t d(µ× ν) ≤ E (X) + ϵ

}
is compact and non-empty for each ϵ > 0. Hence there is a measure µ with (µ, µ) in all these sets
for t <∞ and ϵ > 0. This measure µ necessarily satisfies E (µ) = E (X).

We claim that Vµ ≥ E (X) µ-a.e.; this gives Vµ = E (X) µ-a.e. since E (X) = E (µ) =
∫
Vµ dµ.

Suppose there were a set F ⊆ X and δ > 0 such that µF > 0 and Vµ↾F ≤ E (X) − δ. Then move
a little of µ’s mass to F : Let ν := µ(• | F ) be the normalized restriction of µ to F and η > 0. We
have E (ν) <∞ and

E ((1 − η)µ+ ην) = (1 − η)2E (µ) + η2E (ν) + 2(1 − η)η

∫
Vµ dν

≤ (1 − η)2E (X) + η2E (ν) + 2(1 − η)η(E (X) − δ)

≤ E (X) − 2ηδ +O(η2) .

Hence E ((1 − η)µ+ ην) < E (X) for sufficiently small η, a contradiction.
(ii) Regard Dn+1(X) as an average of averages over all n-subsets of {x1, . . . , xn+1}; each

n-subset average is ≥ Dn(X), whence so is Dn+1(X).

Claim: Dn+1(X) ≤ Mn(X). Let Dn+1(X) =
(
n+1
2

)−1∑
1≤j<k≤n+1K(xj , xk). For each j,

write this as fj(x1, . . . , xj−1, xj+1, . . . , xn+1) +
(
n+1
2

)−1∑
k ̸=j K(xj , xk). Only the second term

depends on xj , hence xj is such that∑
k ̸=j

K(xj , xk) = min
x∈X

∑
k ̸=j

K(x, xk) ≤ nMn(X) .

Therefore

Dn+1(X) =
1

n(n+ 1)

n+1∑
j=1

∑
k ̸=j

K(xj , xk) ≤ 1

n+ 1

n+1∑
j=1

Mn(X) = Mn(X) .

Thus, for any compact X̂ ⊆ X, we have Dn+1(X) ≤ Dn+1(X̂) ≤Mn(X̂), whence Dn+1(X) ≤
infX̂Mn(X̂).

Claim: infX̂Mn(X̂) ≤ E (X) and if Vµ ≤ E (X) on X̂ with µX̂ = 1, then Mn(X̂) ≤ E (X).
We may assume E (X) < ∞. From part (i), ∃µ ∈ Prob(X) Vµ = E (X) µ-a.e. Since Vµ is lower
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semicontinuous by Fatou’s lemma, the set X̂0 where Vµ ≤ E (X) is compact and µX̂0 = 1. For
any X̂ ⊆ X̂0 with µX̂ = 1 and any xk ∈ X̂, we have

min
x∈X̂

1

n

n∑
1

K(x, xk) ≤
∫
X̂

1

n

n∑
1

K(x, xk) dµ(x) =

∫
X

1

n

n∑
1

K(x, xk) dµ(x)

=
1

n

n∑
1

Vµ(xk) ≤ E (X) ,

i.e., Mn(X̂) ≤ E (X).

Claim: E (X) ≤ limDn(X). LetDn(X) =
(
n
2

)−1∑
1≤j<k≤nK(xj , xk) and µn :=

∑n
j=1

1
n
δ(xj).

Let µ be a weak* limit point of {µn}. Weak* convergence of µnj to µ implies weak* convergence
of the squares µnj × µnj to µ× µ since the linear span of C(X)⊗C(X) is dense in C(X ×X) by
the Stone-Weierstrass Theorem. We have for t ∈ R,∫

K ∧ t d(µn × µn) ≤ n− 1

n
Dn(X) +

t

n
,

whence ∫
K ∧ t d(µ× µ) ≤ lim

n→∞
Dn(X) ,

whence
E (µ) ≤ lim

n→∞
Dn(X) .

Putting the claims together, we see that

Dn+1(X) ≤ inf
X̂
Mn(X̂) ≤ E (X) ≤ lim

n→∞
Dn(X) ,

from which the theorem follows. ◀
Remark. We have also seen that when E (X) < ∞, a minimizing measure (called equilibrium
measure) on X can be obtained as a weak* limit point of the empirical measures of minimizing
sets for Dn(X).

§15.7. Collected In-Text Exercises.

15.1. Show that if px ≡ p ∈ (0, 1) and T is spherically symmetric, then

cap ∂T =

(
1 + (1 − p)

∞∑
n=1

1

pn|Tn|

)−1

.

Thus, P[o↔ ∂T ] > 0 iff
∑∞
n=1

1
pn|Tn| <∞.

15.2. Suppose that f and g are two gauge functions such that f/c1 − c2 ≤ g ≤ c1f + c2 for some
constants c1 and c2. Show that for all E, capf (E) > 0 iff capg(E) > 0.

15.3. Prove Corollary 15.6.
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15.4. Prove Proposition 15.8.

15.5. (a) Show that pn ≤ b−d for all n implies that Qd,b(⟨pn⟩) = ∅ a.s.
(b) Characterize the sequences ⟨pn⟩ for which Qd(⟨pn⟩) has positive volume with positive prob-

ability.

15.6. Let pt(x, y) := (2πt)−d/2 exp
(
−|x− y|2/(2t)

)
be the Brownian transition density function,

and for d ≥ 3, define Gd(x, y) :=
∫∞
0
pt(x, y) dt for x, y ∈ Rd.

(a) Show that Gd(x, y) = cdgd(|x− y|), with a constant 0 < cd <∞.
(b) Define FA(x) :=

∫
A
Gd(x, z) dz for Borel sets A ⊆ Rd. Show that FA(x) is the expected time

the Brownian motion started at x spends in A.
(c) Show that x 7→ Gd(0, x) is harmonic on Rd \ {0}, in other words, has zero Laplacian there.

Equivalently, if B ⊂ Rd \ {0} is a ball, then the average value (with respect to Lebesgue
measure) of Gd(0, x) over x ∈ B is equal to the value at the center of the ball.

(d) Consider Brownian motion ⟨Bt⟩ in R2, killed at a random time with an exponential distribu-
tion with parameter 1. In other words, let τ be an Exponential(1) random time, independent
of the Brownian motion. The expected occupation measure νx for Bt started at x and
killed at time τ is defined by νx(A) := E

∫ τ
0
1A(Bt) dt for Borel sets A in R2. Show that

νx(A) =
∫
A
G∗

2(x, y) dy, where G∗
2(x, y) :=

∫∞
0
pt(x, y)e−t dt.

(e) Show that in 2 dimensions, G∗
2(x, y) ∼ −(1/π) log |x− y| for |x− y| ↓ 0.

15.7. Prove part (iii) of Corollary 15.14.

15.8. Let [B] be the trace of Brownian motion started at 0 in Rd for d ≥ 3, or in R2 but killed
at an exponential time. Let Λ ⊂ Rd \ {0} be closed. Show that P[|[B] ∩ Λ| ∈ {0, 2ℵ0}] = 1.

§15.8. Additional Exercises.

15.9. Consider a network on a tree T and a subset E ⊆ ∂T . Let µi be harmonic measure on ∂T .
Show that capE ≥ cap(∂T )·µi(E), whence if µi(E) > 0, then P[o↔ E] > 0 for the corresponding
percolation. Find T and E ⊆ ∂T so that µi(E) = 0 yet P[o↔ E] > 0 (so capE > 0).

15.10. Use a method similar to the proof of Theorem 5.24 to prove the following theorem. Let
⟨Xn⟩ be a transient Markov chain on a countable state space with initial distribution π and
transition probabilities p(x, y). Define the Green function G (x, y) :=

∑∞
n=1 p

(n)(x, y) and the
Martin kernel K(x, y) := G (x, y)/

∑
z π(z)G (z, y). Note that K may not be symmetric. Then

with capacity defined using the kernel K, we have for any set S of states,

1

2
cap(S) ≤ P[∃n ≥ 0 Xn ∈ S] ≤ cap(S) .

15.11. Prove (1.10) that for α > 0,

1

2
capαE ≤ 1

1 − b−α
capα log b∂T ≤ 3b capαE

when T codes the closed set E ⊆ [0, 1] in base b.

15.12. Show that if µ is a probability measure on Rd satisfying µ(Br(x)) ≤ Crα for some con-
stants C and α and if β < α, then the energy of µ in the gauge z−β is finite. By using this and
previous exercises, give another proof of Corollary 15.6.

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



Chap. 15: Capacity 566

15.13. Let A ⊂ Rd be a set contained in the d-dimensional ball of radius a centered at the origin.
Write B(s, t) for the trace of d-dimensional Brownian motion during the time interval (s, t). Let
τ be an exponential random variable with parameter 1 independent of B. Show that

e−1P0[B(0, 1) ∩A ̸= ∅] ≤ P0[B(0, τ) ∩A ̸= ∅] ≤ CP0[B(0, 1) ∩A ̸= ∅]

for some constant C (depending on a and d). Hint: For the upper bound, first show the following
general lemma: Let f1, f2 be probability densities on [0,∞). Suppose that the likelihood ratio

ψ(r) := f2(r)
f1(r)

is increasing and h: [0,∞) → [0,∞) is decreasing on [a,∞). Then

∫∞
0
h(r)f2(r) dr∫∞

0
h(r)f1(r) dr

≤ ψ(a) +

∫∞
a
f2(r) dr∫∞

a
f1(r) dr

.

Second, use this by conditioning on |Btj | for j = 1, 2 to get an upper bound on

P0[B(t2, t2 + s) ∩A ̸= ∅]
P0[B(t1, t1 + s) ∩A ̸= ∅]

for t1 ≤ t2 and s ≥ 0. Third, bound P0[B(0, τ) ∩ A ̸= ∅] by summing over intersections in
[j/2, (j + 1)/2] for j ∈ N.

15.14. Fitzsimmons and Salisbury (1989) showed that when d = 2, if B(i) are independent
Brownian motions, then cap(Λ; gkd) > 0 if and only if P[Λ ∩ [B(1)] ∩ · · · ∩ [B(k)] ̸= ∅] > 0. Does
this also hold for d ≥ 3?

15.15. Let Λ ⊂ Rd be a k-dimensional cube of side length a, where 1 ≤ k ≤ d. Find the capacity
cap(Λ; gd) up to constant factors depending on k and d only.

15.16. Let [B] be the Brownian trace in dimension d defined in Theorem 15.11. Consider any
closed subset Λ ⊆ Rd.
(a) Show that if d ≥ 3 and dim Λ > d− 2, then dim (Λ ∩ [B]) ≤ dim Λ + 2 − d a.s., and that the

essential supremum of the left-hand side is equal to the right-hand side.
(b) Show that if d = 2 and [B(1)], . . . , [B(k)] are independent Brownian traces for some k ≥ 1,

then dim (Λ ∩ [B(1)] ∩ · · · ∩ [B(k)]) = dim Λ a.s.
(c) Show that if d ≥ 3 and [B(1)], . . . , [B(k)] are independent Brownian traces for some k ∈

[1, dim Λ/(d− 2)), then dim (Λ ∩ [B(1)] ∩ · · · ∩ [B(k)]) ≤ dim Λ − k(d− 2) a.s., and that the
essential supremum of the left-hand side is equal to the right-hand side.

15.17. Consider the following variant of the fractal percolation process, defined on all of R3. For
each n ∈ Z, tile space by cubes of side length 3−n with sides parallel to the coordinate axes, each
one being a translation of the cube with center 0 = (0, 0, 0) by some vector in Z3/3n. Generate
a random collection Zn of these cubes by always including the cube containing 0, and including
each of the remaining cubes independently with probability p. As before, define

Cn :=
∪

Zn and R(p) :=
∩
n∈Z

Cn .

Show that for p = 1/3, the random set R(p) is intersection equivalent in all of R3 to the trace of
Brownian motion started at 0. Hint: Use Theorem 15.20.
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15.18. Let A,B ⊂ [0, 1]d be two random closed sets that are intersection equivalent in [0, 1]d,
with α and β being the essential supremum of their Hausdorff dimensions. Prove that α = β.

15.19. Let [B] and [B′] be independent Brownian traces in dimension 3, as defined in Theo-
rem 15.11. Show that P[[B] ∩ [B′] ∩ Λ ̸= ∅] ≍ cap 1(Λ) for all closed subsets Λ ⊆ [0, 1]3.

15.20. Remove the hypothesis from Theorem 15.19 that T be locally finite.

15.21. Give an example of a kernel on a space X such that E (X) < ∞ yet for all µ ∈ Prob(X),
there is some x ∈ X with Vµ(x) = ∞.

15.22. Suppose that X is a compact Hausdorff space and K : X ×X → [0,∞] is continuous and
symmetric. Give Prob(X) the weak* topology. Show that µ 7→ E (µ) is lower semicontinuous.
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Chapter 16

Random Walks on Galton-Watson Trees

We have analyzed random walks on trees in Chapters 3 and 13; we have seen many

examples of interesting trees in several chapters, some of them random. Up to now,

however, we have not looked at random walks on random trees. That is, choose a tree

at random in an interesting way; then fix the tree and run a random walk on it. What

happens?

We will be particularly interested when the tree is chosen at random according to

Galton-Watson measure and look at simple random walk. Is it transient or recurrent? If

transient, how fast does it escape to infinity and what is the Hausdorff dimension of its

harmonic measure on the boundary of the tree?

The setting now is a little more complicated than for random walks on graphs. It

will turn out to be crucial that our trees are rooted and that we move the root with the

random walker. The set of trees on which the walk will take place will be uncountable,

so although the starting rooted tree determines a countable set of possible rooted trees

of the later trajectory of the random walk, altogether the Markov chain takes place on

an uncountable state space. Thus we start by discussing Markov chains on general state

spaces. In particular, we need to understand the relationship of concepts from the theory

of Markov chains to concepts from ergodic theory.

As mentioned above, all trees in this chapter are rooted.

§16.1. Markov Chains and Ergodic Theory.

We begin with a brief review of ergodic theory. A probability measure-preserving

system (X,F, µ, S) is a probability measure space (X,F, µ) together with a measurable

map S from X to itself such that for all A ∈ F , µ(S−1A) = µ(A). Fix A ∈ F with

µ(A) > 0. We denote the induced measure on A by µA(C) := µ(C)/µ(A) for C ⊆ A.

We also write µ(C | A) for µA(C) since it is a conditional measure. A set A ∈ F is called

S-invariant if µ(A△ S−1A) = 0. The σ-field generated by the invariant sets is called

the invariant σ-field . The system is called ergodic if the invariant σ-field is trivial (i.e.,
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consists only of sets of measure 0 and 1). A sufficient condition for ergodicity is that the

system be mixing , i.e., that for all A,B ∈ F , we have limn→∞ µ(A∩S−nB) = µ(A)µ(B).

(To see that this is indeed sufficient, just apply it to A = B in the invariant σ-field.) For a

function f on X, we write Sf for the function f ◦S. The ergodic theorem states that for

f ∈ L1(X,µ), the limit of the averages
∑n−1
k=0 S

kf/n exists a.s. and equals the conditional

expectation of f with respect to the invariant σ-field. In particular, if the system is ergodic,

then the limit equals the expectation of f a.s.

Now let X be a measurable state space and p be a transition kernel on X (i.e.,

p(x,A) is measurable in x for each measurable set A and is a probability measure for each

fixed x). The corresponding Markov chain satisfies P[Xn+1 ∈ A | Xn] = p(Xn, A). This

gives the usual operator P on bounded* measurable functions f , where

(Pf)(x) :=

∫
X

f(y)p(x, dy) ,

and its adjoint P ∗ on probability measures, where∫
X

f dP ∗ν :=

∫
X

Pf dν .

Let µ be a p-stationary probability measure, i.e., P ∗µ = µ, and let I be the σ-field of

invariant sets, i.e., those measurable sets A such that

p(x,A) = 1A(x) for µ-a.e. x .

The Markov chain is called ergodic if I is trivial.

We use these terms in more general situations as well. That is, if µ is a positive

measure, perhaps infinite, then we say that µ is p-stationary if for all measurable f ≥ 0,

we have
∫

X f dµ =
∫

X Pf dµ. Even if µ is not p-stationary, we define the invariant σ-field

to consist of those measurable sets A such that µ
{
x ; p(x,A) ̸= 1A(x)

}
= 0 and we call

the Markov chain ergodic if every invariant A satisfies µ(A) = 0 or µ(Ac) = 0.

We have now used “invariant” and “ergodic” each in two apparently different senses

and will explain why they are actually equivalent (Proposition 16.2 and Corollary 16.3

below).

A bounded measurable function f is called harmonic if Pf = f µ-a.s. Let (X ∞,p×
µ) be the space of (one-sided) sequences of states with the measure induced by choosing

the initial state according to µ and making transitions via p. That is, if ⟨Xn ; n ≥ 0⟩ is

the Markov chain on X with X0 ∼ µ, then p× µ is its law.

* Everything we will say about bounded functions applies equally to non-negative functions.
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Lemma 16.1. Consider a Markov chain ⟨Xn ; n ≥ 0⟩ with transition kernel p and p-

stationary probability measure µ on a measurable state space X . If f is a bounded mea-

surable function on X , then the following are equivalent:

(i) f is harmonic;

(ii) f is I-measurable;

(iii) f(X0) = f(X1) p× µ-a.s.

The idea is that when there is a finite stationary measure, then, as in the case of

a Markov chain with a denumerable number of states, there really aren’t any nontrivial

bounded harmonic functions.

▷ Exercise 16.1.

Show that Lemma 16.1 may not be true if µ is an infinite stationary measure.

Proof of Lemma 16.1. (i) ⇒ (ii): Let f be harmonic. Fix α ∈ R. Since P is a positive

operator (i.e., it maps non-negative functions to non-negative functions),

P (f ∧ α) ≤ (Pf) ∧ α = f ∧ α .

Also ∫
P (f ∧ α) dµ =

∫
f ∧ αdP ∗µ =

∫
f ∧ αdµ .

Combining these two equations yields that P (f ∧ α) = f ∧ α µ-a.s., i.e., that f ∧ α is

harmonic. Now consider a state x for which f(x) ≥ α and also where (f ∧ α)(x) =(
P (f ∧ α)

)
(x). These two conditions imply that p

(
x, [f ≥ α]

)
= 1. Since each of these

two conditions holds µ-a.s., we get that for µ-a.e. x ∈ [f ≥ α], we have p
(
x, [f ≥ α]

)
= 1.

Likewise, for µ-a.e. x ∈ [f ≤ β], we have p
(
x, [f ≤ β]

)
= 1 for every β. Since [f < α] =∪

β<α[f ≤ β], it follows that for µ-a.e. x ∈ [f < α], we have p
(
x, [f < α]

)
= 1, whence

[f ≥ α] ∈ I . Thus, f is I -measurable.

(ii) ⇒ (iii): For any interval I, we have p
(
x, [f ∈ I]

)
= 1[f∈I](x) µ-a.s. Thus, if

f(X0) ∈ I, then f(X1) ∈ I a.s.

(iii) ⇒ (i): This is immediate from the definition of harmonic. ◀

The shift map on X∞ is the map (x0, x1, . . .) 7→ (x1, x2, . . .). It preserves the measure

p × µ since µ is stationary. We now show that functions on X ∞ that are (a.s.) shift

invariant depend only on their first coordinate:

Proposition 16.2. Consider a Markov chain ⟨Xn ; n ≥ 0⟩ with transition kernel p and

p-stationary probability measure µ on a measurable state space X . A bounded measurable
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function h on X ∞ is shift invariant iff there exists a bounded I -measurable function f

on X such that h(X0, X1, . . .) = f(X0) p× µ-a.s. Indeed, f(x) can be determined from h

by starting the chain at x and defining f(x) := Ex
[
h(x,X1, . . .)

]
.

Proof. If h has the form given in terms of f , then the lemma shows that h is shift invariant.

Conversely, given h, define f as indicated. Then we have a.s.

f(X0) = E
[
E[h(X0, X1, . . .) | X0, X1]

∣∣ X0

]
= E

[
E[h(X1, X2, . . .) | X0, X1]

∣∣ X0

]
by shift invariance

= E[f(X1) | X0] by the Markov property and the definition of f

= (Pf)(X0) by definition of P .

That is, f is harmonic, so is I-measurable. Now similar reasoning, together with the

martingale convergence theorem, gives a.s.

h(X0, X1, . . .) = lim
n→∞

E
[
h(X0, X1, . . .) | X0, . . . , Xn

]
= lim
n→∞

E
[
h(Xn, Xn+1, . . .) | X0, . . . , Xn

]
= lim
n→∞

f(Xn) = f(X0)

by the lemma. ◀

As an immediate corollary, we get a criterion for ergodicity:

Corollary 16.3. Consider a Markov chain with transition kernel p and p-stationary prob-

ability measure µ. We have that p× µ is ergodic for the shift iff I is trivial. ◀

§16.2. Stationary Measures on Trees.

We now begin to apply the general theory of the preceding section to simple random

walk on random trees. We are interested in linear rate of escape, so the case of recurrent

trees is not germane. In particular, trees with 1 or 2 ends will receive minimal attention.

Recall that an end of a tree is an equivalence class of rays with arbitrary starting vertices,

where two rays are equivalent if their symmetric difference is finite.

We haven’t said yet what random trees we consider. The answer will be that the

tree is chosen according to some probability measure that gives us a Markov chain that

is stationary in an appropriate sense. Stationarity will greatly facilitate the analysis, but

it won’t hold in the most interesting case of Galton-Watson trees: after all, the root has

a smaller degree (by 1) in distribution than do other vertices. We’ll be able to fix this
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problem in a surprisingly easy way, but in this section, we discuss the general theory that

we’ll invoke once we do get stationarity. In order to achieve a stationary Markov chain,

we need to change our point of view from a random walk on a fixed (though random) tree

to a random walk on the space of isomorphism classes of trees.

Actually, there is no good Borel space of unrooted trees. Think, for example, how one

would define a distance between two trees. Instead, it is necessary to consider rooted trees.

Then two rooted trees are close if they agree, up to isomorphism sending one root to the

other, in a large ball around their roots. This gives a topology, and the topology generates

a Borel σ-field. What one then does is walk on the space of rooted trees, changing the root

to the location of the walker and keeping the underlying unrooted tree the same. However,

in order to have a measure on rooted trees that is stationary with respect to this chain,

we need to use isomorphism classes of rooted trees.

The formalism is as follows. Let T be the space of rooted trees in Exercise 5.2. Call

two rooted trees (rooted) isomorphic if there is a bijection of their vertex sets preserving

adjacency and mapping one root to the other. Since the roots will be changing with the

walker, we will often write the root explicitly. Our notation for a rooted tree will be (T, x),

where x ∈ V(T ) designates the root. For (T, o) ∈ T , let [T, o] denote the set of trees that

are isomorphic to (T, o). Let [T ] :=
{
[T, o] ; (T, o) ∈ T

}
. Normally, we have a measure

µ such as GW on rooted trees T ; such a measure induces a measure [µ] on isomorphism

classes of rooted trees [T ] in the obvious way.

Consider the Markov chain that moves from a rooted tree (T, x) to the rooted tree

(T, y) for a uniform random neighbor y of x. For a fixed tree T , this chain is “isomorphic”

to simple random walk on T . Write the transition probabilities as

p
(
(T, x), (T, y)

)
=
{
1/degT (x) if y ∼ x,
0 otherwise.

As we said, in order to get stationarity, we are really interested in the Markov chain induced

by this chain on isomorphism classes of trees. Thus, define

p
(
[T, x], [T ′, y]

)
:=

1

degT (x)

∣∣{z ∈ T ; z ∼ x, [T ′, y] = [T, z]
}∣∣ .

This gives the transition kernel

pSRW

(
[T, x], A

)
:=

∑
[T ′,y]∈A

p
(
[T, x], [T ′, y]

)
.

We will call a Borel measure µ on T stationary if the induced measure [µ] on [T ] is. Rather

than say that µ is pSRW-stationary, we will say more simply that µ is SRW-stationary.
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▷ Exercise 16.2.

Let G = (V,E) be a finite connected graph. For x ∈ V, let Tx be the universal cover of G

based at x (see Section 3.3). Define

µ
(
[T, o]

)
:=

1

2|E|
∑{

deg x ; x ∈ V, [Tx, x] = [T, o]
}
.

Show that µ is an SRW-stationary ergodic probability measure on [T ].

Let SRW× µ (instead of pSRW × µ) denote the probability measure on paths in trees

given by choosing a tree according to µ and then independently running simple random

walk on the tree starting at its root.

Theorem 16.4. (Speed for Stationary Measures) If µ is an SRW-stationary prob-

ability measure on the space of rooted trees T such that µ-a.e. tree is infinite, then the

speed (rate of escape) of simple random walk ⟨Xn⟩ satisfies

E

[
lim
n→∞

|Xn|
n

]
=
∑
k≥1

µ[degT o = k]

(
1− 2

k

)
≥ 0 . (16.1)

The speed is positive a.s. iff µ-a.e. tree has at least 3 ends, in which case µ-a.e. tree has

uncountably many ends and branching number > 1. In case µ is ergodic, then the sum in

(16.1) is SRW × µ-a.s. the speed.

Proof. Since the measure on rooted trees is stationary for simple random walk, the sequence

of degrees ⟨degT Xk⟩ is a stationary sequence. Thus, (16.1) follows from (13.4) and the

ergodic theorem.

Now the speed is of course 0 a.s. on all trees with at most 2 ends. In the opposite case,

we make use of the following construction. This is also where we begin the deeper, fruitful

interplay of discrete probability (on trees) with ergodic theory (on the space of trees).

For a tree T , write T♢ for the bi-infinitary part of T consisting of the vertices

and edges of T that belong to some bi-infinite simple path. This is the same as what

remains of T after iteratively pruning all its leaves. The bi-infinitary part of T is non-

empty iff T has at least two ends; we are now assuming that µ-a.e. tree has at least 3

ends. The parts of T that are not in its bi-infinitary part are finite trees that we call

shrubs. Since simple random walk on a shrub is recurrent, simple random walk on T

visits T♢ infinitely often and, in fact, takes infinitely many steps on T♢. If we observe

⟨Xk⟩ only when it makes a transition along an edge of T♢, then we see simple random

walk on T♢ (by the strong Markov property). In particular, if we begin simple random
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walk on T with the initial stationary probability measure µ, then a.s. there exists k for

which Xk ∈ T♢. By stationarity, it follows that X0 ∈ T♢ with positive probability. Thus,

the set of states A♢ :=
{
[T, o] ; o ∈ T♢} has positive probability. Likewise, the event A ′

♢

that [T,X0], [T,X1] ∈ A♢ satisfies (SRW×µ)(A ′
♢) > 0, so the sequence of elements of A♢

given by successive returns to A ′
♢ is shift-stationary by Exercise 2.25. Let µ♢ be the law

of [T,X0] when
(
[T,X0], [T,X1]

)
has the law (SRW × µ) conditioned on A ′

♢. Then µ♢ is

stationary for simple random walk on T♢, since that is what corresponds to a return to

A ′
♢.

Now, µ♢[degT (o) ≥ 3] > 0 since otherwise the walk would be restricted to a copy of

Z. Since degT (o) ≥ 2 µ♢-a.s., it follows from (16.1) that the µ♢-expected speed is positive,

whence the speed is positive with positive µ♢-probability. In fact, the speed is positive a.s.

since if not, consider the set A of trees where the speed is 0. Then A is invariant under

the random walk, so if µ(A) > 0, then [µ] conditioned to A is also SRW-stationary, and

applying the result we just proved to this conditioned measure would give a contradiction.

Now let ⟨Yk⟩ be the random walk induced on T♢ and Zk be the number of steps that

the random walk on T takes between the kth step on T♢ and the (k + 1)th step on T♢.

Since the random walk returns to T♢ infinitely often a.s., its speed on T is

lim
k→∞

|Yk|∑
j<k Zj

.

To show that this is positive a.s., it remains to show that

lim
k→∞

1

k

∑
j<k

Zj <∞ (16.2)

a.s., since the µ♢-speed on T♢ is lim |Yk|/k, which we have already shown is positive a.s.

Now ⟨Zj⟩ is a stationary non-negative sequence if we condition on A♢, so the limit in

(16.2) equals the mean of Z0 by the ergodic theorem. But Z0 is the time it takes for the

random walk to make a step along T♢, i.e., the time it takes to return to A ′
♢. This has

finite expectation by the Kac lemma (Exercise 2.25).

The fact that µ-a.e. tree has infinitely many ends is a consequence of the transience,

and the stronger fact that the branching number is > 1 follows from Proposition 13.3. The

last sentence is a consequence of the ergodic theorem. ◀

Where do we get SRW-stationary probability measures? In the next section, we will

give an explicit stationary measure that is relevant to Galton-Watson trees. For the rest

of this section, however, we describe a general way of finding such measures in the context

of Cayley graphs.
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Sometimes, it is easier to find a measure that is stationary for delayed simple random

walk, rather than for simple random walk. Here, we define delayed simple random walk

on a graph with maximum degree at most D, abbreviated DSRW, to have the transition

probabilities

p(x, y) :=

{
1/D if x ∼ y,
1− deg x/D if x = y,
0 otherwise.

(The choice of D will be left implicit, but will be clear from context.) Thus, any uniform

measure on the vertices is an (infinite) stationary measure for delayed simple random

walk on a single infinite graph. But how do we find an invariant probability measure on

the space of rooted trees? Before we answer that question, we show how to pass from a

DSRW-stationary measure to a SRW-stationary measure:

Lemma 16.5. If µ is a DSRW-stationary probability measure on T , then the degree-

biased measure µ′ is a SRW-stationary probability measure on T ; more precisely, µ′ is

defined as the measure µ′ ≪ µ with

dµ′

dµ
(T, o) := C−1 degT (o) ,

where C :=
∫
degT (o) dµ(T, o). If µ is ergodic, then so is µ′.

Proof. We are given that for all events A,

µ
[
[T,X0] ∈ A

]
= µ

[
[T,X1] ∈ A

]
.

If we write this out, it becomes∫
1A
(
[T,X0]

)
dµ(T,X0) =

∫ ((
1− degT X0

D

)
1A
(
[T,X0]

)
+

1

D

∣∣∣{x ∼ X0 ; [T, x] ∈ A
}∣∣∣) dµ(T,X0) .

Cancelling what can be obviously cancelled, we get∫
(degT X0)1A

(
[T,X0]

)
dµ(T,X0) =

∫ ∣∣∣{x ∼ X0 ; [T, x] ∈ A
}∣∣∣ dµ(T,X0) .

This is the same as

µ′[[T,X0] ∈ A
]
= µ′[[T,X1] ∈ A

]
.

The ergodicity claim is immediate from the definitions. ◀
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▷ Exercise 16.3.

Show that if µ is an ergodic DSRW-stationary probability measure on the space of rooted

trees T such that µ-a.e. tree is infinite, then the rate of escape of simple random walk

(not delayed) is SRW × µ-a.s.

lim
n→∞

|Xn|
n

= 1− 2∫
degT (o) dµ(T, o)

.

Now where do DSRW-stationary probability measures on [T ] come from? One place

is from invariant probability measures on forests in Cayley graphs. Recall that an edge

[x, y] is present in a Cayley graph iff there is a generator s such that xs = y. Thus, for

any γ in the group, Γ, multiplication by γ on the left is an automorphism of G. Given

a percolation on a Cayley graph G = (V,E), i.e., a Borel probability measure P on the

subsets of E, write ω ⊆ E for the random subset given by the percolation. The action of

multiplication by γ induces a map

γω :=
{
[γx, γy] ; [x, y] ∈ ω

}
.

Thus, γ acts on P; we call P translation-invariant or Γ-invariant if γP = P for all

γ ∈ V. If S denotes the generating set for G, then clearly P is translation-invariant iff

sP = P for all s ∈ S. Call the percolation a random forest if each component is a

tree. For example, the uniform spanning forests FUSF and WUSF are translation-invariant

random forests by Exercise 10.2, as are the minimal spanning forests, FMSF and WMSF,

by Exercise 11.8.

Example 16.6. Here’s a trivial example. Let G be the usual Cayley graph of Z. Con-

sider the 3 possible spanning forests that have only trees with 3 vertices. If these 3 are

equally likely, then we get a translation-invariant random forest of G. The measure on the

component of 0 is easily seen to be DSRW-stationary, but not SRW-stationary.

Let µ denote the law of the component of the identity, o, of a translation-invariant

random forest P, rooted at o. Then µ is stationary for a random walk ⟨Xn⟩ starting at

X0 = o iff E[X1µ] = µ. The following is essentially due to Häggström (1997).

Theorem 16.7. (Invariance and Stationarity) If µ is the law of the component of the

identity in a translation-invariant random forest on a Cayley graph, then µ is stationary

for delayed simple random walk. In fact, µ is globally reversible (defined below).
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Proof. Let ⟨Xk⟩ be DSRW on the component of the identity. Let Tx denote the component

of x, so µ(A) = P
[
[To, o] ∈ A

]
. Global reversibility is the property that for all Borel

A,B ⊆ [T ],

P
[
[To, o] ∈ A, [TX1 , X1] ∈ B

]
= P

[
[To, o] ∈ B, [TX1 , X1] ∈ A

]
.

We will show more generally (i.e., beyond looking at just components) that for Borel

A,B ⊆ {0, 1}E, we have

P[A, X1B] = P[B, X1A] .

We may assume that S is closed under inverses, so that |S| is the degree of the Cayley

graph. Now we may write the event on the left above as a disjoint union

A ∩X1B =
(
A ∩B ∩ [X1 = o]

)
∪
∪
s∈S

(
A ∩ sB ∩ [X1 = s]

)
.

The first union is unchanged when we switch A and B, so it suffices to show that the

probability of the second union is unchanged under switching. Now

P
[ ∪
s∈S

(
A ∩ sB ∩ [X1 = s]

)]
=
∑
s∈S

P
[
A, sB, [o, s] ∈ ω

]
/|S| .

By translation invariance of P, this equals∑
s∈S

P
[
s−1
(
A ∩ sB ∩

[
[o, s] ∈ ω

])]
/|S| =

∑
s∈S

P
[
s−1A, B, [s−1, o] ∈ ω

]
/|S|

=
∑
s∈S

P
[
B, sA, [o, s] ∈ ω

]
/|S|

since inversion is a permutation of S. But this amounts to switching A and B, as desired.

◀

The following corollary generalizes results of Häggström (1997). (Part of this was

proved in Corollary 8.20.)

Corollary 16.8. If µ is the component law of a translation-invariant random forest on

a Cayley graph, then simple random walk on the infinite trees with at least 3 ends has

positive speed a.s. Hence, these trees have br > 1. In particular, there are a.s. no trees

with a finite number of ends ≥ 3.

Proof. We have seen that [µ] is DSRW-stationary on [T ]. If A ⊆ [T ] denotes the set of

tree classes with at least 3 ends, then A is invariant under the random walk, so if µ(A) > 0,

then [µ] conditioned to A is also DSRW-stationary. From Lemma 16.5, we also get a SRW-

stationary probability measure on A, to which we may apply Theorem 16.4. This proves

the claims for the component of o; but this passes to all the components because if some

vertex has positive probability of belonging to a component with a given property, then so

does o by translation invariance. ◀
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Since a tree with branching number > 1 also has exponential growth, it follows that if

G is a group of subexponential growth, then every tree in a translation-invariant random

forest has at most 2 ends a.s. Actually, this holds for all amenable groups:

Corollary 16.9. If G is an amenable group, then every tree in a translation-invariant

random spanning forest all of whose trees are infinite has at most 2 ends a.s.

Proof. By Exercise 10.6, the expected degree of every vertex in the forest is two. Therefore,

the speed of simple random walk is 0 a.s. by Exercise 16.3, whence the number of ends

cannot be at least 3 with positive probability. ◀

In fact, this result holds still more generally:

Theorem 16.10. If G is an amenable group, then every component in a translation-

invariant percolation has at most 2 ends a.s.

This is due to Burton and Keane (1989) in the case where G = Zd. It was proved in

Exercise 7.24.

▷ Exercise 16.4.

Use Corollary 16.8 to prove that for a translation-invariant random forest on a Cayley

graph, there are a.s. no isolated ends in trees with an infinite number of ends. (An end is

isolated if there is a ray ⟨x0, x1, . . .⟩ in its equivalence class such that no other ray begins

⟨x0, x1⟩.)

§16.3. Speed on Galton-Watson Trees.

When we run random walks on Galton-Watson trees T , the asymptotic properties

of the walks reveal information about the structure of T beyond the growth rate and

branching number. This is the theme of the rest of the chapter. Assume that p0 = 0

and pk < 1 for all k for the rest of this chapter, except when stated otherwise.

We know by Theorem 3.5 and Corollary 5.10 that simple random walk on a Galton-

Watson tree T is almost surely transient. Equivalently, by Theorem 2.3, the effective

conductance of T from the root to infinity is a.s. positive when each edge has unit con-

ductance. The effective conductance makes transience quantitative. Since T is random,

what can we say about the distribution of its effective conductance? Figure 16.1 shows the
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Figure 16.1. The apparent density of the conductance for p1 = p2 = 1/2.

apparent density of the effective conductance when an individual has 1 or 2 children with

equal probability; we will study this interesting graph further in Section 16.10.

Transience means only that the distance of a random walker from the root of T tends

to infinity a.s. Is the rate of escape positive? Can we calculate the rate? According to

(13.4), it would suffice to know the proportion of time the walk spends at vertices of degree

k + 1 for each k. As we demonstrate in Theorem 16.13, this proportion turns out to be

simply pk, so that the speed is a.s.

ℓ :=

∞∑
k=1

pk
k − 1

k + 1
. (16.3)

In particular, the speed is positive.

Here’s something interesting about this formula: The function s 7→ (s − 1)/(s + 1)

is strictly concave, whence by Jensen’s inequality, ℓ < (m − 1)/(m + 1). The latter is

the speed on the regular tree of the same growth rate when m is an integer. Thus, the

randomness inherent in the tree slows down the simple random walk compared to a regular

tree.

Our plan to prove (16.3) is to use Theorem 16.4, rather than (13.4) directly. That

is, we will identify a stationary ergodic measure for simple random walk on the space of

trees that is sufficiently similar to GW that results for it apply also to GW. In order

to construct a stationary Markov chain on the space of trees, we will use isomorphism
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classes of rooted trees, as discussed in the preceding section. The family tree of a Galton-

Watson process is rooted at the initial individual. However, Galton-Watson trees are

naturally labelled and we will need to refer to various vertices within them, which would

be impossible if we were to use only classes of isomorphic rooted trees. Thus, we will play

it both ways: When we need stationarity, we will use isomorphism classes, but otherwise

not. To have it both ways, we will use labelled trees and introduce a new σ-field, [F ],

which contains only the events that are invariant under rooted isomorphisms. Restricting

to [F ] will give a stationary measure.

As we noted earlier, the root of a Galton-Watson tree is different from the other

vertices since it has stochastically one less neighbor. To remedy this defect, consider

augmented Galton-Watson measure , AGW. This measure is defined just like GW

except that the number of children of the root (only) has the law of Z1 + 1; i.e., the root

has k + 1 children with probability pk and these children all have independent standard

Galton-Watson descendant trees.

Theorem 16.11. (AGW is SRW-Stationary) The Markov chain with transition kernel

pSRW and initial distribution AGW is stationary on the isomorphism-invariant events [F ].

Proof. The measure AGW is stationary since when the walk takes a step to a neighbor of

the root, it goes to a vertex with one neighbor (where it just came from) plus a GW-tree;

and the neighbor it came from also has attached another independent GW-tree. This is

the same as AGW. ◀

The proof we have just given is not really rigorous, though it is convincing. A rig-

orous proof is not very enlightening, except for showing how to prove such things with

proper notation and technique. Such a proof may be found in Lyons, Pemantle, and Peres

(1995b). It also proves more: First, it is clear that the chain is locally reversible, i.e.,

that it is reversible on every communicating class. This, however, does not imply (global)

reversibility. We will have no need for global reversibility, only for local reversibility (which

is, indeed, a consequence of global reversibility). See Theorem 16.7 and Exercise 16.16 for

the definitions.

It now follows from Theorem 16.4 that simple random walk has positive speed with

positive AGW-probability; we want to establish the value of the speed, so we will show

ergodicity. In Proposition 7.3, we showed ergodicity for Bernoulli percolation without much

difficulty. However, showing ergodicity for measure-preserving systems is, in general, not

an easy thing. In the present context, one might hope that since AGW is built on so much

independence, it would guarantee that SRW×AGW is ergodic. This is true (Theorem 4.6

of Aldous and Lyons (2007) has a general principle), but it would take us longer to prove
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§3. Speed on Galton-Watson Trees 581

this general property than it will to prove ergodicity in this particular case. Besides, we

will obtain some interesting facts about SRW×AGW that will be crucial in later sections.

We will find it convenient to work with random walks indexed by Z rather than by

N. We will denote such a bi-infinite path . . . , x−1, x0, x1, . . . by
↔
x. Similarly, a path of

vertices x0, x1, . . . in T will be denoted
→
x and a path . . . , x−1, x0 will be denoted

←
x. We

will regard a ray as either a path
→
x or

←
x that starts at the root and doesn’t backtrack.

The path of simple random walk has the property that a.s., it converges to a ray in the

sense that there is a unique ray with which it shares infinitely many vertices. If a path
→
x

converges to a ray ξ in this sense, then we will write x+∞ = ξ. Similarly for a limit x−∞

of a path
←
x. The space of convergent paths

→
x in T will be denoted

→
T ; likewise,

←
T denotes

the convergent paths
←
x and

↔
T denotes the paths

↔
x for which both

→
x and

←
x converge and

have distinct limits.

Define the path space (actually, path bundle over the space of trees)

PathsInTrees :=
{
(
↔
x, T ) ;

↔
x ∈

↔
T
}
.

The rooted tree corresponding to (
↔
x, T ) is (T, x0). Let S be the shift map:

(S
↔
x)n := xn+1 ,

S(
↔
x, T ) := (S

↔
x, T ).

Extend simple random walk to all integer times by letting
←
x be an independent copy of

→
x.

We will reuse the notation SRW×AGW to denote the measure on PathsInTrees associated

to this Markov chain, which is stationary when restricted to the isomorphism classes of

(
↔
x, T ). We will extend [F ] to denote the events in PathsInTrees that are invariant under

isomorphisms.

▷ Exercise 16.5.

Show that this chain is indeed stationary.

When a random walk traverses an edge for the first and last time simultaneously, we

say it regenerates since it will now remain in a previously unexplored tree. Thus, we

define the set of regeneration points

Regen :=
{
(
↔
x, T ) ∈ PathsInTrees ; ∀n < 0 xn ̸= x0, ∀n > 0 xn ̸= x−1

}
.

Note that Regen ∈ [F ].
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Proposition 16.12. (Infinitely Many Regeneration Points) For SRW×AGW-a.e.

(
↔
x, T ), there are infinitely many n ≥ 0 for which Sn(

↔
x, T ) ∈ Regen.

Proof. Define the set of fresh points

Fresh :=
{
(
↔
x, T ) ∈ PathsInTrees ; ∀n < 0 xn ̸= x0

}
.

Note that by a.s. transience of simple random walk and the fact that independent simple

random walks on a transient tree a.s. converge to distinct ends (Exercise 2.47), there are

a.s. infinitely many n ≥ 0 such that Sn(
↔
x, T ) ∈ Fresh. Let Fn be the σ-field generated by

⟨. . . , x−1, x0, . . . , xn⟩. (Since the tree is labelled, Fn tells us part of the tree, but only a

small part.) Then by a.s. transience of GW trees, α := (SRW×AGW)(Regen | Fresh) > 0

and, in fact, (SRW ×AGW)(Regen | Fresh, F−1) = α. Fix k0. Let R be the event that

there is at least one k ≥ k0 for which Sk(
↔
x, T ) ∈ Regen. Then for n ≥ k0, the conditional

probability (SRW ×AGW)(R | Fn) is at least the conditional probability that the walk

comes to a fresh vertex after time n, which is 1, times the conditional probability that at

the first such time, the walk regenerates, which is a constant, α. On the other hand, R

belongs to the σ-field generated by
∪
n Fn, whence the martingale convergence theorem

tells us that (SRW ×AGW)(R | Fn) → 1R a.s. Putting together these two facts about

the limit, we conclude that the limit must be 1. That is, R occurs a.s., which completes

the proof since k0 was arbitrary. ◀

Given a rooted tree T and a vertex x in T , recall that the descendant tree of x, the

subtree T x rooted at x, denotes the subgraph of T formed from those edges and vertices

that become disconnected from the root of T when x is removed. The sequence of fresh trees

[T \ T x−1 ] seen at regeneration points (
↔
x, T ) is clearly stationary, but not i.i.d. However,

the part of a tree between regeneration points, together with the path taken through this

part of the tree, is independent of the rest of the tree and of the rest of the walk. We

call this part a slab. To define this notion precisely, we use the return time nRegen, where

nRegen(
↔
x, T ) := inf{n > 0 ; Sn(

↔
x, T ) ∈ Regen}. For (

↔
x, T ) ∈ Regen, the associated slab

(including the path taken through the slab) is

Slab(
↔
x, T ) :=

[ (
⟨x0, x1, . . . , xn−1⟩, T \

(
T x−1 ∪ T xn

)) ]
,

where n := nRegen(
↔
x, T ) and [ · ] again indicates isomorphism class. Let SRegen := SnRegen

when (
↔
x, T ) ∈ Regen. Then the random variables Slab(SkRegen(

↔
x, T )) are i.i.d. Since the

slabs generates the whole tree and the walk through the tree (except for the location of

the root), it is easy to see that the system (PathsInTrees,SRW × AGW, S) is mixing on

[F ], hence ergodic.
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Theorem 16.13. The speed (rate of escape) of simple random walk is SRW×AGW-a.s.

lim
n→∞

|xn|
n

= E

[
Z1 − 1

Z1 + 1

]
. (16.4)

This is immediate now.

▷ Exercise 16.6.

Show that the same formula (16.4) holds for the speed of simple random walk on GW-a.e.

tree.

This accomplishes our main goal for the speed. What about the case when p0 > 0?

As usual, let q be the probability of extinction of the Galton-Watson process. Let ¬Ext
be the event of nonextinction of an AGW tree and AGW¬Ext be AGW conditioned on

¬Ext. Since AGW is still stationary and ¬Ext is an invariant event for the Markov chain,

AGW¬Ext is SRW-stationary. The AGW¬Ext-distribution of the degree of the root is

AGW[deg x0 = k + 1 | ¬Ext] = AGW[¬Ext | deg x0 = k + 1]

AGW(¬Ext)
pk

= pk
1− qk+1

1− q2
.

(16.5)

▷ Exercise 16.7.

Prove this formula.

The proof of Theorem 16.13 on speed is valid when one conditions on nonextinction

in the appropriate places. It gives the following formula:

lim
n→∞

|xn|
n

= E

[
Z1 − 1

Z1 + 1

∣∣∣∣ ¬Ext]=∑
k≥0

k − 1

k + 1
pk

1− qk+1

1− q2
a.s.

For example, the speed when p1 = p2 = 1/2 is 1/6, while for the offspring distribution

of the same unconditional mean p0 = p3 = 1/2, the speed given nonextinction is only

(7− 3
√
5)/8 = 0.036+: The time spent at leaves is a serious drag.
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§16.4. Harmonic Measure: The Goal.

We’ve now found the rate of escape of simple random walk on Galton-Watson trees.

What about its “direction” of escape? With “direction” interpreted as harmonic measure,

this will be studied in the rest of the chapter. That is, since the random walk on a Galton-

Watson tree T is transient, it converges to a ray of T a.s. The law of that ray is called

harmonic measure , denoted HARM(T ), which we identify with a unit flow on T from

its root to infinity.

Of course, if the offspring distribution is concentrated on a single integer, then the

direction is uniform. But we are assuming that this is not the case, i.e., the tree is nonde-

generate . We still assume that p0 = 0 unless otherwise specified, since if we condition on

nonextinction, the random walk will always leave any finite descendant subtree, and there-

fore the harmonic measure lives on the subtree of vertices with infinite lines of descent.

We will see that the random irregularities that recur in a nondegenerate Galton-Watson

tree T direct or confine the random walk to an exponentially smaller subtree of T . One

aspect of this, and the key tool in its proof, is the dimension of harmonic measure. Now,

since brT = m a.s., the boundary ∂T has Hausdorff dimension logm a.s.

▷ Exercise 16.8.

Show that the Hausdorff dimension of harmonic measure is a.s. constant.

Our main goal now is prove that the Hausdorff dimension of harmonic measure is

strictly less than that of the full boundary:

Theorem 16.14. (Dimension Drop of Harmonic Measure) The Hausdorff dimen-

sion of harmonic measure on the boundary of a nondegenerate Galton-Watson tree T is

a.s. a constant d < logm = dim(∂T ), i.e., there is a Borel subset of ∂T of full harmonic

measure and dimension d.

This result is established in a sharper form in Theorem 16.27.

With some further work, Theorem 16.14 will yield the following restriction on the

range of random walk.

Theorem 16.15. (Confinement of Random Walk) Fix a nondegenerate offspring

distribution with mean m. Let d be as in Theorem 16.14. For any ϵ > 0 and for almost

every Galton-Watson tree T , there is a rooted subtree T (ϵ) of T having growth

lim
n→∞

|T (ϵ)n|
1
n = ed < m
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such that with probability 1− ϵ, the sample path of simple random walk on T is contained

in T (ϵ). (Here, |T (ϵ)n| is the cardinality of the nth level of T (ϵ).)

See Theorem 16.30 for a restatement and proof.

This corollary gives a partial explanation for the “low” speed of simple random walk

on a Galton-Watson tree: the walk is confined to a much smaller subtree.

The setting and results of Section 16.3 will be fundamental to our work here. Certain

Markov chains on the space of trees (inspired by Furstenberg (1970)) are discussed in Sec-

tion 16.5 and used in Section 16.6 to compute the dimension of the limit uniform measure,

extending a theorem of Hawkes (1981). A general condition for dimension drop is given

in Section 16.7 and applied to harmonic measure in Section 16.8, where Theorem 16.14

is proved; its application to Theorem 16.15 is given in Section 16.9. In Section 16.10, we

analyze the electrical conductance of a Galton-Watson tree using a functional equation

for its distribution. This yields a numerical scheme for approximating the dimension of

harmonic measure.

§16.5. Flow Rules and Markov Chains on the Space of Trees.

These chains are inspired by Furstenberg (1970). In the rest of this chapter, a flow

on a tree will mean a unit flow from its root to infinity. Given a flow θ on a tree T and a

vertex x ∈ T with θ(x) > 0, we write θx for the (conditional) flow on T x given by

θx(y) := θ(y)/θ(x) (y ∈ T x).

The space of flows on trees can be given a natural topology just as T is given. We call a

Borel function Θ:T → {flows on trees} a (consistent) flow rule if Θ(T ) is a flow on T

such that

x ∈ T, |x| = 1, Θ(T )(x) > 0 =⇒ Θ(T )x = Θ(T x).

A consistent flow rule may also be thought of as a Borel function that assigns to a k-tuple

(T (1), . . . , T (k)) of trees a k-tuple of non-negative numbers adding to one representing the

probabilities of choosing the corresponding trees T (i) in
∨k
i=1 T

(i), which is the tree formed

by joining the roots of T (i) by single edges to a new vertex, the new vertex being the root

of the new tree. It follows from the definition that for all x ∈ T , not only those at distance

1 from the root, Θ(T )(x) > 0 ⇒ Θ(T )x = Θ(T x). We will usually write ΘT for Θ(T ).

We will always assume without mention that our flow rules are equivariant (as

they will be in our particular examples), which means that for any rooted isomorphism
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φ:T → φ(T ), we have φ
(
Θ(T )

)
= Θ

(
φ(T )

)
. This is important to get events that are

isomorphism invariant, and so to apply ergodic theory.

We have already encountered two flow rules: The principal object of interest in the

rest of this chapter, harmonic measure, comes from a flow rule, HARM. Another natural

example is harmonic measure, HARMλ, for homesick random walk RWλ; this was studied

by Lyons, Pemantle, and Peres (1996a). Visibility measure, encountered in Section 14.4,

gives a flow rule VIS. A final example, UNIF, will be studied in Section 16.6. It is easily

verified that all these are flow rules.

Proposition 16.16. If Θ and Θ′ are two flow rules such that for GW-a.e. tree T and

all vertices |x| = 1, ΘT (x) + Θ′
T (x) > 0, then GW(ΘT = Θ′

T ) ∈ {0, 1}.

Proof. By the hypothesis, if ΘT = Θ′
T and |x| = 1, then ΘTx = Θ′

Tx . Thus, the result

follows from Proposition 5.6. ◀

Given a flow rule Θ, there is an associated Markov chain on the space of trees given

by the transition probabilities

pΘ

(
T, {T x}

)
:= ΘT (x)

for T ∈ T , x ∈ T , and |x| = 1. We say that a (possibly infinite) measure µ on the space of

trees is Θ-stationary if it is pΘ-stationary, or, in other words, for any Borel set A ⊆ [F ]

of trees,

µ(A) =

∫
pΘ(T,A) dµ(T ) =

∫ ∑
|x|=1
Tx∈A

ΘT (x) dµ(T ) .

If we denote the vertices along a ray ξ by ξ0, ξ1, . . ., then the path of such a Markov chain

is a sequence ⟨T ξn⟩∞n=0 for some tree T and some ray ξ ∈ ∂T . Clearly, we may identify the

space of such paths with the ray bundle

RaysInTrees :=
{
(ξ, T ) ; ξ ∈ ∂T

}
.

For the corresponding path measure on RaysInTrees, write Θ× µ for pΘ × µ. Likewise, we

say Θ-invariant for pΘ-invariant .

In this setting, Corollary 16.3 says that if µ is a Θ-invariant probability measure, then

Θ× µ is ergodic (for the shift map) iff every Θ-invariant (and isomorphism-invariant) set

of trees has µ-measure 0 or 1. Moreover, even without ergodicity, Proposition 16.2 says

that shift-invariant ([F ]-measurable) functions on RaysInTrees correspond to Θ-invariant

functions; in particular, they depend (a.s.) only on their second coordinate.

We call two measures equivalent if they are mutually absolutely continuous.
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Proposition 16.17. Let Θ be a flow rule such that for GW-a.e. tree T and for all |x| = 1,

ΘT (x) > 0. Then the Markov chain with transition kernel pΘ and initial distribution GW

is ergodic, though not necessarily stationary. Hence, if a Θ-stationary measure µ exists

that is absolutely continuous with respect to GW, then µ is equivalent to GW and the

associated stationary Markov chain is ergodic.

Proof. Let A be a Borel set of trees that is Θ-invariant. It follows from our assumption

that for GW-a.e. T ,

T ∈ A ⇐⇒ T x ∈ A for every |x| = 1 .

Thus, the first claim follows from Proposition 5.6.

Now let µ ≪ GW be as in the second claim. If A is a Borel set of trees that is

Θ-invariant, then by what we have just shown, µ(A) = 0 or µ(Ac) = 0. That is, µ is

ergodic. Finally, if A is any set with µ(A) = 0, then by stationarity, A is Θ-invariant. The

preceding paragraph then shows that GW(A) ∈ {0, 1}. Since µ(Ac) ̸= 0, it follows that

GW(A) = 0. This shows that GW ≪ µ. ◀

We do not know whether the first hypothesis of Proposition 16.17 is necessary for the

final conclusion:

Question 16.18. If a flow rule has a stationary measure equivalent to GW, must the

associated Markov chain be ergodic?

Given a Θ-stationary probability measure µ on the space of trees, we define the en-

tropy of the associated stationary Markov chain as

EntΘ(µ) : =

∫ ∑
|x|=1

pΘ(T, T
x) log

1

pΘ(T, T x)
dµ(T )

=

∫ ∑
|x|=1

ΘT (x) log
1

ΘT (x)
dµ(T )

=

∫ ∫
log

1

ΘT (ξ1)
dΘT (ξ) dµ(T )

=

∫
log

1

ΘT (ξ1)
d(Θ× µ)(ξ, T ) .

Write

gΘ(ξ, T ) := log
1

ΘT (ξ1)
;
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this function is [F ]-measurable by equivariance of Θ. Let S be the shift on RaysInTrees.

The ergodic theorem tells us that the Hölder exponent (Section 14.4) of ΘT is actually a

limit a.s.:

Hö(ΘT )(ξ) = lim
n→∞

1

n
log

1

ΘT (ξn)
= lim
n→∞

1

n

n−1∑
k=0

log
ΘT (ξk)

ΘT (ξk+1)

= lim
n→∞

1

n

n−1∑
k=0

log
1

Θ(T )ξk(ξk+1)
= lim
n→∞

1

n

n−1∑
k=0

SkgΘ(ξ, T )

exists Θ× µ-a.s.; and it satisfies∫
Hö(ΘT )(ξ) d(Θ× µ)(ξ, T ) = EntΘ(µ) .

If the Markov chain is ergodic, then

Hö(ΘT )(ξ) = EntΘ(µ) Θ× µ-a.s. (16.6)

This is our principal tool for calculating Hausdorff dimension. Note that even if the Markov

chain is not ergodic, the Hölder exponent Hö(ΘT )(ξ) is constant ΘT -a.s. for µ-a.e. T : since

(ξ, T ) 7→ Hö(ΘT )(ξ) is a shift-invariant [F ]-measurable function, it depends only on T

(a.s.) (Proposition 16.2).

§16.6. The Hölder Exponent of Limit Uniform Measure.

For the rest of the chapter, assume that m <∞. By the Seneta-Heyde theorem

of Section 5.1, if Zn and Z ′
n are two i.i.d. Galton-Watson processes without extinction,

then limn→∞ Zn/Z
′
n exists a.s. Thus, if we fix two vertices x and y at the same level k in

a Galton-Watson tree T , then given T up to level k, we have that

lim
n→∞

|T x ∩ Tn|
|T y ∩ Tn|

exists a.s., where Tn denotes the vertices of the nth generation of T . This allows us to

define (a.s.) a probability measure UNIFT on the boundary of a Galton-Watson tree by

UNIFT (x) := lim
n→∞

|T x ∩ Tn|
Zn

.

(We are identifying the measure on the boundary with a unit flow on the tree.) We call

this measure limit uniform since, before the limit is taken, it corresponds to the flow
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Figure 16.2. Generations 0 to 14 of a typical Galton-Watson tree for f(s) = (s+ s2)/2.

Figure 16.3. Generations 0 to 19 of a typical Galton-Watson tree for f(s) = (s+ s2)/2.

from o to Tn that is uniform on Tn. It is clear that UNIF is a flow rule. Figure 5.1 was

drawn by considering the uniform measure on generation 9 and inducing the masses on the

preceding generations. Figures 16.2 and 16.3 show this same tree drawn using the uniform

measure on generations 14 and 19, respectively.

We may write limit uniform measure another way: Let cn be constants such that

cn+1/cn → m and

W̃ (T ) := lim
n→∞

Zn/cn
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exists and is finite and non-zero a.s.; these constants are provided by the Seneta-Heyde

theorem. Then we have

UNIFT (x) =
W̃ (T x)

m|x|W̃ (T )
. (16.7)

Note that

W̃ (T ) =
1

m

∑
|x|=1

W̃ (T x). (16.8)

According to the Kesten-Stigum theorem, when E[Z1 logZ1] < ∞, we may take cn to be

mn and so W may be used in place of W̃ in (16.7) and (16.8). A theorem of Athreya

(1971) gives that ∫
W̃ (T ) dGW(T ) <∞ ⇐⇒ E[Z1 logZ1] <∞ . (16.9)

As we mentioned in Section 16.4, dim(∂T ) = logm a.s. Now Hawkes (1981) showed

that the Hölder exponent of UNIFT is logm a.s. provided E[Z1(logZ1)
2] <∞. One could

anticipate Hawkes’s result that UNIFT has full Hausdorff dimension, logm, since limit

uniform measure “spreads out” the most possible (at least under some moment condition

on Z1). Furthermore, one might guess that no other measure that comes from a consistent

flow rule can have full dimension. We will show that this is indeed true provided that the

flow rule has a finite stationary measure for the associated Markov chain that is absolutely

continuous with respect to GW. We will then show that such is the case for harmonic

measure of simple random walk. Incidentally, this method will allow us to give a simpler

proof of Hawkes’s theorem, as well as to extend its validity to the case where E[Z1 logZ1] <

∞. On the other hand, Aı̈dékon (2011b) showed that dimUNIFT = 0 when E[Z1 logZ1] =

∞.

In this section, we prove and extend the theorem of Hawkes (1981) on the Hölder

exponent of limit uniform measure and study further the associated Markov chain. We

begin by showing that a (possibly infinite) UNIF-stationary measure on trees is W̃ ·GW;

we will use this only when the measure is finite.

Proposition 16.19. The Markov chain with transition kernel pUNIF and initial distribu-

tion W̃ ·GW is stationary and ergodic.

Proof. We apply the definition of stationarity: for any Borel set A of trees, we have∫
pUNIF(T,A) · W̃ (T ) dGW(T ) =

∫ ∑
|x|=1
Tx∈A

W̃ (T x)

mW̃ (T )
· W̃ (T ) dGW(T )
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=
∞∑
k=1

pk
1

m

∫
T (1)

· · ·
∫
T (k)

k∑
i=1

1A(T
(i))W̃ (T (i))

k∏
j=1

dGW(T (j))

=

∞∑
k=1

pk
1

m

k∑
i=1

∫
T (1)

· · ·
∫
T (k)

1A(T
(i))W̃ (T (i))

k∏
j=1

dGW(T (j))

=
∞∑
k=1

pk
1

m

k∑
i=1

∫
A

W̃ dGW =

∫
A

W̃ dGW

= (W̃ ·GW)(A) ,

as desired. Since W̃ > 0 GW-a.s., ergodicity is guaranteed by Proposition 16.17. ◀

▷ Exercise 16.9.

This chain is closely connected to the size-biased Galton-Watson trees of Section 12.1.

Show that in case E[Z1 logZ1] <∞, the distribution of a UNIFT -path is ĜW∗.

In order to calculate the Hölder exponent of limit uniform measure, we will use the

following lemma of ergodic theory:

Lemma 16.20. If S is a measure-preserving transformation on a probability space and g

is finite and measurable, then
∫
(g − Sg)+ =

∫
(g − Sg)−. Therefore, if g − Sg is bounded

below by an integrable function, then g − Sg is integrable with integral zero.

Proof. When g is integrable, this is immediate from the fact that
∫
g =

∫
Sg. Now if

a function f :R → R is an increasing contraction, then
(
f(x) − f(y)

)+ ≤ (x − y)+ and(
f(x)−f(y)

)− ≤ (x−y)− for x, y ∈ R. Such functions include Fn(x) := (x∧n)∨ (−n) for
n ≥ 1. Note that Fn ◦ (Sg) = S(Fn ◦ g). Therefore

(
Fn ◦ g−S(Fn ◦ g)

)+ ≤ (g−Sg)+ and,

since Fn = Fn ◦ Fn+1,
(
Fn ◦ g − S(Fn ◦ g)

)+ ≤
(
Fn+1 ◦ g − S(Fn+1 ◦ g)

)+
. Therefore, the

Monotone Convergence Theorem gives us that limn→∞
∫ (
Fn◦g−S(Fn◦g)

)+
=
∫
(g−Sg)+.

The same holds for the negative parts. Since Fn ◦ g is integrable, the identity holds for g.

◀

Theorem 16.21. (Full Dimension of Limit Uniform Measure) If E[Z1 logZ1] <

∞, then the Hölder exponent at ξ of limit uniform measure UNIFT is equal to logm for

UNIFT -a.e. ray ξ ∈ ∂T and GW-a.e. tree T . In particular, dimUNIFT = logm for GW-

a.e. T .

Proof. The hypothesis and Proposition 16.19 ensure that W · GW is a stationary prob-

ability distribution. Let S be the shift on the ray bundle RaysInTrees with the invariant
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probability measure UNIF× (W ·GW). Define g(ξ, T ) := logW (T ) for a Galton-Watson

tree T and ξ ∈ ∂T (so g does not depend on ξ). Then

(g − Sg)(ξ, T ) = logW (T )− logW (T ξ1) = log
mW (T )

W (T ξ1)
− logm

= log
1

UNIFT (ξ1)
− logm.

In particular, g − Sg ≥ − logm, whence the lemma implies that g − Sg has integral zero.

Now, for UNIF × (W · GW)-a.e. (ξ, T ) (hence for UNIF × GW-a.e. (ξ, T )), we have

that

Hö(UNIFT )(ξ) = EntUNIF(W ·GW)

by ergodicity and (16.6). By definition and the preceding calculation, this in turn is

EntUNIF(W ·GW) =

∫ ∫
log

1

UNIFT (ξ1)
dUNIFT (ξ)W (T ) dGW(T )

= logm+

∫ ∫
(g − Sg) dUNIFT (ξ)W (T ) dGW(T )

= logm. ◀

§16.7. Dimension Drop for Other Flow Rules.

Recall that our goal is to prove that harmonic measure has less than full dimension on

GW-a.e. tree. In this section, we give a general condition on flow rules for this dimension

drop to hold. Shannon’s inequality will be the tool we use to compare the dimension of

measures arising from flow rules to the dimension of the whole boundary: the inequality

states that

ai, bi ∈ [0, 1],
∑

ai =
∑

bi = 1 =⇒
∑

ai log
1

ai
≤
∑

ai log
1

bi
,

with equality iff ai ≡ bi.

▷ Exercise 16.10.

Prove Shannon’s inequality.
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Theorem 16.22. If Θ is a flow rule such that ΘT ̸= UNIFT for GW-a.e. T and there is

a Θ-stationary probability measure µ absolutely continuous with respect to GW, then for

µ-a.e. T , we have Hö(ΘT ) < logm ΘT -a.s. and dim(ΘT ) < logm.

Proof. Recall that the Hölder exponent of ΘT is constant ΘT -a.s. for µ-a.e. T and equal

to the Hausdorff dimension of ΘT . Thus, it suffices to show that the invariant set of trees

A :=
{
T ; dimΘT = logm

}
=
{
T ; Hö(ΘT ) = logm ΘT -a.s.

}
has µ-measure 0. Suppose that µ(A) > 0. Recall that µA denotes µ conditioned on A.

Now since µ ≪ GW, the limit uniform measure UNIFT is defined and satisfies (16.7) for

µA-a.e. T . Let g(ξ, T ) := log W̃ (T ). As in the proof of Theorem 16.21, g − Sg ≥ − logm.

Since the entropy is the mean Hölder exponent, we have by Shannon’s inequality and

Lemma 16.20,

logm = EntΘ(µA) =

∫ ∑
|x|=1

ΘT (x) log
1

ΘT (x)
dµA(T )

<

∫ ∑
|x|=1

ΘT (x) log
1

UNIFT (x)
dµA(T )

=

∫
log

1

UNIFT (ξ1)
dΘT (ξ) dµA(T )

= logm+

∫
(g − Sg) dΘT (ξ) dµA(T )

= logm.

This contradiction shows that µ(A) = 0, as desired. ◀

In order to apply this theorem to harmonic measure, we need to find a stationary

measure for the harmonic flow rule with the above properties. A general condition for a

flow rule to have such a stationary measure is unknown. But it was conjectured in Lyons,

Pemantle, and Peres (1995b) that any flow rule other than limit uniform gives boundary

measures of dimension less than logm GW-a.s.:

Conjecture 16.23. If Θ ̸= UNIF is a flow rule, then dim(ΘT ) < logm for GW-a.e. T .
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§16.8. Harmonic-Stationary Measure.

Consider the set of “last exit points”

Exit :=
{
(
↔
x, T ) ∈ PathsInTrees ; x−1 ∈ x−∞ , ∀n > 0 xn ̸= x−1

}
.

This is precisely the event that the path has just exited, for the last time, a horoball

centered at x−∞; in other words, xn is further from x−∞ for n > 0 than is x−1. Since

regeneration points are exit points, it follows from Proposition 16.12 that the set Exit has

positive measure and for a.e. (
↔
x, T ), there is an n > 0 such that Sn(

↔
x, T ) ∈ Exit. (This also

follows directly merely from the almost sure transience of simple random walk.) Inducing

on this set will yield the measure we need to apply Theorem 16.22.

We recall some more terminology from ergodic theory for this. Let (X,F , µ, S) be

a probability measure-preserving system. Fix A ∈ F with µ(A) > 0. Define the return

time to A by nA(x) := inf{n ≥ 1 ; Snx ∈ A} for x ∈ A and, if nA(x) < ∞, the re-

turn map SA(x) := SnA(x)(x). The Poincaré recurrence theorem (Petersen (1983), p. 34)

states that nA(x) < ∞ for a.e. x ∈ A. Thus, SA is defined µA-a.e.; (A,F ∩ A,µA, SA)
is a probability measure-preserving system (Petersen (1983), p. 39, or Exercise 2.25),

called the induced system . Given two measure-preserving systems, (X1,F1, µ1, S1) and

(X2,F2, µ2, S2), the second is called a factor of the first if there is a measurable map

f : (X1,F1) → (X2,F2) such that µ2 = µ1 ◦ f−1 and f ◦ S1 = S2 ◦ f µ1-a.e.

Theorem 16.24. There is a unique ergodic HARM-stationary probability measure µHARM

equivalent to GW.

Proof. Define π0(
↔
x, T ) := x0. For (

↔
x, T ) ∈ Exit, let x′k := π0

(
SkExit(

↔
x, T )

)
for k ≥ 0. The

key point is that ⟨x′k⟩ is a sample from the ray generated by the Markov chain associated

to HARMT\Tx−1 . Note that the Markov property of this factor ⟨(x′k, T ) ; k ≥ 0⟩ of the

system induced on Exit is a consequence of the fact that HARM is a consistent flow rule.

Now since AGWExit ≪ AGW, we have that the (SRW×AGW)Exit-law of T \ T x−1

is absolutely continuous with respect to GW. From Proposition 16.17, it follows that

the (SRW × AGW)Exit-law of T \ T x−1 is equivalent to GW. [This can also be seen

directly: forAGW-a.e. T , the SRWT -probability that (
↔
x, T ) ∈ Exit is positive, whence the

(SRW×AGW)Exit-law of T is equivalent toAGW. This gives that the (SRW×AGW)Exit-

law of T \ T x−1 is equivalent to GW.]

Therefore, the above natural factor of the induced measure-preserving system

(
Exit, (SRW ×AGW)Exit, SExit

)
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§8. Harmonic-Stationary Measure 595

obtained by mapping (
↔
x, T ) 7→ ⟨t(k) \ t(k)x

′
k−1⟩k≥0, where t(k) := (T, x′k) and x

′
−1 := x−1,

is a HARM-stationary Markov chain on trees with a stationary measure µHARM equivalent

to GW.

The fact that HARM×µHARM is ergodic follows from our general result on ergodicity,

Proposition 16.17. Ergodicity implies that µHARM is the unique HARM-stationary measure

absolutely continuous with respect to GW. ◀

Since increases in distance from the root can be considered to come only at exit points,

it is natural that the speed is also the probability of being at an exit point:

Proposition 16.25. The measure of the exit set is the speed: (SRW × AGW)(Exit) =

E
[
(Z1 − 1)/(Z1 + 1)

]
.

▷ Exercise 16.11.

Prove Proposition 16.25.

Given disjoint trees T1, T2, define [[T1 •−T2]] to be the tree rooted at root(T1) formed

by joining root(T1) and root(T2) by an edge. Define T∆ := [[∆ •−T ]], where ∆ is a single

vertex not in T , to be thought of as representing the past. Let γ(T ) be the probability

that simple random walk started at ∆ never returns to ∆:

γ(T ) := SRWT∆ [∀n > 0 xn ̸= ∆] .

This is also equal to SRW[[T•−∆]][∀n > 0 xn ̸= ∆]. Let C (T ) denote the effective conduc-

tance of T from its root to infinity when each edge has unit conductance. Clearly,

γ(T ) =
C (T )

1 + C (T )
= C (T∆) .

The notation γ is intended to remind us of the word “conductance”.

The next proposition is intuitively obvious, but crucial.

Proposition 16.26. For GW-a.e. T , HARMT ̸= UNIFT .

Proof. In view of the zero-one law, Proposition 16.16, we need merely show that we do

not have HARMT = UNIFT a.s. Now, for any tree T and any x ∈ T with |x| = 1, we have

HARMT (x) =
γ(T x)∑

|y|=1 γ(T
y)
,

while

UNIFT (x) =
W̃ (T x)∑
y=1 W̃ (T y)

.
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Therefore, if HARMT = UNIFT , the vector⟨
γ(T x)

W̃ (T x)

⟩
|x|=1

(16.10)

is a multiple of the constant vector 1. For Galton-Watson trees, the components of this

vector are i.i.d. with the same law as that of γ(T )/W̃ (T ). The only way (16.10) can be

a (random) multiple of 1, then, is for γ(T )/W̃ (T ) to be a constant GW-a.s. But γ < 1

and, since Z1 is not constant, W̃ is obviously unbounded, so this is impossible. ◀

Taking stock of our preceding results, we obtain our main theorem:

Theorem 16.27. The dimension of harmonic measure is GW-a.s. less than logm. The

Hölder exponent exists a.s. and is constant.

Proof. The hypotheses of Theorem 16.22 are verified in Theorem 16.24 and Proposi-

tion 16.26. The constancy of the Hölder exponent follows from (16.6). ◀

No moment assumptions (other than m <∞) were used in this proof.

Question 16.28. We saw in Section 14.4 that the dimension of visibility measure is a.s.

E[logZ1]. In the direction of comparison opposite to that of Theorem 16.27, is this a

lower bound for dimHARMT ? This question, due to Ledrappier (personal communication,

1994), was posed in Lyons, Pemantle, and Peres (1995b, 1997). A visual comparison of

harmonic measure, uniform measure (these two calculated based on generation 19, not the

actual limit), and visibility measure appears in Figure 16.4.

Question 16.29. For 0 ≤ λ < m, is the dimension of harmonic measure for RWλ on a

Galton-Watson tree T monotonic increasing in the parameter λ? Is it strictly increasing?

This was asked in Lyons, Pemantle, and Peres (1997).

▷ Exercise 16.12.

Suppose that p0 > 0. Show that given nonextinction, the dimension of harmonic measure

is a.s. less than logm.
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§8. Harmonic-Stationary Measure 597

Figure 16.4. Generations 0 to 19 of a typical Galton-Watson tree for f(s) =
(s + s2)/2 displayed according to harmonic, uniform, and visibility measure, re-
spectively. This means that if Θ is the flow rule, then the vertex x is centered in
an interval of length ΘT (x), where the total width of the figure is 1.
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§16.9. Confinement of Simple Random Walk.

We now demonstrate how the drop in dimension of harmonic measure, proved in

the preceding section, implies the confinement of simple random walk to a much smaller

subtree.

Given a tree T and positive integer n, recall that Tn denotes the set of the vertices of T

at distance n from the root and |Tn| is the cardinality of Tn. Write PT for the probability

measure associated to simple random walk ⟨Xn⟩ on T starting at the root.

Theorem 16.30. For GW-almost all trees T and for every ϵ ∈ (0, 1), there is a subtree

T (ϵ) ⊆ T such that

PT

[
Xn ∈ T (ϵ) for all n ≥ 0

]
≥ 1− ϵ (16.11)

and
1

n
log |T (ϵ)n| → d , (16.12)

where d < logm is the dimension of HARMT . Furthermore, any subtree T (ϵ) satisfying

(16.11) must have growth

lim inf
1

n
log |T (ϵ)n| ≥ d . (16.13)

Proof. Let nk := 1 + max{n ; |xn| = k} be the kth exit epoch and D(x, k) be the set of

descendants y of x with |y| ≤ |x|+ k. We will use three sample path properties of simple

random walk on a fixed tree, T :

Speed: ℓ := lim
n→∞

|Xn|
n

> 0 PT -a.s. (16.14)

Hölder exponent: lim
k→∞

1

k
log

1

HARMT (Xnk
)
= d PT -a.s. (16.15)

Neighborhood size: ∀δ > 0 lim sup
n→∞

log |D(Xn, δ|Xn|)|
|Xn|

≤ δ logm PT -a.s. (16.16)

We have already shown (16.14) and (16.15). In fact, the limit in (16.16) exists and equals

the right-hand side for GW-a.e. T , but this won’t be needed.

In order to see that (16.16) holds for GW-a.e. tree, recall from the proof of Propo-

sition 16.12 that the fresh points are the vertices visited for the first time in a bi-infinite

random walk:

Fresh :=
{
(
↔
x, T ) ∈ PathsInTrees ; ∀n < 0 xn ̸= x0

}
.

Denote by yk the kth fresh point visited by simple random walk. Then the statement that

(16.16) holds for GW-a.e. T can be written as

∀δ > 0 lim sup
k→∞

|yk|−1 log |D(yk, δ|yk|)| ≤ δ logm SRW ×GW-a.s.
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and since |yk|/k has a positive a.s. limit, this is equivalent to

∀δ∗ > 0 lim sup
k

k−1 log |D(yk, δ
∗k)| ≤ δ∗ logm SRW ×GW-a.s. (16.17)

Now the random variables |D(yk, δ
∗k)| are identically distributed, though not independent.

Indeed, the descendant subtree of yk has the law of GW. Since the expected number of

descendants of yk at generation |yk|+ j is mj for every j, we have by Markov’s inequality

that for every δ′ > 0,

(SRW ×GW)
[
|D(yk, δ

∗k)| ≥ mδ′k
]
≤ m−δ′k

δ∗k∑
j=0

mj .

If δ′ > δ∗, then the right-hand side decays exponentially in k. The Borel-Cantelli lemma

thus yields (16.17), hence (16.16).

Now that we have (16.14)–(16.16), we are ready to prove (16.11)–(16.13). Fix T

satisfying (16.14)–(16.16). Then (16.15) alone implies (16.13) (Exercise 16.13).

Applying Egorov’s theorem to the two almost sure asymptotics (16.14) and (16.15),

we see that for each ϵ > 0, there is a set of paths Aϵ with PT (Aϵ) > 1−ϵ and such that the

convergence in (16.14) and (16.15) is uniform on Aϵ. Thus, we can choose ⟨δn⟩ decreasing
to 0 such that on Aϵ, for all k and all n,

HARMT (xnk
) > e−k(d+δk) and

∣∣∣∣ |xn|nℓ
− 1

∣∣∣∣ < δn . (16.18)

Now since δn is eventually less than any fixed δ, (16.16) implies that

lim sup
n→∞

|xn|−1 log |D(xn, 3δ|xn||xn|)| = 0 a.s.,

so applying Egorov’s theorem once more and replacing Aϵ by a subset thereof (which we

continue to denote Aϵ), we may assume that there exists a sequence ⟨ηn⟩ decreasing to 0

such that

|D(xn, 3δ|xn||xn|)| ≤ e|xn|ηn for all n (16.19)

on Aϵ.

Define F
(ϵ)
0 to consist of all vertices v ∈ T such that either δ|v| ≥ 1/3 or both

HARMT (v) ≥ e−|v|(d+δ|v|) and |D(v, 3δ|v||v|)| ≤ e|v|η|v| . (16.20)

Finally, let

F (ϵ) :=
∪

v∈F (ϵ)
0

D(v, 3δ|v||v|)
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and denote by T (ϵ) the component of the root in the subforest of T induced by F (ϵ). Since

the number of vertices v ∈ Tn satisfying HARMT (v) ≥ e−|v|(d+δ|v|) is at most en(d+δn), the

bounds (16.20) yield for sufficiently large n that

|T (ϵ)n| ≤
∑

v∈F (ϵ)
0 ,

n−3δ|v||v|≤|v|≤n

|D(v, 3δ|v||v|)| ≤
n∑
k=1

ek(d+δk)ekηk = en(d+αn) ,

where limn→∞ αn = 0. Hence

lim sup
1

n
log |T (ϵ)n| ≤ d .

In combination with the lower bound (16.13), this gives (16.12).

It remains to establish that the walk stays inside F (ϵ) forever on the event Aϵ, since

that will imply that the walk is confined to T (ϵ) on this event. The points visited at exit

epochs nk are in F
(ϵ)
0 by the first part of (16.18) and (16.19). Fix a path ⟨xj⟩ in Aϵ and a

time n, and suppose that the last exit epoch before n is nk, i.e., nk ≤ n < nk+1. Denote

by N := nk+1 − 1 the time preceding the next exit epoch, and observe that xN = xnk
. If

δn ≥ 1/3, then xn is in F
(ϵ)
0 since δ|xn| ≥ δn, so consider the case that δn < 1/3. By the

second part of (16.18), we have

|xn|
nℓ

< 1 + δn and
|xN |
nℓ

≥ |xN |
Nℓ

> 1− δN ≥ 1− δn .

Dividing these inequalities, we find that

|xn| <
1 + δn
1− δn

|xN | ≤ (1 + 3δn)|xN | .

It follows that xn is in D(xnk
, 3δ|xnk

||xnk
|). Since xnk

∈ F
(ϵ)
0 , we arrive at our desired

conclusion that xn ∈ F (ϵ). ◀

▷ Exercise 16.13.

Prove (16.13).
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§16.10. Numerical Calculations.

Our primary aim in this section is to compute the dimension of harmonic measure, d,

numerically. Recall the notation γ(T ) and C (T ) of Section 16.8. Note that∑
|x|=1

γ(T x) = C (T ) =
γ(T )

1− γ(T )
,

whence for |x| = 1,

HARMT (x) =
γ(T x)∑

|y|=1 γ(T
y)

= γ(T x)
(
1− γ(T )

)
/γ(T ) . (16.21)

Thus, we have

d = EntHARM(µHARM) =

∫
log

1

HARMT (ξ1)
dHARM× µHARM(ξ, T )

=

∫
log

γ(T )

γ(T ξ1)
(
1− γ(T )

) dHARM× µHARM(ξ, T )

=

∫
log

1

1− γ(T )
dµHARM(T ) =

∫
log
(
1 + C (T )

)
dµHARM(T )

by stationarity and Lemma 16.20, provided we show that the final integral here is finite;

see Exercise 16.14.

In order to compute such an integral, we use the following expression for the Radon-

Nikodým derivative of the HARM-stationary Galton-Watson measure µHARM with respect

to GW. Denote by R(T ) the effective resistance of T from its root to infinity.

Proposition 16.31. The Radon-Nikodým derivative of µHARM with respect to GW is

dµHARM

dGW
(T ) =

1

l

∫
1

1 + R(T ) + R(T ′)
dGW(T ′) . (16.22)

Proof. Since the SRW ×AGW-law of T \ T x−1 is GW, we have for every event A,

GW(A) = (SRW ×AGW)[T \ T x−1 ∈ A]

and

µHARM(A) = (SRW ×AGW)[T \ T x−1 ∈ A | Exit] .

Thus, using Proposition 16.25, we have

dµHARM

dGW
(t) =

(SRW ×AGW)[T \ T x−1 = t | Exit]
(SRW ×AGW)[T \ T x−1 = t]

=
1

l
(SRW ×AGW)[Exit | T \ T x−1 = t] .

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



Chap. 16: Random Walks on Galton-Watson Trees 602

Of course, the event that T \ T x−1 = t has probability 0; we should consider events

An := [t]n, the set of rooted trees whose first n levels agree with those of t, and then take

n → ∞. However, we will continue to calculate more informally. Note that on Exit, we

have x−1 = (x−∞)1. Thus,

dµHARM

dGW
(t) =

1

l
(SRW ×AGW)[

→
x ⊂ t and x−∞ /∈ ∂t

∣∣ T \ T x−1 = t] . (16.23)

Recall that under SRWT ,
←
x and

→
x are independent simple random walks starting at

root(T ). For a measure µ on trees, let [[T1 •−µ]] denote the law of [[T1 •−T2]] when T2 has the

law of µ; and similarly for other notation. For example, the (SRW×AGW | T \T x−1 = t)-

law of T x−1 is GW, whence the (SRW × AGW | T \ T x−1 = t)-law of T is [[t •−GW]].

Since the conditioning in (16.23) forces x−1 /∈ t, we have

dµHARM

dGW
(t) =

1

l
γ(t)

∫
HARM[[T ′•−t]](∂T

′) dGW(T ′)

=
γ(t)

l

∫
C (T ′)

γ(t) + C (T ′)
dGW(T ′)

=
1

l

∫
1

γ(t)−1 + C (T ′)−1
dGW(T ′)

=
1

l

∫
1

1 + R(t) + R(T ′)
dGW(T ′) . ◀

▷ Exercise 16.14.

Show that
∫
log
(
1 + C (T )

)
dµHARM <∞.

Of course, it follows that

l =

∫ ∫
1

1 + R(T ) + R(T ′)
dGW(T ) dGW(T ′) ;

the right-hand side may be thought of as the [[GW•−GW]]-expected effective conductance

from −∞ to +∞, where the boundary of one of the GW trees is −∞ and the boundary

of the other is +∞.

The next computational step is to find the GW-law of R(T ), or, equivalently, of γ(T ).

Since

γ(T ) =
C (T )

1 + C (T )
=

∑
|x|=1 γ(T

x)

1 +
∑

|x|=1 γ(T
x)
, (16.24)

we have for s ∈ (0, 1),

γ(T ) ≤ s ⇐⇒
∑
|x|=1

γ(T x) ≤ s

1− s
.
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Since γ(T x) are i.i.d. under GW with the same law as γ, the GW-c.d.f. Fγ of γ satisfies

F (s) =


∑
k pkF

∗k
(

s

1− s

)
if s ∈ (0, 1);

0 if s ≤ 0;
1 if s ≥ 1.

(16.25)

Theorem 16.32. The functional equation (16.25) has a unique solution, Fγ . Define the

operator on c.d.f.’s

K :F 7→
∑
k

pkF
∗k
(

s

1− s

) (
s ∈ (0, 1)

)
.

For any initial c.d.f. F with F (0) = 0 and F (1) = 1, we have weak convergence under

iteration to Fγ :

lim
n→∞

K n(F ) = Fγ .

For a proof, see Lyons, Pemantle, and Peres (1997).

Theorem 16.32 provides a method of calculating Fγ . It is not known that Fγ has a

density, but calculations support a conjecture that it does. In the case that the offspring

distribution is bounded and always at least 2, Perlin (2001) proved this conjecture and, in

fact, that the effective conductance has a bounded density. Some graphs of the apparent

GW-density of γ(T ) for certain progeny distributions appear in Figures 16.5–16.7. They

were calculated by iterating a discrete version of the operator K many times.

These density graphs reflect the stochastic self-similarity of the Galton-Watson trees.

Consider, for example, Figure 16.5. Roughly speaking, the peaks represent the number of

generations with no branching. For example, note that the full binary tree has conductance

1, whence its γ value is 1/2. Thus, the tree with one child of the root followed by the full

binary tree has conductance 1/2 and γ value 1/3. The wide peak at the right of Figure

16.5 is thus due entirely to those trees that begin with two children of the root. The

peak to its left, roughly lying over 0.29, is due, at first approximation, to an unspecified

number of generations without branching, while the nth peak to the left of it is due to

n generations without branching (and an unspecified continuation). Of course, the next

level of approximation deals with further resolution of the peaks; for example, the central

peak over 0.29 is actually the sum of two nearby peaks.

Numerical calculations (still for the case p1 = p2 = 1/2) give the mean of γ(T ) to be

about 0.297, the mean of C (T ) to be about 0.44, and the mean of R(T ) to be about 2.76.

This last can be compared with the mean energy of the equally-splitting flow VIST , which

is exactly 3:
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▷ Exercise 16.15.

Show that the mean energy of VIST is
(
1−E[1/Z1]

)−1 − 1.

In terms of Fγ , we have

d = −
∫

log
(
1− γ(T )

)
dµHARM(T ) = −1

l

∫ 1

s=0

∫ 1

t=0

log(1− s)

s−1 + t−1 − 1
dFγ(t) dFγ(s) .

In the case p1 = p2 = 1/2, it turns out that the dimension of harmonic measure is

about 0.38, i.e., about log 1.47, which should be compared with the dimensions of visibility

measure, log
√
2, and of limit uniform measure, log 1.5. We can also calculate that the

mean number of children of the vertices visited by a HARMT path, which is the same as

the µHARM-mean degree of the root, is about 1.58. This is about halfway between the

average seen by the entire walk (and by simple forward walk), namely, exactly 1.5, and the

average seen by a UNIFT path, 5/3. This last calculation comes from Exercise 16.9 that a

UNIFT -path has the law of ĜW∗; from Section 12.1, we know that this implies that the

number of children of a vertex on a UNIFT -path has the law of the size-biased variable Ẑ1.

x
0 0.50.40.30.20.10

0

5

4

3

2

1

0

Figure 16.5. The apparent GW-density of γ(T ) for f(s) = (s+ s2)/2.
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Figure 16.6. The apparent GW-density of γ(T ) for f(s) = (s2 + s3)/2.
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Figure 16.7. The apparent GW-density of γ(T ) for f(s) = (s+ s2 + s3)/3.
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§16.11. Notes.

Our development of the theory of Markov chains on general state spaces is based on Kifer
(1986), pp. 19–22; for another approach, see Rosenblatt (1971), especially pp. 96–97. Good
references for ergodic theory include Petersen (1983) and Walters (1982).

Theorem 16.7 also holds when “Cayley graph” is replaced by “transitive unimodular graph”
and “translation-invariant” is replaced by “automorphism-invariant”. The proof now uses the
Mass-Transport Principle. In fact, Lemma 16.5 and Theorem 16.7 are special cases of unimodular
random graphs, as described briefly in Section 8.9; see Aldous and Lyons (2007) for details.

In Section 16.3, we gave a short proof that simple random walk on infinite Galton-Watson
trees is a.s. transient. This result was first proved by Grimmett and Kesten (1983), Lemma 2.
See also Exercises 16.15 and 16.34. For another proof that is direct and short, see Collevecchio
(2006).

Sections 16.3–16.10 are based on Lyons, Pemantle, and Peres (1995b, 1996a). Unless oth-
erwise attributed, all results there on Galton-Watson trees are from those papers, especially the
former.

Since random walk on a random spherically symmetric tree is essentially the same as a special
case of random walk in a random environment (RWRE) on the non-negative integers, we may
compare the slowing of speed on Galton-Watson trees to the fact that randomness also slows down
random walk for the general RWRE on the integers (Solomon, 1975).

In Proposition 16.17, µ can be an infinite stationary measure. The fact that W̃ · GW is
UNIF-stationary (Proposition 16.19) was also observed by Hawkes (1981), p. 378. Related ideas
occur in Joffe and Waugh (1982).

Proposition 16.31 has not appeared in print before, though it was alluded to in Lyons,
Pemantle, and Peres (1995b).

Homesick random walks RWλ on Galton-Watson trees have been studied as well, but are
more difficult to study than simple random walks because no explicit stationary measure is known.
Nevertheless, Lyons, Pemantle, and Peres (1996a) showed that the speed is a positive constant
a.s. when 1 < λ < m. See also Exercise 16.37 for the case λ < 1. The critical case λ = m has
been studied by Peres and Zeitouni (2008), who found a stationary measure. Ben Arous, Hu,
Olla, and Zeitouni (2011) proved that the derivative (in λ) of the speed at λ = m is equal to
−(m2 −m)/(2E[L2] − 2m) provided that p0 = 0 and E[sL] < ∞ for some s > 1. A stationary
measure that is somewhat explicit was found for all λ in the positive-speed regime by Aı̈dékon
(2011a).

Other works about random walks on Galton-Watson trees include Kesten (1986), Aldous
(1991), Piau (1996), Chen (1997), Piau (1998), Pemantle and Stacey (2001), Dembo, Gantert,
Peres, and Zeitouni (2002), Piau (2002), Dembo, Gantert, and Zeitouni (2004), Dai (2005),
Collevecchio (2006), Chen and Zhang (2007), Aı̈dékon (2008), Croydon and Kumagai (2008),
Croydon (2008), Ben Arous, Fribergh, Gantert, and Hammond (2012), Aı̈dékon (2010), Faraud
(2011), and Gantert, Müller, Popov, and Vachkovskaia (2012). However, the following questions
from Lyons, Pemantle, and Peres (1996a, 1997) are open:

Question 16.33. Is the speed of RWλ on Galton-Watson trees monotonic decreasing in the
parameter λ when p0 = 0?

Question 16.34. Is the speed of RWλ a real-analytic function of λ ∈ (0,m) for Galton-Watson
trees T?

Other uses of some of the ideas in Section 16.5 appear in Furstenberg and Weiss (2003), who
show “tree-analogues” of theorems of van der Waerden and Szemerédi on arithmetic progressions.

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



§12. Collected In-Text Exercises 607

It was shown in Theorem 16.13 that the speed of simple random walk on a Galton-Watson
tree with mean m is strictly smaller than the speed of simple random walk on a deterministic tree
where each vertex has m children (m ∈ N). Since we have also shown that simple random walk is
essentially confined to a smaller subtree of growth ed, it is natural to ask whether its speed is, in
fact, smaller than (ed − 1)/(ed + 1). This is true and was shown by Virág (2000b).

For a treatment of classical harmonic measure, see Garnett and Marshall (2005).

§16.12. Collected In-Text Exercises.

16.1. Show that Lemma 16.1 may not be true if µ is an infinite stationary measure.

16.2. Let G = (V,E) be a finite connected graph. For x ∈ V, let Tx be the universal cover of G
based at x (see Section 3.3). Define

µ([T, o]) :=
1

2|E|
∑

{deg x ; x ∈ V, [Tx, x] = [T, o]} .

Show that µ is an SRW-stationary ergodic probability measure on [T ].

16.3. Show that if µ is an ergodic DSRW-stationary probability measure on the space of rooted
trees T such that µ-a.e. tree is infinite, then the rate of escape of simple random walk (not
delayed) is SRW × µ-a.s.

lim
n→∞

|Xn|
n

= 1 − 2∫
degT (o) dµ(T, o)

.

16.4. Use Corollary 16.8 to prove that for a translation-invariant random forest on a Cayley
graph, there are a.s. no isolated ends in trees with an infinite number of ends. (An end is isolated
if there is a ray ⟨x0, x1, . . .⟩ in its equivalence class such that no other ray begins ⟨x0, x1⟩.)

16.5. Show that the Markov chain SRW ×AGW is stationary.

16.6. Show that the same formula (16.4) holds for the speed of simple random walk on GW-a.e.
tree.

16.7. Prove (16.5).

16.8. Show that the Hausdorff dimension of harmonic measure is a.s. constant.

16.9. The Markov chain of Proposition 16.19 is closely connected to the size-biased Galton-
Watson trees of Section 12.1. Show that in case E[Z1 logZ1] < ∞, the distribution of a UNIFT -

path is ĜW∗.

16.10. Prove Shannon’s inequality.

16.11. Prove Proposition 16.25.

16.12. Suppose that p0 > 0. Show that given nonextinction, the dimension of harmonic measure
is a.s. less than logm.

16.13. Prove (16.13).

16.14. Show that
∫

log (1 + C (T )) dµHARM <∞.

16.15. Show that the mean energy of VIST is (1 −E[1/Z1])
−1 − 1.
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§16.13. Additional Exercises.

16.16. Since simple random walk on a graph is a reversible Markov chain, the Markov chain on [T ]
induced by simple random walk is locally reversible in being reversible on each communicating
class of states. However, a stationary measure µ is not necessarily globally reversible, i.e., it is
not necessarily the case that for Borel sets A,B ⊆ [T ],∫

A

p([T, o], B) dµ(T, o) =

∫
B

p([T, o], A) dµ(T, o) .

Give such an example, i.e., a stationary measure that is not globally reversible. On the other
hand, prove that every globally reversible µ is stationary.

16.17. Show that if µ is a probability measure on rooted trees that is stationary for simple random
walk, then

∫
A♢

degT (o)/degT♢(o) dµ(T, o) <∞. See the proof of Theorem 16.4 for the notation.

16.18. Deduce from Corollary 16.9 the following: If G is an amenable group, then every tree in
a translation-invariant random forest has at most 2 ends a.s.

16.19. For a rooted tree (T, o), define T∆ to be the tree obtained by adding an edge from o to a
new vertex ∆ and rooting at ∆. This new vertex ∆ is thought of as representing the past. Let
γ(T ) be the probability that simple random walk started at ∆ never returns to ∆:

γ(T ) := SRWT∆ [∀n > 0 Xn ̸= ∆] .

Let C (T ) denote the effective conductance of T from its root to infinity when each edge has unit
conductance. The series law gives us that

γ(T ) =
C (T )

1 + C (T )
= C (T∆) .

The notation γ is intended to remind us of the word “conductance”. Compare the remark following
Corollary 5.25. For (

↔
x, T ) ∈ PathsInTrees, write N(

↔
x, T ) := |{n ; xn = x0}| for the number of

visits to the root of T . For k ∈ N, let Dk(
↔
x, T ) := {j ∈ N ; deg xj = k + 1}.

(a) Show that

lim
n→∞

1

2n+ 1
|Dk(

↔
x, T ) ∩ [−n, n]| = pk SRW ×AGW-a.s.

This means that the proportion of time that simple random walk spends at vertices of degree
k + 1 is pk.

(b) For i ≥ 0, let γi be i.i.d. random variables with the distribution of the GW-law of γ(T ). Let

Γk := E

[
k + 1

γ0 + · · · + γk

]
.

Show that ∫
N(
↔
x, T ) dSRW ×AGW((↔x, T ) | deg x0 = k + 1) = 2Γk − 1

and that Γk is decreasing in k. What is limk→∞ Γk?

(c) The result in (a) says that there is no biasing of visits to a vertex according to its degree,
just as Theorem 16.11 says. Yet the result in (b) indicates that there is indeed a biasing.
How can these results be compatible?

(d) What is ∫
N(
↔
x, T ) dSRW ×AGW((↔x, T ) | deg x0 = k + 1, Fresh) ?

16.20. Show that a labelled tree chosen according to a non-degenerate GW measure a.s. has no
graph-automorphisms except for the identity map.
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16.21. Show that the hypothesis of Proposition 16.16 is needed. You may want to use two flow
rules that both follow a 2-ray when it exists (see Exercise 16.22) but do different things otherwise.

16.22. Give an example of a flow rule Θ with a Θ-stationary measure that is absolutely continuous
with respect to GW but whose associated Markov chain is not ergodic as follows. Call a ray
ξ ∈ ∂T an n-ray if every vertex in the ray has exactly n children and write T ∈ An if ∂T contains
an n-ray. Since the root must have n children if there is an n-ray, the sets An are pairwise
disjoint. Consider the Galton-Watson process with p3 := p4 := 1/2. Show that GW(An) > 0 for
n = 3, 4. Define ΘT to choose equally among all children of the root on (A3 ∪A4)c and to choose
equally among all children of the root belonging to an n-ray when T ∈ An. Show that GWAn

is Θ-stationary for both n = 3, 4, whence the Θ-stationary measure (GWA3 + GWA4)/2 gives a
non-ergodic Markov chain.

16.23. Let T be the Fibonacci tree of Exercise 13.21. Show that the dimension of harmonic
measure for RWλ on T is

1 +
√
λ+ 1

2 +
√
λ+ 1

log(1 +
√
λ+ 1) −

√
λ+ 1

(2 +
√
λ+ 1)

log
√
λ+ 1 .

16.24. Identify the binary tree with the set of all finite sequences of 0s and 1s. Let the conductance
of an edge be x+ 1 when its vertex furthest from the root ends in x, where x ∈ {0, 1}. Calculate
the dimension of harmonic measure of the corresponding random walk.

The following sequence of exercises, 16.25–16.33, treats the ideas of Furstenberg (1970) that
inspired those of Section 16.5. We adopt the setting and notation of Section 14.5. In particular,
fix an integer r and let T be the r-ary tree.

16.25. Let U be the space of unit flows on T. Give U a natural compact topology.

16.26. A Markov chain on U is called canonical if it has transition probabilities p(θ, θx) = θ(x)
for |x| = 1. Any Borel probability measure µ on U can be used as an initial distribution to define
a canonical Markov chain on U , denoted Markov(µ). Regard Markov(µ) as a Borel probability
measure on path space U ∞ (which has the product topology). Show that the set of canonical
Markov chains on U is weak∗-compact and convex.

16.27. Let S be the left shift on U ∞. For a probability measure µ on U , let Stat(µ) be the set
of weak∗-limit points of

1

N

N−1∑
n=0

SnMarkov(µ) .

Show that Stat(µ) is nonempty and consists of stationary canonical Markov chains.

16.28. Let f be a continuous function on U ∞, µ be a probability measure on U , and ν ∈ Stat(µ).
Show that

∫
f dν is a limit point of the numbers

1

N

N−1∑
n=0

∫ ∑
|x|=n

θ(x)

∫
f(θx, θx1 , θx2 , . . .) dθx(x1, x2, . . .) dµ(θ) ,

where we identify U with the set of Borel probability measures on ∂T.
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16.29. For any probability measure µ on U , define its entropy as Ent(µ) :=
∫
F (θ) dµ(θ), where

F (θ) :=
∑
|x|=1

θ(x) log
1

θ(x)
.

Define this also to be the entropy of the associated Markov chain Markov(µ). Show that Ent(µ) =∫
H dMarkov(µ), where

H(θ, θx1 , θx2 , . . .) := log
1

θ(x1)
.

Show that if ν ∈ Stat(µ), then
∫
H dν is a limit point of the numbers

1

N

N−1∑
n=0

∫ ∑
|x|=n

θ(x) log
1

θ(x)
dµ(θ) .

16.30. Suppose that the initial distribution is concentrated at a single unit flow θ0, so that
µ = δθ0 . Show that if for all x with θ(x) ̸= 0, we have

α ≤ 1

|x| log
1

θ0(x)
≤ β ,

then for all ν ∈ Stat(µ), we have α ≤ Ent(ν) ≤ β.

16.31. Show that if ν is a stationary canonical Markov chain with initial distribution µ, then its
entropy is

Ent(ν) = lim
N→∞

∫
1

N

∑
|x|=N

θ(x) log
1

θ(x)
dµ(θ) .

16.32. Show that if ν is a stationary canonical Markov chain, then

lim
n→∞

1

n
log

1

θ(xn)

exists for almost every trajectory ⟨θx1 , θx2 , . . .⟩ and has expectation Ent(ν). If the Markov chain
is ergodic, then this limit is Ent(ν) a.s.

16.33. Show that if T is a tree of uniformly bounded degree, then there is a stationary canonical
Markov chain ν such that for almost every trajectory ⟨θ, θx1 , θx2 , . . .⟩, the flow θ is carried by a
derived tree of T and

lim
n→∞

1

n
log

1

θ(xn)
= Ent(ν) = dim sup ∂T .

Show similarly that there is a stationary canonical Markov chain ρ such that for almost every
trajectory ⟨θ, θx1 , θx2 , . . .⟩, the flow θ is carried by a derived tree of T and

lim
n→∞

1

n
log

1

θ(xn)
= Ent(ρ) ≤ dim inf ∂T .

16.34. Let T be a Galton-Watson tree without extinction. Suppose that E[L2] < ∞. Consider
the flow θ on T of strength W (T ) given by θ(e(x)) := W (T x)/m|x|, i.e., the flow corresponding
to the measure W (T )UNIFT . Show that E[W 2] = 1 + Var(L)/(m − 1). Show that if λ < m,
then for the conductances c(e) := λ−|e|, we have E[E c(θ)] = λE[W 2]/(m − λ). Show that for
these same conductances, the expected effective conductance from the root to infinity is at least
(m − λ)/(λE[W 2]). Use that E[E c(θ)] < ∞ to give another proof that for every Galton-Watson
tree of mean m > 1 (without restriction on E[L2]), RWλ is transient a.s. given nonextinction for
all λ < m.
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16.35. Let µ be an SRW-stationary probability measure on the space of rooted trees T such that
µ-a.e. tree has at least 3 ends. Show that harmonic measure of simple random walk has positive
Hausdorff dimension µ-a.s. This gives another proof that µ-a.e. tree has branching number > 1.

16.36. Consider simple random walk on Galton-Watson trees, T . Define loop-erased simple ran-
dom walk as the limit x∞ of a simple random walk path

→
x . Show that the (expected) probability

that the path of a loop-erased simple random walk from the root of T does not intersect the
path of an independent (not loop-erased) simple random walk from the root of T is the speed
E[(Z1 − 1)/(Z1 + 1)]. Hence by Proposition 10.20, the chance that the root of T does not belong
to the same tree as a uniformly chosen neighbor in the wired uniform spanning forest on T is the
speed E[(Z1 − 1)/(Z1 + 1)].

16.37. Suppose that p0 > 0. Let T be a Galton-Watson tree conditioned on nonextinction. Show
that the speed of RWλ is zero if 0 ≤ λ ≤ f ′(q).
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Comments on Exercises

Chapter 1

1.1. To show that every cover by open sets has a finite subcover, it suffices to consider covers
{Bx ; x ∈ W} by sets of the form in (1.3). Consider the vertices in T that are connected
to the root by a path that does not include any x ∈ W . These vertices form a subtree of T
that, by definition, contains no ray.

Chapter 2

2.1. (c) Use part (a).

(d) A proof of the well-known uniqueness of the stationary distribution is given in Exer-
cise 2.41.

2.8. By symmetry, all vertices at a given distance from o have the same voltage. Therefore, they
can be identified without changing any voltages (or currents). This yields the graph N with
multiple edges and loops. We may remove the loops. We see that the parallel edges between
n − 1 and n are equivalent to a single edge whose conductance is Cn. These new edges are
in series.

2.10. The complete bipartite graph K4,4.

2.13. Use that the minimum occurs iff F is harmonic at each x ̸∈ A ∪ Z. Or, let i be the unit
current flow from A to Z and use the Cauchy-Schwarz inequality:∑

e∈E1/2

dF (e)2c(e)R(A↔ Z) =
∑

e∈E1/2

dF (e)2c(e)
∑

e∈E1/2

i(e)2r(e)

≥
( ∑
e∈E1/2

i(e)dF (e)

)2

=

(∑
x∈V

d∗i(x)F (x)

)2

=

(∑
x∈A

d∗i(x)F (x)

)2

= 1 .

See Griffeath and Liggett (1982), Theorem 2.1 for essentially the same statement. The
minimum is the same even if we allow all F with F ≥ 1 on A and F ≤ 0 on Z.

2.14. Since {χe ; e ∈ E1/2} form a basis of ℓ2−(E, r) and the norms of θn are bounded, it follows
that θn tend weakly to θ. Hence the norm of θ is at most lim infn E (θn). Furthermore, as
d∗θn(x) is the inner product of θn with the star at x, it converges to d∗θ.

2.15. (This is due to T. Lyons (1983).) Let U1, U2 be independent uniform [0, 1] random variables.
Take a path in Wf that stays fairly close to the points (n,U1n,U2f(n)) (n ≥ 1).
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2.21. Let the successive intervals in Z \S have lengths successive powers of 2, while the successive
intervals of S have lengths successive powers of 5. For more detailed analysis, see Benjamini,
Pemantle, and Peres (1996), Proposition 4.1, where this phenomenon was first discovered.

2.22. This is due to Solomon (1975). Use the Chung-Fuchs theorem when this expectation equals
0. The similar RWRE on N is a.s. recurrent when E[logA0 − log(1 − A0)] ≤ 0. See Lyons
and Pemantle (1992) for an extension to trees.

2.23. Use Exercise 2.1.

2.25. (a) We may assume that our stationary sequence is bi-infinite. Shifting the sequence to the
left preserves the probability measure on sequences. Write Y := X

τ+
A

. We want to show

that for measurable B ⊆ A, we have P[Y ∈ B | X0 ∈ A] = µA(B). Write σ−
A := sup{n ≤

−1 ; Xn ∈ A}. Now P[Y ∈ B,X0 ∈ A] =
∑
n≥1 P[X0 ∈ A, τ+A = n,Xn ∈ B]. By shifting

the nth set here by n to the left, we obtain P[Y ∈ B,X0 ∈ A] =
∑
n≥1 P[σ−

A = −n,X0 ∈ B],
which equals P[X0 ∈ B]. This gives (a). The same method shows that shifting the entire
sequence ⟨Xn⟩ to the left by τ+A preserves the measure given that X0 ∈ A.

(b) We give two proofs of the Kac lemma, but the second proof assumes that ⟨Xn⟩ is ergodic.

First, write σA := sup{n ≤ 0 ; Xn ∈ A}. We have E[τ+A ;X0 ∈ A] =
∑
k≥0 P[X0 ∈ A, τ+A >

k]. If we shift the kth set in this sum to the left by k, then we obtain the set where σA = −k,
whence E[τ+A ;X0 ∈ A] =

∑
k≥0 P[σA = −k] = 1.

Second, consider the asymptotic frequency that Xn ∈ A. By the ergodic theorem, this equals
P[X0 ∈ A] = µ(A) a.s. Let τkA be the time between the kth visit to A and the succeeding visit
to A. By decomposing into visits to A, the asymptotic frequency of visits to A is also the
reciprocal of the asymptotic average of τkA. Since the random variables ⟨τkA⟩ are stationary
when conditioned on X0 ∈ A by the first part of our proof, the ergodic theorem again yields
that the asymptotic average of τkA equals E[τ+A | X0 ∈ A] a.s. Equating these asymptotics
gives the Kac lemma.

2.27. This is called the Riesz decomposition . The decomposition also exists and is unique if
instead of f ≥ 0, we require G |f | <∞; but we still have f ≥ 0.

2.29. Express the equations for ic by Exercise 2.2. Cramer’s rule gives that ic is a rational function
of c.

2.30. The corresponding conductances are ch(x, y) := c(x, y)h(x)h(y).

2.34. Decompose the random walk run for infinite time and starting at x into the excursions
between visits to x. On each excursion, use (2.4) to calculate the probability that A is
visited given that A ∪ Z is visited. See Berger, Gantert, and Peres (2003) for details.

2.35. Solution 1. Let u be the first vertex among {x, y} that is visited by a random walk starting
from a. Before being absorbed on Z, the walk is as likely to make cycles at u in one direction
as in the other by reversibility. This leaves at most one net traversal of the edge between x
and y.

Solution 2. Let, say, v(x) ≥ v(y). Let Π := {[u,w] ; v(u) ≥ v(x), v(w) ≤ v(x)}. Then Π is a
cutset separating a from Z, whence

∑
[u,w]∈Π i(u,w) = 1 since Π\{e ; i(e) = 0} is a minimal

cutset (see Section 3.1). Since i(u,w) ≥ 0 for all [u,w] ∈ Π and since [x, y] ∈ Π, it follows
that i(x, y) ≤ 1.

2.36. Use Proposition 2.2.
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2.37. Consider two networks that differ only by the conductance on (x, y). Couple the two corre-
sponding random walks so that one crosses from x to y at least as many times as the other;
one walk may wait for the other to return to x, e.g. This does not depend on reversibility.

2.39. Use the stationary distribution from Exercise 2.1.

2.40. This is due to Aldous and Fill (2002), but is classical for τ = τ+a .

2.41. This is well known. One proof of (a) and (b) is to apply the martingale convergence theorem
to ⟨f(Xn)⟩, where f is harmonic. For (c), apply (b) to the reversed chain.

2.43. (This is due to Aldous and Fill (2002).) Use Exercise 2.40(b) with τ := inf{n ≥ N ; Xn = x}.
Then let N → ∞.

2.44. Assume that Ea[τ+a ] <∞ and use the ideas of Exercise 2.40 to show that there is a stationary
probability measure.

2.46. (This is due to Aldous and Fill (2002).) Show that f is harmonic by using Exercise 2.40. For
the second part, use Exercise 2.43 (noting that f(x) =

∑
z π(z)f(z)).

2.47. Use Fubini’s theorem. It suffices that
∑
e∈ξ r(e) = ∞ for every ray ξ.

2.48. (b) From part (a), we have

Pz[τA < τ+z ]µ(x) = π(x)
∑
P

∏
e∈P

c(e)/
∏
w∈P

π(w) = π(x)ν(x)/π(z) ,

where the sum is over paths P from z to x that visit z and x just once and do not visit
A \ {x}.

2.52. This is known as Parrondo’s paradox, as it combines games that are not winning into a
winning game. See Parrondo (1996) and Harmer and Abbott (1999). For additional analysis,
see Pyke (2003) and Ethier and Lee (2009). For other aspects of turning fair games into unfair
ones, see Durrett, Kesten, and Lawler (1991).

2.53. (a) 29/63, 29/35, 17/20.

2.54. (d) Let G′′ be G′ with a loop at each x of conductance π(x)pW (x, x). Then the escape
probability from each x to each y is the same in G as in G′′, as is the sum of the conductances
around x, whence we deduce equality of effective resistances. But the loops do not affect the
effective resistances, whence the result. We remark that the network walk on G′′ is the walk
on G after inducing on W : see Exercise 2.25 and Exercise 6.60.

(e) A remarkable use of this transformation is in Caputo, Liggett, and Richthammer (2010).
It is also called the star-mesh transformation . It is due to Campbell (1911); the original
star-triangle transformation is due to Kennelly (1899).

2.58. Fix o ∈ V and let ix be the unit current flow from x to o. Use R(u↔ x) = ∥iu − ix∥2r or use
(2.21). This is equivalent to saying that the effective resistance metric (see Exercise 2.68)
has 1-negative type, i.e.,

∑
x,y∈V R(x ↔ y)αxαy ≤ 0 whenever

∑
x∈V αx = 0. In this latter

form, the result is due to Jorgensen and Pearse (2009) (see Theorem 5.1). Metric spaces of
negative type include Euclidean spaces; this fact is useful in statistics (Székely and Rizzo
(2005a, 2005b, 2005b), Bakirov, Rizzo, and Székely (2006), Székely, Rizzo, and Bakirov
(2007), Lyons (2013)) and in theoretical computer science (Deza and Laurent (1997), Naor
(2010)).
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2.59. Use superposition and E (i) = (i, dv) = (d∗i, v) = (f, v).

2.61. (a) Use superposition of currents.

(g) Consider how ∆G acts on ℓ2(V) = R⊕R⊥, where we identify R with the constant vectors.

2.62. This is noted by Coppersmith, Doyle, Raghavan, and Snir (1993). See also Ponzio (1998).
Use Exercise 2.61.

2.64. This is due to Foster (1948). Compute a trace. Such a proof is first due to Flanders (1974).
For other short proofs and an extension to non-reversible Markov chains, see Exercise 2.115
and Exercise 4.30.

2.65. With general conductances, we have c(e′)r(e)ie(e) ≥ ie(e′).

2.66. Use Exercise 2.13 and the fact that the minimum of linear functions is concave.

2.67. Use Exercise 2.13.

2.68. There are several solutions. One involves superposition of unit currents, one from u to x and
one from x to w. One can also use Exercise 2.69 (which explains the left-hand side minus
the right-hand side) or Corollary 2.21.

2.69. There are many interesting proofs. For one, use Exercise 2.61. For another solution, see
Tetali (1991), who discovered this formula.

2.70. Use that ∂i/∂r(e) is a flow with strength 0.

2.71. Use Exercises 2.70 and 2.67.

2.73. (a) The probability that the random walk leaves Gn before visiting a or z tends to 0 as n→
∞. We may couple random walks Xk on Gn and Yk on G as follows. Start at X0 := Y0 := x.
Define Yk as the usual network random walk on G, stopped when it reaches {a, z}. Define
τ := inf{k ; Yk /∈ Gn}. For k < τ , let Xk := Yk, while for k ≥ τ , continue the random walk
Xk independently on Gn, stopped at {a, z}. Thus, vn(x) is the probability that Xk reaches
a, while v(x) is the probability that Yk reaches a. For large n, it is likely that τ = ∞, on
which event either both random walks reach a or neither does.

2.75. Let ⟨Gn⟩ be an exhaustion by finite induced subnetworks. Note that the star spaces of GW
n

increase to ⋆ and the cycle spaces of Gn increase to ♢. It follows from Exercises 2.74 and
2.73 that the projections of χe onto ⋆ and the orthocomplement of ♢ agree for each e.

2.76. The expression given by Thomson’s Principle can also be regarded as an extremal width.
This identity is due to Duffin (1962). Given ℓ, find F with |dF | ≤ ℓ and use Dirichlet’s
Principle. The minimum is the same even if we allow all ℓ with the distance between any
point of A and any point of Z to be at least 1.

2.78. If G is recurrent, this is obvious. If G is transient and the conclusion does not hold, then
let h(x) := Px[∀n Xn ∈ H], so h(x) > 0 for all x ∈ V(H) and h is harmonic on H. Apply
the Doob transform, Exercise 2.30, to get new conductances on H that correspond to the
random walk conditioned to stay in H. This new walk is transient, yet the new conductances
are less than the old ones, which contradicts Rayleigh’s Monotonicity Principle.

2.79. See the beginning of the proof of Theorem 3.1.

2.80. The tree of Example 1.2 will do. Order the cutsets according to the (first) edge on the “main”
ray that they contain. Let An be the size of the nth cutset. Let T (k) be the tree coming
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off the vertex at level k of the main ray; thus, T (k) begins with two children of its root for
k ≥ 1. Show that T (k) contains k levels of a binary tree. Let Bn,k := Πn ∩ T (k). Thus,
An ≥

∑n−1
k=1 |Bn,k|. Reduce the problem to the case where all vertices in Bn,k are at level at

most 3k for n ≤ 2k. Use (2.14) to show that
∑2k
n=k+1 |Bn,k|

−1 < 2 for each k. Deduce that∑
nA

−1
n <∞ by using the Arithmetic Mean-Harmonic Mean Inequality.

Alternatively, use Exercise 2.81.

2.81. This is due to Yoram Gat (1997, personal communication). Write A := {Πn ; n ≥ 1} and
S(A) :=

∑
n |Πn|−1. We may clearly assume that each Πn is minimal. Suppose that there

is some edge e /∈
∪
n Πn. Now there is some Πk that does not separate the root from e. Let

Π′
k be the cutset obtained from Πk by replacing all the descendants of e in Πk by e. Then

|Π′
k| ≤ |Πk|. Let A′ := {Πn ; n ̸= k} ∪ {Π′

k}. Then A′ is also a sequence of disjoint cutsets
and S(A′) ≥ S(A).

If we order the edges of T in any fashion that makes |e| increasing and apply the above
procedure recursively to all edges not in the current collection of cutsets, we obtain a sequence
Ai of collections of disjoint cutsets with S(Ai) increasing in i. Let A∞ := lim inf Ai. Then
A∞ is also a sequence of disjoint cutsets, and S(A∞) ≥ S(A). Furthermore, each edge of T
appears in some element of A∞.

Call two cutsets comparable if one separates the root from the other. Suppose that there
are two cutsets of A∞ that are not comparable, Πn and Πm. Then we may create two
new cutsets Π′

n and Π′
m, that are comparable and whose union contains the same edges as

Πn∪Πm. Since |Π′
n|+|Π′

m| = |Πn|+|Πm| and min {|Π′
n|, |Π′

m|} ≤ min {|Πn|, |Πm|}, it follows
that |Π′

n|−1 + |Π′
m|−1 ≥ |Πn|−1 + |Πm|−1. By replacing Πn and Πm in A∞ by Π′

n and Π′
m

and repeating this procedure as long as there are at least two cutsets in the collection that
are not comparable, we obtain in the limit a collection A′

∞ of disjoint pairwise comparable
cutsets containing each edge of T and such that S(A′

∞) ≥ S(A). But the only collection of
disjoint pairwise comparable cutsets containing each edge of T is A′

∞ = {Tn ; n ≥ 1}.

2.82. This is due to I. Benjamini (personal communication, 1996).

(a) Given cutsets, consider the new network where the edges of the cutsets are divided in
two by an extra vertex for each edge, each half getting half the resistance.

(b) Reverse time.

(c) Note that An are independent.

2.83. Use the Nash-Williams Criterion.

2.86. (a) Cycles at a are equally likely to be traversed in either direction. Thus, cycles contribute
nothing to E[Se − S−e].

2.88. By Proposition 2.12, v(Xn) = PXn [∃k ≥ n Xk = a]. Now the intersection of the events
[∃k ≥ n Xk = a] is the event that a is visited infinitely often, which has probability 0. Since
these events are also decreasing, their limiting probability is 0. That is, E[v(Xn)] → 0. On
the other hand, ⟨v(Xn)⟩ is a non-negative supermartingale, whence it converges a.s. and
E[lim v(Xn)] = limE[v(Xn)] = 0.

2.89. The probability that a random walk started at a returns to a after 2d(a, x) or more steps is
at least

Pa[τx <∞]Px[τa <∞] = Pa[τx <∞]
G (x, a)

G (a, a)
= Pa[τx <∞]

π(a)G (a, x)

π(x)G (a, a)
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≥ Pa[τx <∞]2
π(a)

π(x)G (a, a)
.

2.90. Use Exercise 2.13.

2.91. Suppose that (G, c) is recurrent. By Exercise 2.90, we may choose an increasing sequence
rn of radii, starting with r0 = 0, and functions fn:V(G) → R such that fn(x) = n when
d(o, x) ≤ rn, fn(x) = n + 1 when d(o, x) ≥ rn+1, and

∑
n

∑
e∈E dfn(e)2c(e) < ∞. Now put

f(x) := fn(x) when rn ≤ d(o, x) < rn+1.

Conversely, suppose a function f satisfies the conditions. Without loss of generality, we may
suppose also that f(o) = 0 and

∑
e∈E df(e)2c(e) < 1. Then given ϵ > 0, define F (x) := 1 −

min{ϵf(x), 1}. This new function F has finite support, F (o) = 1, and
∑
e∈E dF (e)2c(e) < ϵ2.

2.93. Use Exercise 2.66.

2.94. Use Exercise 2.67.

2.95. (This is due to Benjamini, Gurel-Gurevich, and Lyons (2007).) Consider the random walk
conditioned to return to o.

2.96. Use Proposition 2.1 and estimate Ln := Gzn(0,0) = 4R(0 ↔ zn) ∼ (2/π) log n. To do this,
note that in Z2, we have p2k(0,0) ∼ 1/(πk). Also, the chance of reaching zn before n2−ϵ

steps is extremely small. Thus, Ln ≥ (1 − ϵ)
∑n2−ϵ

0 1/(πk) for large n. To get an upper
bound, define L′

n := maxx Gzn(x,0) and use the fact that the chance for a random walk
starting at x of not reaching zn before n2+ϵ steps is extremely small and that no matter
where within distance n the random walk is at that time, the expected number of visits to 0

after that time is at most L′
n. Thus, Ln ≤ L′

n and L′
n ≤

∑n2−ϵ

0 1/(πk) + ϵL′
n for large n.

2.98. This method of proving transience of Z3 is due to Levin and Peres (2010).

2.104. (This is due to Tetali (1991).) Use Proposition 2.20 and Exercise 2.69.

2.105. Decompose a path of length k that starts at x and visits y into the part to the last visit of y
and the rest (which may be empty). Reverse the first part and append the result of moving
the second part to x via a fixed automorphism. The 1-skeleton of the truncated tetrahedron
is an example of a transitive graph for which there are two vertices x and y such that no
automorphism interchanges x and y.

2.106. The first identity (2.27) follows from a path-reversal argument. For the second, (2.28), use
Exercise 2.104. This proof was given by Coppersmith, Tetali, and Winkler (1993), who
discovered the result. The first equality of (2.28) does not follow from an easy path-reversal
argument: consider, e.g., the path ⟨x, y, x, y, z, x⟩, where τy,z,x = 6, but for the reversed
path, τz,y,x = 4.

2.107. (This is due to Coppersmith, Tetali, and Winkler (1993), with a somewhat different approach
to (d).) For (a), consider Pπ[τx,y > k].

2.108. A tricky bijective proof was given by Tanushev and Arratia (1997). A simpler proof proceeds
by showing the equality with “≤ k” in place of “= k”. Decompose a path of length k into a
cycle at x that completes the tour plus a path that does not return to x; reverse the cycle.

2.109. Run the chain from x until it first visits a and then z. This will also be the first visit to
z from x, unless τz < τa. In the latter case, the path from x to a to z involves an extra
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commute from z to a beyond time τz. Taking expectations yields

Ex[τa] + Ea[τz] = Ex[τz] + Px[τz < τa](Ez[τa] + Ea[τz])

This yields the formula. In the reversible case, the cycle identity (2.28) yields

Ex[τa] + Ea[τz] −Ex[τz] = Ea[τx] + Ez[τa] −Ez[τx] .

Adding these two quantities gives a sum of two commute times minus a third. Let γ denote
the sum of all edge conductances, summed over all oriented edges. Then by the commute
time formula Corollary 2.21, the denominator in (2.29) is γR(a ↔ z) and the numerator is
(γ/2)[R(x↔ a) + R(a↔ z) − R(z ↔ x)].

2.110. Use Proposition 2.20.

2.111. (This is due to Peres.) The second statement is the same as saying that Ex[(1 + s)τy ] has
integer coefficients in s. Writing τy as a sum of hitting times over the path from x to y shows
that it suffices to consider x and y neighbors. Of course, we may also assume y is a leaf. In

fact, we may consider the return time Ey[(1 + s)τ
+
y ] = Ex[(1 + s)1+τy ]. The return time to

y is 1 + a sum of a random number G of excursion lengths from x in the tree minus y, the
random number G having a geometric distribution with parameter 1/d, where d is the degree
of x. Note that since P[G = k] = (1−1/d)k/d for k ≥ 0, we have E[(1+s)G] =

∑
(d−1)ksk.

In the tree where y was deleted, each excursion is to one of the d − 1 neighbors of x other
than y, each with probability 1/(d−1). Furthermore, the excursion lengths above are return
times to x in a smaller tree. Putting all this together gives the result.

2.112. Use the fact that the expected number of visits to x by time n is at most Po[τx ≤ n]G (x, x).

2.113. Use Propositions 2.1 and 2.2.

2.115. This is due to Tetali (1994).

2.116. Use Exercises 2.113 and 2.64. This formula is due to Coppersmith, Doyle, Raghavan, and
Snir (1993).

2.117. This is due to Thomas Sauerwald (personal communication, 2007). Let the distance be n
and let Πk be the edges with one endpoint at distance k from a and the other at distance
k+ 1 from a, where 0 ≤ k < n. Write Ak :=

∑
e∈Πk

c(e). Corollary 2.21 and (2.13) give that
the commute time is

2R(a↔ z)
∑

e∈E1/2

c(e) ≥ 2

n−1∑
k=0

A−1
k

n−1∑
k=0

Ak ≥ 2n2

by the Cauchy-Schwarz inequality.

2.118. (This is due to Aleliunas, Karp, Lipton, Lovász, and Rackoff (1979). For an improvement that
applies to regular graphs, see Kahn, Linial, Nisan, and Saks (1989).) Take a spanning tree T
of G and consider a cycle in G that covers each edge of T twice. For each edge of T , consider
the commute time between the endpoints of that edge. Summing these commute times is an
upper bound for the expected cover time. This bound can be improved by a factor of what
is called the edge toughness of G; though not the definition, the edge toughness equals the
maximum of p/q over all (p, q) such that there exist p spanning trees that use each edge no
more than q times. This follows from a theorem of Tutte (1961) and Nash-Williams (1961)
by replacing each edge with q parallel edges. Another improvement is in Exercise 2.119.
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2.120. Use Foster’s Theorem, Exercise 2.64. These results are due to Coppersmith, Feige, and
Shearer (1996).

2.121. The voltage is constant on the vertices with fixed coordinate sum.

2.123. Let K be the linear span of Z(w) for w ∈ W . Let G/W be the network obtained from
G by identifying W to a single vertex. Let ZW be the associated canonical Gaussian field.
Then it suffices to show that ZW (x) = P⊥

K Z(x) in light of Proposition 2.24(a). We show
this in the form dZW (e) = P⊥

K dZ(e). Now dZ(e) = P⋆(H )X(e) and dZW (e) = PLX(e),
where L is the linear span of

∑
e−=xX(e)/r(e) for x /∈ W . Thus, it suffices to show that

⋆(H ) = L ⊕K . The only part of this that is not immediate is the orthogonality; to prove
that, write Z(w) =

∑
e∈ψ dZ(e) for a path ψ joining o to w.

The result may also be proved by using densities: see Ding, Lee, and Peres (2010), Lemma
2.15.

2.124. The orthogonal projection that gives ∇Z produces dim⋆ = |V| − 1 linearly independent
random variables.

2.125. (a) This is a deterministic result.

(c) Use Proposition 2.24. This also follows from Exercise 2.61 and the standard result relating
the covariance of Gaussians to their density (note that ∥dZ∥2c = (Z,∆GZ)).

2.126. Add a new vertex and an edge from every vertex to that new vertex. Then apply Exer-
cise 2.125.

Chapter 3

3.1. The random path ⟨Yn⟩ visits x at most once.

3.3. Let Z := {e+ ; e ∈ Π} and let G be the subtree of T induced by those vertices that Π
separates from ∞. Then the restriction of θ to G is a flow from o to Z, whence the result is
a consequence of Lemma 2.8.

3.4. Consider spherically symmetric trees.

3.9. (a) Let β > inf an/n and let m be such that am/m < β. Write a0 := 0. For any n, write
n = qm+ r with 0 ≤ r ≤ m− 1; then we have

an = aqm+r ≤ am + · · · + am + ar = qam + ar ,

whence
an
n

≤ qam + ar
qm+ r

<
am
m

+
ar
n
< β +

ar
n
,

whence
lim sup
n→∞

an
n

≤ β .

(b) Modify the proof so that if an infinite ar appears, then it is replaced by am+r instead.
(c) Observe that ⟨log |Tn|⟩ is subadditive.

3.13. Suppose that wx is broken arbitrarily as the concatenation of two words w1 and w2. Let xi
be the product of the generators in wi (i = 1, 2). Then x = x1x2. If for some i, we had
wxi ̸= wi, then we could substitute the word wxi for wi and find another word w whose
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product was x yet would be either shorter than wx or come earlier lexicographically than
wx. Either of these circumstances would contradict the definition of wx as minimal, whence
wi = wxi for both i.

This fact for i = 1 shows that T is a tree; for i = 2, it shows that T is subperiodic.

3.14. Replace each vertex x by two vertices x′ and x′′ together with an edge from x′ to x′′ of
capacity c(x). All edges that led into x now lead into x′, while all edges that led out of x
now lead out of x′′. Apply the Max-Flow Min-Cut Theorem for directed networks (with edge
capacities).

3.16. Use Exercise 3.14(a) for part (a). For part (b), let ⟨Hn⟩ be an exhaustion of H by finite
graphs and bn be the maximum number of pairwise disjoint paths from a to the complement
of Hn. Then ⟨bn⟩ is decreasing and so eventually constant. Now apply part (a).

3.17. Use Menger’s Theorem. Introduce a source a connected to A and a sink z connected to Z.
The same proofs show that there is a matching that covers A if (a) the degree of every vertex
in A is at least the degree of every vertex in Z, or if (b) |A| ≤ |Z| and the rest of the problem
statement (b) holds.

3.19. A minimal cutset is the same as a cut, as defined in Exercise 2.60.

3.21. (This is Proposition 13 of Hoffman, Holroyd, and Peres (2006).) Find a flow θ ≤ q. Consider
θ′ of Proposition 3.2. Show that E (θ′) <∞.

3.22. This is due to Peres.

3.23. Let G be the subtree of T induced by those vertices that Π separates from ∞. If G were
infinite, then we could find a path o = x0, x1, x2, . . . of vertices in G such that each xi+1 is
a child of xi by choosing xi+1 to be a child of xi with an infinite number of descendants in
G. This would produce a path from o to ∞ that did not intersect Π, which contradicts our
assumption. Hence G is finite. Let Π′ be the set of edges joining a vertex of G to a vertex
of T \G that has an infinite number of descendants.

3.24. If T is transient, then the voltage function, normalized to take the value 1 at the root
o and vanish at infinity, works as F . Conversely, given F , use the Max-Flow Min-Cut
Theorem to find a nonzero flow θ from the root, with θ(e) ≤ dF (e)c(e) for all e. Thus∑
e∈ξ θ(e)/c(e) ≤ F (o) for every path ξ from o. For each path ξ connecting o to x, multiply

this inequality by θ(e(x)) and sum over x ∈ Tn. This implies that θ has finite energy.

3.27. This an immediate consequence of the Max-Flow Min-Cut Theorem. In the form of Exer-
cise 14.29, it is due to Frostman (1935).

3.28. Let x ∈ T with |x| > k. Let u be the ancestor of x which has |u| = |x| − k. Then the
embedding of Tu into T embeds T x into Tw for some w ∈ Tk.

3.30. Consider the directed graph on 0, 1, . . . , k with edges ⟨i, j⟩ for i ≤ j ≤ i+ 1.

3.31. This is part of Theorem 5.1 of Lyons (1990).

3.32. This seems to be new. Let β be an irrational number. Write {x} for the fractional part of a
real number x. For real x, y and k ∈ N, set fk(x, y) :=

(
1[0,1/2] ({x+ kβ}) ,1[0,1/2] ({y + kβ})

)
and let Fn(x, y) be the sequence ⟨fk(x, y) ; 0 ≤ k < n⟩. Let T be the tree of all finite se-
quences of the form Fn(x, y) for x, y ∈ R and n ∈ N, together will the null sequence, which
is the root of T . Join Fn(x, y) to Fn+1(x, y) by an edge. Then |Tn| = 4n2. (A sequence
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⟨1[0,1/2] ({x+ kβ}) ; 0 ≤ k < n⟩ changes as x increases from 0 to 1 exactly when one of the
points {x+kβ} passes 1/2 or 1, so each of these n points contributes to 2 changes.) Let L2 be
Lebesgue measure on [0, 1]2 and for vertices w ∈ T , set θ(w) := L2{(x, y) ; F|w|(x, y) = w}.

Now choose β not well-approximable by rationals, e.g.,
√

5. Then θ is approximately uni-
form on Tn, whence has finite energy for unit conductances. That is, simple random walk is
transient.

3.33. Given (x1, . . . , xn) and (y1, . . . , ym) that correspond to vertices in T , the sequence obtained
by concatenating them with N zeros in between also corresponds to a vertex in T . Thus
T is N -superperiodic and brT = grT . To rule out (N − 1)-superperiodicity, use rational
approximations to α. If α > 1/2 or α = 1/2, then grT = 2 by the SLLN or the Ballot
Theorem respectively. If α < 1/2, then Cramér’s theorem on large deviations, or Stirling’s
formula, imply that grT is the binary entropy of α.

3.34. Use Exercise 3.33.

3.35. (c) T (S) · T (N \ S) is a binary tree.

Product trees were introduced by Lyons (1992) for studying random labelling of trees.

3.38. This is due to Lyons (1995).

Chapter 4

4.1. For the random walk version, this is proved in Sections 6.5 and 7.3 of Lawler (1991). Use
the “craps principle” (Pitman (1993), p. 210). First prove equality for the distribution of the
first step.

4.3. Use also Rayleigh’s Monotonicity Principle.

4.6. (This is also due to Feder and Mihail (1992).) We follow the proof of Theorem 4.6. We
induct on the number of edges of G. Given A and B as specified, there is an edge e
on which A depends (and so B ignores) such that A is positively correlated with the
event e ∈ T (since A is negatively correlated with those edges that A ignores). Thus,
P[A | e ∈ T ] ≥ P[A | e /∈ T ]. Now

P[A | B] = P[e ∈ T | B]P[A | B, e ∈ T ] + P[e /∈ T | B]P[A | B, e /∈ T ] . (17.1)

The induction hypothesis implies that (17.1) is at most

P[e ∈ T | B]P[A | e ∈ T ] + P[e /∈ T | B]P[A | e /∈ T ] . (17.2)

By Theorem 4.6, we have that P[e ∈ T | B] ≤ P[e ∈ T ] and we have chosen e so that
P[A | e ∈ T ] ≥ P[A | e /∈ T ]. Therefore, (17.2) is at most

P[e ∈ T ]P[A | e ∈ T ] + P[e /∈ T ]P[A | e /∈ T ] = P[A ] .

4.7. (Compare Theorem 3.2 in Thomassen (1990).) The number of components of T when re-
stricted to the subgraph induced by Vn is at most |∂EVn|. A tree with k vertices has k − 1
edges. The statement on expectation follows from the bounded convergence theorem.
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4.10. You need to use H(1, 1) to find Y (e, f) = 1/2− 1/π for e the edge from (0, 0) to (1, 0) and f
the edge from (0, 0) to (0, 1). From this, the values of Y (e, g) for the other edges g incident
to the origin follow. Use the transfer-current theorem directly to find P[degT (0, 0) = 4].
Other probabilities can be computed by Exercise 4.41 or by computing P[degT (0, 0) ≥ 3]
and using the fact that the expected degree is 2 (Exercise 4.7). See Burton and Pemantle
(1993), p. 1346, for some of the details.

It is not needed for the solution to this problem, but here are some values of H.

4 80 − 736

3π
−49 +

160

π
12 − 472

15π
−1 +

48

5π

704

105π

3 17 − 48

π
−8 +

92

3π
1 +

8

3π

92

15π
−1 +

48

5π

2 4 − 8

π
−1 +

8

π

16

3π
1 +

8

3π
12 − 472

15π

1 1
4

π
−1 +

8

π
−8 +

92

3π
−49 +

160

π

0 0 1 4 − 8

π
17 − 48

π
80 − 736

3π

(x1, x2) 0 1 2 3 4

Such a table was first constructed by McCrea and Whipple (1940). It is used for studying
harmonic measure in that paper, as well as in Spitzer (1976), Section 15. See those references
for proofs that

lim
|x1|+|x2|→∞

[
H(x1, x2) − 2

π
log
√

|x1|2 + |x2|2
]

=
2γ + log 8

π
,

where γ is Euler’s constant. In fact, the convergence is quite rapid. See Kozma and Schreiber
(2004) for more precise estimates. Using the preceding table, we can calculate the transfer
currents, which we give in two tables. We show Y (e, f) for e the edge from (0, 0) to (1, 0) and
f varying. The first table is for the horizontal edges f , labelled with the left-hand endpoint
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of f :

4 −129

2
+

608

3π

95

2
− 746

5π
−37

2
+

872

15π

7

2
− 1154

105π
0

3 −25

2
+

118

3π

17

2
− 80

3π
−5

2
+

118

15π
0 −7

2
+

1154

105π

2 −5

2
+

8

π

3

2
− 14

3π
0

5

2
− 118

15π

37

2
− 872

15π

1 −1

2
+

2

π
0 −3

2
+

14

3π
−17

2
+

80

3π
−95

2
+

746

5π

0
1

2

1

2
− 2

π

5

2
− 8

π

25

2
− 118

3π

129

2
− 608

3π

(x1, x2) 0 1 2 3 4

The second table is for the vertical edges f , labelled with the lower endpoint of f :

4 −138 +
6503

15π
79 − 1241

5π
−25 +

1649

21π
4 − 1321

105π

3 −26 +
245

3π
13 − 613

15π
−3 +

47

5π

1

2
− 167

105π

2 −5 +
47

3π
2 − 19

3π
−1

2
+

23

15π
−3 +

47

5π

1 −1 +
3

π

1

2
− 5

3π
2 − 19

3π
13 − 613

15π

0 −1

2
+

1

π
−1 +

3

π
−5 +

47

3π
−26 +

245

3π

(x1, x2) 1 2 3 4

Symmetries of the plane give some other values from these.

4.11. (From Propp and Wilson (1998).) Let T be a tree rooted at some vertex x. Choose any
directed path x = u0, u1, . . . , ul = x from x back to x that visits every vertex. For 1 ≤ i < l,
let Pi be the path u0, u1, . . . , ui followed by the path in T from ui to x. In the trajectory
Pl−1,Pl−2, . . . ,P1, the last time any vertex u ̸= x is visited, it is followed by its parent
in T . Therefore, if the chain on spanning trees begins at any spanning tree, following this
trajectory (which has positive probability of happening) will lead to T .

4.13. We have

p̃(T,B(T, e)) =
π(B(T, e))
π(T )

p(B(T, e), T ) =
Ψ(B(T, e))

Ψ(T )
p(g) = p(e) .

4.14. A solution using the Aldous/Broder algorithm was noted by Broder (1989).
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4.15. This is due to Aldous (1990).

4.17. This exercise was motivated by Kozdron, Richards, and Stroock (2013).

4.19. (This is due to Aldous (1990).) Use Exercise 4.15 and torus grids.

4.20. There are too many spanning trees.

4.21. This is due to Edmonds (1971); see Corollary 50.7(c) of Schrijver (2003).

4.22. (These results are due to Asadpour, Goemans, Ma̧dry, Oveis Gharan, and Saberi (2010)
and depend very little on properties of spanning trees. See Singh and Vishnoi (2013) for an
extension and related issues.) Use Lagrange multipliers for (a). Deduce (b) from (a).

4.24. This is due to Kirchhoff (1847).

4.26. (The first part is from Propp and Wilson (1998).) We sum over the number of transitions
out of x that are needed. We may find this by popping cycles at x. The number of such is
the number of visits to x starting at x before visiting r. This is π(x)(Ex[τr] + Er[τx]), as
can be seen by considering the frequency of appropriate events in a bi-infinite path of the
Markov chain. This also follows from Exercise 2.40 by using the stopping time equal to the
first visit to x after the first visit to r. The number of visits to x starting at x before visiting
r is

∑
n≥0 P

n
r (x, x), whence the trace formula follows from writing the matrix inverse as an

infinite series; this formula is due to Marchal (2000). In the reversible case, we can also use
the formulas in Section 2.2 to get ∑

x a state

∑
e−=x

c(e)R(x↔ r) ,

which is the same as what is to be shown.

4.27. Use the craps principle as in the solution to Exercise 4.1.

4.28. This is due to Meir and Moon (1970).

4.30. This is due to Foster (1948).

4.31. Add a (new) edge e from a to z of unit conductance. Then spanning trees of G∪{e} containing
e are in 1-1 correspondence preserving Ξ(•) with spanning trees of G/{a, z}. Thus, the right-
hand side of (4.20) is (1 − P[e ∈ T ])/P[e ∈ T ] in G ∪ {e}. Now apply Kirchhoff’s Effective
Resistance Formula.

4.34. Use Exercise 4.22.

4.35. (This is due to R. Lyons.) For (a), let X be the set of subsets A of vertices of G such that
both A and V \A induce connected subgraphs. Identify each A ∈ X with the subnetwork it
induces. On X, put the measure µ(A) := Ξ(A)Ξ(Ac)/(2Ξ(G)). Map a vertex x in G to the
function on X given by A 7→ 1A(x). Use Exercise 4.31(a) to verify that this is an isometry
into ℓ1(X,µ). Now use this embedding to deduce (b). A metric space that satisfies property
(b) is called hypermetric; Kelly (1970) noted that this property is a consequence of the
existence of an embedding into some L1 space as indicators, which is always the case when
there is some embedding into L1 (see, e.g., Naor (2010)). He also noted that the hypermetric
property implies the negative type property of Exercise 2.58.

4.37. Use Wilson’s algorithm with a given rung in place and a random walk started far away.
Alternatively, use the Transfer-Current Theorem. This problem was originally analyzed by
Häggström (1994), who used the theory of subshifts of finite type.
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4.39. Use the fact that i− i′ − [i(f) − i′(f)]χf is a flow between the endpoints of f .

4.41. For the first part, compare coefficients of monomials in xi. The second part is Cor. 4.4 in
Burton and Pemantle (1993).

4.42. Calculate the chance that all the edges incident to a given vertex are present.

4.45. In the case where all we are equal, this is a special case of what is proved in Feder and
Mihail (1992). In general, use the same proof as that of Exercise 4.6. An earlier and
more straightforward proof of this special case is given by Joag-Dev and Proschan (1983),
paragraph 3.1(c). The general case follows from this special case via the implication ULC ⇒
CNA+ of Theorem 2.7 in Pemantle (2000).

4.46. Use the result of Exercise 4.45.

4.48. Compare this exact result to Proposition 2.15.

4.49. When x = (±n,±n), this follows from Proposition 4.7 and (4.18). For other x ̸= 0, use the
fact that x 7→ R(0 ↔ x) is harmonic and thus R(0 ↔ x) = Ex[R(0 ↔ Zτ )], where ⟨Zk⟩
is simple random walk on Z2 and τ is the first time the random walk visits a diagonal. To
estimate the hitting distribution on the diagonals, note that if Zk = (Xk, Yk), then X2k+Y2k

and X2k − Y2k are independent simple random walks on Z observed at even times, so it
suffices to understand the distribution of one of these walks at the time that the other hits 0
for the first time. One can use the reflection principle to estimate the first hitting time of 0.

Chapter 5

5.1. Various theorems will work. The Monotone Convergence Theorem works even when m = ∞.

5.2. Compare Neveu (1986).

5.3. (Compare Neveu (1986).) Let Ω be the probability space on which the random variables L
(n)
i

are defined. Then GW is the law of the random variable T : Ω → T defined by

T := {⟨i1, . . . , in⟩ ; n ≥ 0, ij ∈ Z+ (1 ≤ j ≤ n), ij+1 ≤ Lj+1
I(i1,...,ij)

(1 ≤ j ≤ n− 1)} ,

where I(i1, . . . , ij) is the index appropriate to the individual ⟨i1, . . . , ij⟩. Actually, any in-
jection I from the set of finite sequences to Z+ will do, rather than the one implicit in the
definition of a Galton-Watson process, i.e., (5.1). For example, if ⟨Pn⟩ denotes the sequence
of prime numbers, then we may use I(i1, . . . , ij) :=

∏j
l=1 Pil .

5.4. We will soon see (Corollary 5.10) that also brT = m a.s. given nonextinction.

5.5. Show that for each n, the event that the diameter of K(x) is at least n is measurable.

5.6. One way is to let ⟨Gn⟩ be an exhaustion of G by finite subgraphs containing x. If

Pp[∃ infinite-diameter cluster] > 0 ,

then for some n, we have Pp[∃u ∈ Gn u ↔ ∞] > 0. This latter event is independent of the
event that all the edges of Gn are present. The intersection of these two events is contained
in the event that x↔ ∞.

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



Comments on Exercises 626

5.7. Let p ≥ pc(G) and p′ ∈ [0, 1]. Given ωp, the law of ωpp′ is precisely that of percolation
on ωp with survival parameter p′. Therefore, we want to show that if p′ < pc(G)/p, i.e., if
pp′ < pc(G), then ωpp′ a.s. has no infinite components, while if pp′ > pc(G), then ωpp′ a.s.
has an infinite component. But this follows from the definition of pc(G).

5.15. We have
Gd(s) = 1 − (1 − s)d+1pd+1 + (d+ 1)(1 − s)dpd(1 − p+ ps) .

Since Gd(0) > 0 and Gd(1) = 1, there is a fixed point of Gd in (0, 1) if Gd(s) < s for some
s ∈ (0, 1). Consider

g(s) := 1 − (1 − s)d+1 + (d+ 1)(1 − s)ds

obtained from Gd(s) by taking p→ 1. Since g′(0) = 0, there is certainly some s ∈ (0, 1) with
g(s) < s. Hence the same is true for Gd when p is sufficiently close to 1.

5.20. Parts (a)–(c) are due to Curien and Le Gall (2011), Lemma 5.5. For (c), use Proposition 5.36
to get a contradiction if the result does not hold.

5.21. Generate the labels at the same time as you generate the tree. That is, the root is labelled
i with probability 1/k; then there are j children of the root with probability e−ccj/j! and

they are labelled by a subset of [1, k] \ {i} with probability
(
k−1
j

)−1
each, etc.

For a more formal proof using induction, let B be the random labelling of T . Let t be a k-
vertex rooted tree with a labelling b. Suppose the root of t has j children, with corresponding
subtrees of sizes k1, . . . , kj . Thus

∑j
i=1 ki = k−1. The probability that the root labels match

in B and b is 1/k, and given that, the chance that the set of labels assigned to each of the j

subtrees matches in B and b is j!
∏j

i=1 ki!

(k−1)!
; the factor of j! is due to the possibility of permuting

the children of the root. Thus the probability that (T,B) coincides with (t, b) equals

P[Z1(T ) = j]
1

k
j!

∏j
i=1 ki!

(k − 1)!

j∏
i=1

e−ckicki−1

ki!
,

and this indeed equals e−ckck−1/k!, since P[Z1(T ) = j] = e−ccj/j!.

5.22. This type of percolation is known as the Erdős-Rényi random graph . For (b) and (c),
consider a random total ordering of the vertices of Kn. It induces a relative ordering of the
vertices of C(o), which in turn induces a labelling. For (c), calculate the exact value of the
left-hand side before the limit is taken.

5.23. Let fn and f be the corresponding p.g.f.’s. Then fn(s) → f(s) for each s ∈ [0, 1].

5.30. (a) By symmetry, we have on the event A that

E

 L
(n+1)
i∑Zn

j=1 L
(n+1)
j +

∑Z′n
j=1 L

′(n+1)
j

∣∣∣∣∣∣ Fn

 = E

 L′(n+1)
i∑Zn

j=1 L
′(n+1)
j +

∑Z′n
j=1 L

(n+1)
j

∣∣∣∣∣∣ Fn


=

1

Zn + Z′
n

.

(b) By part (a), we have

E[Yn+1 | Fn] =
Zn

Zn + Z′
n

P[A | Fn] + YnP[¬A | Fn]
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= E

[
Zn

Zn + Z′
n

1A

∣∣∣∣∣ Fn

]
+ E[Yn1¬A | Fn]

= E[Yn1A + Yn1¬A | Fn] = Yn .

Since 0 ≤ Yn ≤ 1, the martingale converges to Y ∈ [0, 1].

(c) Assume that 1 < m <∞. We have

E[Y | Z0, Z
′
0] = Y0 = Z0/(Z0 + Z′

0) . (17.3)

Now ⟨Z′
k+n⟩n≥0 is also a Galton-Watson process, so

Y (k) := lim
n

Zn
Zn + Z′

k+n

exists a.s. too with
E[Y (k) | Z0, Z

′
k] = Z0/(Z0 + Z′

k)

by (17.3). We have

P[Y = 1, Zn ̸→ 0, Z′
n ̸→ 0] = P

[
Z′
n

Zn
→ 0, Zn ̸→ 0, Z′

n ̸→ 0

]
= P

[
Z′
n+k

Zn
→ 0, Zn ̸→ 0, Z′

n ̸→ 0

]
= P[Y (k) = 1, Zn ̸→ 0, Z′

n ̸→ 0]

≤ E[Y (k)1[Z′
k
>0]] = E

[
Z0

Z0 + Z′
k

1[Z′
k
>0]

]
→ 0 as k → ∞,

where the second equality is due to the fact that, by the weak law of large numbers and

Proposition 5.1, Z′
n+k/Z

′
n

P→ mk. Hence P[Y = 1, Zn ̸→ 0, Z′
n ̸→ 0] = 0. By symmetry,

P[Y = 0, Zn ̸→ 0, Z′
n ̸→ 0] = 0 too.

5.32. Take cn := Z′
n for almost any particular realization of ⟨Z′

n⟩ with Z′
n ̸→ 0. Part (iii) of the

Seneta-Heyde theorem, the fact that cn+1/cn → m, follows from Zn+1/Zn
P→ m. That is, if

Zn/cn → V a.s., 0 < V <∞ a.s. on nonextinction, then

Zn+1

Zn
· cn
cn+1

→ V

V
= 1 (17.4)

a.s. on nonextinction. Since Zn+1/Zn
P→ m, it follows that cn/cn+1 → 1/m.

5.33. This follows either from (17.4) in the solution to Exercise 5.32 or from the Seneta-Heyde
theorem.

5.36. There are various ways to prove these; see Pitman (1998) for some of them and the history.
For (a), one way to proceed is to replace the tree in stages as follows: replace the initial
individuals by their progeny; then replace each of these in turn by their progeny; etc. Each
replacement decreases the total by a copy of L − 1. For (b), given Lj with Sn = −k, show
that among the n cyclic permutations of ⟨Lj ; j ≤ n⟩, there are exactly k for which the first
time the sum is −k is n (i.e., for which the event in (a) occurs). You might want to do this
first for k = 1.
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5.37. The distribution in part (a) is known as the Borel distribution .

5.38. This is due to Wilson (2009). Write g := g∞ in the notation of Exercise 5.34. Then g(s) =
seg(s)−1, whence log s = log g(s)+1−g(s) and ds/s = (1/g−1)dg. Therefore,

∫ 1

0
[g(s)/s]ds =∫ 1

0
g[1/g − 1]dg = 1/2. A similar method, but with generating functions of two variables,

shows that P[|X| ≥ k] = 1/(k + 1) for every k ≥ 1 (personal communication, David Wilson,
2010).

5.40. We have brT (p) = (1 − p)/(pc(T ) − p) a.s.

5.42. We have 1 − θn(p) = (1 − pθn(p))
n
.

5.43. Define X(µ) as in (5.8). The bilinear form (µ1, µ2) 7→ E[X(µ1)X(µ2)] gives the seminorm
E (•)1/2, whence the seminorm satisfies the parallelogram law, which is the desired identity.

5.44. Use Exercise 5.43.

5.45. Use Theorem 5.15. This result is due originally to Grimmett and Kesten (1983), Lemma 2,
whose proof was very long. See also Exercises 16.15 and 16.34. For a beautiful proof that is
direct and short, see Collevecchio (2006).

5.46. (a) Use Exercise 2.67. See Exercise 16.34 for another upper bound on the expected effective
conductance.

(b) This is due to Chen (1997).

5.51. Consider oriented paths starting at the origin. For a lower bound on pc(d), use the first mo-
ment method. For an upper bound, use paths with exponential intersection tails. This result
is due to Kesten and published by Cox and Durrett (1983), who gave sharper asymptotics.

5.52. Part (a) is used by Bateman and Katz (2008).

5.53. C (o↔ ∂T (n))/(1 + C (o↔ ∂T (n))) = 2/(n + 2) while P1/2[o ↔ ∂T (n)] ∼ 4/n, so the in-
equalities with “2” in them are better for large n. To see this asymptotic, let pn := P1/2[o↔
∂T (n)]. We have pn+1 = pn − p2n/4. For ϵ > 0 and t1, t2, N chosen appropriately, show that
an := (4− ϵ)/(n− t1) and bn := (4+ ϵ)/(n− t2) satisfy aN = bN = pN and an+1 < an−a2n/4,
bn+1 > bn−b2n/4 for n > N . Deduce that an < pn < bn for n > N . Theorem 12.7 determines
this kind of asymptotic more generally for critical Galton-Watson processes.

5.54. C (o↔ ∂T )/(1 + C (o↔ ∂T )) = (2p− 1)/p and Pp[o↔ ∂T ] = (2p− 1)/p2.

5.55. For related results, see Adams and Lyons (1991).

5.57. See Pemantle and Peres (1996).

5.58. This is due to Lyons (1992).

5.60. Parts (a) and (b) are due to Lyons (1992), while parts (c) and (d) are due to Marchal (1998).

5.62. Use Exercise 5.61 with n := 1 and Proposition 5.28(ii).

5.64. These are due to Pakes and Dekking (1991).

5.65. This follows from the facts that Bn,d,1(s) < s for s > 0 small enough, that the functions
Bn,d,p(s) converge uniformly to Bn,d,1(s) as p→ 1, and that Bn,d,p(0) > 0 for p > 0.

5.66. This is due to Balogh, Peres, and Pete (2006).
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5.67. A similar statement is as follows. Let B ⊆ RN be an increasing set in the sense that if
⟨an⟩ ∈ B and bn ≥ an for all n, then ⟨bn⟩ ∈ B. Define the associated target percolation ω
on T to consist of those sites x for which there is some ⟨an⟩ ∈ B such that if the path in T
from o to x is x0 = o, x1, . . . , xk = x, then A(xi) = ai for 0 ≤ i ≤ k. For example, if A(x)
is uniform on [0, 1] and B = [1 − p, 1]N, then ω is the component of the root for Bernoulli(p)
percolation. Claim: if each ray in T has probability 0 of belonging to ω, then the number
of rays in ω is a.s. 0 or 2ℵ0 . This is Lemma 4.1(i) of Pemantle and Peres (1995a), who give
more information on target percolation.

5.68. (This is part of Theorem 2.2(ii) of Pemantle and Peres (1995a).) Use Exercise 5.67.

5.69. This and Exercise 5.70 are due to Chayes, Chayes, and Durrett (1988) and Dekking and
Meester (1990), while our outlines are based on Chayes (1995a).

5.70. (a) Let γ be a left-to-right crossing of [0, 1]× [0, 2] consisting of retained level k squares. If γ
intersects A, then of course A had to be retained, and this has probability pm. Considering
the last square in γ that touches LA ∪ LA′ (see Figure 5.6) shows that if γ is disjoint from
A∪A′, then either γ connects LA to RA within [0, 1]× [1, 2], or γ connects LA′ to RA′ within
[0, 1] × [0, 1].

5.71. (a) Set ha(t) := (t − a)+. For one direction, just note that ha is a non-negative increasing
convex function. For the other, given h, let g give a line of support of h at the point
(EY,Eh(Y )). Then Eh(Y ) = g(EY ) = Eg(Y ) ≤ Eg+(Y ) ≤ Eg+(X) ≤ Eh(X).

5.72. (a) Condition on Xi and Yi for i < n.

(b) Show that n 7→ E[h(
∑n
i=1Xi)] is an increasing convex function when h is. See Ross

(1996), p. 444 for details.

5.73. (a) Use Exercise 5.72.

(b) Use (a) and Exercise 5.71. See Ross (1996), p. 446.

Chapter 6

6.1. In fact, for every finite connected subset K of Tb+1, we have |∂EK| = (b− 1)|K| + 2.

6.2. Modify the first part of the proof of Theorem 6.1. Alternatively, increase D.

6.6. Let the transition probabilities be p(x, y). Then the Cauchy-Schwarz inequality gives us

∥Pf∥2π =
∑
x∈V

π(x)(Pf)(x)2 =
∑
x∈V

π(x)

[∑
y∈V

p(x, y)f(y)

]2
≤
∑
x∈V

π(x)
∑
y∈V

p(x, y)f(y)2 =
∑
y∈V

f(y)2
∑
x∈V

π(x)p(x, y)

=
∑
y∈V

f(y)2π(y) = ∥f∥2π .

6.7. The first equality depends only on the fact that P is self-adjoint. We will omit the subscripts
π. Suppose that |(Pf, f)| ≤ C(f, f) for all f . Then for all f, g, we have

|(Pf, g)| =

∣∣∣∣ (P (f + g), f + g) − (P (f − g), f − g)

4

∣∣∣∣
≤ C[(f + g, f + g) + (f − g, f − g)]/4 = C[(f, f) + (g, g)]/2 .
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Put g = Pf∥f∥/∥Pf∥ to get ∥Pf∥ ≤ C∥f∥. This shows that ∥P∥ = sup {|(Pf, f)|/(f, f) ; f ∈
D00 \ {0}}. This gives the first identity.

6.9. Use the fact that ΦE(Tb+1) = (b − 1)/(b + 1) to get an upper bound on ρ(Tb+1). To get a
lower bound, calculate ∥Pf∥ for f :=

∑N
n=1 b

−n/21Sn , where N is arbitrary and Sn is the
sphere of radius n.

6.10. In the case of Cayley graphs, this is known as Grigorchuk’s criterion for amenability.

6.16. To prove this, do not condition that a vertex belongs to an infinite cluster. Instead, grow the
cluster from x and continue to explore even if the cluster turns out finite. Disjoint large balls
will be encountered infinitely often and will have a certain probability of containing only a
long path. These events are independent and so one will occur a.s. For more details of this
kind of proof, see the proof of Lemma 7.23.

6.22. For finite networks and the corresponding definition of expansion constant (see Exercise 6.45),
the situation is quite different; see Chung and Tetali (1998).

6.24. (This was the original proof of Theorem 6.2 in BLPS (1999b).) Let θ be an antisymmetric
function on E with |θ(e)| ≤ c(e) for all edges e and d∗θ(x) = ΦE(G)D(x) for all vertices x.
We may assume that θ is acyclic, i.e., that there is no cycle of oriented edges on each of
which θ > 0. (Otherwise, we modify θ by subtracting appropriate cycles.) Let K ⊂ V be
finite and nonempty. Suppose for a contradiction that |∂EK|c/|K|D = ΦE(G). The proof of
Theorem 6.1 shows that for all e ∈ ∂EK, we have θ(e) = c(e) if e is oriented to point out
of K; in particular, θ(e) > 0. Let (x1, x0) ∈ ∂EK with x1 ∈ K and x0 /∈ K and let γ be
an automorphism of G that carries x0 to x1. Write x2 for the image of x1 and γK for the
image of K. Since we also have |∂EγK|c/|γK|D = ΦE(G) and (x2, x1) ∈ ∂EγK, it follows that
θ(x2, x1) > 0. We may similarly find x3 such that θ(x3, x2) > 0 and so on, until we arrive
at some xk that equals some previous xj or is outside K. Both lead to a contradiction, the
former contradicting the acyclicity of θ and the latter the fact that on all edges leading out
of K, we have θ > 0.

6.25. (This is due to R. Lyons.) Use the method of solution of Exercise 6.24.

6.27. This is due to R. Lyons.

6.30. Consider cosets.

6.31. (This was the original proof of Theorem 6.4 in BLPS (1999b).) Let θ be an antisymmetric
function on E with flow+(θ, x) ≤ 1 and d∗θ(x) = ΦV(G) for all vertices x. Let K ⊂ V
be finite and nonempty. Suppose for a contradiction that |∂VK|/|K| = ΦV(G). The proof
of Theorem 6.3 shows that for all x ∈ ∂VK, we have flow+(θ, x) = 1 and flow+(−θ, v) =
ΦV(G) + 1; in particular, there is some e leading to x with θ(e) ≥ 1/d and some e leading
away from x with θ(e) ≥ (ΦV(G) + 1)/d ≥ 1/d, where d is the degree in G. Since G is
transitive, the same is true for all x ∈ V. Therefore, we may find either a cycle or a bi-infinite
path with all edges e having the property that θ(e) ≥ 1/d. We may then subtract 1/d from
these edges, yielding another function θ′ that satisfies flow+(θ′, v) ≤ 1 and d∗θ′(x) = ΦV(G)
for all vertices x. But then flow+(θ′, x) < 1 for some x, a contradiction.

6.32. This is due to R. Lyons.

6.35. This is Exercise 6.17 1
2

in Gromov (1999). Consider the graph Gk formed by adding all edges
[x, y] with distG(x, y) ≤ k.
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6.36. (This is due to Y. Peres.) Identify the binary tree with the set of all finite sequences of
0s and 1s. Let T be the subtree of the binary tree that contains the vertex corresponding
to (x1, . . . , xn) iff for every k ≥ 100 and j ≥ 1 with k2 + j ≤ n, there exists j′ ≥ j with
k + j′ ≤ k2 + j such that xi = 0 for all i ∈ [1 + j′, k + j′].

6.41. Only part (b).

6.42. (Prasad Tetali suggested that Theorem 6.1 might be used for this purpose, by analogy with
the proof in Alon (1986).) Let θ be an antisymmetric function on E such that |θ| ≤ c and
d∗θ = ΦE(G)π. Then for all f ∈ D00, we have (f, f)π = (f2, π) = ΦE(G)−1(f2, d∗θ) =
ΦE(G)−1(d(f2), θ) ≤ ΦE(G)−1∑

e∈E1/2
c(e)|f(e+)2 − f(e−)2|.

6.43. This bound for λ2 is due to Nilli (1991) (a pseudonym for Noga Alon). See also Section 3
of Murty (2003) for details. A similar proof shows that if G contains s vertices so that the
distance between each pair is at least 2k, then the s largest eigenvalues all satisfy the same
bound. A further improvement of Nilli (2004) is that under this same distance condition, the
s largest eigenvalues are all at least 2

√
b cos(π/k). This bound is better for k ≥ 7 and d ≥ 4.

Here, one uses s functions fj corresponding to s vertices aj at pairwise distance at least 2k,
where

fj(x) :=

{
αi+i0 if dist(x, aj) = i ∈ [0, k − i0],
0 otherwise,

αi := b−i/2 sin(πi/k) ,

and i0 is the largest i < k such that αi < αi+1. Each function fj satisfies (Afj , fj) ≥
2
√
b cos(π/k)∥fj∥2, as does every linear combination of them. The key algebraic fact that

enables this inequality is that αi−1 + bαi+1 = 2
√
b cos(π/k)αi.

6.45. This is due to Chung and Tetali (1998).

6.46. Use the Cauchy-Schwarz inequality and Proposition 6.6:

Px[Xn ∈ A] = (1{x}, P
n1A)π/π(x) ≤

√
π(x)∥Pn1A∥π/π(x)

≤ ∥P∥nπ
√

|A|π/π(x) = ρ(G)n
√

|A|π/π(x) .

A similar result is Proposition 4.2 of Babai (1991).

6.47. We may apply Exercise 6.46 to bound P[|Xn| ≤ 2αn] for α < − log ρ(G)/ log b. (This appears
as Lemma 4.2 in Virág (2000a).)

6.48. This confirms a conjecture of Jan Swart (personal communication, 2008), who used it in
Swart (2009). Consider (Pn1A,1A)π.

6.49. Recall from Proposition 2.1 and Exercise 2.1 that v(x) = G (o, x)/π(x) = G (x, o)/π(o).
Therefore ∑

x∈V

π(x)v(x)2 =
∑
x∈V

G (o, x)G (x, o)/π(o) .

Now
G (o, x)G (x, o) =

∑
m,n

pm(o, x)pn(x, o) ,

whence ∑
x∈V

G (o, x)G (x, o) =
∑
k

(k + 1)pk(o, o) .

Since pk(o, o) ≤ ρk, this sum is finite.
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6.50. (This is due to Benjamini, Nachmias, and Peres (2011). When A is a singleton, {x}, it is an
easy consequence of (6.11) and the usual formulas for G (x, x).) Define

τ := inf{n ≥ 0 ; Xn ∈ A} and τ+ := inf{n > 0 ; Xn ∈ A} .

Let
f(x) := Px[τ <∞] .

This is the voltage function from A to ∞. By Exercise 6.49, we have f ∈ ℓ2(V, π). Observe
that f ≡ 1 on A. For all x ∈ V,

(Pf)(x) = Px[τ
+ <∞] .

In particular, Pf = f on V \ A. Thus ((I − P )f)(x) = Px[τ+ = ∞] for x ∈ A and
((I − P )f)(x) = 0 for x ∈ V \A. Therefore

(f, (I − P )f)
π

=
∑
x∈A

π(x)Px[τ
+ = ∞] = π(A)PπA [τ

+ = ∞] .

On the other hand, clearly

(f, f)
π
≥
∑
x∈A

π(x)f(x)2 = π(A) .

The claim follows by combining the last two displays with Exercise 6.7.

6.51. Use the fact that ∥A∥ =
√

∥A∗A∥.

6.52. Put z := 1/b in (6.20). An extension is given by Guillotin-Plantard (2005).

6.53. We follow the hint. Differentiation k times shows that the kth coefficient is
∑
n≥0

(
n
k

)
anz

n−k
0 .

This gives that

f(R+ ϵ) =
∑
k≥0

∑
n≥0

(
n

k

)
anz

n−k
0 (R+ ϵ− z0)k =

∑
n≥0

an(z0 +R+ ϵ− z0)n

by the binomial theorem. For more details and applications, see Theorem IV.6 and elsewhere
in Flajolet and Sedgewick (2009).

6.56. (This is due to Lyons and Peres (2013).) For (c), consider concatenating a long cycle that
starts with e and ends with −e with a short cycle that does not.

6.57. (a) From a non-backtracking cycle one can build cycles of various lengths by inserting pure
backtracking cycles. The number of pure backtracking cycles of a given length equals the
number of cycles of that length on Tb+1. In order not to count any result more than once, the
steps inserted must not use the last step before the insertion point of the non-backtracking
cycle, which leads to counting cycles on the b-ary tree T , rather than on Tb+1, for all insertion
points other than the first.

(b) Sum over excursions from the root. The choice of sign in solving the resulting quadratic
equation is dictated by the requirement that H(0) = 1.

(c) Summing over the crossings of a fixed edge incident to the root gives

H0(z) =
∑
n≥0

z2nH(z)2n+1 .

Use the quadratic equation that H satisfies to simplify the algebra.
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6.58. (a) bB−1θ(x, y) =
∑
u∼x θ(u, x) − bθ(y, x).

(b) Cθ(x, y) =
∑
u∼x θ(u, x) +

∑
z∼y θ(y, z) − dθ(y, x).

(c) Show that (Cθ, ψ) = (ψ,Cθ). Consideration of the matrix C seems to be new.

(d)–(h) Similar results can be found in Kotani and Sunada (2000) and for non-regular graphs
in Angel, Friedman, and Hoory (2007). For (h) with G infinite, use the fact that κ ∈ σ(B)
iff κ̄ is an eigenvalue of B∗ or κ is an approximate eigenvalue of B (i.e., for all ϵ > 0 there
exists θ ∈ ℓ2(E) such that ∥Bθ − κθ∥ < ϵ∥θ∥).

(i) Non-backtracking random walk is aperiodic since otherwise B/b would have an eigenvalue
that is a non-real root of unity, contradicting (h). Each real eigenvalue of B is smaller in
absolute value than the corresponding eigenvalue of A by (h). By Exercise 6.43, the second-
largest eigenvalue of A is larger than

√
b, which equals the absolute value of each non-real

eigenvalue of B other than b. The fact that non-backtracking random walk mixes faster is
due to Alon, Benjamini, Lubetzky, and Sodin (2007).

6.59. Use Exercise 2.25.

6.60. (This fact appears in unpublished notes of David Aldous, 1999, and in Ancona, Lyons, and
Peres (1999), where it is stated in a different form as Lemma 3.1.) Let gA be the spectral gap
of the induced chain and g be the original spectral gap. Write πA for the induced stationary
probability measure on A and PA for the induced transition operator. Choose ϕ:A→ R with
(ϕ,1)πA = 0 and gA = ((I −PA)ϕ, ϕ)

πA
/∥ϕ∥2πA

. Let ψ:V → R be the harmonic extension of

ϕ. Show that PAϕ is the restriction of Pψ to A, that ((I−PA)ϕ, ϕ)
πA

= ((I−P )ψ,ψ)
π
/π(A),

and that ∥ϕ∥2πA
≤ ∥ψ − (ψ,1)π∥2π/π(A). We remark that a similar proof shows the same

inequality for the gaps of the network Laplacians (Exercise 2.61), which are the gaps for
continuous-time random walk. A special case of this (in view of Exercise 2.54) is Proposition
2.1 of Caputo, Liggett, and Richthammer (2010).

6.62. This is from Häggström, Jonasson, and Lyons (2002).

6.63. (This is due to Y. Peres and published in Häggström, Jonasson, and Lyons (2002).) The
amenable case is trivial, so assume that G is non-amenable. According to the reasoning of
the first paragraph of the proof of Theorem 6.19 and (6.33), we have

|(K̂)′|
|E((K̂)′)|

+
|K|

|E∗(K)| ≤
|(K̂)′|

|E((K̂)′)|
+

|K̂|
|E∗(K̂)|

≤ 1 +
1

|E((K̂)′)|
. (17.5)

Write

κn :=
|∂EKn|
|Kn|

− ΦE
′(G)

and

λn :=
|∂ELn|
|Ln|

− ΦE
′(G†) .

Also write d := dG, d† := dG† , Φ := ΦE
′(G), and Φ† := ΦE

′(G†). We may rewrite (17.5) as

2

d† − |∂ELn|/|Ln|
+

2

d+ |∂EKn|/|Kn|
≤ 1 +

1

|E(Ln)| ,

or, again, as

2

d† − Φ† − λn
+

2

d+ Φ + κn
≤ 1 +

1

|E(Ln)| =
2

d† − Φ† +
2

d+ Φ
+

1

|E(Ln)| ,
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whence
2λn

(d† − Φ†)(d† − Φ† − λn)
+

2κn
(d+ Φ)(d+ Φ + κn)

≤ 1

|E(Ln)| .

Therefore

2λn ≤ (d† − Φ†)(d† − Φ† − λn)

(d+ Φ)(d+ Φ + κn)
(2κn) +

(d† − Φ†)(d† − Φ† − λn)

|E(Ln)|

≤
(
d† − Φ†

d+ Φ

)2

2κn +
(d† − Φ†)2

|E(Ln)| .

Similarly, we have

2κn+1 ≤
(
d− Φ

d† + Φ†

)2

2λn +
(d− Φ)2

|E(Kn+1)| .

Putting these together, we obtain

2κn+1 ≤ a(2κn) + bn ,

where

a :=

(
(d− Φ)(d† − Φ†)

(d+ Φ)(d† + Φ†)

)2

and

bn :=

(
(d− Φ)(d† − Φ†)

d† + Φ†

)2
1

|E(Ln)| +
(d− Φ)2

|E(Kn+1)| .

Therefore

2κn ≤ 2κ0a
n−1 +

n−2∑
j=0

ajbn−j .

Since a < 1 and bn → 0, we obtain κn → 0. Hence λn → 0 too.

6.64. (a) Fix o ∈ V(G). Let the flow along e be the area of the triangle defined by the endpoints
of e† and o.

(b) Choose the embedding so that the angles of the faces at a vertex of G with degree
m are 2π/m. The lower bound this gives is the supremum of a(F ) over faces F , where
a(F ) := n− 2 −

∑n
i=1 1/di when F is a face of n sides whose vertices have degrees di.

6.65. (a) Subdivide edges the original network where the voltage would equal v(z)/2, identify the
vertices where the voltage is v(z)/2 to a new vertex b, and apply Lemma 6.24 either to a, b
or to b, z. This result is very similar to Benjamini and Kozma (2005).

(b) Note that ψ ≥ 1.

6.66. These results are due to Benjamini and Schramm (2004). There, they refer to Benjamini
and Schramm (2001b) for an example of a tree with balls having cardinality in [rd/c, crd],
yet containing arbitrarily large finite subsets with only one boundary vertex. That refer-
ence has a minor error; to fix it, ∆ on p. 10 there should be assumed to equal the di-
ameter. The hypothesis for the principal result can be weakened to |B(x, r)| ≤ abr and
limR→∞ |B(x,R)|/|B(x,R− r)| ≥ br/a.
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6.68. This is due to Benjamini, Lyons, and Schramm (1999). Use the method of proof of Theo-
rem 3.10.

6.71. Use Proposition 6.35.

6.72. Conjecture 7.13 says that a proper two-dimensional isoperimetric inequality implies pc(G) <
1. Itai Benjamini (personal communication) has conjectured that the stronger conclusion
|An| ≤ eCn for some C < ∞ also holds under this assumption. This exercise shows that
these conjectures are not true with the weakened assumption of anchored isoperimetry.

6.73. Suppose that the distribution ν of L does not have an exponential tail. Then for every c > 0
and every ϵ > 0, we have P[

∑n
i=1 Li ≥ cn] ≥ P[L1 ≥ cn] ≥ e−ϵn for infinitely many n’s,

where ⟨Li⟩ are i.i.d. with law ν. Let G be a binary tree with the root o as the basepoint.
Pick a collection of 2n pairwise disjoint paths from level n to level 2n. Then

P

[
along at least one of these 2n paths

n∑
i=1

Li ≥ cn

]
≥ 1 − (1 − e−ϵn)2

n

≥ 1 − exp(−e−ϵn2n) → 1 .

With probability very close to 1 (depending on n), there is a path from level n to 2n along
which

∑n
i=1 Li ≥ cn. Take such a path and extend it to the root, o. Let S be the set of

vertices in the extended path from the root o to level 2n. Then

|∂ES|∑
e∈E(S) Le

≤ 2n+ 1

cn
≈ 2

c
.

Since c can be arbitrarily large, Φ∗
E(Gν) = 0 a.s.

6.76. Consider a random permutation of X.

6.77. Let A ⊂ {0, . . . , n − 1}d with |A| < nd/2. Let m be such that |Pm(A)| is maximal over all
projections, and let

F = {a ∈ Pm(A) ; |P−1
m (a)| = n} .

Notice that for any a ̸∈ F there is at least one edge in ∂EA, and for different a’s we get
disjoint edges, i.e., |∂EA| ≥ |Pm(A) \ F |. By Theorem 6.37 we get

|A|d−1 ≤
d∏
j=1

|Pj(A)| ≤ |Pm(A)|d ,

and so |Pm(A)| ≥ |A|/|A|1/d ≥ 21/d|A|/n ≥ 21/d|F |, which together yield

|∂EA| ≥ |Pm(A) \ F | ≥ (1 − 2−1/d)|Pm(A)| ≥ (1 − 2−1/d)|A|
d−1
d .
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Chapter 7

7.1. Divide A into two pieces depending on the value of ω(e).

7.3. Prove this by induction, removing one leaf of K ∩ T .

7.8. The transitive case is due to Lyons (1995).

7.9. (a) Given ϵ > 0, let R be large enough that the balls of radius R satisfy P[BR(x) ∩ ω ̸=
∅] > 1 − ϵ for every vertex x. Given any finite F ⊂ V, every infinite component K of G \ F
contains a ball of radius R and therefore intersects ω with probability more than 1− ϵ. Since
ϵ is arbitrary, the probability that K ∩ ω ̸= ∅ is actually 1. Since this holds for all finite F ,
the result follows.

7.10. Solution 1. This follows from (6.11) and the proof of Proposition 6.6.

Solution 2. A direct proof goes as follows. Let us first suppose that Po[Xk = o] is strictly
positive for all large k. Note that for any k and n, we have

Po[Xn = o] ≥ Po[Xk = o]Po[Xn−k = o] .

Thus by Fekete’s Lemma (Exercise 3.9), we have ρ(G) = limn→∞ Po[Xn = o]1/n and
Po[Xn = o] ≤ ρ(G)n for all n.

On the other hand, if Po[Xk = o] = 0 for odd k, it is still true that Po[Xk = o] is strictly
positive for all even k, whence limn→∞ Po[X2n = o]1/2n exists and equals ρ(G).

7.11. Suppose that a large square is initially occupied. Then the chance is close to 1 that it will
grow to occupy everything.

7.14. This was used by Lyons and Schramm (1999).

7.15. Use Exercise 6.5.

7.17. (This solution was shown to us by Jacob Magnusson, personal communication, 2012.) Use
the standard coupling ωp := {e ; U(e) < p} and show that 1[x↔y](ωp) is continuous from the
left.

7.18. (These generators were introduced by Revelle (2001).) It is the same as the graph of Exam-
ple 7.2 would be if the trees in that example were chosen both to be 3-regular.

7.20. Let A := {y ↔ ∞} and B := {x↔ y}.

7.21. This is due to Angel and Szegedy (2010).

7.24. (This is noted in BLPS (1999b).) Use Lemma 7.7.

7.25. This is due to Lyons, Pichot, and Vassout (2008).

Solution 1. Use Exercise 7.23 and 1Λ(o) ≤ degF o− 2.

Solution 2. Here is a direct proof. It is not hard to see that it suffices to establish the case
where every tree of F is infinite a.s. Let K ⊂ V be finite and write K := K ∪ ∂VK. Let Y be
the subgraph of G spanned by those edges of F that are incident to some vertex of K. This
is a forest with no isolated vertices, whence∑

x∈K

degF x ≤
∑
x∈K

degY x− |V(Y ) \K| = 2|E(Y )| − |V(Y ) \K|

< 2|V(Y )| − |V(Y ) \K| = 2|K| + |V(Y ) \K| ≤ 2|K| + |∂VK| .

Take the expectation and divide by |K| to get the result.
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7.30. Modify the proof of Theorem 6.31.

7.31. It is not known whether the hypothesis holds for every Cayley graph of at least quadratic
growth. Prove that pbondc (G) < 1 as in the proof of Theorem 7.16.

7.32. See Grimmett (1999), pp. 18–19.

7.33. These solutions were shown to us by Jacob Magnusson (personal communication, 2011). Let
C∞(p) denote the union of the infinite clusters formed by the edges with labels at most p.

(a) We have C∞(p) =
∩
q>p C∞(q) since G is locally finite.

(b) (This is due to van den Berg and Keane (1984).) Let Kp := C∞(p) \
∪
q<p C∞(q).

Consider the event that K(x) is the component of x in Kp.

(c) (This is due to Schonmann (1999b).) Use Theorem 7.21 to show that a.s. Kp = ∅ in the
solution to (b).

7.36. This is Corollary 4.1 of Häggström, Peres, and Schonmann (1999).

7.37. (This fact is folklore, but was published for the first time by Peres and Steif (1998).)

Solution 1. Use Proposition 5.27.

Solution 2. If there is an infinite cluster with positive probability, then by Kolmogorov’s 0-1
law, there is an infinite cluster a.s. Let A be the set of vertices x of T for which ω ∩ T x

contains an infinite cluster a.s. Then A is a subtree of T and clearly cannot have a finite
boundary. Furthermore, since A is countable, for a.e. ω, each x ∈ A has the property that
ω ∩ T x contains an infinite cluster. Also, a.s. for all x ∈ A, ω ∩ T x ̸= T x ∩A. Therefore, a.e.
ω has the property

∀x ∈ A ω ∩ T x contains an infinite cluster different from T x ∩A . (17.6)

For any ω with this property, for all x ∈ A, there is some y ∈ T x ∩A \ω. Therefore, such an
ω contains infinitely many infinite clusters. Since a.e. ω does have property (17.6), it follows
that ω contains infinitely many infinite clusters a.s.

7.39. (From Kesten (1982).) Let an,ℓ denote the number of n-vertex site animals K such that
|∂VK| = ℓ. Note that for such an animal, ℓ ≤ (d − 1)|K| = (d − 1)n provided n ≥ 2. Let
p := 1/d and consider Bernoulli(p) site percolation on G. Writing the fact that 1 is at least
the probability that the cluster of o is finite, we obtain

1 ≥
∑
n,ℓ

an,ℓp
n(1 − p)ℓ ≥

∑
n≥2

anp
n(1 − p)(d−1)n .

Therefore lim supn→∞ a
1/n
n ≤ 1/[p(1 − p)d−1]. Putting in the chosen value of p gives the

result.

7.40. (From Häggström, Jonasson, and Lyons (2002).) Let bn,ℓ denote the number of n-edge bond
animals (V′,E′) such that |∂EV′| = ℓ. Note that for such a subgraph,

ℓ ≤ d|V′| − 2n ≤ d(n+ 1) − 2n = (d− 2)n+ d . (17.7)

Let p := 1/(d− 1) and consider Bernoulli(p) bond percolation on G. Writing the fact that 1
is at least the probability that the cluster of o is finite and using (17.7), we obtain

1 ≥
∑
n,ℓ

bn,ℓp
n(1 − p)ℓ ≥

∑
n

bnp
n(1 − p)(d−2)n+d .
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Therefore lim supn→∞ b
1/n
n ≤ 1/[p(1 − p)d−2]. Putting in the chosen value of p gives the

result.

7.41. Since the graph has bounded degree, it contains a bi-infinite geodesic passing through o iff
it contains geodesics of length 2k for each k with o in the middle. By transitivity, it suffices
to find a geodesic of length 2k anywhere. But this is trivial.

7.42. (This is from Babson and Benjamini (1999).) We give the solution for bond percolation. Let
d be the degree of vertices and 2k be an upper bound for the length of cycles in a set spanning
all cycles. If K(o) is finite, then ∂EK(o) is a cutset separating o from ∞. Let Π ⊆ ∂EK(o) be
a minimal cutset. All edges in Π are closed, which is an event of probability (1 − p)|Π|. We
claim that the number of minimal cutsets separating o from ∞ and with n edges is at most
CnDn for some constants C and D that do not depend on n, which implies that pc(G) < 1 as
in the proof of Theorem 7.16 (or use Exercise 7.31). Fix any bi-infinite geodesic ⟨xi⟩i∈Z with
x0 = o (see Exercise 7.41). Let Π be any minimal cutset separating o from ∞ with n edges.
Since Π separates o from ∞, there are some j, l ≥ 0 such that [x−j−1, x−j ], [xl, xl+1] ∈ Π.

Since Π is connected in Ĝk and ⟨xi⟩ is a geodesic, it follows that j+ l < nk. By Exercise 7.39,

the number of connected subgraphs of Ĝk that have n vertices and that include the edge
[xl, xl+1] is at most cDn, where c is some constant and D is the degree of Ĝk. Since there
are no more than nk choices for l, the bound we want follows with C := ck.

7.43. Follow the method of proof of Theorem 7.32 or of Theorem 7.48.

7.47. Compare to a Galton-Watson process: Fix a root of Tb+1. Let (x, n) have progeny (y, n+ k)
when y is a child of x in Tb+1 and k ≥ 0 is minimal such that the edges [(x, n), (x, n +
1)], . . . , [(x, n+ k), (y, n+ k)] are all open.

7.49. This is due to Benjamini and Schramm (1996b).

7.52. See Theorem 1.4 of Balogh, Peres, and Pete (2006) for details.

7.53. The first formula of (7.26) translates to the statement π(d, 1) = 1/d, while the second formula
follows from Exercise 5.66. The formulae of (7.26) were first given in Chalupa, Reich, and
Leath (1979), which was the first paper to introduce bootstrap percolation into the statistical
physics literature.

7.54. The first inequality follows immediately from viewing T as a subgraph of Td+1. To prove
the positivity of the critical probability b(Td+1, k), consider the probability that a simple
path of length n starting from a fixed vertex x does not intersect any vacant (k − 1)-fort
of the initial Bernoulli(p) configuration of occupied vertices. Using Exercise 5.65, show that
this probability is bounded above by some O(z(p)n), where z(p) → 0 as p → 0. But there
is a fixed exponential bound on the number of simple paths of length n, so we can deduce
that for p small enough, every infinite simple path started at x eventually intersects a vacant
(k − 1)-fort a.s., hence infinite occupied clusters are impossible.

The main idea of this proof came from Howard (2000). That paper, together with Fontes,
Schonmann, and Sidoravicius (2002), used bootstrap percolation to understand the zero-
temperature Glauber dynamics of the Ising model.

7.56. Let R(x, Tξ) be the event [the vertex x of Tξ is in an infinite vacant 1-fort], and set r(Tξ) :=
Pp[R(o, Tξ)]. This is not an almost sure constant, so let us take expectation over all Galton-
Watson trees: r := E[r(Tξ)]. With a recursion as in Theorem 5.29, one can write the equation
r = 1

2
(1− p)(2r− r2 + 4r3 − 3r4). So we need to determine the infimum of those p for which
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there is no solution r ∈ (0, 1]; that infimum will be p(Tξ, 2). Setting f(r) = 2− r+ 4r2 − 3r3,
an examination of f ′(r) gives that max {f(r) ; r ∈ [0, 1]} = f((4 +

√
7)/9) = 2.2347 . . .. So

there is no solution r > 0 iff 2/(1 − p) > 2.2347 . . ., which gives p(Tξ, 2) = 0.10504 . . . < 1/9.

Chapter 8

8.3. Fix u,w ∈ V. Let f(x, y) be the indicator that y ∈ Γu,xw.

8.4. Use Exercise 8.3. Caution: this does not extend to general locally compact groups. For
example, given a, b ∈ R with a ̸= 0, define the map Ta,b:x 7→ ax+ b for x ∈ R. The collection
of all such maps Ta,b forms a non-unimodular group under composition acting on R, but it
has the unimodular transitive subgroup R (where a = 1).

8.8. A quantitative strengthening is that the weights µ′
j for Γ′ are sums of the weights µi for Γ

as follows: µ′
j =

∑
oi∈Γ′o′j

µi.

8.9. Use the same proof as of Theorem 8.16, but only put mass on vertices in ω.

8.10. (This is from BLPS (1999b).) Note that if K is a finite tree, then αK < 2.

8.12. If there were two faces with an infinite number of sides, then a ball that intersects both of
them would contain a finite number of vertices whose removal would leave more than one
infinite component. If there were only one face with an infinite number of sides, then let xn
(n ∈ Z) be the vertices on that face in order. Quasi-transitivity would imply that there is a
maximum distance M of any vertex to A := {xn ; n ∈ Z}. Since the graph has one end, for
all large n, there is a path (y1, . . . , yp) from x−n to xn that avoids the M -neighborhood of
x0. For 1 ≤ i ≤ p, choose t(i) ∈ Z so that the distance between xt(i) and yi is at most M .
For some i < p, we have t(i) < 0 and t(i+ 1) > 0; choose such an i and denote r(n) := −t(i)
and s(n) := t(i + 1). Then the distance between x−r(n) and xs(n) is at most 2M + 1. If
supn r(n)s(n) = ∞, then there would be points (either x−r(n) or xs(n)) the removal of whose
(2M+1)-neighborhood would leave an arbitrarily large finite component (one containing x0)
by planarity. This would contradict the quasi-transitivity. Hence all paths from x−n to xn
intersect some fixed neighborhood of x0. But this contradicts having just one end.

8.13. By the Mass-Transport Principle, we have

E|{x ∈ V ; o ∈ γxL}| =
∑
x∈V

P[o ∈ γxL] =
∑
x∈V

P[x ∈ γoL] = E|γoL| = |L| .

8.14. This is due to BLPS (1999b). See also Häggström (2011).

8.16. There are many ways of proving this. One way is as follows: Suppose one could pick an end
at random in an invariant way. Send mass 1 from each vertex to its unique neighbor closer
to the end.

8.17. Define the convex hull of Ξ to be the set of vertices of the tree that lie on a bi-infinite simple
path that converges, in both directions, to an end in Ξ. Apply Exercise 8.15 to the convex
hull of Ξ when the hull is non-empty, and apply Exercise 8.16 otherwise.

8.19. For any x, consider the elements of S(x) that fix x1, . . . , xn.

8.22. The proof that Haar measure exists on compact groups using parts (a) and (b) is due to
Maak (1935).
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8.25. Extend the ideas of the solution to Exercise 8.17.

8.26. It is enough to prove (8.4) for bounded f .

8.27. It is unknown whether inf ΦV(G) = 0 without the degree constraint.

8.29. This is adapted from BLPS (1999b).

8.30. This is due to Salvatori (1992).

8.31. (This result is from BLPS (1999b).) By Exercise 8.30, we know that Γ is unimodular, but this
will also follow from our proof. We imitate the idea at the beginning of Section 6.1, where
it is explained why bounded Ponzi schemes don’t work on Euclidean lattices. It suffices to
prove the result when

lim
n→∞

|Γoi ∩Kn|
|Kn|

=: νoi

exists for each i. Set νx := 0 for x /∈ {o1, . . . , oL}. By Remark 8.13, it suffices to show that
(8.13) holds when f is an indicator that does not transport mass more than distance M . But
it is clear that total mass is preserved within Kn up to the mass that starts or ends within
distance M of the boundary of Kn. More precisely, the total over vertices in Kn of mass
sent minus mass received is in absolute value at most the number of vertices within distance
M of the boundary of Kn. Hence the average mass change per vertex in Kn tends to 0 as
n → ∞. Since the mass change is the same for all vertices in a given orbit, this shows that
(8.13) holds.

8.32. Use Exercise 8.28 or Exercise 8.22.

8.34. This was noted by Häggström (private communication, 1997). The same sharpening was
shown another way in BLPS (1999b) by using Theorem 6.2.

8.37. This is from BLPS (1999b).

8.38. These are due to R. Lyons.

8.39. Consider the clusters of Bernoulli(p) percolation on T . Assign the same label to all the
vertices in a given cluster, where that label is chosen independently for different clusters and
is equally likely to be 0 or 1. This measure has the stronger property of a trivial tail σ-field
(see Section 10.4 for the definition).

8.43. (This is a special case of Example 9.6 of Aldous and Lyons (2007).) Verify (8.13) for proba-
bilities equal to the reciprocal of the degrees.

8.44. (This is a special case of Example 9.6 of Aldous and Lyons (2007).) Verify (8.13) for the
following probability measure: Let o be a vertex of G. Let Z := 1 + deg o/2 +

∑
f∼o 1/deg f ,

where f denotes a face of G and deg f denotes its degree in G†. Choose ô equal to o with
probability 1/Z, equal to ve with probability 1/(2Z) for each e ∼ o, and equal to f with
probability 1/(Z deg f) for each f ∼ o.

8.47. More general versions are in BLPS (1999b) and Levitt (1995).

8.48. (This is from BLPS (1999b).) Combine Lemma 8.35 with Theorem 8.19. See also Corol-
lary 8.20.

8.49. (This is from BLPS (1999b).) Let Z3 := Z/3Z be the group of order 3 and let T be the 3-
regular tree with a distinguished end, ξ. On T , let every vertex be connected to precisely one

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



Comments on Exercises 641

of its offspring (as measured from ξ), each with probability 1/2. Then every component is a
ray. Let ω1 be the preimage of this configuration under the coordinate projection T×Z3 → T .
For every vertex x in T that has distance 5 from the root of the ray containing x, add to ω1

two edges at random in the Z3 direction, in order to connect the 3 preimages of x in T ×Z3.
The resulting configuration is a stationary spanning forest with 3 ends per tree and expected
degree (1/2)1 + (1/2)2 + 2−(5+1)((2/3)1 + (1/3)2).

8.50. (This is from BLPS (1999b).) Use the notation of the solution to Exercise 8.49. For every
vertex x that is a root of a ray in T , add to ω1 two edges at random in the Z3 direction to
connect the 3 preimages of x, and for every edge e in a ray in T that has distance 5 from the
root of the ray, delete two of its preimages at random.

8.51. This result is essentially due to Epstein and Hjorth (2009) in a different setting (and with
a different proof). We begin with a deterministic result: If H is a graph, ξ is an end of H,
and K is a subset of V(H) such that no sequence from K converges to ξ, then there is a
“canonical” way to associate to ξ and K a finite set A = A(K, ξ) ⊂ V(H) that separates K
from ξ, where the meaning of “canonical” will become clear when we apply this to a random
situation. To prove this, let n be the smallest integer such that there is a set of cardinality
n that separates K from ξ. There are only finitely many sets of cardinality n that separate
K from ξ and whose maximal distance to K is minimal; let A be their union.

Now suppose for a contradiction that we could pick some ends Ξ as described in the exercise
statement. Consider a forest F as in Lemma 8.35. By Corollary 8.20, at least some trees in
F have pc < 1. Thus, we may choose p ∈ (0, 1) so that Bernoulli(p) percolation on F leaves a
subgraph η with infinite clusters with positive probability. Clearly a.s. not all infinite clusters
of η have subsets that converge to an end in Ξ. To each infinite cluster K of η that belongs
to a component of ω with an end ξ ∈ Ξ, but such that no subset of K converges to ξ, we
associate the set A(K, ξ) as above. Let each vertex in K send mass 1/|A(K, ξ)| to each point
in A(K, ξ). This is an invariant mass transport that sends out mass at most 1 from each
point, but some points receive infinite mass with positive probability. Thus, we arrive at our
desired contradiction.

8.52. Compare Proposition 7.1 of Häggström, Peres, and Schonmann (1999).

8.53. (This is Theorem 1.5 of Häggström, Peres, and Schonmann (1999).) Use Exercise 8.52 and
Theorem 7.21.

8.54. (c) Let e1(x) be a random uniform edge incident to x, independent for different x. Now let
Z′(x) := maxe∼x, e ̸=e1(x) −W (e)W (e1(x)).

If max is replaced by sum, then part (c) is open.

It had been asked by Lyons and Schramm in 1997 whether invariant processes that can be
monotonically coupled can also be monotonically coupled in an invariant way. The construc-
tion here with sum was proposed as a counter-example by Lalley in 1998, while the solution
with max was given by Peres in 1998. The answer to the question of Lyons and Schramm
was finally provided by Mester (2013); it is no.

8.55. Fix (H, a). For every x such that (K(x), x) is rooted isomorphic to (H, a), let x send total
mass 1 split equally among the vertices of K(x).
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Chapter 9

9.1. Find θ ⊥ ⋆ such that χe = ieW + θ.

9.2. It suffices to do the case H =
∪
Hn. Let K1 := H1 and define Kn for n > 1 by Hn =

Hn−1 ⊕Kn. Then

H =

∞⊕
n=1

Kn :=
{∑

un ; un ∈ Kn,
∑

∥un∥2 <∞
}
.

This makes the result obvious.

9.3. Follow the proof of Proposition 9.1, but use the stars more than the cycles.

9.5. Let e := ⟨a, z⟩. The free effective resistance in G′ between a and z equals r(e)ieF(e)/[1−ieF(e)]
when ieF is the free current in G.

9.6. (a) If x ∈ V, then ∇1{x} is the star at x.

(d) Use Exercise 2.90.

(g) Show that (∇f, ix)r = (∇g, ix)r and then show that g(x) = (∇g, ix)r when g has finite
support. [This is an example where (df, ix) might not equal (f, d∗ix).]

(h) Use part (g) or the open mapping theorem.

9.7. (This is due to Thomassen (1989).) Fix vertices ai ∈ Vi. Use Theorem 9.7 with

Wn := {(x1, x2) ; |x1 − a1| ∨ |x2 − a2| = n} .

9.8. The set of g ≥ |f | in D0 is closed and convex. Use Exercise 9.6(h).

9.10. Let θ be a unit flow of finite energy from a vertex o to ∞. Since θ has finite energy, there is
some finite K ⊂ V(G) such that the energy of θ on the edges with some endpoint not in K
is less than 1/m. That is, the effective resistance from K to infinity is less than 1/m.

9.13. If f is bounded and harmonic, let ⟨Xn⟩ be the random walk whose increments are i.i.d. with
distribution µ. Then lim f(Xn) exists and belongs to the exchangeable σ-field.

9.14. This proof is due to Raugi (2004).

9.15. Examine the solution of Exercise 9.14 closely.

9.16. (a) P⋆n
(θ↾E(GW

n )) = in.

(b) Take θ to be a limit point of ⟨in⟩.

9.17. Use Exercise 2.59.

9.18. div∇ = I − P ; use Exercises 9.6(g–h) and 9.17.

9.19. Use Exercise 9.18.

9.20. Let f1 := (−f)∨0 and f2 := f ∨0. Apply Exercise 9.6(f) to f1 and f2 and use Exercise 9.19.

9.22. After following the hint, we get that u is harmonic. That u is constant then follows from
Corollary 9.6. One can avoid Corollary 9.6 as follows: For any a, if u is harmonic, then u∧ a
is superharmonic. But we just proved that this means u∧a is harmonic. Since this holds for
all a, u is constant.
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9.23. Let the function values be certain probabilities.

9.24. The wired effective resistance is 2(bn−1)/[bn−1(b2−1)] if the branching number is b and the
distance between the vertices is n.

9.30. Use Theorem 2.17. For the example in the second part, make G recurrent by giving it
infinitely many cut-edges.

9.32. The space BD is called the Dirichlet algebra . The maximal ideal space of BD is called
the Royden compactification of the network.

9.33. (a) Use Exercise 2.63.

(b) Use Exercise 2.63 and Proposition 2.12. Alternatively, use the fact that the subspace
onto which we are projecting is effectively 1-dimensional.

9.34. Another proof uses Exercise 9.23 (and Exercise 10.16).

9.35. Use Exercise 9.6(e).

9.36. By Exercise 9.6(e),(f), it suffices to prove this for f ∈ D0. Therefore, it suffices to prove it for
f ∈ D00. Let g := (I−P )f . By (6.14), we have ∥df∥2c−∥dPf∥2c = 2∥g∥2π− (g, (I−P )g)π ≥ 0
since ∥I − P∥π ≤ 2.

9.38. This result shows that restricted to ⋆, the map θ 7→ F is the inverse of the map of Exer-
cise 9.6(h).

9.40. Write the current as the appropriate orthogonal projection of a path from a to z and move
the projection to the other side of the inner product.

9.41. Imitate the proof of Exercise 2.13 and use Exercise 9.40.

9.43. Since {χe ; e ∈ E1/2} is a basis for ℓ2−(E, r) and P∇HD = P⊥
♢ −P⋆, the linear span of {ieF−ieW}

is dense in ∇HD. (This also shows that the bounded Dirichlet functions are dense in D.
Furthermore, in combination with Exercise 2.41, it gives another proof of Corollary 9.6.)

9.44. An extension for infinite graphs H all of whose bounded harmonic functions are constant is
that every bounded harmonic function on G ×H has the property that it does not depend
on the second coordinate.

9.45. Define the random walk

Yn :=

{
Xn if n ≤ τV\W ,
XτV\W otherwise.

It follows from a slight extension of the ideas leading to (9.9) that for f ∈ D harmonic at all
vertices in W , the sequence ⟨f(Yn)⟩ is an L2 martingale, whence f(X0) = E[limn→∞ f(Yn)].
This is 0 if f is supported on W .

9.46. This is an extension of Lemma 3.1 of Georgakopoulos (2010), where Hn are paths. Follow
the proof of Theorem 9.7. Choose f and e0 as there. Let Pi be paths emanating from the
endpoints of e0 along which f is monotonic, increasing from the endpoint where f is larger
and decreasing from the other endpoint.

9.48. Consider linearly independent elements of D/D̃0. This has an important refinement for
Cayley graphs: see Section 10.8.

9.52. Put weights on the usual graph of N.
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9.53. If e ∈ E with v(e−) < β < v(e+) and we subdivide e by a vertex x, giving the two resulting
edges resistances

r(e−, x) = r(e)
β − v(e−)

v(e+) − v(e−)

and

r(x, e+) = r(e)
v(e+) − β

v(e+) − v(e−)
,

and if the corresponding random walk on the graph with e subdivided is observed only when
vertices of G are visited and, further, consecutive visits to the same vertex are replaced by
a single visit, then we see the original random walk on G and v(x), the probability of never
visiting o, is β.

For each k = 2, 3, . . . in turn, subdivide each edge e where v(e−) < 1 − 1/k < v(e+) as just
described with a new vertex x having v(x) = 1 − 1/k. Let G′ be the network that includes
all these vertices. Let Πk be the set of all vertices x ∈ G′ with v(x) = 1 − 1/k and let τk be
the first time the random walk on G′ visits Πk. This stopping time is finite since v(Xn) → 1
by Exercise 2.88. The limit distribution of J(Xn) on the circle is the same for G as for G′

and is the limit of J(Xτk ) since J(Xn) converges a.s.

Let G′
k be the subnetwork of G′ determined by all vertices x with v(x) ≤ 1 − 1/k. Because

all vertices of Πk are at the same potential in G′, identifying them to a single vertex will
not change the current flow in G′

k. Thus, the current flow along an edge e in G′
k incident

to a vertex in Πk is proportional to the chance that e is the edge taken when Πk is first
visited. This means that the chance that J(Xτk ) is an arc J(x) is exactly the length of J(x)
if x ∈ Πk. Hence the limit distribution of J(Xτk) is Lebesgue measure.

Chapter 10

10.3. Let F be a finite set of edges and compare the result on F in Wilson’s algorithm on Gn to
the result on F in Wilson’s algorithm on GW

n , where we root at an endpoint of F and start
successive random walks at the endpoints of F .

10.4. Let A ⊂ E be a minimal set whose removal leaves at least 2 transient components. Show that
there is a finite subset B of endpoints of the edges of A such that FSF[∃x, y ∈ B x↔ y] = 1 >
WSF[∃x, y ∈ B x ↔ y]. Here, x ↔ y means that x and y are in the same component (tree).
One can also use Exercise 9.23 with Proposition 10.14, or, alternatively, one can derive a new
proof of Exercise 9.23 by using this exercise and Proposition 10.14.

10.5. This is due to Häggström (1998). The same holds if we assume merely that
∑
n r(en) = ∞

for any path ⟨en⟩ of edges in G.

10.6. (b) Use the bounded convergence theorem.

10.9. Use Corollary 10.5.

10.10. Use Exercise 10.4 or 10.5.

10.11. (This is due to Medolla and Soardi (1995).) Use Corollary 10.9.

10.13. The free uniform spanning forest has one tree a.s. since this joining edge is present in every fi-
nite approximation. But the wired uniform spanning forest has two a.s.; use Proposition 10.1.
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10.14. Orthogonality of {Gx} is obvious. Completeness of {Gx} follows from the density of trigono-
metric polynomials in L2(Td). This proves the identity for F ∈ L2(Td). Furthermore,
density of trigonometric polynomials in C(Td) shows that f determines F uniquely (given
F ∈ L1(Td), if f = 0, then

∫
Td F (α)p(α) dα = 0 for all trigonometric polynomials p, whence

for all continuous p, so F = 0). Therefore, if f ∈ ℓ2(Zd), then F ∈ L2(Td), so the identity
also holds when F /∈ L2(Td).

10.16. The assumption that c(•) is bounded can be replaced by the assumption that
∑
n r(en) = ∞

for any path ⟨en⟩ of edges in T .

10.17. Join Z and Z3 by an edge.

10.20. This is from BLPS (2001), Proposition 14.1.

10.21. The equation that replaces (10.41) still shows that it is expressed via a von Neumann dimen-
sion. The Hilbertable Γ-space involved does not change with the change in conductances,
even though ♢⊥ does change.

10.23. Show that pc is a solution of 3 = 4p2 + 2p3.

10.26. This extends to planar transitive graphs.

10.28. The variances of the differences of the fields at x and y are the free and wired effective
resistances between x and y. Note that if jointly normal random variables Y with mean 0
have covariance matrix M , then there are independent standard normal random variables ζ
such that Y =

√
Mζ. Using the notions of Gaussian Hilbert spaces (see Janson (1997)), one

can give a different definition of the free and wired canonical Gaussian fields without limits.

10.30. To show that the tail σ-field is trivial, use Exercise 2.123. The covariances can be expressed
via the Green function.

10.32. Use Exercise 9.44.

10.36. Use Exercise 8.45 or (10.3) on the dual graph, together with symmetry.

10.39. This analogue of Theorem 4.8 is due to R. Pemantle after seeing Theorem 4.8.

10.40. Before Theorem 10.18 was proved, Pemantle (1991) had proved this. This property is called
strong Følner independence and is stronger than tail triviality. To prove it, let ⟨Gn⟩ be
an induced exhaustion of G with edge set En. Given n, let K ⊂ E \ En. Let A be an
elementary cylinder event of the form [D ⊆ T ] for some set of edges D ⊆ En and let B be a
cylinder event in F (K) with positive probability. By Rayleigh Monotonicity, we have for all
sufficiently large m ≥ n,

µW
n (A ) ≤ µF

m(A | B) ≤ µF
n(A ) .

Therefore µW
n (A ) ≤ FSF(A | B) ≤ µF

n(A ) and so the same is true of any B ∈ F (K) of
positive probability (not just cylinders B). The hypothesis that FSF = WSF now gives the
result.

10.42. This is due to Le Gall and Rosen (1991).

10.44. This is due to BLPS (2001), Remark 9.5.

10.45. We do not know whether it is true if only one of the graphs is assumed to be transitive, but
this seems likely.
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10.48. A theorem of Gromov (1981a) and Trofimov (1985) says that all quasi-transitive graphs of
at most polynomial growth satisfy the hypothesis with d an integer.

10.49. By Proposition 10.14 and Exercise 9.7, we have that FSF = WSF. Since G is non-amenable,
we also know that each tree has one end. Therefore, there are finitely many points in each
tree that are closest to ξ; the components can be distinguished by the degrees of these points.

10.50. This is due to BLPS (2001), Remark 9.8.

10.51. This is due to BLPS (2001), Remark 9.9.

Chapter 11

11.2. The left-hand side divided by the right-hand side turns out to be 109872/109561. An outline
of the calculation is given by Lyons, Peres, and Schramm (2006).

11.5. If the endpoints of e are x and y, then W is the vertex set of the component of x or the
component of y in the set of edges lower than e.

11.7. Use Exercise 11.5.

11.12. Each spanning tree has all but two edges of G. Condition on the values of these two missing
edges to calculate the chance that they are the missing edges. It turns out that there are 3
trees with probability 4/45, 6 with probability 7/72, and 2 with probability 3/40. There are
3 edge conductances equal to 27, two equal to 32, and one equal to 35.

11.13. There are 4 trees of probability 1/15 and 12 of probability 11/180.

11.15. Show that pc is a solution of 3 = 4p2 + 2p3.

11.16. This question was asked by Lyons, Peres, and Schramm (2006). The answer is yes, it can;
use Exercise 7.25, Proposition 11.7, Corollary 7.40, and the fact that there are non-amenable
groups that are not of uniformly exponential growth (see Section 3.4). Thom (2013a) proved
that, in fact, that the expected degree in the FMSF depends on the Cayley graph for every
non-amenable group; moreover, it is arbitrarily large.

11.17. The answer is 22 + 24(log 2)2 − 48 log 2 = 0.26−. One can calculate the entire distribution of
the degree from this since the expected degree equals 2.

11.18. The chance is ∫ 1

0

1 − x2

1 − x2 + x3
dx = 0.72301+ .

This is just slightly less than the chance for the uniform spanning tree.

11.19. Use Exercise 11.8.

11.20. Use Exercise 11.7. In contrast to the WUSF, the number of trees in the WMSF is not always
an a.s. constant: see Example 6.2 of Lyons, Peres, and Schramm (2006).

11.21. It is a tail random variable.

11.24. This is due to Lyons, Peres, and Schramm (2006).

11.25. This is due to Lyons, Peres, and Schramm (2006).

11.27. Use Exercise 8.45.
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Chapter 12

12.4. For any λ > 0, we have P[X̂n < λ] = E[Xn ; Xn < λ]/E[Xn] ≤ λP[Xn > 0]/E[Xn] → 0.

12.7. Use Laplace transforms.

12.9. It is not necessary to assume that A has finite mean.

12.10. We have E[Ai] → 0, whence E[
∑n
i=1Ai/n] → 0, which implies the first result. The second

result follows similarly since E[
∑Ai
j=1 |Ci,j |] ≤ E[Ai].

12.11. (This is due independently to J. Geiger and G. Alsmeyer (private communications, 2000).)
We need to show that for any x, we have P[A > x | A ≥ B] ≤ P[A > x | A ≥ C]. Let F be
the c.d.f. of A. For any fixed x, we have

P[A > x | A ≥ B] =
P[A > x,A ≥ B]

P[A ≥ B]
=

∫
y>x

P[B ≤ y] dF (y)∫
y∈R P[B ≤ y] dF (y)

=

(
1 +

∫
y≤xP[B ≤ y] dF (y)∫
y>x

P[B ≤ y] dF (y)

)−1

≤

(
1 +

∫
y≤xP[C ≤ y]P[B≤x]

P[C≤x] dF (y)∫
y>x

P[C ≤ y]P[B≤x]
P[C≤x] dF (y)

)−1

=

(
1 +

∫
y≤xP[C ≤ y] dF (y)∫
y>x

P[C ≤ y] dF (y)

)−1

= P[A > x | A ≥ C] .

To show that the hypothesis holds for geometric random variables, we must show that for all
k ≥ 1, the function p 7→ (1 − pk+1)/(1 − pk) is increasing in p. But this is clear from writing
it as (1 − pk+1)/(1 − pk) = 1 + 1/

∑k
i=1 p

−i.

12.15. To deduce the Cauchy-Schwarz inequality, apply the arithmetic mean-quadratic mean in-
equality to the probability measure (Y 2/E[Y 2])P and the random variable X/Y .

12.18. See the proof of Theorem 12.7.

12.19. See the proof of Theorem 12.7.

12.20. (This is due to Zubkov (1975).) In the notation of the proof of Theorem 12.7, show that
iP[X ′

n−i > 0] → 1 as i→ ∞. See Geiger (1999) for details.

12.22. (a) By l’Hôpital’s rule, Exercise 5.1, and Exercise 12.21, we have

lim
s↑1

δ(s) = lim
s↑1

f(s) − s

(1 − s)[1 − f(s)]
= lim

s↑1

f ′(s) − 1

f(s) − 1 − f ′(s)(1 − s)

= lim
s↑1

f ′′(s)

2f ′(s) − f ′′(s)(1 − s)
= σ2/2 .

(b) We have

[1 − f (n)(s)]−1 − (1 − s)−1 =

n−1∑
k=0

δ(f (k)(s)) .
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Since f (k)(sn) → 1 uniformly in n as k → ∞, it follows that

[1 − f (n)(sn)]−1 − (1 − sn)−1

n
→ σ2/2

as n→ ∞. Applying the hypothesis that n(1 − sn) → α gives the result.

12.23. (i) Take sn := 0 in Exercise 12.22 to get n[1 − f (n)(0)] → 2/σ2.

(ii) By the continuity theorem for Laplace transform (Feller (1971), p. 431), it suffices to
show that the Laplace transform of the law of Zn/n conditional on Zn > 0 converges to the
Laplace transform of the exponential law with mean σ2/2, i.e., to x 7→ (1 + xσ2/2)−1. Now
the Laplace transform at x of the law of Zn/n conditional on Zn > 0 is

E[e−xZn/n | Zn > 0] = E[e−xZn/n1[Zn>0]]/P[Zn > 0] =
E[e−xZn/n]−E[e−xZn/n1[Zn=0]]

1 − f (n)(0)

=
f (n)(e−x/n) − f (n)(0)

1 − f (n)(0)
= 1 − n[1 − f (n)(e−x/n)]

n[1 − f (n)(0)]
.

Application of Exercise 12.22 with sn := e−x/n, together with part (i), gives the result.

Chapter 13

13.1. The expected time to exit a unary tree, once entered, is infinite; see Exercise 2.44. Alterna-
tively, use an argument similar to that which led to (13.5), but this time with T covering an
infinite graph, only finitely many of whose vertices have degree larger than 2.

13.4. By transitivity, D̂x
2

:=
∑
y π(y)d2(x, y) does not depend on x, so averaging over x shows

that D̂x
2

= D̂2 for every x. For any three vertices x, y, z, the triangle inequality implies that
d2(x, z) ≤ 2d2(x, y) + 2d2(y, z). Averaging over y gives d2(x, z) ≤ 4D̂2.

13.6. A flow in G′ gives a flow in G, while distances in G′ are no smaller than in G.

13.7. Use the Nash-Williams criterion.

13.8. We claim that simple random walk on the hypercube satisfies

Ed(Zt, Z0) ≥ t

2
∀t ≤ k

4
.

Indeed, at each step at time t ≤ k
4

we have probability at least 3
4

to increase the distance by
1 and probability at most 1

4
of decreasing it by 1, so

Ed(Zt, Z0) ≥ 3

4
t− 1

4
t =

t

2
.

It now follows from Jensen’s inequality that Ed2(Zt, Z0) > t2/4 for t ≤ k/4, implying that
the hypercubes do not have uniform Markov type 2.

13.9. (a) Use Kolmogorov’s 0-1 law.

(c) Define Λ := RN and let G be the product σ-field on Λ. Define T̃ (x0, x1, . . .) := (x1, x2, . . .)
and Ψ(ω) := (X0(ω), X1(ω), . . .). Now apply the result of (b).
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13.10. Part (b) is due to Oded Schramm, personal communication (2007), while parts (c)–(f) are
due to Mark Braverman, personal communication (2009). Part (b) can be modified to be a
transitive simple graph by replacing each vertex i by a set of 2N vertices labelled from (i, 1)
to (i, 2N ); connect all (i, j) to all (i ± 1, k) and also (i, j) to (m, j) when the distance from
i to m is at least

√
N (mod N). In (b), the expected distance is close to 2 for moderately

large times, but close to 1 for very large times. If one wants a transitive network with large
diameter, one can take a cartesian product of this network with itself many times. For (c),
use reversibility and stationarity. For (d), walk m − k steps from Xk to a new X ′

m−k and
use the triangle inequality d(X0, Xn) ≤ d(X0, X

′
m−k)+d(X ′

m−k, Xn). For (e), subdivide and
re-weight the edges of the original network. For (f), use the proof of (d), not the result, for
the chain Y . The same results hold for random walk on an infinite transitive network started
at any vertex. Likewise, suppose G is a quasi-transitive network with orbit representatives
o1, . . . , oL. Consider the quotient Markov chain on the set {oi}. If this chain is reversible
with stationary probability distribution νi and P[X0 = oi] = νi, then the same results hold.
In particular, if G is a unimodular quasi-transitive network started at a π-biased normalized
root, then the results hold by Exercise 8.33.

13.11. This follows from Theorem 13.1 by subtracting the conditional expectations given the past
at every stage (the elementary Doob decomposition).

13.12. (a) This refinement of the principle of Cauchy condensation is due to Dvoretzky (1949).
Choose bn to be increasing and tending to infinity such that

∑
n bnan/n < ∞. Define

m1 := 1 and then recursively mk+1 := mk + ⌈mk/bmk⌉. Define nk ∈ [mk,mk+1) so that
ank = min {an ; n ∈ [mk,mk+1)}.

(b) A special case appeared in Dvoretzky (1949). The general result is essentially due to
Davenport, Erdős, and LeVeque (1963); see also Lyons (1988). Prove it first along the
subsequence nk given by (a), then for all n by imitating the proof of Theorem 13.1.

13.13. (a) (This is due to Lyons (1988).) Define n1 := 1 and then recursively nk+1 as the smallest
n > nk so that an/n < (n− nk)/n2

k.

(b) (This is due to Lyons (1988).) Prove it first along the subsequence nk given by (a), then
for all n by imitating the proof of Theorem 13.1.

13.16. We do the case where G is simple; if not, consider the directed line graph of G. For pos-
itive integers L, let N(L) be the number of paths in G of length L. Then log b(G) =
limL→∞ logN(L)/L. Let A denote the directed adjacency matrix of G. Consider the Markov
chain with transition probabilities p(x, y) := A(x, y)/d(x). Our hypothesis on G guarantees
that a stationary measure is σ(x) := d(x)/D, where D :=

∑
x d(x). Write n := |V|. The

entropy of this chain is, by convexity of the function t 7→ t log t,

∑
x

[d(x)/D] log d(x) =
∑
x

[d(x)/D] log[d(x)/D] + logD ≥ nz log z + logD = log(D/n) ,

where z := (1/n)
∑
x d(x)/D = 1/n. The method of proof of (13.6) now shows the result.

13.17. This is called the Shannon-Parry measure. We do the case where G is simple; if not,
consider the directed line graph of G. Let λ be the Perron eigenvalue of the directed adjacency
matrix A of G with left eigenvector L and right eigenvector R. Define π(x) := L(x)R(x),
where we assume R is normalized so that this is a probability vector. Define the transition
probabilities p(x, y) := [λR(x)]−1A(x, y)R(y).
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13.18. Let du denote the number of children of a vertex u in a tree. Use the SLLN for bounded
martingale differences (Theorem 13.1) to compare the speed to

lim inf
n→∞

1

n

∑
k≤n

dXk − 1

dXk + 1
.

Show that the frequency of visits to vertices with at least 2 children is at least 1/N by
using the SLLN for L2-martingale differences applied to the times between successive visits
to vertices with at least 2 children. Note that if x has only 1 child, then x has a descendant
at distance less than N with at least 2 children and also an ancestor with the same property
(unless x is too close to the root).

An alternative solution goes as follows. Let v(u) be the ancestor of u closest to u in the set
{v ; dv > 2} ∪ {o} (we allow v(u) = u) and let w(u) be the descendant of u of degree > 2
chosen such that L(u) = |w(u)| − |u| > 0 is minimal. Write k(u) = |u| − |v(u)| ≥ 0, so that
k(u) + L(u) < N always. Check that

Yt := |Xt| − [t+ k(Xt)L(Xt)]/(3N)

is a submartingale with bounded increments by considering separately the cases where
d(Xt) > 2 or Xt is the root, and the remaining cases. Apply Exercise 13.11 to finish.

13.19. This is due to Lyons, Pemantle, and Peres (1997), Example 2.1.

13.20. See Example 2.2 of Lyons, Pemantle, and Peres (1997).

13.21. See Example 2.3 of Lyons, Pemantle, and Peres (1997). For more general calculations of
speed on directed covers, see Takacs (1997, 1998).

13.22. It is (3
√

2 + 1)/17 = 0.31−.

13.23. Even the spectral theorem on finite-dimensional spaces can be avoided by more work. For
example, one can use the numerical range and the spectral mapping theorem for polynomials.

13.24. (Cf. Barlow and Perkins (1989).) Use Theorem 13.4 and summation by parts in estimating
P[|Xn| ≥

√
(d+ ϵ)

√
n logn].

13.25. Cf. Pittet and Saloff-Coste (2001).

13.27. Let t = tmix(1/4). By Lemma 13.10, we may write P t(x, y) = 1
4
π(y) + 3

4
Q(x, y), for some

transition matrix Q. Therefore τ can be constructed as t times a geometric variable of
parameter 1/4.

13.28. Think about simulating large conductances via multiple edges.

13.29. Start with an example of unbounded degree by adding multiple edges between vertices of a
tree, where the endpoints of the new edges are at the same distance from the root.

13.31. This result is due to Linial, Magen, and Naor (2002). It is open whether one can replace
√
g

by g: this question was asked by Linial, London, and Rabinovich (1995).

13.32. (This is Lemma 2 of Jolissaint and Valette (2011).) Define a bipartite graph on two copies
of V and use Kőnig’s Theorem (Exercise 3.17(a)).
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13.33. (This can be improved by a factor of 2 to log (|V|/2)/ log(k − 1); see Jolissaint and Valette
(2011).) Our proof is an example of the probabilistic method, where instead of constructing
a permutation explicitly, we find it by looking at random permutations. However, we have
to be a little more careful than simply using the uniform measure on permutations. Write
n := |V|.
First, as noted before, the ball of radius r about x has at most (k(k−1)r−2)/(k−2) vertices,
which is <

√
n/2 when r ≤ r0 := log(n/2)/(2 log(k−1)). Therefore, if σ is a uniform random

permutation of V, then P[d(x, σ(x)) ≤ r0] < 1/
√

2n. Let B := {x ; d(x, σ(x)) ≤ r0}. We
have E[|B|] <

√
n/2.

We would be done if B were empty with positive probability, but this estimate is not enough
to prove that such happens. We do know that |B| <

√
n/2 with positive probability. Thus,

we take one more step. Namely, choose a random injective mapping τ :B → V, where τ is
independent of σ given B. Define

τ ′(x) :=

{
τ(x) if x ∈ B,
τ−1(x) if x ∈ τ(B),
x otherwise.

Consider τ ′ ◦ σ. Now P[d(x, τ ′ ◦ σ(x)) ≤ r0 | x ∈ B] < 1/
√

2n. Likewise, P[d(x, τ ′ ◦ σ(x)) ≤
r0 | x ∈ τ(B)] < 1/

√
2n. Finally, P[d(x, τ ′ ◦ σ(x)) ≤ r0 | x /∈ B ∪ τ(B)] = 0. Therefore,

P[d(x, τ ′ ◦ σ(x)) ≤ r0] < 1/n, whence E

[
|{x ; d(x, τ ′ ◦ σ(x)) ≤ r0}|

]
< 1. Thus there exists

some permutation τ ′ ◦ σ such that d(x, τ ′ ◦ σ(x)) > r0 for all x.

13.34. We have written (13.30) so that instead of sums, we compare averages. But cancelling
common factors shows that we must prove the following inequality:

λ1(G, c)

4

∑
x∈V

∥f(x) − f(σ(x))∥2 ≤
∑

e∈E1/2

c(e)∥f(e+) − f(e−)∥2 .

Now by translating f , we may assume that∑
x∈V

f(x) = 0 . (17.8)

Define the unitary operator U on ℓ2(V,H ) by U(f) := f ◦ σ. If I denotes the identity map,
then the triangle inequality gives us that ∥I − U∥ ≤ 2, whence∑

x∈V

∥f(x) − f(σ(x))∥2 ≤ 4
∑
x∈V

∥f(x)∥2 .

To complete the proof, it suffices to show that

λ1(G, c)
∑
x∈V

∥f(x)∥2 ≤
∑

e∈E1/2

c(e)∥f(e+) − f(e−)∥2 .

By considering the coordinates with respect to an orthonormal basis of H , we see that it
suffices to prove this inequality when H = R. In that case, our assumption (17.8) is that
f ⊥ 1 and the inequality to be proved amounts to

λ1(G, c)∥f∥2 ≤ (∆Gf, f) .

This is a consequence of the spectral theorem (as in Exercise 6.14).
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13.35. Average (13.30) over all permutations.

13.36. The maximal displacement is at least log (|V|/2)/(2 log(k − 1)) when G has maximum degree
k ≥ 3.

13.39. The eigenvectors of the graph Laplacian for the Cayley graph of an abelian group are the
characters of the group. For the 2n-cycle, the planar embedding as a regular polygon gives
an upper bound for the distortion.

13.41. Note that Exercise 13.40 does not apply.

13.42. Let ϕi be embeddings of Gi. Consider embeddings of the product graph that have the form
(x1, x2) 7→ (aϕ1(x1), ϕ2(x2)) for some a.

Chapter 14

14.1. Show that if α1 < α2 and Hα2(E) > 0, then Hα1(E) = +∞. (In fact, α0 ≤ d.)

14.5. Since
∩
En ⊆ Em, we have dim

∩
En ≤ dimEm for each m.

14.11. It is usually, but not always, e−|x|.

14.12. Take En ⊆ ∂T with dimEn decreasing to the infimum. Set E :=
∩
En.

14.16. Use Exercise 3.9 on subadditivity. We get that dim sup ∂T = infn maxv
1
n

logMn(v) and
dim inf ∂T = supn minv

1
n

logMn(v).

14.17. Use Furstenberg’s theorem (Theorem 3.8) and Theorem 3.9.

14.19. The Fibonacci tree codes E in base 2.

14.21. Use Exercises 3.30 and 3.35.

14.22. This is due to Broman, Camia, Joosten, and Meester (2012).

14.23. Let α be the minimum appearing in Theorem 14.10. If γ < 1, then α < 1 and so two
applications of Hölder’s inequality yield

1 = E

[ L∑
1

Aαi

]
= E

[ L∑
1

Aαi 11−α
]
≤ E

[( L∑
1

Ai

)α( L∑
1

1

)1−α]
≤
(
E[
∑

Ai]
)α

E[L]1−α = γαm1−α .

If γ > 1, then α > 1 and the inequalities are reversed. Of course, if γ = 1, then α = 1 always.

14.25. This is due to Mauldin and Williams (1986).

14.26. Use Theorem 5.35. (The statement of this exercise was proved in increasing generality by
Hawkes (1981), Graf (1987), and Falconer (1987), Lemma 4.4(b).)

14.27. These are essentially due to Hawkes (1981) and Lyons (1990), and stated explicitly in these
forms by Peres (1996).

14.28. (This is due to Peres (1996).) Use Exercise 14.27. For (a), consider inverse images under L
of points, while for (b), consider inverse images of random sets Qk,b(b

−β) with β < d− γ.

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



Comments on Exercises 653

14.29. This is due to Frostman (1935).

(a) Take the largest b-adic cube containing the center of the ball. A bounded number of
b-adic cubes of the same size cover the ball.

(b) Use the result of Exercise 3.27.

14.30. Use the law of large numbers.

14.31. Use the law of large numbers for Markov chains.

14.35. Spherically symmetric examples exist. So do subperiodic examples.

Chapter 15

15.1. Use convexity of the energy (from, say, (2.16)) to deduce that energy is minimized by the
spherically symmetric flow.

15.4. The only significant change is the replacement of (15.3) and (15.4). For the former, note
that diagonals of cubes are longer than sides when d > 1. For the latter, notice that if
|x− y| ≤ b−n and x is in a certain b-adic cube, then y must be in either the same b-adic cube
or a neighboring one. See Pemantle and Peres (1995b), Theorem 3.1, for the details. They
are missing the 2−d factor.

15.6. (e) From the explicit form of the transition density, we get

G∗
2(x, y) =

∫ ∞

0

1

2πt
exp

{
− |x− y|2

2t
− t

}
dt .

Thus,

G∗
2(x, y) =

1

2π

∫ ∞

0

e−t

t

∫ ∞

|x−y|2/(2t)
e−s ds dt =

1

2π

∫ ∞

0

e−s
∫ ∞

|x−y|2/(2s)

e−t

t
dt ds .

For an upper bound, we use that∫ ∞

|x−y|2/(2s)

e−t

t
dt ≤

{
log 2s

|x−y|2 + 1 if |x− y|2 ≤ 2s,

1 if |x− y|2 > 2s.

For |x− y| ≤ 1, this gives, with γ̃ :=
∫∞
1
e−s log s ds <∞, an upper bound of

G∗
2(x, y) ≤ 1

2π
(1 + log 2 + γ̃ − 2 log |x− y|),

which is asymptotically equal to − 1
π

log |x− y|. For a lower bound, we use that e−t ≥ 1 − t
for t ∈ [0, 1], whence ∫ ∞

|x−y|2/(2s)

e−t

t
dt ≥ log

2s

|x− y|2 − 1,

and thus with 0 < γ := −
∫∞
0
e−s log s ds denoting Euler’s constant,

G∗
2(x, y) ≥ 1

2π
(− 1 + log 2 − γ − 2 log |x− y|),

and again this is asymptotically equal to − 1
π

log |x− y|.
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15.7. The intersection of m independent Brownian traces, stopped at independent exponential
times, is intersection equivalent in the cube to the random set Q2,2 (pmn ), where pn = n/(n+1)
for n ≥ 1. It is easy to see that for any m, percolation on a binary tree with edge probabilities
pe = pm|e| survives with positive probability. Hence the m-wise intersection is non-empty with
positive probability. We get the almost sure result the same way as in part (ii).

15.8. Follow the method of proof of Proposition 5.27.

15.10. This is due to Benjamini, Pemantle, and Peres (1995). One can also deduce Theorem 5.24
from this result: It suffices to show (5.21). Consider the Markov chain on ∂LT that moves
from left to right in a planar embedding of T by simply hopping from one leaf to the next
that is connected to the root. This turns out to give a kernel that differs slightly along the
diagonal from the one in (5.21). Details are in Benjamini, Pemantle, and Peres (1995). See
Benjamini, Pemantle, and Peres (1995) for more applications.

15.12. Bound the potential of µ at each point x by integrating over B2−n(x) \B2−n−1(x), n ≥ 1.

15.13. For the lower bound, just use the probability that τ ≥ 1. For the upper bound, we follow
the hint. Clearly

∫ a
0
h(r)f2(r) dr ≤ ψ(a)

∫ a
0
h(r)f1(r) dr. Write Ta =

∫∞
a
f1(r) dr. We have∫ ∞

a

h(r)f2(r) dr = Ta

∫ ∞

a

h(r)ψ(r)
f1(r)

Ta
dr

≤ Ta

∫ ∞

a

h(r)
f1(r)

Ta
dr

∫ ∞

a

ψ(r)
f1(r)

Ta
dr

=
1

Ta

∫ ∞

a

h(r)f1(r) dr

∫ ∞

a

f2(r) dr

by Chebyshev’s inequality. Combining these two inequalities proves the lemma. Now apply
the lemma with fj the density of Btj and

h(r) :=

∫
|y|=r

Py[B(0, s) ∩A ̸= ∅] dσr(y) ,

where σr is the normalized surface area measure on the sphere {|y| = r} in Rd. This gives
an upper bound of

P0[B(t2, t2 + s) ∩A ̸= ∅]
P0[B(t1, t1 + s) ∩A ̸= ∅]

≤ f2(a)

f1(a)
+

1

P0[|Bt1 | > a]
≤ e|a|

2/(2t1) +
1

P0[|Bt1 | > a]
.

Finally, let H(I) := P0[B(I) ∩A ̸= ∅], where I is an interval. Then H satisfies

H(t, t+
1

2
) ≤ Ca,dH(

1

2
, 1) for t ≥ 1

2
,

where Ca,d = e|a|
2

+ 1/P0[|B1/2| > a]. Hence,

P0[B(0, τ) ∩A ̸= ∅] = EH(0, τ) ≤ H(0, 1) +

∞∑
j=2

e−j/2H

(
j

2
,
j + 1

2

)
≤ Ca,d

∞∑
j=0

e−j/2H(0, 1)

=
Ca,d

1 − e−1/2
P0[B(0, 1) ∩A ̸= ∅] .

15.16. This is due to Hawkes (1970/71), but a proof that uses Exercise 14.27 and Theorem 15.11 is
due to Peres (1996).

15.21. Let X := {0, 1} and K(x, y) := ∞1{x̸=y}.

c⃝1997–2013 by Russell Lyons and Yuval Peres. Commercial reproduction prohibited.
DRAFT Version of 29 July 2013. DRAFT



Comments on Exercises 655

Chapter 16

16.4. (This generalizes Häggström (1997). It was proved in a more elementary fashion in Propo-
sition 8.33.) If there are ≥ 3 isolated ends in some tree, then replace this tree by the tree
spanned by the isolated ends. The new tree has a denumerable number of ends and still
gives a translation-invariant random forest, so contradicts Corollary 16.8. If there is exactly
one isolated end, go from it to the first vertex encountered of degree ≥ 3 and choose 2 rays
independently by visibility measure from there; if there are exactly 2 isolated ends, choose
one of them at random and then do the same as when there is only one isolated end. In
either case, we obtain a translation-invariant random forest with a tree containing exactly 3
ends, again contradicting Corollary 16.8.

16.5. Use (local) reversibility of simple random walk.

16.6. To prove this intuitively clear fact, note that the AGW-law of T \ T x−1 is GW since x−1

is uniformly chosen from the neighbors of the root of T . Let A be the event that the walk
remains in T \ T x−1 :

A : =
{

(
↔
x, T ) ∈ PathsInTrees ; ∀n > 0 xn ∈ T \ T x−1

}
=
{

(
↔
x, T ) ∈ PathsInTrees ;

→
x ⊂ T \ T x−1

}
and Bk be the event that the walk returns to the root of T exactly k times:

Bk :=
{

(
↔
x, T ) ∈ PathsInTrees ; |{i ≥ 1 ; xi = x0}| = k

}
.

Then the (SRW × AGW | A,Bk)-law of (
→
x, T \ T x−1) is equal to the (SRW × GW | Bk)-

law of (
→
x, T ), whence the (SRW × AGW | A)-law of (

→
x, T \ T x−1) is equivalent to the

(SRW ×GW)-law of (
→
x, T ). By Theorem 16.13, this implies that the speed of the latter is

almost surely E[(Z1 − 1)/(Z1 + 1)].

16.7. For the numerator, calculate the probability of extinction by calculating the probability that
each child of the root has only finitely many descendants; while for the denominator, calculate
the probability of extinction by regarding AGW as the result of joining two GW trees by
an edge, so that extinction occurs when each of the two GW trees is finite.

16.8. Use Proposition 5.6.

16.10. Use concavity of log.

16.11. Use the Kac lemma, Exercise 2.25. Recall that the system (PathsInTrees,SRW × AGW, S)
was proved to be ergodic in Section 16.3.

16.12. Given nonextinction, the subtree of a Galton-Watson tree consisting of those individuals with
an infinite line of descent has the law of another Galton-Watson process still with mean m
(Section 5.7). Theorem 16.27 applies to this subtree, while harmonic measure on the whole
tree is equal to harmonic measure on the subtree.

16.14. From Proposition 16.31, µHARM ≤ l−1GW. Therefore, wiring the first generation gives that
this integral is at most l−1∑

k pk log(k + 1).

16.15. (This is Lyons, Pemantle, and Peres (1995b), Lemma 9.1.) For a flow θ on T , define

E n(θ) :=
∑

1≤|x|≤n

θ(x)2 ,
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so that its energy for unit conductances is E (θ) = limn→∞ E n(θ). Set an :=
∫

E n(VIST ) dGW(T ).
We have a0 = 0 and

an+1 =

∫ { ∑
|x|=1

1

Z2
1

(1 + E n(VISTx))

}
dGW(T ) .

Conditioning on Z1 gives

an+1 =
∑
k≥1

pk
1

k2

k∑
i=1

∫
(1 + E n(VIST (i))) dGW(T (i))

=
∑
k≥1

pk
1

k2
k(1 + an) = E[1/Z1](1 + an) .

Therefore, by the Monotone Convergence Theorem,∫
E (VIST ) dGW(T ) = lim

n→∞
an =

∞∑
k=1

E[1/Z1]k =
E[1/Z1]

1 −E[1/Z1]
.

16.16. Consider spherically symmetric trees.

16.17. Consider the proof of Theorem 16.4 and the number of returns to T♢ until the walk moves
along T♢.

16.19. These observations are due to Lyons and Peres.

(a) This is an immediate consequence of the ergodic theorem.

(b) In each direction of time, the number of visits to the root is a geometric random variable.
To establish that Γk decreases with k, first prove the elementary inequality

ai > 0 (1 ≤ i ≤ k + 1) =⇒ 1

k + 1

k+1∑
i=1

k∑
j ̸=i aj

≥ k + 1∑k+1
i=1 ai

.

We have limk→∞ Γk = 1/
∫
γ dGW.

(c) Let

Nk(
↔
x, T ) := lim

n→∞

∑
j∈Dk(

↔
x ,T ), |j|≤nN(Sj

↔
x, T )

|Dk(
↔
x, T ) ∩ [−n, n]|

when the limit exists; this is the average number of visits to vertices of degree k + 1. By
the ergodic theorem and part (b), Nk(

↔
x, T ) = Γk SRW ×AGW-a.s. Let D′

k(
↔
x, T ) := {j ∈

N ; deg xj = k + 1, Sj(
↔
x, T ) ∈ Fresh}. Then

Nk(
↔
x, T ) = lim

n→∞

∑
j∈D′

k
(
↔
x ,T ), |j|≤nN(Sj

↔
x, T )2

|D′
k(
↔
x, T ) ∩ [−n, n]|

when the limit exists. Thus, Nk measures the second moment of the number of visits to fresh
vertices, not the first, which indeed does not depend on k (see part (d)). The fact that this
decreases with k is consistent with the idea that the variance of the number of visits to a
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fresh vertex of degree k + 1 decreases in k since a larger degree gives behavior closer to the
mean.

(d) It is 1/
∫
γ dGW. We give two proofs.

First proof. Let this number be ak. Then the proportion of time spent at vertices of degree
k + 1 is proportional to akpk since the chance of being at a vertex of degree k + 1 given
that the walk is at a fresh vertex is pk. Since, however, we know that this proportion is
simply pk, it follows that ak does not depend on k. Since it doesn’t depend on k, we can
simply calculate the expected number of visits to a fresh vertex. This expected number is the
long-term ratio of time to number of fresh points, which we can partition into blocks between
regeneration points. All visits to a fresh point occur within such a block. Thus, we want the
ratio of fresh-point frequency to regeneration frequency. This is the ratio of probability of
being at a fresh point to probability of being at a regeneration point, which is the same as
the reciprocal of the probability of being at a regeneration point given being at a fresh point.
And this is 1/

∫
γ dGW.

Second proof. A fresh epoch is an epoch of last visit for the reversed process. For SRW ×
AGW, if xn ̸= x0 for n > 0, then the descendant tree T x1 has an escape probability γ̂
with the size-biased distribution of the GW-law of γ(T ). By reversibility, then, so does the
tree T x−1 when (

↔
x, T ) ∈ Fresh. Assume now that (

↔
x, T ) ∈ Fresh and deg x0 = k + 1. Let

y1, . . . , yk be the neighbors of x0 other than x−1. Then γ(T yi) are i.i.d. with the distribution
of the GW-law of γ(T ) and γ̂, γ(T y1), . . . , γ(T yk) are independent. Hence the expected
number of visits to x0 is E[(k + 1)/(γ̂ + γ(T y1) + · · · + γ(T yk))]. Now use Exercise 12.14.

16.23. See Lyons, Pemantle, and Peres (1997).

16.24. It is (1 −
√

2) log(
√

2 − 1) + (
√

2 − 2) log(2 −
√

2).

16.32. This exercise is relevant to the proof of Lemma 6 in Furstenberg (1970), which is incorrect.
If the definition of dimension of a measure as given in Section 14.4 is used instead of Fursten-
berg’s definition, thus implicitly revising his Lemma 6, then the present exercise together
with Billingsley’s Theorem 14.17 give a proof of this revision.

16.34. A similar calculation for VIST was done in Lyons, Pemantle, and Peres (1995b), Lemma
9.1, but it does not work for all λ < m; see Exercise 16.15. See also Pemantle and Peres
(1995b), Lemma 2.2, for a related statement. See Exercise 5.46 for another lower bound on
the expected effective conductance.

16.36. S−1(Exit) has the same measure as Exit and for (
↔
x, T ) ∈ S−1(Exit), the ray x−∞ is a path

of a loop-erased simple random walk while
→
x is a disjoint path of simple random walk.

16.37. (This is due to Lyons, Pemantle, and Peres (1996a), who also show that the speed is a positive
constant a.s. when f ′(q) < λ < m.) Use Proposition 5.28 and show that the expected time
spent in finite descendant trees between moves on the bi-infinitary part of the tree is infinite.
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dice de Marc Burger). Astérisque, 158. With an appendix by M. Burger.

Harris, T.E.
(1952) First passage and recurrence distributions. Trans. Amer. Math. Soc. 73, 471–486.

(1960) A lower bound for the critical probability in a certain percolation process. Proc.
Cambridge Philos. Soc. 56, 13–20.

Hawkes, J.
(1970/71) Some dimension theorems for the sample functions of stable processes. Indiana Univ.

Math. J. 20, 733–738.

(1981) Trees generated by a simple branching process. J. London Math. Soc. (2) 24, 373–384.

He, Z.X. and Schramm, O.
(1995) Hyperbolic and parabolic packings. Discrete Comput. Geom. 14, 123–149.

Heathcote, C.R.
(1966) Corrections and comments on the paper “A branching process allowing immigration”.

J. Roy. Statist. Soc. Ser. B 28, 213–217.

Heathcote, C.R., Seneta, E., and Vere-Jones, D.
(1967) A refinement of two theorems in the theory of branching processes. Teor. Verojatnost.

i Primenen. 12, 341–346.

Hebisch, W. and Saloff-Coste, L.
(1993) Gaussian estimates for Markov chains and random walks on groups. Ann. Probab. 21,

673–709.

Heyde, C.C.
(1970) Extension of a result of Seneta for the super-critical Galton-Watson process. Ann.

Math. Statist. 41, 739–742.

Heyde, C.C. and Seneta, E.
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Holroyd, A.E., Levine, L., Mészáros, K., Peres, Y., Propp, J., and Wilson, D.B.
(2008) Chip-firing and rotor-routing on directed graphs. In Sidoravicius, V. and Vares, M.E.,

editors, In and Out of Equilibrium. 2, volume 60 of Progr. Probab., pages 331–364.
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Index

References to definitions have page numbers in roman font, while others (such as to theorems,
examples, exercises) are in slant font. Of course, some results appear on the same page as the
definition.

action of a group, 392
acyclic, 85
adapted conductances, 157
adjacency matrix, 208

directed, 92
adjacent, 1
almost

everywhere uniqueness, 441
has a property, 272
treeable, 453

amalgamation, 254
amenable, 123, 196, 198, 199

abelian, 199, 243
finite percolation, 324, 340
invariant mean, 199
percolation clusters, 229, 296, 578
planar transience, 428
plane duals, 245
rough isometry, 199
spanning forest, 379, 440, 578, 608
spanning tree, 123
subexponential growth, 199
subgroup, 245
unimodular, 310, 337

ancestor, 156
animal, 297
antisymmetric, 37
arithmetic progressions, 606
automorphism

of a graph, 2, 252
of a network, 2, 35, 379

average squared distance, 487
Avez entropy, 509
Azuma’s inequality, 476, 514

ball, 207
Betti number, 385, 424
biased random walk, see homesick random walk
bipartite, 101, 337
biregular, 337
Borel distribution, 628

boundary, 123, 198, 227, 245
at infinity, 14
internal, 326, 409

boundary operator, 37

bounded geometry, 63

bounded-differences inequality, 508

branching number, 4, 88
essential, 510
Galton-Watson trees, 154
homesick random walk, 88, 510
of a graph, 489
of a network, 510
percolation, 158
subperiodic tree, 93
superperiodic tree, 94

Brownian motion
bridge, 531
capacity, 553
exponentially killed, 566
harmonic functions, 62
Hausdorff dimension, 531
intersections, 556
Riemannian manifolds, 62

canonical Gaussian field, 58, 59, 132
distances, 80
effective resistance, 59
free, 428
linear independence, 80
pinned, 80
pinned, with mass, 80
random walk, 80, 428
spanning trees, 140
tightness, 428
wired, 428

canonical Markov chain, 609
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capacity
boundary of a tree, 16
Brownian motion, 553
Frostman’s theorem, 548, 565
of a set, 544
of an edge, 81
percolation, 546
random walk, 545
transference, 547, 550

carrier, 533
Catalan numbers, 285
Catalan’s constant, 131
Cayley diagram, 254
Cayley graph, 95

left and right, 103
Cayley’s formula, 113, 132, 139, 142, 188
Chebyshev constants, 559
Chebyshev polynomials, 482
Chebyshev’s inequality, 179
Cheeger’s inequality, 241, see also expansion;

isoperimetric
cluster, 151
coboundaries, 423
coboundary operator, 37
cocycles, 423
cogrowth, 210, 247
color

cycle, 108
of an edge, 108

commute time, 56
distance, 79
identity, 56

complete graph, 113
conductance, 26, 246, see also expansion

percolation on trees, 166, 190
conductivity, 62
conformal invariance, 133, 454
connected, 2
k-connected, 327
number of subgraphs, 297

connective constant, 268
contraction, 2, 117
converge

to a ray, 71, 581
weakly, 376

convex hull, 639
cost, 385
coupling

monotone, 315, 381
Strassen’s theorem, 381

cover, 14
cover time, 57

bounds, 57–58, 79
covering map, 231

percolation, 231
weak, 230

covering network, 231
critical probability of Bernoulli percolation, 152

current, 26, 347
as edge crossings, 29
as function of conductances, 69
changed conductance, 141
contraction, 117
contraction and deletion, 141
free, 342, 343
limit, 342
minimal, 342
plane duals, 345
total, 28
unique, 347, 347–352, 354, 360, 366, 367, 373,

374, 387
wired, 342, 343, 373

cut, 73, 437
cut-vertex, 138
cutset, 14, 43, 81, 82
cycle, 2, 40

cycle space, 40
orthogonal decomposition, 40, 75, 347

pop, 108
simple, 282

cylinder, 260, 376
elementary, 376

degree, 1
delayed simple random walk, 575
deletion tolerant, 259

weakly, 316
density, 333
depends on a set

event, 120, 260
random variable, 122

derived tree, 535
diameter, 485
Diestel-Leader graph, 257
dimension of a measure, 533
dimension reduction, 500, 511
directed, 1
directed cover, 90
Dirichlet

algebra, 643
energy, 346
function, 346

along random walks, 352
harmonic, 347, see also current, unique

Principle, 42, 75, 76
problem, 25

discrete Gaussian field, 58
discrete group of automorphisms, 305, 336
distance, 2
distance of random walk, 513
distortion, 496, 502
divergence operator, 371
dominating set of vertices, 338
Doob’s h-transform, 69

edge, 1
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edge boundary, 195
edge graph, 221, see also line graph
edge simple, 2
edge-reinforced random walk, 65
effective conductance, 28, 31

concavity, 74
free, 373
plane duals, 345
transience, 31
wired, 373

effective resistance, 29, 31
along a random walk, 618
concavity, 74
derivative, 74
determines conductances, 74
free, 344, 372
in boxes, 49
in the plane, 48
metric, 73, 74
plane duals, 345
rough embedding, 77
wired, 344, 372

electrical network, see also current; voltage;
conductance; resistance; effective conductance;
effective resistance
inner product, 39
Kirchhoff’s Cycle Law, 27, 40
Kirchhoff’s Node Law, 27, 38, 40
Ohm’s Law, 27, 38
parallel law, 33
Rayleigh’s Monotonicity Principle, 41
series law, 32
star-clique transformation, 72
star-mesh transformation, 614
star-triangle law, 35
Thomson’s Principle, 40

encounter point, 263
end, 257, 264, 405, 571

convergent, 264
number of ends, 264, 296

free product, 265
product graph, 264
rough isometry, 264

topology, 321, 578
endpoint, 1, 2
energy

convexity, 76
of a measure, 155, 544

semicontinuity, 567
of an antisymmetric function, 39
transience, 45

entropy, 238, 587, 610
conditional, 239
Han’s Inequality, 239
Markov chain, 478
Shannon’s Inequalities, 239, 592
Shearer’s Inequality, 241
submodular, 240

equally-splitting flow, 534

equivalent measures, 586
equivariant, 421, 585
equivariant Hilbert compression exponent, 511
Erdős-Rényi random graph, 626
ergodic, 260, 393, 504, 568

Markov chain, 569
theorem, 569

escape, 31
exhaustion, 31, 376
expander, 217, 295, 498
expansion, see also isoperimetric

anchored, 229
constant, 229
counting, 234
Galton-Watson, 236
percolation, 229, 326
percolation clusters, 232
speed, 242
subdivision, 234, 250

Cayley graphs, 227
constant, 195, 198, 215, 246
duality, 196, 200
plane graph, 221
profile and transience, 225
regular tree, 196
spectral gap, 215
spectral radius, 205
subdivision, 234
transitive graphs, 197, 201, 245, 413

exponential distribution characterization, 467
exponential tail, 234
extended path, 435
extinction, 145
extremal length, 75, 76

Følner sequence, 200
face, 218, 344
factor, 594
Fekete’s Lemma, 92
Fekete-Szegő theorem, 560
Fibonacci tree, 91, 514
FKG inequality, 178
flow, 3, 27, 38, 45, 82, 585

admissible, 81, 82
conservation, 38
on trees, 87–88
random path, 47, 85
rule, 585
total, 38
unit, 38, 45

forest, 2, 375
fort, 289
Foster’s Theorem, 74, 79, 139
Fourier transform, 124

Parseval’s Identity, 401
Riemann-Lebesgue Lemma, 390

Fréchet embedding, 511
Fréchet space, 421
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fractal percolation, 176, 540, 551
left-to-right crossing, 177, 191, 192

free abelian group, 96
free group, 96
free product, 96
free spanning forest, 13, 376

compared to minimal, 453
compared to the wired, 380–387, 393, 415, 425
distance between trees, 417
expected degree, 385, 429
infinite trees, 379
invariance, 379
number of ends, 406, 415, 425
number of trees, 415, 416
planar duality, 388
trivial tail, 391

fresh points, 582
Frostman exponent, 102, 541
furcation, 263, 301
fuzz, 51, 281

Galton-Watson, 9, 145
d-ary subtrees, 173, 174, 175
anchored expansion, 236
as random trees, 150
augmented, 580
branching number, 154
conditioned to survive, 467, 473
confinement of random walk, 584
critical, 147
decomposition, 171
effective conductance, 189, 579, 602
explosion, 145
extinction criterion, 147, 187
extinction probability, 146, 187, 465, 467, 473
fractals, 528
Grey’s theorem, 187
growth rate, 151
harmonic measure, 584
homesick random walk, 167, 606
immigration, 462, 464, 466
inherited property, 148
Kesten-Stigum Theorem, 149, 458, 472
Kolmogorov’s estimate, 467, 473
loop-erased random walk, 611
martingale, 147, 149
most recent common ancestor, 473
multi-type, 191
network, 180, 181
Otter-Dwass formula, 188
p.g.f. given survival, 191
percolation, 153
Poisson, 188
Poisson and uniform, 186, 187
Q-process, 470
random walk coding, 188
regular subtrees, 191
Seneta-Heyde Theorem, 149
simple random walk, 189, 606

speed, 583
subcritical, 147
supercritical, 147
total size, 188
varying environment, 472
wired spanning forest, 611
Yaglom’s limit law, 467, 470, 473
zero-one law, 148

gauge, 543, 547, 550
gauge function, 522
Gaussian network, 58
generalized diameters, 559
generated, 95
geodesic, 297

hyperbolic, 54
subtree, 99, 490

girth, 515
go to ∞, 47
gradient, 59, 205, 346
grandparent, 257

graph, 257
graph, 1

finite, 37
planar, 218, 344
plane, 218, 344
plane dual, 219, 344
properly embedded, 218, 344

Green
function, 29

Z2, 622
function (series), 71
function as voltage, 29
inner product, 371
kernel for Brownian motion, 552

Grey’s theorem, 187
growth rate, 3, 89, 97

Cayley graphs, 97
exponential, 97
groups and random walk, 98, 103
lower, 3, 89
subexponential, 97
upper, 3, 89, 207

Haar measure, 307, 324, 336
Hall’s Theorem, 101
harmonic crystal, 58
harmonic function, 24, 62, 368, 569

bounded, 367, 509, 569
Existence Principle, 25, 69
Maximum Principle, 24
recurrent networks, 70
Uniqueness Principle, 24

harmonic measure, 71, 545, 584
from infinity, 418
Galton-Watson, 584
plane network, 359
wired, from infinity, 71
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Hausdorff dimension, 15, 520
Brownian zeroes, 531
Cantor middle-thirds set, 520
Fibonacci tree, 609
Frostman’s theorem, 548, 565
Galton-Watson fractals, 528
Hölder exponent, 533
intersection-equivalent sets, 567
planar Cantor set, 521
random Cantor set, 541
random von Koch curve, 541
Sierpinski carpet, 521
Sierpinski gasket, 521
speed, 607
transference, 526
von Koch snowflake, 525

Hausdorff measure, 519
head, 2
higher, 432
Hilbertable Γ-space, 421
hitting time

an integer, 79
identity, 56
resistance, 77
trees, 78

Hodge decomposition, 366
Hoeffding’s inequality, 476, 508, 514
Hölder exponent, 533
homesick random walk, 89

branching number, 88, 510
critical, 102
Galton-Watson trees, 167, 606
groups, 98, 103
speed, 98, 514
wired spanning forest, 430

homomorphism
of graphs, 2
of networks, 2

hyperbolic space
non-amenable, 415
tessellations, 195, 218, 220
transience, 55
unique currents, 360

hypercube, 79
distortion, 496

identifying vertices, 2
ignores an edge

event, 120
incident, 1
increasing

event, 120, 178
random variable, 122, 178

increasing convex order, 192
indistinguishable infinite clusters, 334
induced measure, 568
induced subnetwork, 2
induced system, 594
inherited property of trees, 148

insertion tolerant, 259
weakly, 316

intersection equivalent, 552
intersections of random walk, 395
invariant
σ-field, 260, 568
event, 261, 393
set, 569
under a transformation, 568

invasion
basin, 275, 439
basin of infinity, 446
of infinite clusters, 275, 297
tree, 439

isomorphism
of a graph, 2
of a network, 2
rooted, 337, 572

isoperimetric, see also expansion
anchored two-dimensional, 250
constant, 195, 198
inequality in Zd, 237
strong inequality, 196

Jacobi’s Determinant Identity, 140

Kőnig’s Theorem, 101
Kac lemma, 68
Kazhdan, 292
kernel, 543
Kesten-Stigum Theorem, 149, 458, 472

label, 432
ladder graph, 116, 136, 141, 143, 456
lamplighter group, 256

bit, 256
configuration, 256
marker, 256

Laplacian
of a graph, 124
of a network, 74, 516

Laplacian random walk, 114
large deviations, 232, 475

Hoeffding-Azuma, 476, 508, 514
lazy, 215, 485

simple random walk, 513
leaf, 14
level, 3, 89
lexicographically minimal spanning tree, 98
likelihood, 59
limit set, 176, 551
limit uniform measure, 588
line graph, 281
locally finite, 1, 30, 150
lonely, 444
Loomis-Whitney inequality, 238, 241, 243
loop, 2
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loop erasure, 106, 417
Galton-Watson, 611
intersection with random walk, 394

lower, 432

Markov Chain Tree Theorem, 128
Markov type 2, 492, 515

uniform, 493
Martin kernel, 562, 565
martingale increments, 475, 513
Mass-Transport Principle

countable groups, 300
general form, 303
Haar measure, 307
quasi-transitive unimodular, 307, 308
transitive graphs, 303

matching, 245
perfect, 101, 337

Matrix-Tree Theorem, 132, 137
Max-Flow Min-Cut Theorem, 81–85, 100
maximum likelihood estimate, 59
McDiarmid’s inequality, 508
mean

invariant, 199
of a branching process, 147
on a group, 199

Menger’s Theorem, 101
micro-set, see derived tree
minimal spanning forest

clusters at pu, 445
compared to uniform, 453
cut criteria, 437
expected degree, 456, 457
free, 265, 435
free pc, 457
free and wired compared, 441
free is almost connected, 448
number of ends, 443, 444, 445, 456, 457
number of trees, 446, 451, 454, 456
on Z2, 450
plane dual graphs, 449
trivial tail, 442
wired, 435
wired pc, 447

minimal spanning tree, 433
edge correlations, 433
stochastic domination, 433

Minkowski dimension, 518
mixing, 393, 569
k-mixing, 429
order, 429

mixing time, 484
average squared distance, 488
diameter, 485
spectral gap, 213

multigraph, 2, 30
multiple, 2

mutual information, 243

Nash-Williams Criterion, 43, 76
lack of converse, 75

negative association, 122
uniform measure, 142

neighborhood, 321
neighbors, 1
net, 55
network, 2, 195
non-amenable, 196

regular subtrees in, 201
non-backtracking, 208
nondegenerate, 584
normalized root, 308

occur disjointly
events, 135

order of a cube, 519
oriented percolation, 189
Otter-Dwass formula, 188

Pólya’s Theorem, 44, 48, 77
Pólya’s urn, 77
Paley-Zygmund Inequality, 162, 189, 397
parallel, 2
parent, 93
Parrondo’s paradox, 72, 614
path, 1, 2

augmentable, 83
percolation, 8, 299
pc < 1, 269–273, 297, 298
pc < pu, 282–288, 293, 298
pc > 0, 268
pu < 1, 280–282, 294
pu = 1, 280
amenable, 324, 340
Bernoulli, 134, 151, 228
BK inequality, 135
bond, 151, 299
bootstrap, 288
branching number, 158
cost, 293
covering map, 231
critical, 311, 315

on trees, 167
ergodic, 260
expected cluster size, 291
finite clusters, 313, 335, 338
general, 151
independent, 156
invariant, 260, 576

ends, 339
forest, 313, 314, 338
random walk stationarity, 576
sub-forest, 265
threshold for finite clusters, 311, 312, 338

Kazhdan groups, 292
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model, 144
number of infinite clusters, 265

amenable, 262, 266, 296
at pc, 311, 315
at pu, 294, 317, 446
constant, 261

on Z2, 272, 297
on Galton-Watson trees, 153
on half-spaces, 253
planar graphs, 316–321
probability of infinite cluster, 297
properties of infinite clusters, 321
quasi-independent, 159
site, 228, 299
site and bond compared, 266, 267, 281, 294,

296
speed, 228
transience, 228
trees and conductance, 166, 190

periodic, 91
tree of polynomial growth, 102

Perron
eigenvalue, 92
eigenvector, 92

Pinsker’s model, 217
Ponzi scheme, 194
positive associations, 178

Gaussian random variables, 64
potential, 28, 543
presentation

finite, 97
of a group, 96

probability generating function (p.g.f.), 145
probability measure-preserving system, 504, 568
product

cartesian, 96, 245, 350
categorical, 366
direct, 96

product tree, 103

quasi-transitive, 254
action, 254
density of orbits, 337
tree, 296

radial potential, 552
random forest, 576
random network potentials, 58
random set, 552
random walk in a random environment, 65, 606
rank of a group, 96
ray, 5, 405
n-ray, 609

reciprocity law, 41
recursions on trees, 184, 190
reduced cohomology, 424
regeneration, 581
regular, 1

relator, 96

resistance, 26

return
map, 594
time, 594

reversed Markov chain, 130

reversible, 21
globally, 577, 608
locally, 608
results on path reversals, 22

Riesz decomposition, 613

right Haar measure, 336

root, 105

rooted, 3

rough, 52
embedding, 51
embedding and effective resistance, 77
embeddings and transience, 52
equivalence, 52
isometry, 52

Cayley graphs, 96, 100
non-amenable Cayley graphs, 290
number of ends, 264

Royden compactification, 643

Royden decomposition, 348

Schreier graph, 103

second eigenvalue of a finite graph, 246

self-avoiding path
tree of, 91

semi-transitive, 292

Seneta-Heyde Theorem, 149

separates, 43, 151, 349

Shannon-Parry measure, 649

shrub, 573

Sierpinski carpet, 521

Sierpinski gasket, 521

simple, 2

simple graph, 2

simple random walk, 23
on Z2, 132, 137, 142

size-biased
distribution, 459, 465, 472
Galton-Watson, 459
random variable, 459, 467, 468, 471

slab, 582

SLE, 133

slowly varying, 63

spanning arborescence, 105
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spanning tree, 10, 98, 104, 105, see also minimal
spanning tree
Aldous/Broder algorithm, 130
degree distribution, 124
enumeration, 132
geodesic, 99, 491
Hamiltonian path, 131, 137
Kirchhoff, 116, 138, 139
Matrix-Tree Theorem, 132, 137
negative association, 142
negative correlation, 117, 119, 121
on diagonals, 128, 429
pair distances, 139
weight, 105

spanning tree polytope, 138
spectral gap, 214, 215, 484

diameter, 486
expansion, 215
mixing time, 213

spectral radius, 205, 283
expansion, 205
product graphs, 284
product networks, 298
speed, 207
tree, 207, 210, 285

speed, 98
Galton-Watson, 583
growth, 515
Hausdorff dimension, 607
homesick random walk, 514
liminf, 479
on covers, 477
spectral radius, 207
stationary random walk, 573, 577

spherically symmetric, 3, 35, 90, 95
Cayley graphs, 97
transience, 95

square tiling, 367
stabilizer, 303
standard coupling

Bernoulli percolation, 152
merging infinite clusters, 274

star, 40
star space, 40

cuts, 73
orthogonal decomposition, 40, 75, 347

stationary, 504
stationary measure for a Markov chain, 569
stochastic domination, 142, 267, 380, 382, 468

Strassen’s theorem, 381
stochastically more variable, 192
strength, 38, 82
stretched edges, see subdivision
strong Følner independence, 645
Strong Law of Large Numbers (SLLN), 474, 513
strongly Rayleigh, 135
subadditive, 92

subdivision, 234
random

graph, 234, 250
tree, 190

subdivision, random
tree, 190

subgraph, 1
subharmonic, 68
submodular, 197

entropy, 240
subperiodic, 91
superharmonic, 68, 352
superperiodic, 94, 102
superposition principle, 25

tail, 2
tail σ-field, 261, 391
target percolation, 629
total variation distance, 483
trace, 361, 552
trace of random walk, 361
transfer current

matrix, 41, 143, 429, 622
theorem, 119, 131, 142, 387

transfer impedance matrix, 60
transition operator, 68, 203
transitive

graph, 252
Markov chain, 395
network, 197, 384
not Cayley, 255–258

transitive representation, 254
amenable, 296

translation, 96
tree, 2

bi-infinitary part, 573
descendant, 150
height, 150
reduced, 170
rooted labelled, 150
truncation, 150

tree-indexed random walk, 159–161, 190, 191
triangle group, i, 218, 338, 339, 356, 366, 429,

457
trifurcation, 263
trigonometric polynomial, 390
trunk, 443
type

of a random walk, 47, 76
of plane duals, 372
of random walk on wedges, 50

uncorrelated, 474
undirected, 1
uniform spanning forest, see free or wired spanning

forest
uniform spanning tree, see spanning tree
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unimodular, 304, 307
amenable, 310, 337
compact group, 337
discrete group, 305
Haar measure, 307
rooted graph, 332
subgroup, 305, 310

unitary representation, 292
universal cover, 90, 102, 477–479, 514
unoriented, 1
upwardly closed event, 120

Varopoulos-Carne bound, 481
vertex, 1
vertex simple, 2
vertex-reinforced random walk, 65
visibility measure, 534
visible graph, 108
voltage, 26

along a random walk, 76
monotone, 69, 86
on Z2, 125
on Zd, 390, 429

von Neumann algebra, 421
von Neumann dimension, 420

weighted uniform spanning tree, 106
Wilson’s method, 106, 131, 137

efficiency, 138
rooted at infinity, 377

wired spanning forest, 377
bounded harmonic functions, 430
compared to the free, 380–387, 393, 415, 425
expected degree, 384
homesick random walk, 430
infinite trees, 379
invariance, 379
number of ends, 405–417, 425
number of trees, 396, 394–403
on recurrent networks, 379
on spherically symmetric trees, 430
planar duality, 388
recurrent trees, 404
rough isometry, 430
trivial tail, 391
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Glossary of Notation

E[X ; A] . . . . . . . . . . . . . . . . . . . . expectation of X on A, viii

Ld . . . . . . . . . . . . . . . . . . . . . . . . . . d-dimensional Lebesgue measure, 519

⟨· · ·⟩ . . . . . . . . . . . . . . . . . . . . . . . . sequence, viii

≍ . . . . . . . . . . . . . . . . . . . . . . . . . . . equal up to bounded factors, 198, 552

↾ . . . . . . . . . . . . . . . . . . . . . . . . . . . restriction, viii

|•| . . . . . . . . . . . . . . . . . . . . . . . . . . cardinality, viii

G/e . . . . . . . . . . . . . . . . . . . . . . . . contraction of e in G, 2, 42, 117

G\e . . . . . . . . . . . . . . . . . . . . . . . . deletion of e in G, 117

deg x . . . . . . . . . . . . . . . . . . . . . . . degree of x, 24

E(G) . . . . . . . . . . . . . . . . . . . . . . . edge set of G, 1

G1 ×G2 . . . . . . . . . . . . . . . . . . . . cartesian product graph, 245

E1/2 . . . . . . . . . . . . . . . . . . . . . . . . one oriented edge for each unoriented edge, 37

V(G) . . . . . . . . . . . . . . . . . . . . . . . vertex set of G, 1

GW . . . . . . . . . . . . . . . . . . . . . . . . G with its boundary wired, 31

dist(x, y) . . . . . . . . . . . . . . . . . . . graph distance between x and y, 2

d(x, y) . . . . . . . . . . . . . . . . . . . . . . graph distance between x and y, 2

e+ . . . . . . . . . . . . . . . . . . . . . . . . . . head of e, 2

e− . . . . . . . . . . . . . . . . . . . . . . . . . . tail of e, 2

⟨x, y⟩ . . . . . . . . . . . . . . . . . . . . . . . oriented edge with endpoints x and y, 1

−e . . . . . . . . . . . . . . . . . . . . . . . . . . reverse of e, 2

[x, y] . . . . . . . . . . . . . . . . . . . . . . . . unoriented edge with endpoints x and y, 1

x ∼ y . . . . . . . . . . . . . . . . . . . . . . . x and y are adjacent, 1

G/K . . . . . . . . . . . . . . . . . . . . . . . G with K identified, 2

∂EK . . . . . . . . . . . . . . . . . . . . . . . . edge boundary, 195

∂EK . . . . . . . . . . . . . . . . . . . . . . . . edge boundary of K, 123

∂intV K . . . . . . . . . . . . . . . . . . . . . . . internal vertex boundary, 227

G↾K . . . . . . . . . . . . . . . . . . . . . . . network G induces on K, 2

G† . . . . . . . . . . . . . . . . . . . . . . . . . . dual graph, 317

e† . . . . . . . . . . . . . . . . . . . . . . . . . . dual edge, 317

ω× . . . . . . . . . . . . . . . . . . . . . . . . . dual configuration, 317

Tb+1 . . . . . . . . . . . . . . . . . . . . . . . regular tree of degree b+ 1, 96

∂T . . . . . . . . . . . . . . . . . . . . . . . . . boundary at infinity (rays) of T , 14

∂LT . . . . . . . . . . . . . . . . . . . . . . . . leaves of T , 156

brT . . . . . . . . . . . . . . . . . . . . . . . . branching number of T , 4

grT . . . . . . . . . . . . . . . . . . . . . . . . exponential growth rate of T , 3

grT . . . . . . . . . . . . . . . . . . . . . . . . lower exponential growth rate of T , 3
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grT . . . . . . . . . . . . . . . . . . . . . . . . upper exponential growth rate of T , 3

Tn . . . . . . . . . . . . . . . . . . . . . . . . . . level n of the tree T , 3

Tx . . . . . . . . . . . . . . . . . . . . . . . . . descendant subtree of x, 90

ξ ∧ η . . . . . . . . . . . . . . . . . . . . . . . . common vertex furthest from the root, 532

e(x) . . . . . . . . . . . . . . . . . . . . . . . . edge joining x to its parent, 4

x < y . . . . . . . . . . . . . . . . . . . . . . . x is between the root and y and x ̸= y, 90

x ∧ y . . . . . . . . . . . . . . . . . . . . . . . common ancestor furthest from the root, 156

x ≤ y . . . . . . . . . . . . . . . . . . . . . . . x is between the root and y, 90

x→ y . . . . . . . . . . . . . . . . . . . . . . y is a child of x, 90
↼
x . . . . . . . . . . . . . . . . . . . . . . . . . . . parent of x, 157

|x| . . . . . . . . . . . . . . . . . . . . . . . . . . distance between x and the root, 14

[[T1 •−T2]] . . . . . . . . . . . . . . . . . . . join of two trees rooted at the root of T1, 595

T[b](E) . . . . . . . . . . . . . . . . . . . . . b-adic coding tree of E, 17

(G, c,D) . . . . . . . . . . . . . . . . . . . . graph G with edge weights c and vertex weights D, 195

(f, g)h . . . . . . . . . . . . . . . . . . . . . . inner product with respect to h, 39

Ceff . . . . . . . . . . . . . . . . . . . . . . . . effective conductance, 29

P⋆ . . . . . . . . . . . . . . . . . . . . . . . . . orthogonal projection onto ⋆, 40

Reff . . . . . . . . . . . . . . . . . . . . . . . . effective resistance, 29

Y (e, e′) . . . . . . . . . . . . . . . . . . . . . transfer current along e′ from e, 41
χe . . . . . . . . . . . . . . . . . . . . . . . . . . unit flow along e, 39

♢ . . . . . . . . . . . . . . . . . . . . . . . . . . . cycle space, 40

D . . . . . . . . . . . . . . . . . . . . . . . . . . space of Dirichlet functions, 346

D0 . . . . . . . . . . . . . . . . . . . . . . . . . Dirichlet closure of functions with finite support, 347

∆G . . . . . . . . . . . . . . . . . . . . . . . . . network Laplacian, 74, 516

D(f) . . . . . . . . . . . . . . . . . . . . . . . Dirichlet energy of f , 346

D00 . . . . . . . . . . . . . . . . . . . . . . . . functions with finite support, 202

C (a↔ Z;G) . . . . . . . . . . . . . . . . effective conductance in G between a and Z, 29

R(a↔ Z;G) . . . . . . . . . . . . . . . . effective resistance in G between a and Z, 29

ℓ2−(E) . . . . . . . . . . . . . . . . . . . . . . . antisymmetric square-summable functions on E, 37

HD . . . . . . . . . . . . . . . . . . . . . . . . space of harmonic Dirichlet functions, 347

⋆ . . . . . . . . . . . . . . . . . . . . . . . . . . star space, 40

Φ∗
E(G), Φ∗

V(G) . . . . . . . . . . . . . . anchored expansion constants, 229

E (θ) . . . . . . . . . . . . . . . . . . . . . . . . energy of θ, 39

ΦE(G) . . . . . . . . . . . . . . . . . . . . . . expansion (isoperimetric) constant of G, 195

∇f . . . . . . . . . . . . . . . . . . . . . . . . . gradient of f , 346

ψ(G, t) . . . . . . . . . . . . . . . . . . . . . expansion profile, 224

π(x) . . . . . . . . . . . . . . . . . . . . . . . . sum of conductances at x, stationary measure, 22

∥f∥h . . . . . . . . . . . . . . . . . . . . . . . norm with respect to h, 39

c(e) . . . . . . . . . . . . . . . . . . . . . . . . . conductance of e, 22

d . . . . . . . . . . . . . . . . . . . . . . . . . . . coboundary operator, 37

d∗ . . . . . . . . . . . . . . . . . . . . . . . . . . boundary operator, 37

i(e) . . . . . . . . . . . . . . . . . . . . . . . . . current through e, 26

v(x) . . . . . . . . . . . . . . . . . . . . . . . . voltage at x, 26

|K|D . . . . . . . . . . . . . . . . . . . . . . . D-weight of K, 195

Γ ∗ Γ′ . . . . . . . . . . . . . . . . . . . . . . . free product of groups, 96
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⟨S | R⟩ . . . . . . . . . . . . . . . . . . . . . . group with generators S and relators R, 96

Hö(µ) . . . . . . . . . . . . . . . . . . . . . . . Hölder exponent of µ, 533

FMSF . . . . . . . . . . . . . . . . . . . . . . . free minimal spanning forest, 435

F . . . . . . . . . . . . . . . . . . . . . . . . . . . random spanning forest, 376

FSF . . . . . . . . . . . . . . . . . . . . . . . . . free uniform spanning forest, 376

FUSF . . . . . . . . . . . . . . . . . . . . . . . free uniform spanning forest, 376

MST . . . . . . . . . . . . . . . . . . . . . . . . minimal spanning tree, 433

WMSF . . . . . . . . . . . . . . . . . . . . . . wired minimal spanning forest, 435

WSF . . . . . . . . . . . . . . . . . . . . . . . . wired uniform spanning forest, 377

WUSF . . . . . . . . . . . . . . . . . . . . . . wired uniform spanning forest, 377

LE(P) . . . . . . . . . . . . . . . . . . . . . . loop-erasure of P, 106

P[a→ Z] . . . . . . . . . . . . . . . . . . . probability of hitting Z before returning to a, 28

Px . . . . . . . . . . . . . . . . . . . . . . . . . law of random walk started at x, 23

G (x, y) . . . . . . . . . . . . . . . . . . . . . expected number of visits to x from x, 23

ρ(G) . . . . . . . . . . . . . . . . . . . . . . . . spectral radius, 205

τx . . . . . . . . . . . . . . . . . . . . . . . . . . first hitting time of x, 23

τ+x . . . . . . . . . . . . . . . . . . . . . . . . . first hitting time of x after 0, 23

RWλ . . . . . . . . . . . . . . . . . . . . . . . homesick random walk biased by λ, 88

L . . . . . . . . . . . . . . . . . . . . . . . . . . . offspring random variable, 145

W . . . . . . . . . . . . . . . . . . . . . . . . . . limit of martingale Zn/mn, 10

Zn . . . . . . . . . . . . . . . . . . . . . . . . . size of nth generation, 10

L . . . . . . . . . . . . . . . . . . . . . . . . . . offspring network random variable, 180

L̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . size-biased random variable, 459

q . . . . . . . . . . . . . . . . . . . . . . . . . . . 1− q, 171

f(s) . . . . . . . . . . . . . . . . . . . . . . . . offspring p.g.f., 145

m . . . . . . . . . . . . . . . . . . . . . . . . . . mean number of offspring, 9

pk . . . . . . . . . . . . . . . . . . . . . . . . . . probability of k children in a branching process, 9

q . . . . . . . . . . . . . . . . . . . . . . . . . . . probability of extinction, 146

I(x) . . . . . . . . . . . . . . . . . . . . . . . . invasion basin of x, 275

Pp . . . . . . . . . . . . . . . . . . . . . . . . . Bernoulli(p) percolation, 152

ô . . . . . . . . . . . . . . . . . . . . . . . . . . . normalized random root in a quasi-transitive unimodular graph, 308

µ(G) . . . . . . . . . . . . . . . . . . . . . . . connective constant, 268

ωp . . . . . . . . . . . . . . . . . . . . . . . . . . open subgraph at level p, 152

G[p] . . . . . . . . . . . . . . . . . . . . . . . . open subgraph at level p, 432

pc(G) . . . . . . . . . . . . . . . . . . . . . . . critical probability of G, 152

pu(G) . . . . . . . . . . . . . . . . . . . . . . critical probability for uniqueness, 274, 445

θ(p) . . . . . . . . . . . . . . . . . . . . . . . . probability that a vertex belongs to an infinite cluster, 253
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Ich bin dein Baum
by Friedrich Rückert

Ich bin dein Baum: o Gärtner, dessen Treue
Mich hält in Liebespfleg’ und süßer Zucht,
Komm, daß ich in den Schoß dir dankbar streue
Die reife dir allein gewachsne Frucht.

Ich bin dein Gärtner, o du Baum der Treue!
Auf andres Glück fühl’ ich nicht Eifersucht:
Die holden Äste find’ ich stets aufs neue
Geschmückt mit Frucht, wo ich gepflückt die Frucht.

I am your tree, O gardener, whose care
Holds me in sweet restraint and loving ban.
Come, let me find your lap and scatter there
The ripened fruit, grown for no other man.

I am your gardener, then, O faithful tree!
I covet no one else’s bliss instead;
Your lovely limbs in perpetuity
Yield fruit, however lately harvested.

Transl. by Walter Arndt
Set to music by Robert Schumann
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