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Optimal design of spatial distribution networks
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We consider the problem of constructing public facilities, such as hospitals, airports, or malls,
in a country with a non-uniform population density, such that the average distance from a per-
son’s home to the nearest facility is minimized. Approximate analytic arguments suggest that the
optimal distribution of facilities should have a density that increases with population density, but
does so slower than linearly, as the two-thirds power. This result is confirmed numerically for the
particular case of the United States with recent population data using two independent methods,
one a straightforward regression analysis, the other based on density dependent map projections.
We also consider strategies for linking the facilities to form a spatial network, such as a network of
flights between airports, so that the combined cost of maintenance of and travel on the network is
minimized. We show specific examples of such optimal networks for the case of the United States.

I. INTRODUCTION

Suppose we are given the population density ρ(r) of a
country or province, by which we mean the number of
people per unit area as a function of geographical posi-
tion r. And suppose we are charged with choosing the
sites of p facilities, such as hospitals, post offices, su-
permarkets, gas stations, or schools, so that the mean
distance to the nearest facility averaged over the popula-
tion is minimized. In most countries population density
is highly non-uniform, in which case a uniform distribu-
tion of facilities would be a poor choice: it gains us little
to build a lot of facilities in sparsely populated areas. A
more sensible choice would be to distribute facilities in
proportion to population density, so that a region with
twice as many people has twice as many facilities. But
this distribution too turns out to be suboptimal, because
we also gain little by having closely spaced facilities in
the highly populated areas—when facilities are closely
spaced the typical person is not much further from their
second-closest facility than from their closest, so one or
the other can often be removed with little penalty and
substantial savings.

As we will see, the ideal solution to this problem lies
somewhere between these two extremes, with the density
of facilities increasing as the two-thirds power of popu-
lation density, a prediction that we verify using simula-
tions and visualizations based on cartograms, with ac-
tual population data for the United States. In addition,
one is often interested in connections between facilities,
such as flights between airports [1] or transmission lines
between power stations [2]. In the second half of this pa-
per we generate networks based on a simple model that
optimizes network topology with respect to the cost of
maintaining and traveling across the network. Depend-
ing on the benefit function chosen, we find structures
ranging from completely decentralized networks to hub-
and-spoke networks.

II. OPTIMAL DISTRIBUTION OF FACILITIES

We wish to distribute p facilities over a two-
dimensional area A such that the objective function

f(r1 . . . rp) =

∫

A

ρ(r) min
i∈{1...p}

|r− ri| d
2r, (1)

is minimized. Here {r1 . . . rp} is the set of positions of
the facilities and ρ(r) is the population density within
the region A of interest. This objective function is pro-
portional to the mean distance that a person will have to
travel to reach their nearest facility.

Seemingly simple, this so-called p-median problem has
been shown to be NP-hard [3], so in practice most studies
rely either on approximate numerical optimization or ap-
proximate analytic treatments [4]. A number of different
approaches have been used [5, 6, 7, 8, 9]; the calculation
given here is essentially that of Gusein-Zade [10].

Our p facilities naturally partition the area A into
Voronoi cells. (The Voronoi cell Vi for the ith facility
is defined as the set of points that are closer to ri than
to any other facility.) Let us define s(r) to be the area
of the Voronoi cell to which the point r belongs. In two
dimensions a person living at point r will on average be a
distance g[s(r)]1/2 from the nearest facility, where g is a
geometric factor of order 1, whose exact value depends on
the shape of the Voronoi cell, but which will in any case
drop out of the final result. The distance to the nearest
facility averaged over all members of the population is
proportional to

f = g

∫

A

ρ(r)[s(r)]1/2 d2r, (2)

where we are making an approximation by neglecting
variation of the geometric factor g between cells.

The value of s(r) is constrained by the requirement
that there be p facilities in total. Noting that s(r) is
constant and equal to s(ri) within Voronoi cell Vi, we see
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FIG. 1: Facility locations determined by simulated anneal-
ing and the corresponding Voronoi tessellation for p = 5000
facilities located in the lower 48 United States, based on pop-
ulation data from the US Census for the year 2000.

that the integral of [s(r)]−1 over Vi is

∫

Vi

[s(r)]−1 d2r = [s(ri)]
−1

∫

Vi

d2r = 1. (3)

Summing over all Vi, we can then express the constraint
on the number of facilities in the form

∫

A

[s(r)]−1 d2r = p. (4)

Subject to this constraint, optimization of the mean
distance f above gives

δ

δs(r)

[

g

∫

A

ρ(r)[s(r)]1/2d2r−α

(

p−

∫

A

[s(r)]−1d2r

)]

= 0,

(5)
where α is a Lagrange multiplier. Performing the func-
tional derivatives and rearranging for s(r), we find s(r) =
[2α/gρ(r)]2/3. The Lagrange multiplier can be evaluated
by substituting into Eq. (4) and we arrive at the result

D(r) =
1

s(r)
= p

[ρ(r)]2/3

∫

[ρ(r)]2/3 d2r
, (6)

where we have introduced the notation D(r) = [s(r)]−1

for the density of the facilities.
Thus, if facilities are distributed optimally for the given

population distribution, their density increases with pop-
ulation density but does so slower than linearly, namely
as a power law with exponent 2

3
[27]. This density places

most facilities in the densely populated areas where
most people live while still providing reasonable service
to those in sparsely populated areas where a strictly
population-proportional allocation might leave inhabi-
tants with little or nothing.

The derivation above makes two approximations: it
assumes that the geometric factor g is the same for all

FIG. 2: Facility density D from Fig. 1 versus population den-
sity ρ on a log-log plot. A least-squares linear fit to the data
gives a slope of 0.663 ± 0.002 (solid line).

Voronoi cells and that s(r) is a continuous function. Nei-
ther assumption is strictly true, but we expect them to
be approximately valid if ρ varies little over the typi-
cal size of a Voronoi cell. As a test of these assump-
tions, we have optimized numerically the distribution of
p = 5000 facilities over the lower 48 states of the United
States (Fig. 1) using population data from the most re-
cent US Census [11], which counts the number of resi-
dents within more than 8 million blocks across the study
region. To create a continuous density function ρ, we
convolved these data with a normalized Gaussian dis-
tribution of width 20 km. The facility locations were
then determined by optimizing the full p-median objec-
tive function (1) by simulated annealing [12].

The relation D ∝ ρ2/3 can be tested as follows. First,
we determine the Voronoi cell around each facility. Then
we calculate D(r) as the inverse of the area of the cor-
responding cell and ρ as the number of people living in
the cell divided by its area. Figure 2 shows a scatter plot
of the resulting data on doubly-logarithmic scales. If the
anticipated 2

3
-power relation holds, we expect the data to

fall along a line of slope 2
3
. And indeed a least-squares fit

(solid line in the figure) yields a slope 0.663(2), in good
agreement with the theoretical prediction.

Some statistical concerns might be raised about this
method. First, we used the Voronoi cell area to calculate
both D and ρ, so the measurements of x- and y-values in
the plot are not independent, and one might argue that
a positive slope could thus be a result of artificial corre-
lations between the values rather than a real result [13].
Second, it is known that estimating the exponent of a
power law such as Eq. (6) from a log-log plot can in-
troduce systematic biases [14]. In the next section, we
introduce an entirely different test of Eq. (6) that, in ad-
dition to being of interest in its own right, suffers from
neither of these problems.
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III. DENSITY-EQUALIZING PROJECTIONS

If we neglect finite-size effects, it is straightforward to
demonstrate that optimally located facilities in a uni-
formly populated space lie on the vertices of a regular
triangular lattice [15]. It has been conjectured that for
a non-uniform population there is a general class of map
projections that will transform the pattern of facilities
to a similarly regular structure [16]. The obvious candi-
date projections are population density equalizing maps
or cartograms, i.e., maps in which the sizes of geographic
regions are proportional to the populations of those re-
gions [17, 18, 19, 20]. Densely populated regions appear
larger on a cartogram than on an equal-area map such
as Fig. 1, and the opposite is true for sparsely populated
regions. Since most facilities are located where the pop-
ulation density is high, a cartogram projection will effec-
tively reduce the facility density in populated areas and
increase it where the population density is low. There-
fore, one might expect that a cartogram leads to a more
uniform facility density than that shown in Fig. 1. And
indeed some authors have used population density equal-
izing projections as the basis for facility location meth-
ods [21, 22].

In Fig. 3a we show the facilities of Fig. 1 on a pop-
ulation density equalizing cartogram created using the
diffusion-based technique of [23]. Although the popula-

tion density is now equal everywhere, the facility density
is obviously far from uniform. A comparison between
Fig. 1 and 3a reveals that we have overshot the mark
since the facilities are now concentrated in areas where
there are few in actual space.

Equation (6) makes clear what is wrong with this ap-
proach. Since D grows slower than linearly with ρ, a
projection that equalizes ρ will necessarily overcorrect
the density of facilities. On the other hand, based on
our earlier result, we would expect a projection equal-
izing ρ2/3 instead of ρ to spread out the facilities ap-
proximately uniformly. Hence, one way to determine the
actual exponent for the density of facilities is to create
cartograms that equalize ρx, x ≥ 0, and find the value
of x that minimizes the variation of the Voronoi cell sizes
on the cartogram. This approach does not suffer from
the shortcomings of our previous method based on the
doubly-logarithmic plot in Fig. 2, since we neither use
the Voronoi cells to calculate the population density nor
take logarithms. One might argue that the Voronoi cells
on the cartogram are not equal to the projections of the
Voronoi cells in actual space, which is true—the cells gen-
erally will not even remain polygons under the cartogram
transformation. The difference, however, is small if the
density does not vary much between neighboring facili-
ties.

In Fig. 4 we show the measured coefficient of variation
(i.e., the ratio of the standard deviation to the mean) for
Voronoi cell sizes on ρx cartograms as a function of the
exponent x (solid curve). As the figure shows, the mini-
mum is indeed attained at or close to the predicted value

of x = 2
3
. Figure 3b shows the corresponding cartogram

for this exponent. This projection finds a considerably
better compromise between regions of high and low pop-
ulation density than either Fig. 1 or 3a.

For comparison, we have also made the same measure-
ment for 5000 points distributed randomly in proportion
to population. Since the density of these points is by
definition equal to ρ, we expect the minimum standard
deviation of the cell areas to occur on a cartogram with
x = 1. Our numerical results for this case (dotted curve
in Fig. 4) agree well with this prediction. Comparing
the solid and the dotted curves in the plot, we see that
not only the positions of the minima differ, but also the
minimal values themselves. The lower standard devia-
tion for the p-median distribution indicates that opti-
mally located facilities are not randomly distributed with
a density ∝ ρ2/3. Instead, the optimally located facili-
ties occupy space in a relatively regular fashion reminis-
cent of the triangular lattice of the uniform population
case [15, 24].

IV. OPTIMAL NETWORKS OF FACILITIES

In many cases of practical interest, finding the opti-
mal location of facilities is only half the problem. Often
facilities are interconnected forming networks, such as
airports connected by flights or warehouses connected by
truck deliveries. In these cases, one would also like to find
the best way to connect the facilities so as to optimize
the performance of the system as a whole.

Consider then a situation in which our facilities form
the nodes or vertices of a network and connections be-
tween them form the edges. The efficiency of this net-
work, as we will consider it here, depends on two factors.
On the one hand, the smaller the sum of the lengths of
all edges, the cheaper the network is to construct and
maintain. On the other hand, the shorter the distances
through the network between vertices, the faster the net-
work can perform its intended function (e.g., transporta-
tion of passengers between nodes or distribution of mail
or cargo). These two objectives generally oppose each
other: a network with few and short connections will
not provide many direct links between distant points and
paths through the network will tend to be circuitous,
while a network with a large number of direct links is
usually expensive to build and operate. The optimal so-
lution lies somewhere between these extremes.

Let us define lij to be the shortest geographic distance
between two vertices i and j measured along the edges
in the network. If there is no path between i and j, we
formally set lij = ∞. Introducing the adjacency matrix
A with elements Aij = 1 if there is an edge between
i and j and Aij = 0 otherwise, we can write the total
length of all edges as

T =
∑

i<j

Aij lij . (7)
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FIG. 3: Near-optimal facility location on (a) a cartogram equalizing the population density ρ and (b) a cartogram equalizing ρ2/3.
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FIG. 4: The coefficient of variation (i.e., the ratio of the stan-
dard deviation to the mean) for Voronoi cell areas as they
appear on a cartogram, against the exponent x of the under-
lying density ρx.

We assume this quantity to be proportional to the cost
of maintaining the network. Clearly this assumption is
only approximately correct; networked systems in the
real world will have many factors affecting their mainte-
nance costs that are not accounted for here. It is however
the obvious first assumption to make and, as we will see,
can provide us with good insight about network struc-
ture.

The typical cost of shipping a commodity or traveling
through the network depends on the distances lij as well
as the amount of traffic wij (e.g., weight of cargo, number
of passengers, etc.) that flows between vertices i and j.
In a spirit similar to our assumption about maintenance
costs, we assume that the total travel cost is given by

Z =
∑

i<j

wij lij . (8)

We assume that wij is proportional to the product of

populations in the Voronoi cells Vi and Vj around i and j,
so that

wij =

∫

Vi

ρ(r) d2r

∫

Vj

ρ(r′) d2r′ (9)

in appropriate units. And the total cost of running the
network is proportional to the sum T + γZ with γ ≥ 0 a
constant that measures the relative importance of the two
terms. Then the optimal network is the one minimizing
this sum [25, 26].

Using again the conterminous United States as an ex-
ample, we have first determined the optimal placement
of p = 200 facilities which we then try to connect to-
gether optimally. The number of edges in the network
depends on the parameter γ. If γ → 0, the cost of
travel Z vanishes and the optimal network is the one
that simply minimizes the total length of edges. That
is, it is the minimum spanning tree, with exactly p − 1
edges between the p vertices. Conversely, if γ → ∞ then
Z dominates the optimization, regardless of the cost T
of maintaining the network, so that the optimum is a
fully connected network or clique with all 1

2
p(p− 1) pos-

sible edges present. For intermediate values of γ, finding
the optimal network is a non-trivial combinatorial opti-
mization problem, for which we can derive good, though
usually not perfect, solutions using again the method of
simulated annealing [12].

There is, however, another complicating factor. In
Eq. (8) we assumed that travel costs are proportional to
geometric distances between vertices, which is a plausible
starting point. In a road network, for example, the quick-
est and cheapest route is usually not very different from
the shortest route measured in kilometers. But in other
networks travel costs can also depend on the number of
legs in a journey. In an airline network, for instance, pas-
sengers often spend a lot of time waiting for connecting
flights, so that they care both about the total distance
they travel and the number of stopovers they have to
make. Similarly, the total time required for an Internet
packet to reach its destination depends on two factors,
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FIG. 5: Optimal networks for the population distribution of the United States with p = 200 vertices for different values of δ
and with γ = 10−14.

the propagation delay proportional to the physical dis-
tance between vertices (computers and routers) and the
store and forward delays introduced by the routers, which
grow with the number of intermediate vertices.

To account for such situations, we generalize our def-
inition of the length of an edge and assign to each edge
an effective length

l̃ij = (1 − δ)lij + δ (10)

with 0 ≤ δ ≤ 1. The parameter δ determines the user’s
preference for measuring distance in terms of kilometers
or legs. Now we define the effective distance between
two (not necessarily adjacent) vertices to be the sum of
the effective lengths of all edges along a path between
them, minimized over all paths. The travel cost is then
proportional to the sum of all effective path lengths

Z =
∑

i<j

wij l̃ij , (11)

and the optimal network for given γ and δ is again the one
that minimizes the total cost T + γZ. (Since the second
term in Eq. (10) is dimensionless, we normalize the length
appearing in the first term by setting the average “crow
flies” distance between a vertex and its nearest neighbor
equal to one.)

In Fig. 5 we show the results of the application of this
process to the lower 48 United States. When δ = 0 pas-

sengers (or cargo shippers) care only about total kilome-
ters traveled and the optimal network strongly resembles
a network of roads, such as the US interstate network.
As δ increases the number of legs in a journey starts
playing a more important role and the approximate sym-
metry between the vertices is broken as the network be-
gins to form hubs. Around δ = 0.5 we see networks
emerging that constitute a compromise between the con-
venience of direct local connections and the efficiency of
hubs, while by δ = 0.8 the network is dominated by a few
large hubs in Philadelphia, Columbus, Chicago, Kansas
City, and Atlanta that handle the bulk of the traffic. On
the highly populated Californian coast, two smaller hubs
around San Francisco and Los Angeles are visible. In
the extreme case δ = 1, where the user cares only about
number of legs and not about distance at all, the network
is dominated by a single central hub in Cincinnati, with
a few smaller local hubs in other locations such as Los
Angeles.

V. CONCLUSIONS

We have in this paper studied the problem of optimal
facility location, also called the p-median problem, which
consists of choosing positions for p facilities in geographic
space such that the mean distance between a member
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of the population and the nearest facility is minimized.
Analytic arguments indicate that the optimal density of
facilities should be proportional to the population den-
sity to the two-thirds power. We have confirmed this
relation by solving the p-median problem numerically
and projecting the facility locations on density-equalizing
maps. We have also considered the design of optimal net-
works to connect our facilities together. Given optimally
located facilities, we have searched numerically for the
network configuration that minimizes the sum of main-
tenance and travel costs. A simple two-parameter model
allows us to take different user preferences into account.
The model gives us intuition about a number of situations

of practical interest, such as the design of transportation
networks, parcel delivery services, and the Internet back-
bone.
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