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Preface

Over the past decade there has been a growing public fascination with the complex
“connectedness” of modern society. This connectedness is found in many incarnations: in
the rapid growth of the Internet and the Web, in the ease with which global communication
now takes place, and in the ability of news and information as well as epidemics and financial
crises to spread around the world with surprising speed and intensity. These are phenomena
that involve networks, incentives, and the aggregate behavior of groups of people; they are
based on the links that connect us and the ways in which each of our decisions can have
subtle consequences for the outcomes of everyone else.

Motivated by these developments in the world, there has been a coming-together of mul-
tiple scientific disciplines in an effort to understand how highly connected systems operate.
Each discipline has contributed techniques and perspectives that are characteristically its
own, and the resulting research effort exhibits an intriguing blend of these different flavors.
From computer science and applied mathematics has come a framework for reasoning about
how complexity arises, often unexpectedly, in systems that we design; from economics has
come a perspective on how people’s behavior is affected by incentives and by their expec-
tations about the behavior of others; and from sociology and the social sciences have come
insights into the characteristic structures and interactions that arise within groups and pop-
ulations. The resulting synthesis of ideas suggests the beginnings of a new area of study,
focusing on the phenomena that take place within complex social, economic, and technolog-
ical systems.

This book grew out of a course that we developed at Cornell, designed to introduce
this topic and its underlying ideas to a broad student audience at an introductory level.
The central concepts are fundamental and accessible ones, but they are dispersed across the
research literatures of the many different fields contributing to the topic. The principal goal
of this book is therefore to bring the essential ideas together in a single unified treatment,

and to present them in a way that requires as little background knowledge as possible.

D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning about a Highly Connected World.
Cambridge University Press, 2010. Draft version: June 10, 2010.



i PREFACE

Overview. The book is intended to be used at the introductory undergraduate level, and
as such it has no formal prerequisites beyond a level of comfort with basic mathematical
definitions at a pre-calculus level. In keeping with the introductory style, many of the ideas
are developed in special cases and through illustrative examples; our goal is to take concepts
and theories that are complex in their full generality, and to provide simpler formulations
where the essential ideas still come through.

In our use of the book, we find that many students are also interested in pursuing some
of these topics more deeply, and so it is useful to provide pathways that lead from the
introductory formulations into the more advanced literature on these topics. With this in
mind, we provide optional sections labeled Advanced Material at the ends of most chapters.
These advanced sections are qualitatively different from the other sections in the book; some
draw on more advanced mathematics, and their presentation is at a more challenging level
of conceptual complexity. Aside from the additional mathematical background required,
however, even these advanced sections are self-contained; they are also strictly optional, in
the sense that nothing elsewhere in the book depends on them.

Synopsis. The first chapter of the book provides a detailed description of the topics and
issues that we cover. Here we give a briefer summary of the main focus areas.

The book is organized into seven parts of three to four chapters each. Parts I and II
discuss the two main theories that underpin our investigations of networks and behavior:
graph theory, which studies network structure, and game theory, which formulates models
of behavior in environments where people’s decisions affect each other’s outcomes. Part III
integrates these lines of thought into an analysis of the network structure of markets, and
the notion of power in such networks. Part IV pursues a different integration, discussing
the World Wide Web as an information network, the problem of Web search, and the de-
velopment of the markets that currently lie at the heart of the search industry. Parts V
and VI study the dynamics of some of the fundamental processes that take place within
networks and groups, including the ways in which people are influenced by the decisions
of others. Part V pursues this topic at an aggregate scale, where we model interactions
between an individual and the population as a whole. Part VI continues the analysis at the
more fine-grained level of network structure, beginning with the question of influence and
moving on to the dynamics of search processes and epidemics. Finally, Part VII considers
how we can interpret fundamental social institutions — including markets, voting systems,
and property rights — as mechanisms for productively shaping some of the phenomena we’ve
been studying.

Use of the Book. The book is designed for teaching, as well as for any reader who finds
these topics interesting and wants to pursue them independently at a deeper level.
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Several different types of courses can be taught from this book. When we teach from
it at Cornell, the students in our class come from many different majors and have a wide
variety of technical backgrounds; this diversity in the audience has served as our primary
calibration in setting the introductory level of the book. Our course includes a portion of the
material from each chapter; for the sake of concreteness, we provide the approximate weekly
schedule we follow below. (There are three 50-minute lectures each week, except that weeks
6 and 7 of our course contain only two lectures each. In each lecture, we don’t necessarily
include all the details from each indicated section.)

Week 1: Ch. 1; Ch. 2.1-2.3; Ch. 3.1-3.3,3.5,4.1
Week 2: Ch. 5.1-5.3; Ch. 6.1-6.4; Ch. 6.5-6.9

Week 3: Ch. 8.1-8.2; Ch. 9.1-9.6; Ch. 10.1-10.2
Week 4: Ch. 10.3; Ch. 10.4-10.5; Ch. 11.1-11.2
Week 5: Ch. 11.3-11.4; Ch. 12.1-12.3; Ch. 12.5-12.6
Week 6: Ch. 12.7-12.8; Ch. 13

Week 7: Ch. 14.1-14.2; Ch. 14.3-14.4

Week 8: Ch. 15.1-15.2; Ch. 15.3-15.4; Ch. 15.5-15.6,15.8
Week 9: Ch. 16.1-16.2; Ch. 16.3-16.4; Ch. 16.5-16.7
Week 10: Ch. 17.1-17.2; Ch. 17.3-17.5; Ch. 18

Week 11: Ch. 19.1-19.2; Ch. 19.3; Ch. 19.4,19.6
Week 12: Ch. 22.1-22.4; Ch. 22.5-22.9; Ch. 7.1-7.4
Week 13: Ch. 20.1-20.2; Ch. 20.3-20.6; Ch. 21.1-21.3
Week 14: Ch. 23.1-23.5; Ch. 23.6-23.9; Ch. 24

There are many other paths that a course could follow through the book. First, a number
of new courses are being developed at the interface of computer science and economics,
focusing particularly on the role of economic reasoning in the design and behavior of modern
computing systems. The book can be used for such courses in several ways, building on
four chapters as a foundation: Chapter 2 on graphs, Chapter 6 on games, Chapter 9 on
auctions, and Chapter 10 on matching markets. From here, a more expansive version of
such a course could cover the remainder of Parts II and III, all of Parts IV and V, Chapter
19, and portions of Part VII. A more focused and potentially shorter version of such a course
concerned principally with auctions, markets, and the on-line applications of these ideas
could be constructed from Chapters 2, 6, 9, 10, 13, 15, 17, 18, and 22, and drawing on parts
of Chapters 11, 12, 14, 16, and 19. When these courses are taught at a more advanced level,
the advanced sections at the ends of most of these chapters would be appropriate material;
depending on the exact level of the course, the text of many of these chapters could be used
to lead into the more advanced analysis in their respective final sections.

In a different but related direction, new courses are also being developed on the topic of

social computing and information networks. The book can be used for courses of this type by
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emphasizing Chapters 2-6, 13-14, 17-20, and 22; many such courses also include sponsored
search markets as part of their coverage of the Web, which can be done by including Chapters
9, 10, and 15 as well. The advanced sections in the book can play a role here too, depending
on the level of the course.

Finally, portions of the book can serve as self-contained “modules” in courses on broader
topics. To pick just a few examples, one can assemble such modules on network algorithms
(Sections 2.3, 3.6, 5.5, 8.3, 10.6, 14.2-3, 14.6, 15.9, 20.3-4, and 20.7); applications of game
theory (Chapters 6-9, 11, Sections 12.9, 15.3-15.6, 19.2-19.3, 19.5-19.7, 23.7-23.9); social net-
work analysis (Chapters 2-5, 12.1-12.3, 12.5-12.8, 18-20); the role of information in economic
settings (Chapters 16, 22, Sections 23.6-23.10); and the analysis of large-scale network data
sets (Sections 2.3, 3.2-3.3, 3.6, 4.4, 5.3, 13.3-13.4, 14.2-14.5, 18.2, 18.5, 20.5). Most of these
modules use graphs and/or games as fundamental building blocks; for students not already
familiar with these topics, Chapters 2 and 6 respectively provide self-contained introductions.

Acknowledgements. Our work on this book took place in an environment at Cornell that
was particularly conducive to interaction between computing and the social sciences. Our
collaboration began as part of a project with Larry Blume, Eric Friedman, Joe Halpern,
Dan Huttenlocher, and Eva Tardos funded by the National Science Foundation, followed by
a campus-wide “theme project” on networks sponsored by Cornell’s Institute for the Social
Sciences, with a group that included Larry and Dan together with John Abowd, Geri Gay,
Michael Macy, Kathleen O’Connor, Jeff Prince, and David Strang. Our approach to the
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colleagues, a group that includes some of our closest professional collaborators.
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undergraduate audience as well. We were intrigued by the prospect of combining different
perspectives that hadn’t previously appeared together — a process that would be educational
not only to the students in the course but to us as well. Creating and teaching this new
interdisciplinary course was made possible by the support of our departments, Computer
Science and Economics, and by support from the Solomon Fund at Cornell University.
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lar, we thank Daron Acemoglu (MIT), Lada Adamic (Michigan), Allan Borodin (Toronto),
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Chapter 1

Overview

Over the past decade there has been a growing public fascination with the complex
“connectedness” of modern society. At the heart of this fascination is the idea of a network
— a pattern of interconnections among a set of things — and one finds networks appearing
in discussion and commentary on an enormous range of topics. The diversity of contexts in
which networks are invoked is in fact so vast that it’s worth deferring precise definitions for
a moment while we first recount a few of the more salient examples.

To begin with, the social networks we inhabit — the collections of social ties among friends
— have grown steadily in complexity over the course of human history, due to technological
advances facilitating distant travel, global communication, and digital interaction. The past
half-century has seen these social networks depart even more radically from their geographic
underpinnings, an effect that has weakened the traditionally local nature of such structures
but enriched them in other dimensions.

The information we consume has a similarly networked structure: these structures too
have grown in complexity, as a landscape with a few purveyors of high-quality informa-
tion (publishers, news organizations, the academy) has become crowded with an array of
information sources of wildly varying perspectives, reliabilities, and motivating intentions.
Understanding any one piece of information in this environment depends on understanding
the way it is endorsed by and refers to other pieces of information within a large network of
links.

Our technological and economic systems have also become dependent on networks of
enormous complexity. This has made their behavior increasingly difficult to reason about,
and increasingly risky to tinker with. It has made them susceptible to disruptions that
spread through the underlying network structures, sometimes turning localized breakdowns
into cascading failures or financial crises.
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Figure 1.1: The social network of friendships within a 34-person karate club [421].

The imagery of networks has made its way into many other lines of discussion as well:
Global manufacturing operations now have networks of suppliers, Web sites have networks
of users, and media companies have networks of advertisers. In such formulations, the
emphasis is often less on the structure of the network itself than on its complexity as a large,
diffuse population that reacts in unexpected ways to the actions of central authorities. The
terminology of international conflict has come to reflect this as well: for example, the picture
of two opposing, state-supported armies gradually morphs, in U.S. Presidential speeches, into
images of a nation facing “a broad and adaptive terrorist network” [296], or “at war against
a far-reaching network of violence and hatred” [328].

1.1 Aspects of Networks

How should we think about networks, at a more precise level, so as to bring all these issues
together? In the most basic sense, a network is any collection of objects in which some pairs
of these objects are connected by links. This definition is very flexible: depending on the
setting, many different forms of relationships or connections can be used to define links.
Because of this flexibility, it is easy to find networks in many domains, including the ones
we’ve just been discussing. As a first example of what a network looks like, Figure 1.1 depicts
the social network among 34 people in a university karate club studied by the anthropologist
Wayne Zachary in the 1970s. The people are represented by small circles, with lines joining
the pairs of people who are friends outside the context of the club. This is the typical way
in which networks will be drawn, with lines joining the pairs of objects that are connected
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Figure 1.2: Social networks based on communication and interaction can also be
constructed from the traces left by on-line data. In this case, the pattern of e-
mail communication among 436 employees of Hewlett Packard Research Lab is su-
perimposed on the official organizational hierarchy [6]. (Image from http://www-
personal.umich.edu/ ladamic/img/hplabsemailhierarchy.jpg)

by links.

Later in this chapter we’ll discuss some of the things one can learn from a network such as
the one in Figure 1.1, as well as from larger examples such as the ones shown in Figures 1.2—
1.4. These larger examples depict, respectively, e-mail exchanges among employees of a
company; loans among financial institutions; and links among blogs on the Web. In each
case, links indicate the pairs who are connected (specifically, people connected by e-mail
exchange, financial institutions by a borrower-lender relationship, and blogs through a link
on the Web from one to the other).

Simply from their visual appearance, we can already see some of the complexity that net-
work structures contain. It is generally difficult to summarize the whole network succinctly;
there are parts that are more or less densely interconnected, sometimes with central “cores”
containing most of the links, and sometimes with natural splits into multiple tightly-linked
regions. Participants in the network can be more central or more peripheral; they can strad-
dle the boundaries of different tightly-linked regions or sit squarely in the middle of one.
Developing a language for talking about the typical structural features of networks will be
an important first step in understanding them.
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Figure 1.3: The network of loans among financial institutions can be used to analyze the roles that different
participants play in the financial system, and how the interactions among these roles affect the health of
individual participants and the system as a whole The network here is annotated in a way that reveals its

dense core, according to a scheme we will encounter in Chapter 13. (Image from Bech and Atalay [50].)

Behavior and Dynamics. But the structure of the network is only a starting point.
When people talk about the “connectedness” of a complex system, in general they are really
talking about two related issues. One is connectedness at the level of structure — who is
linked to whom — and the other is connectedness at the level of behavior — the fact that
each individual’s actions have implicit consequences for the outcomes of everyone in the
system.

This means that in addition to a language for discussing the structure of networks, we
also need a framework for reasoning about behavior and interaction in network contexts.
And just as the underlying structure of a network can be complex, so too can the coupled

behavior of its inhabitants. If individuals have strong incentives to achieve good outcomes,
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Figure 1.4: The links among Web pages can reveal densely-knit communities and prominent
sites. In this case, the network structure of political blogs prior to the 2004 U.S. Presiden-
tial election reveals two natural and well-separated clusters [5]. (Image from http://www-
personal.umich.edu/ ladamic/img/politicalblogs.jpg)

then not only will they appreciate that their outcomes depend on how others behave, but they
will take this into account in planning their own actions. As a result, models of networked
behavior must take strategic behavior and strategic reasoning into account.

A fundamental point here is that in a network setting, you should evaluate your actions
not in isolation, but with the expectation that the world will react to what you do. This
means that cause-effect relationships can become quite subtle. Changes in a product, a Web
site, or a government program can seem like good ideas when evaluated on the assumption
that everything else will remain static, but in reality such changes can easily create incentives
that shift behavior across the network in ways that were initially unintended.

Moreover, such effects are at work whether we are able to see the network or not. When
a large group of people is tightly interconnected, they will often respond in complex ways
that are only apparent at the population level, even though these effects may come from
implicit networks that we do not directly observe. Consider, for example, the way in which
new products, Web sites, or celebrities rise to prominence — as illustrated, for example, by
Figures 1.5 and 1.6, which show the growth in popularity of the social media sites YouTube
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Figure 1.5: The rapidly growing popularity of YouTube is characteristic of the way in which
new products, technologies, or innovations rise to prominence, through feedback effects in
the behavior of many individuals across a population. The plot depicts the number of
Google queries for YouTube over time. The image comes from the site Google Trends
(http://www.google.com/trends?q=youtube); by design, the units on the y-axis are sup-
pressed in the output from this site.

and Flickr over the past several years. What we see in these figures is a growing awareness
and adoption of a new innovation that is visible in aggregate, across a whole population.
What are the underlying mechanisms that lead to such success? Standard refrains are
often invoked in these situations: the rich get richer; winners take all; small advantages are
magnified to a critical mass; new ideas get attention that becomes “viral.” But the rich don’t
always get richer and small advantages don’t always lead to success. Some social networking
sites flourish, like Facebook, while others, like SixDegrees.com, vanish. To understand how
these processes work, and how they are realized through the interconnected actions of many

people, we need to study the dynamics of aggregate behavior.

A Confluence of Ideas. Understanding highly connected systems, then, requires a set
of ideas for reasoning about network structure, strategic behavior, and the feedback effects
they produce across large populations. These are ideas that have traditionally been dis-
persed across many different disciplines. However, in parallel with the increasing public
interest in networks, there has been a coming-together of scientific fields around the topic of
network research. Each of these fields brings important ideas to the discussion, and a full
understanding seems to require a synthesis of perspectives from all of them.

One of our central goals in this book is to help bring about such a synthesis, combining
approaches that have traditionally been pursued separately. From computer science, ap-
plied mathematics, and operations research we draw on a language for talking about the

complexity of network structure, information, and systems with interacting agents. From
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Figure 1.6: This companion to Figure 1.5 shows the rise of the social media site Flickr; the
growth in popularity has a very similar pattern to that of other sites including YouTube.
(Image from Google Trends, http://www.google.com/trends?q=flickr)

economics we draw on models for the strategic behavior of individuals who interact with
each other and operate as members of larger aggregates. From sociology — particularly the
more mathematical aspects concerned with social networks — we draw on a broad set of
theoretical frameworks for talking about the structure and dynamics of social groups.

And the overall picture can help fill in pieces that are arguably missing from the intel-
lectual landscape of each of these disciplines. Economics has developed rich theories for the
strategic interaction among small numbers of parties, as well as for the cumulative behavior
of large, homogeneous populations. The challenge it faces is that much of economic life
takes place in the complex spectrum between these extremes, with macroscopic effects that
arise from an intricate pattern of localized interactions. Sociology has developed some of the
fundamental insights into the structure of social networks, but its network methodology has
been refined in the domains and scales where data-collection has traditionally been possible
— primarily, well-defined groups with tens to hundreds of people. The explosion of new con-
texts where we find network data and network applications — including enormous, digitally
mediated ones — leads to new opportunities for how we can pose questions, formulate theo-
ries, and evaluate predictions about social networks. Computer science, with the rise of the
Web and social media, has had to deal with a world in which the design constraints on large
computing systems are not just technological ones but also human ones — imposed by the
complex feedback effects that human audiences create when they collectively use the Web for
communication, self-expression, and the creation of knowledge. A fully satisfactory theory
of network structure and behavior has the potential to address the simultaneous challenges
that all these fields are encountering.

A recurring theme underlying these challenges is the way in which networks span many
different levels of scale and resolution. There are interesting questions that reach from the
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Figure 1.7: From the social network of friendships in the karate club from Figure 1.1, we
can find clues to the latent schism that eventually split the group into two separate clubs
(indicated by the two different shadings of individuals in the picture).

scale of small groups, such as the 34-person social network in Figure 1.1, all the way up to
the level of whole societies or economies, or to the body of global knowledge represented by
the Web. We will think of networks both at the level of explicit structures, like those in
Figures 1.1-1.4, and at the level of aggregate effects, like the popularity curves in Figures 1.5
and 1.6. As we look at networks of increasing scales, it becomes correspondingly more
appropriate to take aggregate models into account. But the ability to work with massive
network datasets has also enriched the picture, making it possible to study networks with
billions of interacting items at a level of resolution where each connection is recorded. When
an Internet search engine identifies the most useful pages from an index of the entire Web,
for example, it is doing precisely this in the context of a specific task. Ultimately, it is an
ongoing and challenging scientific problem to bridge these vastly different levels of scale, so

that predictions and principles from one level can be reconciled with those of others.

1.2 Central Themes and Topics

With this set of ideas in mind, we now introduce some of the main topics the book will
consider, and the ways in which these topics reinforce the underlying principles of networks.
We begin with the two main bodies of theory that we will be building on — graph theory
and game theory. These are theories of structure and behavior respectively: Graph theory

is the study of network structure, while game theory provides models of individual behavior
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in settings where outcomes depend on the behavior of others.

Graph Theory. In our discussion of graph theory, we will focus particularly on some of
the fundamental ideas from social network analysis, framing a number of graph-theoretic
concepts in these terms. The networks in Figures 1.1 and 1.2 hint at some of these ideas. In
the corporate e-mail communication network from Figure 1.2, for example, we can see how
the communication is balanced between staying within small organizational units and cutting
across organizational boundaries. This is an example of a much more general principle in
social networks — that strong ties, representing close and frequent social contacts, tend to
be embedded in tightly-linked regions of the network, while weak ties, representing more
casual and distinct social contacts, tend to cross between these regions. Such a dichotomy
suggests a way of thinking about social networks in terms of their dense pockets of strong ties,
and the ways in which they interact with each other through weaker ties. In a professional
setting, it suggests a strategy for navigating one’s way through the social landscape of a
large organization, by finding the structural holes between parts of the network that interact
very little with each other. At a global scale, it suggests some of the ways in which weak
ties can act as “short-cuts” that link together distant parts of the world, resulting in the
phenomenon colloquially known as the siz degrees of separation.

Social networks can also capture the sources of conflict within a group. For example,
latent conflicts are at work in the karate-club social network from Figure 1.1. The people
labeled 1 and 34 (the darker circles) are particularly central in the network of friendships,
with many connections to other people. On the other hand, they are not friends with each
other, and in fact most people are only friends with one or the other of them. These two
central people were, respectively, the instructor and the student founder of the club, and this
pattern of non-interacting clusters was the most visible symptom of a conflict between them
and their factions that ultimately splintered the group into two rival karate clubs, as shown
in Figure 1.7. Later, we will see how the theory of structural balance can be used to reason
about how fissures in a network may arise from the dynamics of conflict and antagonism at
a purely local level.

Game Theory. Our discussion of game theory starts from the observation that there
are numerous settings in which a group of people must simultaneously choose how to act,
knowing that the outcome will depend on the joint decisions made by all of them. One
natural example is the problem of choosing a driving route through a network of highways
at a time when traffic is heavy. If you're a driver in such a situation, the delays you experience
depend on the pattern of traffic congestion arising not just from your choice of route, but
from the choices made by all other drivers as well. In this example, the network plays

the role of a shared resource, and the combined actions of its users can either congest this
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Figure 1.8: In a network representing international trade, one can look for countries that
occupy powerful positions and derive economic benefits from these positions [262]. (Image
from http://www.cmu.edu/joss/content /articles/volume4 /KrempelPlumper.html)

resource or use it more efficiently. In fact, the interactions among people’s behavior can lead
to counter-intuitive effects here: for instance, adding resources to a transportation network
can in fact create incentives that seriously undermine its efficiency, in a phenomenon known
as Braess’s Paradoz [76].

Another example that will recur in several settings throughout the book is the problem
of bidding in an auction. If a seller is trying to sell a single item using an auction, then the
success of any one bidder in the auction (whether she gets the item, and how much she pays)
depends not just on how she bids but on how everyone else bids as well — and so an optimal
bidding strategy should take this into account. Here too there are counter-intuitive effects at
work: for example, if the seller introduces more aggressive pricing rules into the auction, he
can make the strategic behavior of the bidders much more complex, and in particular induce
optimal bidding that offsets whatever gains he might have expected to make from the new
rules. We will find that auctions represent a basic kind of economic interaction that can be
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Figure 1.9: In some settings, such as this map of Medieval trade routes, phys-
ical networks constrain the patterns of  interaction, giving certain participants
an intrinsic economic advantage based on their network position. (Image  from

http://upload.wikimedia.org/wikipedia/commons/e/el /Late_Medieval_Trade_Routes.jpg.)

directly generalized to more complex patterns of interactions on networks.

As a general part of our investigation of game theory, we will abstract such situations
with inter-dependent behavior into a common framework, where a collection of individuals
must each commit to a strategy, thereby receiving a payoff that depends on the strategies
chosen by everyone. Interpreting our preceding examples in this light, the strategies available
to a driver on a set of highways consist of the different options for routes he can take, and
the payoff to this driver is based on his resulting travel time. In an auction, the strategies are
the different choices for how to bid, and the payoff to a bidder is the difference between the
value of the goods she receives and the price she pays. This general framework allows us to
make predictions about how people will behave in a range of such situations. A fundamental

part of this framework will be the notion of equiltbrium — a state that is “self-reinforcing,”
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in that it provides no individual with an incentive to unilaterally change his or her strategy,
even knowing how others will behave.

Markets and Strategic Interaction on Networks. Once we've developed graph theory
and game theory, we can combine them to produce richer models of behavior on networks.
One natural setting where we can explore this is in models of trade and other forms of
economic activity. The interactions among buyers and sellers, or pairs of counterparties to a
trade or loan, naturally forms a network. In Figure 1.3 we saw an example of such a network,
with links between banks engaging in a loan. Figure 1.8 shows another example: a network
representation of international trade among 28 countries [262], with the size of each country
depicting its total amount of trade, and the thickness of each link connecting two countries
indicating the amount of trade between them.

Where do these networks come from? In some cases, they are the traces of what happens
when each participant seeks out the best trading partner they can, guided by how highly
they value different trading opportunities. In other cases, they also reflect fundamental
underlying constraints in the market that limit the access of certain participants to each
other. In modern markets, these constraints could be institutional restrictions based on
regulations; in other settings, they could be based on physical constraints like geography.
For example, Figure 1.9 shows a map of trade routes in medieval Europe: when the physical
movement of goods is costly and difficult, the economic outcome for different cities can
depend significantly on where they are located in the underlying transportation network.

In all these settings, then, the network structure encodes a lot about the pattern of
trade, with the success levels of different participants affected by their positions in the
network. Having a powerful position, however, depends not just on having many connections
providing different options, but also on more subtle features — such as the power of the
other individuals to which one is connected. We will see that this idea of network positions
conferring power has been extended much more broadly, reaching beyond just economic
exchange to suggest how power imbalances in many forms of social relationships may have
their roots in the network patterns that the relationships form.

Information networks. The information we deal with on-line has a fundamental network
structure. Links among Web pages, for example, can help us to understand how these pages
are related, how they are grouped into different communities, and which pages are the most
prominent or important. Figure 1.4 illustrates some of these issues: it shows a network of
links among political blogs constructed by Lada Adamic and Natalie Glance in the period
leading up to the 2004 U.S. Presidential election [5]. Although the network is too large
here to be able to really see the detailed structure around individual blogs, the image and

its layout does convey the clear separation of the blogging network into two large clusters,
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which turn out to closely correspond to the sets of liberal and conservative blogs respectively.
From more detailed analysis of the raw linkage data underlying the image, it is possible to
pick out the prominent blogs within each of these clusters.

Current Web search engines such as Google make extensive use of network structure in
evaluating the quality and relevance of Web pages. For producing search results, these sites
evaluate the prominence of a Web page not simply based on the number of links it receives,
but based on more subtle aspects of its position in the network. For example, a page can be
viewed as more prominent if it receives links from pages that are themselves prominent; this
is a circular kind of notion in which prominence is defined in terms of itself, but we will see
that this circularity can be resolved through careful definitions that are based on a kind of
equilibrium in the link structure.

The interaction between search engines and the authors of Web pages is also a compelling
example of a system where “connectedness” at the level of behavior produces interesting
effects. Whenever a search engine introduces a new method for evaluating Web pages,
deciding which pages to rank highly in its results, the creators of Web content react to this:
they optimize what they put on the Web so as to try achieving a high rank under the new
method. As a result, changes to a search engine can never be designed under the assumption
that the Web will remain static; rather, the Web inevitably adapts to the ways in which
search engines evaluate content, and search methods must be developed with these feedback
effects in mind.

This inherently game-theoretic interaction existed in latent form even in the early days of
the Web. Over time it became more explicit and formalized, through the design of markets
for advertising based on search, with advertising space allocated by auction mechanisms.
Today, such markets are a principal source of revenue for the main search engines.

Network Dynamics: Population Effects. If we observe a large population over time,
we’ll see a recurring pattern by which new ideas, beliefs, opinions, innovations, technologies,
products, and social conventions are constantly emerging and evolving. Collectively, we
can refer to these as social practices [382] (holding opinions, adopting products, behaving
according to certain principles) that people can choose to adopt or not. As we watch a
group or society over time, we’ll see that new practices can be introduced and either become
popular or remain obscure; meanwhile, established practices can persist or potentially fade
over time. If we think back to Figures 1.5 and 1.6, they show the adoption of particular
practices over time — the use of two very popular social media sites (taking the total number
of Google queries for these sites over time as proxies for their popularity). Figure 1.10 depicts
an analogous curve for the social-networking site MySpace, where we see a life cycle of rapid
adoption followed by a slower period of decline, as MySpace’s dominance was challenged by
newer competitors including Facebook.
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Figure 1.10: Cascading adoption of a new technology or service (in this case, the social-
networking site MySpace in 2005-2006) can be the result of individual incentives to use the
most widespread technology — either based on the informational effects of seeing many other
people adopt the technology, or the direct benefits of adopting what many others are already
using. (Image from Google Trends, http://www.google.com/trends?q=myspace)

The way in which new practices spread through a population depends in large part on
the fact that people influence each other’s behavior. In short, as you see more and more
people doing something, you generally become more likely to do it as well. Understanding
why this happens, and what its consequences are, is a central issue for our understanding of
networks and aggregate behavior.

At a surface level, one could hypothesize that people imitate the decisions of others simply
because of an underlying human tendency to conform: we have a fundamental inclination
to behave as we see others behaving. This is clearly an important observation, but as an
explanation it leaves some crucial questions unresolved. In particular, by taking imitation as
a given, we miss the opportunity to ask why people are influenced by the behavior of others.
This is a broad and difficult question, but in fact it is possible to identify multiple reasons
why even purely rational agents — individuals with no a prior: desire to conform to what
others are doing — will nonetheless copy the behavior of others.

One class of reasons is based on the fact that the behavior of others conveys information.
You may have some private information on which to base a decision between alternatives,
but if you see many people making a particular choice, it is natural to assume that they too
have their own information, and to try inferring how people are evaluating different choices
from how they are behaving. In the case of a Web site like YouTube or Flickr, seeing a lot
of people using it can suggest that these people know something about its quality. Similarly,
seeing that a certain restaurant is extremely crowded every weekend can suggest that many
people think highly of it. But this sort of reasoning raises surprisingly subtle issues: as many

people make decisions sequentially over time, the later decisions can be based in complex
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ways on a mixture of private information and inferences from what has already happened,
so that the actions of a large set of people can in fact be based on surprisingly little genuine
information. In an extreme form of this phenomenon we may get information cascades,
where even rational individuals can choose to abandon their private information and follow
a crowd.

There is a completely different but equally important class of reasons why people might
imitate the behavior of others — when there is a direct benefit from aligning your behavior
with that of others, regardless of whether they are making the best decision. Let’s go back
to our examples of social-networking and media-sharing sites. If the value of such sites is in
the potential to interact with others, to have access to a wide range of content, and to have
a large audience for the content you post, then these types of sites become more and more
valuable as people join them. In other words, regardless of whether YouTube had better
features than its competitors, once it became the most popular video-sharing site, there was
almost by definition an added value in using it. Such network effects amplify the success of
products and technologies that are already doing well; in a market where network effects are
at work, the leader can be hard to displace. Still, this type of dominance is not necessarily
permanent; as we will see, it is possible for a new technology to displace an old one if it
offers something markedly different — and often when it starts in a part of the network
where there is room for it to take hold.

These considerations show how popularity — as a general phenomenon — is governed
by a “rich-get-richer” feedback process in which popularity tends to build on itself. It is
possible to build mathematical models for this process, with predictions for the distribution
of popularity that are borne out by empirical data — a picture in which society’s attention
is divided between a small number of prominent items and a “long tail” of more obscure

ones.

Network Dynamics: Structural Effects. As we’ve just seen, the question of how people
influence each other’s behavior is already quite subtle even when the actual structure of the
underlying network is left implicit. But taking network structure into account provides
important further insights into how such kinds of influence take place. The underlying
mechanisms — based on information and direct benefits — are present both at the level of
whole populations, and also at a local level in the network, between an individual and his
or her set of friends or colleagues. In many cases you care more about aligning your own
behavior with the behavior of your immediate neighbors in the social network, rather than
with the population as a whole.

When individuals have incentives to adopt the behavior of their neighbors in the network,
we can get cascading effects, where a new behavior starts with a small set of initial adopters,
and then spreads radially outward through the network. Figure 1.11 shows a small example,
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Figure 1.11: When people are influenced by the behaviors their neighbors in the network, the
adoption of a new product or innovation can cascade through the network structure. Here,
e-mail recommendations for a Japanese graphic novel spread in a kind of informational or
social contagion. (Image from Leskovec et al. [271].)

in which e-mail recommendations for a particular Japanese graphic novel spread outward
from four initial purchasers. By reasoning about the underlying network structure, we will
see how it becomes possible for a superior technology to displace a universally-used but
inferior one, if the superior technology starts in a portion of the network where it can
make progress incrementally, a few people at a time. We will also find that the diffusion of
technologies can be blocked by the boundary of a densely-connected cluster in the network —
a “closed community” of individuals who have a high amount of linkage among themselves,
and hence are resistant to outside influences.

Cascading behavior in a network is sometimes referred to as “social contagion,” because
it spreads from one person to another in the style of a biological epidemic. Figure 1.12
reinforces this analogy; it shows the beginning of a tuberculosis outbreak [16] and forms a
visual counterpart to the social cascade in Figure 1.11. There are fundamental differences
in the underlying mechanisms between social and biological contagion — social contagion
tends to involve decision-making on the part of the affected individuals, whereas biological
contagion is based on the chance of catching a disease-causing pathogen through contact
with another individual. But the network-level dynamics are similar, and insights from the
study of biological epidemics are also useful in thinking about the processes by which things
spread on networks.

The act of spreading, which transmits both ideas and diseases, is just one kind of dynamic
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Figure 1.12: The spread of an epidemic disease (such as the tuberculosis outbreak shown
here) is another form of cascading behavior in a network. The similarities and contrasts
between biological and social contagion lead to interesting research questions. (Image from
Andre et al. [16].)

process that takes place on networks. A different process that we also consider is search —
the way people can explore chains of social contacts for information or referrals to others.
The surprising effectiveness with which people are able to accomplish such tasks, confirmed
both by experiments and everyday experience, suggests characteristic patterns of structure
at the network level that help facilitate these types of activities.

Institutions and Aggregate Behavior. Once we have developed some of the basic forces
underlying networks and strategic behavior, we can ask how the institutions a society designs
can, in effect, channel these forces to produce certain kinds of overall outcomes. Our notion
of an institution here is very broad — it can be any set of rules, conventions, or mechanisms
that serve to synthesize individual actions into a pattern of aggregate behavior. We’ve
already discussed particular examples of this process: for example, in the way in which a
particular auction mechanism leads to bidding behavior and hence prices; or the way in
which the Internet search industry has become a significant influence on how Web content

is created.
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Figure 1.13: Prediction markets, as well as markets for financial assets such as stocks, can synthesize
individual beliefs about future events into a price that captures the aggregate of these beliefs. The plot here
depicts the varying price over time for two assets that paid $1 in the respective events that the Democratic
or Republican nominee won the 2008 U.S. Presidential election. (Image from Iowa Electronic Markets,
http://iemweb.biz.uiowa.edu/graphs/graph PRES08_WTA.cfm.)

There are a number of settings in which this kind of analysis, applied to fundamental
social institutions, can be very informative. One such setting is to think about markets and
their role in aggregating and conveying information. In a financial market, for example,
the market price serves as an aggregator of individuals’ beliefs about the value of the assets
being traded. In this sense, the overall behavior of the market serves to synthesize the
information that is held by many participants; consequently, when people speak of what the
market “expects,” they are really referring to the expectations that can be read out of this
composite of information.

How this synthesis works depends on how the market is designed, and on the kind of
individual and aggregate behavior that results. Nor are such issues restricted to markets

for financial assets such as stocks. Recent work, for example, has explored the design of
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prediction markets that use a market mechanism to provide predictions of future events such
as the outcomes of elections. Here, participants in the market purchase assets that pay a
fixed amount if a certain event takes place. In this way, the price of the asset reflects an
aggregate estimate for the probability of the event, and such estimates have been found to
be highly accurate in a number of cases — with the market’s aggregate predictions often
outperforming the opinions of expert analysts. Figure 1.13 shows an example from the
2008 U.S. Presidential Election: the upper curve depicts the price over time for an asset
that paid $1 in the event that the Democratic Party’s nominee won the election, and the
lower curve depicts the corresponding price for the Republican Party’s nominee. Note that
the market was already functioning before the identities of these nominees were known,
and it shows a clear aggregate reaction to certain events such as the contentious end of the
Democratic primary process between Obama and Clinton (in early May) and the Republican
National Convention (in early September), both of which brought the prices for the opposing
predictions close to equality, before they diverged once and for all as the actual election
neared.

Voting is another social institution that aggregates behavior across a population. While
markets and voting systems both seek a synthesis of individual beliefs or preferences, there
are some fundamental contrasts in the settings where they are generally applied. We have just
outlined a view of markets as aggregators of beliefs about the probabilities of future events.
In this view, each individual belief that forms an ingredient of the market’s consensus will
ultimately be confirmed as correct or incorrect, based on whether certain relevant future
events actually happen or not. Voting systems, on the other hand, are typically applied
to cases where each individual has a preference or prioritization over a set of arbitrary and
subjective choices for which there may be no eventual way to say that any one is “right” or
“wrong.” The question is then to synthesize a cumulative social preference that reconciles,
as well as possible, the conflicting priorities of the individuals in the population. In our
analysis of voting, we will explore a long history of work showing that the task of producing
such a social preference is fraught with unavoidable difficulties — results that formalize such
difficulties began with work of 18th-century French philosophers, and came fully into focus
with Arrow’s Impossibility Theorem in the 1950s.

This perspective on institutions is a natural one for social systems that are highly inter-
connected. Whenever the outcomes across a population depend on an aggregate of everyone’s
behavior, the design of the underlying institutions can have a significant effect on how this
behavior is shaped, and on the resulting consequences for society.

Looking ahead. Examples, phenomena, and principles such as these will motivate the
ways in which we analyze networks, behavior, and population-level dynamics throughout the

book. Understanding whether a principle holds across many settings will involve formulating
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and reasoning about mathematical models, and also reasoning qualitatively about these
models and searching for their broader implications. In this way, we can hope to develop
a network perspective as a powerful way of looking at complex systems in general — a
way of thinking about social dynamics, economic interaction, on-line information, designed
technology, and natural processes, and approaching such systems with an eye toward their

patterns of internal structure and the rich feedback effects that result.
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Graph Theory and Social Networks
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Chapter 2

Graphs

In this first part of the book we develop some of the basic ideas behind graph theory,
the study of network structure. This will allow us to formulate basic network properties in a
unifying language. The central definitions here are simple enough that we can describe them
relatively quickly at the outset; following this, we consider some fundamental applications
of the definitions.

2.1 Basic Definitions

Graphs: Nodes and Edges. A graph is a way of specifying relationships among a collec-
tion of items. A graph consists of a set of objects, called nodes, with certain pairs of these
objects connected by links called edges. For example, the graph in Figure 2.1(a) consists
of 4 nodes labeled A, B, C, and D, with B connected to each of the other three nodes by
edges, and C and D connected by an edge as well. We say that two nodes are neighbors if
they are connected by an edge. Figure 2.1 shows the typical way one draws a graph — with
little circles representing the nodes, and a line connecting each pair of nodes that are linked
by an edge.

In Figure 2.1(a), you should think of the relationship between the two ends of an edge as
being symmetric; the edge simply connects them to each other. In many settings, however,
we want to express asymmetric relationships — for example, that A points to B but not
vice versa. For this purpose, we define a directed graph to consist of a set of nodes, as
before, together with a set of directed edges; each directed edge is a link from one node
to another, with the direction being important. Directed graphs are generally drawn as in
Figure 2.1(b), with edges represented by arrows. When we want to emphasize that a graph
is not directed, we can refer to it as an undirected graph; but in general the graphs we discuss

D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning about a Highly Connected World.
Cambridge University Press, 2010. Draft version: June 10, 2010.
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(a) A graph on 4 nodes. (b) A directed graph on 4 nodes.

Figure 2.1: Two graphs: (a) an undirected graph, and (b) a directed graph.

will be undirected unless noted otherwise.

Graphs as Models of Networks. Graphs are useful because they serve as mathematical
models of network structures. With this in mind, it is useful before going further to replace
the toy examples in Figure 2.1 with a real example. Figure 2.2 depicts the network structure
of the Internet — then called the Arpanet — in December 1970 [214], when it had only 13
sites. Nodes represent computing hosts, and there is an edge joining two nodes in this picture
if there is a direct communication link between them. Ignoring the superimposed map of the
U.S. (and the circles indicating blown-up regions in Massachusetts and Southern California),
the rest of the image is simply a depiction of this 13-node graph using the same dots-and-lines
style that we saw in Figure 2.1. Note that for showing the pattern of connections, the actual
placement or layout of the nodes is immaterial; all that matters is which nodes are linked
to which others. Thus, Figure 2.3 shows a different drawing of the same 13-node Arpanet
graph.

Graphs appear in many domains, whenever it is useful to represent how things are either
physically or logically linked to one another in a network structure. The 13-node Arpanet in
Figures 2.2 and 2.3 is an example of a communication network, in which nodes are computers
or other devices that can relay messages, and the edges represent direct links along which
messages can be transmitted. In Chapter 1, we saw examples from two other broad classes of
graph structures: social networks, in which nodes are people or groups of people, and edges
represent some kind of social interaction; and information networks, in which the nodes

are information resources such as Web pages or documents, and edges represent logical
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Figure 2.2: A network depicting the sites on the Internet, then known as the Arpanet, in
December 1970. (Image from F. Heart, A. McKenzie, J. McQuillian, and D. Walden [214];
on-line at http://som.csudh.edu/cis/Ipress/history /arpamaps/.)

connections such as hyperlinks, citations, or cross-references. The list of areas in which
graphs play a role is of course much broader than what we can enumerate here; Figure 2.4
gives a few further examples, and also shows that many images we encounter on a regular
basis have graphs embedded in them.

2.2 Paths and Connectivity

We now turn to some of the fundamental concepts and definitions surrounding graphs. Per-
haps because graphs are so simple to define and work with, an enormous range of graph-
theoretic notions have been studied; the social scientist John Barnes once described graph
theory as a “terminological jungle, in which any newcomer may plant a tree” [45]. Fortu-
nately, for our purposes, we will be able to get underway with just a brief discussion of some

of the most central concepts.
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Figure 2.3: An alternate drawing of the 13-node Internet graph from December 1970.

Paths. Although we’ve been discussing examples of graphs in many different areas, there
are clearly some common themes in the use of graphs across these areas. Perhaps foremost
among these is the idea that things often travel across the edges of a graph, moving from
node to node in sequence — this could be a passenger taking a sequence of airline flights, a
piece of information being passed from person to person in a social network, or a computer
user or piece of software visiting a sequence of Web pages by following links.

This idea motivates the definition of a path in a graph: a path is simply a sequence of
nodes with the property that each consecutive pair in the sequence is connected by an edge.
Sometimes it is also useful to think of the path as containing not just the nodes but also the
sequence of edges linking these nodes. For example, the sequence of nodes MIT, BBN, RAND,
UCLA is a path in the Internet graph from Figures 2.2 and 2.3, as is the sequence CASE,
LINCOLN, MIT, UTAH, SRI, UCSB. As we have defined it here, a path can repeat nodes: for
example, SRI, STAN, UCLA, SRI, UTAH, MIT is a path. But most paths we consider will not
do this; if we want to emphasize that the path we are discussing does not repeat nodes, we
can refer to it as a simple path.

Cycles. A particularly important kind of non-simple path is a cycle, which informally is a
“ring” structure such as the sequence of nodes LINC, CASE, CARN, HARV, BBN, MIT, LINC
on the right-hand-side of Figure 2.3. More precisely, a cycle is a path with at least three
edges, in which the first and last nodes are the same, but otherwise all nodes are distinct.
There are many cycles in Figure 2.3: SRI, STAN, UCLA, SRI is as short an example as possible
according to our definition (since it has exactly three edges), while SRI, STAN, UCLA, RAND,
BBN, MIT, UTAH, SRI is a significantly longer example.

In fact, every edge in the 1970 Arpanet belongs to a cycle, and this was by design: it means
that if any edge were to fail (e.g. a construction crew accidentally cut through the cable),

there would still be a way to get from any node to any other node. More generally, cycles
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Figure 2.4: TImages of graphs arising in different domains. The depictions of airline and subway systems
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tion through a network of roads, rail lines, or airline flights. The prerequisites among college courses in (c) is
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Figure 2.5: A graph with three connected components.

in communication and transportation networks are often present to allow for redundancy —
they provide for alternate routings that go the “other way” around the cycle. In the social
network of friendships too, we often notice cycles in everyday life, even if we don’t refer to
them as such. When you discover, for example, that your wife’s cousin’s close friend from
high school is in fact someone who works with your brother, this is a cycle — consisting
of you, your wife, her cousin, his high-school-friend, his co-worker (i.e. your brother), and
finally back to you.

Connectivity. Given a graph, it is natural to ask whether every node can reach every
other node by a path. With this in mind, we say that a graph is connected if for every pair of
nodes, there is a path between them. For example, the 13-node Arpanet graph is connected;
and more generally, one expects most communication and transportation networks to be
connected — or at least aspire to be connected — since their goal is to move traffic from
one node to another.

On the other hand, there is no a priori reason to expect graphs in other settings to be
connected — for example, in a social network, you could imagine that there might exist two
people for which it’s not possible to construct a path from one to the other. Figures 2.5
and 2.6 give examples of disconnected graphs. The first is a toy example, while the second

is built from the collaboration graph at a biological research center [134]: nodes represent
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Figure 2.6: The collaboration graph of the biological research center Structural Genomics of
Pathogenic Protozoa (SGPP) [134], which consists of three distinct connected components.
This graph was part of a comparative study of the collaboration patterns graphs of nine
research centers supported by NIH’s Protein Structure Initiative; SGPP was an intermediate
case between centers whose collaboration graph was connected and those for which it was
fragmented into many small components.

researchers, and there is an edge between two nodes if the researchers appear jointly on a
co-authored publication. (Thus the edges in this second figure represent a particular formal
definition of collaboration — joint authorship of a published paper — and do not attempt to
capture the network of more informal interactions that presumably take place at the research
center. )

Components. Figures 2.5 and 2.6 make visually apparent a basic fact about disconnected
graphs: if a graph is not connected, then it breaks apart naturally into a set of connected
“pieces,” groups of nodes so that each group is connected when considered as a graph in
isolation, and so that no two groups overlap. In Figure 2.5, we see that the graph consists
of three such pieces: one consisting of nodes A and B, one consisting of nodes C', D, and E,
and one consisting of the rest of the nodes. The network in Figure 2.6 also consists of three
pieces: one on three nodes, one on four nodes, and one that is much larger.

To make this notion precise, we we say that a connected component of a graph (often
shortened just to the term “component”) is a subset of the nodes such that: (i) every node
in the subset has a path to every other; and (ii) the subset is not part of some larger set

with the property that every node can reach every other. Notice how both (i) and (ii)
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are necessary to formalize the intuitive definition: (i) says that the component is indeed
internally connected, and (ii) says that it really is a free-standing “piece” of the graph, not
a connected part of a larger piece. (For example, we would not think of the set of nodes F,
G, H, and J in Figure 2.5 as forming a component, because this set violates part (ii) of the
definition: although there are paths among all pairs of nodes in the set, it belongs to the
larger set consisting of F-M, in which all pairs are also linked by paths.)

Dividing a graph into its components is of course only a first, global way of describing
its structure. Within a given component, there may be richer internal structure that is
important to one’s interpretation of the network. For example, thinking about the largest
component from Figure 2.6 in light of the collaborations that it represents, one notices certain
suggestive features of the structure: a prominent node at the center, and tightly-knit groups
linked to this node but not to each other. One way to formalize the role of the prominent
central node is to observe that the largest connected component would break apart into three
distinct components if this node were removed. Analyzing a graph this way, in terms of its
densely-connected regions and the boundaries between them, is a powerful way of thinking
about network structure, and it will be a central topic in Chapter 3.

Giant Components. There turns out to be a useful qualitative way of thinking about
the connected components of typical large networks, and for this it helps to begin with the
following thought experiment. Consider the social network of the entire world, with a link
between two people if they are friends. Now, of course, this is a graph that we don’t actually
have explicitly recorded anywhere, but it is one where we can use our general intuitions to
answer some basic questions.

First, is this global friendship network connected? Presumably not. After all, connec-
tivity is a fairly brittle property, in that the behavior of a single node (or a small set of
nodes) can negate it. For example, a single person with no living friends would constitute
a one-node component in the global friendship network, and hence the graph would not be
connected. Or the canonical “remote tropical island,” consisting of people who have had
no contact with the outside world, would also be a small component in the network, again
showing that it is not connected.

But there is something more going on here. If you're a typical reader of this book, then
you have friends who grew up in other countries. You're in the same component as all these
friends, since you have a path (containing a single edge) to each of them. Now, if you consider,
say, the parents of these friends, your friends’ parents’ friends, their friends and descendants,
then all of these people are in the same component as well — and by now, we’re talking
about people who have never heard of you, may well not share a language with you, may
have never traveled anywhere near where you live, and may have had enormously different

life experiences. So even though the global friendship network may not be connected, the
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component you inhabit seems very large indeed — it reaches into most parts of the world,
includes people from many different backgrounds, and seems in fact likely to contain a
significant fraction of the world’s population.

This is in fact true when one looks across a range of network datasets — large, complex
networks often have what is called a giant component, a deliberately informal term for a
connected component that contains a significant fraction of all the nodes. Moreover, when
a network contains a giant component, it almost always contains only one. To see why, let’s
go back to the example of the global friendship network and try imagining that there were
two giant components, each with hundreds of millions of people. All it would take is a single
edge from someone in the first of these components to someone in the second, and the two
giant components would merge into a single component. Just a single edge — in most cases,
it’s essentially inconceivable that some such edge wouldn’t form, and hence two co-existing
giant components are something one almost never sees in real networks. When there is a
giant component, it is thus generally unique, distinguishable as a component that dwarfs all
others.

In fact, in some of the rare cases when two giant components have co-existed for a long
time in a real network, their merging has been sudden, dramatic, and ultimately catastrophic.
For example, Jared Diamond’s book Guns, Germs, and Steel [130] devotes much of its
attention to the cataclysm that befell the civilizations of the Western hemisphere when
European explorers began arriving in it roughly half a millenium ago. One can view this
development from a network perspective as follows: five thousand years ago, the global
social network likely contained two giant components — one in the Americas, and one in
the Europe-Asia land mass. Because of this, technology evolved independently in the two
components, and perhaps even worse, human diseases evolved independently; and so when
the two components finally came in contact, the technology and diseases of one quickly and
disastrously overwhelmed the other.

The notion of giant components is useful for reasoning about networks on much smaller
scales as well. The collaboration network in Figure 2.6 is one simple example; another
interesting example is depicted in Figure 2.7, which shows the romantic relationships in an
American high school over an 18-month period [49]. (These edges were not all present at
once; rather, there is an edge between two people if they were romantically involved at any
point during the time period.) The fact that this graph contains such a large component is
significant when one thinks about the spread of sexually transmitted diseases, a focus of the
researchers performing the study. A high-school student may have had a single partner over
this time period and nevertheless — without realizing it — be part of this large component
and hence part of many paths of potential transmission. As Bearman, Moody, and Stovel
note in the paper where they analyze this network, “These structures reflect relationships

that may be long over, and they link individuals together in chains far too long to be
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Figure 2.7: A network in which the nodes are students in a large American high school, and
an edge joins two who had a romantic relationship at some point during the 18-month period
in which the study was conducted [49].

the subject of even the most intense gossip and scrutiny. Nevertheless, they are real: like
social facts, they are invisible yet consequential macrostructures that arise as the product of

individual agency.”

2.3 Distance and Breadth-First Search

In addition to simply asking whether two nodes are connected by a path, it is also interesting
in most settings to ask how [ong such a path is — in transportation, Internet communication,
or the spread of news and diseases, it is often important whether something flowing through
a network has to travel just a few hops or many.

To be able to talk about this notion precisely, we define the length of a path to be the
number of steps it contains from beginning to end — in other words, the number of edges
in the sequence that comprises it. Thus, for example, the path MIT, BBN, RAND, UCLA in
Figure 2.3 has length three, while the path MIT, UTAH has length one. Using the notion of
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distance 1 your friends
distance 2 friends of friends
distance 3 friends of friends

of friends

all nodes, not already discovered, that have an
edge to some node in the previous layer

Figure 2.8: Breadth-first search discovers distances to nodes one “layer” at a time; each layer
is built of nodes that have an edge to at least one node in the previous layer.

a path’s length, we can talk about whether two nodes are close together or far apart in a
graph: we define the distance between two nodes in a graph to be the length of the shortest
path between them. For example, the distance between LINC and SRI is three, though to
believe this you have to first convince yourself that there is no length-1 or length-2 path
between them.

Breadth-First Search. For a graph like the one in Figure 2.3, we can generally figure
out the distance between two nodes by eyeballing the picture; but for graphs that are even
a bit more complicated, we need some kind of a systematic method to determine distances.

The most natural way to do this — and also the most efficient way to calculate distances

for a large network dataset using a computer — is the way you would probably do it if you



34 CHAPTER 2. GRAPHS

distance 1

distance 2

distance 3

Figure 2.9: The layers arising from a breadth-first of the December 1970 Arpanet, starting
at the node MIT.

really needed to trace out distances in the global friendship network (and had the unlimited

patience and cooperation of everyone in the world). This is pictured in Figure 2.8:
(1) You first declare all of your actual friends to be at distance 1.

(2) You then find all of their friends (not counting people who are already friends of yours),
and declare these to be at distance 2.

(3) Then you find all of their friends (again, not counting people who you’ve already found
at distances 1 and 2) and declare these to be at distance 3.

(...) Continuing in this way, you search in successive layers, each representing the next
distance out. Each new layer is built from all those nodes that (i) have not already
been discovered in earlier layers, and that (ii) have an edge to some node in the previous
layer.

This technique is called breadth-first search, since it searches the graph outward from a start-
ing node, reaching the closest nodes first. In addition to providing a method of determining
distances, it can also serve as a useful conceptual framework to organize the structure of a

graph, arranging the nodes based on their distances from a fixed starting point.
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Of course, despite the social-network metaphor we used to describe breadth-first search,
the process can be applied to any graph: one just keeps discovering nodes layer-by-layer,
building each new layer from the nodes that are connected to at least one node in the previous
layer. For example, Figure 2.9 shows how to discover all distances from the node MIT in the
13-node Arpanet graph from Figure 2.3.

The Small-World Phenomenon. As with our discussion of the connected components
in a graph, there is something qualitative we can say, beyond the formal definitions, about
distances in typical large networks. If we go back to our thought experiments on the global
friendship network, we see that the argument explaining why you belong to a giant compo-
nent in fact asserts something stronger: not only do you have paths of friends connecting
you to a large fraction of the world’s population, but these paths are surprisingly short.
Take the example of a friend who grew up in another country: following a path through this
friend, to his or her parents, to their friends, you’ve followed only three steps and ended up
in a different part of the world, in a different generation, with people who have very little in
common with you.

This idea has been termed the small-world phenomenon — the idea that the world looks
“small” when you think of how short a path of friends it takes to get from you to almost
anyone else. It’s also known, perhaps more memorably, as the siz degrees of separation; this
phrase comes from the play of this title by John Guare [200], and in particular from the line
uttered by one of the play’s characters: “I read somewhere that everybody on this planet is
separated by only six other people. Six degrees of separation between us and everyone else
on this planet.”

The first experimental study of this notion — and the origin of the number “six” in the
pop-cultural mantra — was performed by Stanley Milgram and his colleagues in the 1960s
[297, 391]. Lacking any of the massive social-network datasets we have today, and with a
budget of only $680, he set out to test the speculative idea that people are really connected in
the global friendship network by short chains of friends. To this end, he asked a collection of
296 randomly chosen “starters” to try forwarding a letter to a “target” person, a stockbroker
who lived in a suburb of Boston. The starters were each given some personal information
about the target (including his address and occupation) and were asked to forward the
letter to someone they knew on a first-name basis, with the same instructions, in order to
eventually reach the target as quickly as possible. Each letter thus passed through the hands
of a sequence of friends in succession, and each thereby formed a chain of people that closed
in on the stockbroker outside Boston.

Figure 2.10 shows the distribution of path lengths, among the 64 chains that succeeded
in reaching the target; the median length was six, the number that made its way two decades
later into the title of Guare’s play. That so many letters reached their destination, and by
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Figure 2.10: A histogram from Travers and Milgram’s paper on their small-world experiment
[391]. For each possible length (labeled “number of intermediaries” on the z-axis), the plot
shows the number of successfully completed chains of that length. In total, 64 chains reached
the target person, with a median length of six.

such short paths, was a striking fact when it was first discovered, and it remains so today.
Of course, it is worth noting a few caveats about the experiment. First, it clearly doesn’t
establish a statement quite as bold as “six degrees of separation between us and everyone
else on this planet” — the paths were just to a single, fairly affluent target; many letters
never got there; and attempts to recreate the experiment have been problematic due to lack
of participation [255]. Second, one can ask how useful these short paths really are to people
in society: even if you can reach someone through a short chain of friends, is this useful to
you? Does it mean you're truly socially “close” to them? Milgram himself mused about this
in his original paper [297]; his observation, paraphrased slightly, was that if we think of each
person as the center of their own social “world,” then “six short steps” becomes “six worlds
apart” — a change in perspective that makes six sound like a much larger number.

Despite these caveats, the experiment and the phenomena that it hints at have formed
a crucial aspect in our understanding of social networks. In the years since the initial
experiment, the overall conclusion has been accepted in a broad sense: social networks tend

to have very short paths between essentially arbitrary pairs of people. And even if your six-
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p(l) (Probability)

10-12 | | | | |
0 5 10 15 20 25 30

l, (Path length in hops)

Figure 2.11: The distribution of distances in the graph of all active Microsoft Instant Mes-
senger user accounts, with an edge joining two users if they communicated at least once
during a month-long observation period [273].

step connections to CEOs and political leaders don’t yield immediate payoffs on an everyday
basis, the existence of all these short paths has substantial consequences for the potential
speed with which information, diseases, and other kinds of contagion can spread through
society, as well as for the potential access that the social network provides to opportunities
and to people with very different characteristics from one’s own. All these issues — and
their implications for the processes that take place in social networks — are rich enough
that we will devote Chapter 20 to a more detailed study of the small-world phenomenon and
its consequences.

Instant Messaging, Paul Erdos, and Kevin Bacon. One reason for the current em-
pirical consensus that social networks generally are “small worlds” is that this has been
increasingly confirmed in settings where we do have full data on the network structure. Mil-
gram was forced to resort to an experiment in which letters served as “tracers” through a
global friendship network that he had no hope of fully mapping on his own; but for other
kinds of social network data where the full graph structure is known, one can just load it

into a computer and perform the breadth-first search procedure to determine what typical
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Figure 2.12: Ron Graham’s hand-drawn picture of a part of the mathematics collaboration
graph, centered on Paul Erdos [189]. (Image from http://www.oakland.edu/enp/cgraph.jpg)

distances look like.

One of the largest such computational studies was performed by Jure Leskovec and Eric
Horvitz [273]. They analyzed the 240 million active user accounts on Microsoft Instant
Messenger, building a graph in which each node corresponds to a user, and there is an
edge between two users if they engaged in a two-way conversation at any point during a
month-long observation period. As employees of Microsoft at the time, they had access to
a complete snapshot of the system for the month under study, so there were no concerns
about missing data. This graph turned out to have a giant component containing almost
all of the nodes, and the distances within this giant component were very small. Indeed,
the distances in the Instant Messenger network closely corresponded to the numbers from
Milgram’s experiment, with an estimated average distance of 6.6, and an estimated median
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of seven. Figure 2.11 shows the distribution of distances averaged over a random sample
of 1000 users: breadth-first search was performed separately from each of these 1000 users,
and the results from these 1000 nodes were combined to produce the plot in the figure.
The reason for this estimation by sampling users is a computational one: the graph was
so large that performing breadth-first search from every single node would have taken an
astronomical amount of time. Producing plots like this efficiently for massive graphs is an

interesting research topic in itself [338].

In a sense, the plot in Figure 2.11 starts to approximate, in a striking way, what Milgram
and his colleagues were trying to understand — the distribution of how far apart we all are
in the full global friendship network. At the same time, reconciling the structure of such
massive datasets with the underlying networks they are trying to measure is an issue that
comes up here, as it will many times throughout the book. In this case, enormous as the
Microsoft IM study was, it remains some distance away from Milgram’s goal: it only tracks
people who are technologically-endowed enough to have access to instant messaging, and
rather than basing the graph on who is truly friends with whom, it can only observe who
talks to whom during an observation period.

Turning to a smaller scale — at the level of hundred of thousands of people rather than
hundreds of millions — researchers have also discovered very short paths in the collaboration
networks within professional communities. In the domain of mathematics, for example,
people often speak of the itinerant mathematician Paul Erdés — who published roughly
1500 papers over his career — as a central figure in the collaborative structure of the field.
To make this precise, we can define a collaboration graph as we did for Figure 2.6, in this
case with nodes corresponding to mathematicians, and edges connecting pairs who have
jointly authored a paper. (While Figure 2.6 concerned a single research lab, we are now
talking about collaboration within the entire field of mathematics.) Figure 2.12 shows a
small hand-drawn piece of the collaboration graph, with paths leading to Paul Erdos [189].
Now, a mathematician’s Frddos number is the distance from him or her to Erdos in this graph
[198]. The point is that most mathematicians have Erdés numbers of at most 4 or 5, and —
extending the collaboration graph to include co-authorship across all the sciences — most
scientists in other fields have Erdos numbers that are comparable or only slightly larger;
Albert Einstein’s is 2, Enrico Fermi’s is 3, Noam Chomsky’s and Linus Pauling’s are each 4,
Francis Crick’s and James Watson’s are 5 and 6 respectively. The world of science is truly

a small one in this sense.

Inspired by some mixture of the Milgram experiment, John Guare’s play, and a compelling
belief that Kevin Bacon was the center of the Hollywood universe, three students at Albright
College in Pennsylvania sometime around 1994 adapted the idea of Erdos numbers to the
collaboration graph of movie actors and actresses: nodes are performers, an edge connects

two performers if they’'ve appeared together in a movie, and a performer’s Bacon number is



40 CHAPTER 2. GRAPHS

his or her distance in this graph to Kevin Bacon [372]. Using cast lists from the Internet
Movie Database (IMDB), it is possible to compute Bacon numbers for all performers via
breadth-first search — and as with mathematics, it’s a small world indeed. The average
Bacon number, over all performers in the IMDB, is approximately 2.9, and it’s a challenge
to find one that’s larger than 5. Indeed, it’s fitting to conclude with a network-and-movie
enthusiast’s description of his late-night attempts to find the largest Bacon number in the
IMDB by hand: “With my life-long passion for movies, I couldn’t resist spending many
hours probing the dark recesses of film history until, at about 10 AM on Sunday, I found an
incredibly obscure 1928 Soviet pirate film, Plenniki Morya, starring P. Savin with a Bacon
number of 7, and whose supporting cast of 8 appeared nowhere else” [197]. One is left with
the image of a long exploration that arrives finally at the outer edge of the movie world —
in the early history of film, in the Soviet Union — and yet in another sense, only 8 steps
from where it started.

2.4 Network Datasets: An Overview

The explosion of research on large-scale networks in recent years has been fueled to a large
extent by the increasing availability of large, detailed network datasets. We’ve seen examples
of such datasets throughout these first two chapters, and it’s useful at this point to step
back and think more systematically about where people have been getting the data that
they employ in large-scale studies of networks.

To put this in perspective, we note first of all that there are several distinct reasons
why you might study a particular network dataset. One is that you may care about the
actual domain it comes from, so that fine-grained details of the data itself are potentially
as interesting as the broad picture. Another is that you're using the dataset as a proxy
for a related network that may be impossible to measure — as for example in the way
the Microsoft IM graph from Figure 2.11 gave us information about distances in a social
network of a scale and character that begins to approximate the global friendship network.
A third possibility is that you're trying to look for network properties that appear to be
common across many different domains, and so finding a similar effect in unrelated settings
can suggest that it has a certain universal nature, with possible explanations that are not
tied to the specifics of any one of the domains.

Of course, all three of these motivations are often at work simultaneously, to varying
degrees, in the same piece of research. For example, the analysis of the Microsoft IM graph
gave us insight into the global friendship network — but at a more specific level, the re-
searchers performing the study were also interested in the dynamics of instant messaging
in particular; and at a more general level, the result of the IM graph analysis fit into the

broader framework of small-world phenomena that span many domains.
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As a final point, we’re concerned here with sources of data on networks that are large.
If one wants to study a social network on 20 people — say, within a small company, or a
fraternity or sorority, or a karate club as in Figure 1.1 — then one strategy is to interview
all the people involved and ask them who their friends are. But if we want to study the
interactions among 20,000 people, or 20,000 individual nodes of some other kind, then we
need to be more opportunistic in where we look for data: except in unusual cases, we can’t
simply go out and collect everything by hand, and so we need to think about settings in
which the data has in some essential way already been measured for us.

With this in mind, let’s consider some of the main sources of large-scale network data
that people have used for research. The resulting list is far from exhaustive, nor are the
categories truly distinct — a single dataset can easily exhibit characteristics from several.

e Collaboration Graphs. Collaboration graphs record who works with whom in a specific
setting; co-authorships among scientists and co-appearance in movies by actors and
actresses are two examples of collaboration graphs that we discussed in Section 2.3.
Another example that has been extensively studied by sociologists is the graph on
highly-placed people in the corporate world, with an edge joining two if they have
served together on the board of directors of the same Fortune 500 company [301]. The
on-line world provides new instances: the Wikipedia collaboration graph (connecting
two Wikipedia editors if they've ever edited the same article) [122, 246] and the World-
of-Warcraft collaboration graph (connecting two W-o-W users if they’ve ever taken part
together in the same raid or other activity) [419] are just two examples.

Sometimes a collaboration graph is studied to learn about the specific domain it comes
from; for example, sociologists who study the business world have a substantive in-
terest in the relationships among companies at the director level, as expressed via
co-membership on boards. On the other hand, while there is a research community
that studies the sociological context of scientific research, a broader community of
people is interested in scientific co-authorship networks precisely because they form
detailed, pre-digested snapshots of a rich form of social interaction that unfolds over a
long period of time [318]. By using on-line bibliographic records, one can often track
the patterns of collaboration within a field across a century or more, and thereby at-
tempt to extrapolate how the social structure of collaboration may work across a range

of harder-to-measure settings as well.

o Who-talks-to-Whom Graphs. The Microsoft IM graph is a snapshot of a large commu-
nity engaged in several billion conversations over the course of a month. In this way,
it captures the “who-talks-to-whom” structure of the community. Similar datasets
have been constructed from the e-mail logs within a company [6] or a university [259],

as well as from records of phone calls: researchers have studied the structure of call
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graphs in which each node is a phone number, and there is an edge between two if they
engaged in a phone call over a given observation period [1, 334]. One can also use the
fact that mobile phones with short-range wireless technology can detect other similar
devices nearby. By equipping a group of experimental subjects with such devices and
studying the traces they record, researchers can thereby build “face-to-face” graphs
that record physical proximity: a node in such a graph is a person carrying one of the
mobile devices, and there is an edge joining two people if they were detected to be in

close physical proximity over a given observation period [141, 142].

In almost all of these kinds of datasets, the nodes represent customers, employees, or
students of the organization that maintains the data. These individuals will generally
have strong expectations of privacy, not necessarily even appreciating how easily one
can reconstruct details of their behavior from the digital traces they leave behind
when communicating by e-mail, instant messaging, or phone. As a result, the style of
research performed on this kind of data is generally restricted in specific ways so as to
protect the privacy of the individuals in the data. Such privacy considerations have
also become a topic of significant discussion in settings where companies try to use this
type of data for marketing, or when governments try to use it for intelligence-gathering
purposes [315].

Related to this kind of “who-talks-to-whom” data, economic network measurements
recording the “who-transacts-with-whom” structure of a market or financial commu-
nity has been used to study the ways in which different levels of access to market
participants can lead to different levels of market power and different prices for goods.
This empirical work has in turn motivated more mathematical investigations of how

a network structure limiting access between buyers and sellers can affect outcomes
(63, 176, 232, 261], a focus of discussion in Chapters 10—12.

Information Linkage Graphs. Snapshots of the Web are central examples of network
datasets; nodes are Web pages and directed edges represent links from one page to
another. Web data stands out both in its scale and in the diversity of what the nodes
represent: billions of little pieces of information, with links wiring them together. And
clearly it is not just the information that is of interest, but the social and economic
structures that stand behind the information: hundreds of millions of personal pages on
social-networking and blogging sites, hundreds of millions more representing companies
and governmental organizations trying to engineer their external images in a crowded

network.

A network on the scale of the full Web can be daunting to work with; simply manipu-
lating the data effectively can become a research challenge in itself. As a result, much

network research has been done on interesting, well-defined subsets of the Web, includ-
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ing the linkages among bloggers [264], among pages on Wikipedia [404], among pages
on social-networking sites such as Facebook or MySpace [185], or among discussions
and product reviews on shopping sites [201].

The study of information linkage graphs significantly predates the Web: the field of
citation analysis has, since the early part of the 20th century, studied the network
structure of citations among scientific papers or patents, as a way of tracking the
evolution of science [145]. Citation networks are still popular research datasets today,
for the same reason that scientific co-authorship graphs are: even if you don’t have a
substantive interest in the social processes by which science gets done, citation networks

are very clean datasets that can easily span many decades.

Technological Networks. Although the Web is built on a lot of sophisticated technology,
it would be a mistake to think of it primarily as a technological network: it is really a
projection onto a technological backdrop of ideas, information, and social and economic
structure created by humans. But as we noted in the opening chapter, there has
clearly been a convergence of social and technological networks over recent years, and
much interesting network data comes from the more overtly technological end of the
spectrum — with nodes representing physical devices and edges representing physical
connections between them. Examples include the interconnections among computers
on the Internet [155] or among generating stations in a power grid [411].

Even physical networks like these are ultimately economic networks as well, represent-
ing the interactions among the competing organizations, companies, regulatory bodies,
and other economic entities that shape it. On the Internet, this is made particularly
explicit by a two-level view of the network. At the lowest level, nodes are individual
routers and computers, with an edge meaning that two devices actually have a physical
connection to each other. But at a higher level, these nodes are grouped into what are
essentially little “nation-states” termed autonomous systems, each one controlled by a
different Internet service-providers. There is then a who-transacts-with-whom graph
on the autonomous systems, known as the AS graph, that represents the data transfer

agreements these Internet service-providers make with each other.

Networks in the Natural World. Graph structures also abound in biology and the
other natural sciences, and network research has devoted particular attention to several
different types of biological networks. Here are three examples at three different scales,

from the population level down to the molecular level.

As a first example, food webs represent the who-eats-whom relationships among species
in an ecosystem [137]: there is a node for each species, and a directed edge from node
A to node B indicates that members of A consume members of B. Understanding

the structure of a food web as a graph can help in reasoning about issues such as
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cascading extinctions: if certain species become extinct, then species that rely on them
for food risk becoming extinct as well, if they do not have alternative food sources;
these extinctions can propagate through the food web as a chain reaction.

Another heavily-studied network in biology is the structure of neural connections within
an organism’s brain: the nodes are neurons, and an edge represents a connection
between two neurons [380]. The global brain architecture for simple organisms like
C. Elegans, with 302 nodes and roughly 7000 edges, has essentially been completely
mapped [3]; but obtaining a detailed network picture for brains of “higher” organisms is
far beyond the current state of the art. However, significant insight has been gained by
studying the structure of specific modules within a complex brain, and understanding
how they relate to one another.

A final example is the set of networks that make up a cell’s metabolism. There are
many ways to define these networks, but roughly, the nodes are compounds that play
a role in a metabolic process, and the edges represent chemical interactions among
them [43]. There is considerable hope that analysis of these networks can shed light
on the complex reaction pathways and regulatory feedback loops that take place inside
a cell, and perhaps suggest “network-centric” attacks on pathogens that disrupt their

metabolism in targeted ways.

2.5 Exercises

1. One reason for graph theory’s power as a modeling tool is the fluidity with which

one can formalize properties of large systems using the language of graphs, and then
systematically explore their consequences. In this first set of questions, we will work
through an example of this process using the concept of a pivotal node.

First, recall from Chapter 2 that a shortest path between two nodes is a path of the
minimum possible length. We say that a node X is pivotal for a pair of distinct nodes
Y and Z if X lies on every shortest path between Y and Z (and X is not equal to
either Y or 7).

For example, in the graph in Figure 2.13, node B is pivotal for two pairs: the pair
consisting of A and C, and the pair consisting of A and D. (Notice that B is not
pivotal for the pair consisting of D and FE since there are two different shortest paths
connecting D and E, one of which (using C' and F') doesn’t pass through B. So B
is not on every shortest path between D and FE.) On the other hand, node D is not
pivotal for any pairs.

(a) Give an example of a graph in which every node is pivotal for at least one pair of

nodes. Explain your answer.
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Figure 2.13: In this example, node B is pivotal for two pairs: the pair consisting of A and
C, and the pair consisting of A and D. On the other hand, node D is not pivotal for any
pairs.

(b) Give an example of a graph in which every node is pivotal for at least two different

pairs of nodes. Explain your answer.

(c) Give an example of a graph having at least four nodes in which there is a single
node X that is pivotal for every pair of nodes (not counting pairs that include
X). Explain your answer.

2. In the next set of questions, we consider a related cluster of definitions, which seek to
formalize the idea that certain nodes can play a “gatekeeping” role in a network. The
first definition is the following: we say that a node X is a gatekeeper if for some other
two nodes Y and Z, every path from Y to Z passes through X. For example, in the
graph in Figure 2.14, node A is a gatekeeper, since it lies for example on every path
from B to E. (It also lies on every path between other pairs of nodes — for example,
the pair D and E, as well as other pairs.)

This definition has a certain “global” flavor, since it requires that we think about paths
in the full graph in order to decide whether a particular node is a gatekeeper. A more
“local” version of this definition might involve only looking at the neighbors of a node.
Here’s a way to make this precise: we say that a node X is a local gatekeeper if there
are two neighbors of X, say Y and Z, that are not connected by an edge. (That is,
for X to be a local gatekeeper, there should be two nodes Y and Z so that Y and Z
each have edges to X, but not to each other.) So for example, in Figure 2.14, node
A is a local gatekeeper as well as being a gatekeeper; node D, on the other hand, is a
local gatekeeper but not a gatekeeper. (Node D has neighbors B and C' that are not
connected by an edge; however, every pair of nodes — including B and C' — can be
connected by a path that does not go through D.)

So we have two new definitions: gatekeeper, and local gatekeeper. When faced with
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Figure 2.14: Node A is a gatekeeper. Node D is a local gatekeeper but not a gatekeeper.

new mathematical definitions, a strategy that is often useful is to explore them first
through examples, and then to assess them at a more general level and try to relate

them to other ideas and definitions. Let’s try this in the next few questions.

(a) Give an example (together with an explanation) of a graph in which more than
half of all nodes are gatekeepers.

(b) Give an example (together with an explanation) of a graph in which there are no
gatekeepers, but in which every node is a local gatekeeper.

. When we think about a single aggregate measure to summarize the distances between

the nodes in a given graph, there are two natural quantities that come to mind. One is
the diameter, which we define to be the maximum distance between any pair of nodes
in the graph. Another is the average distance, which — as the term suggests — is the
average distance over all pairs of nodes in the graph.

In many graphs, these two quantities are close to each other in value. But there are
graphs where they can be very different.

(a) Describe an example of a graph where the diameter is more than three times as
large as the average distance.

(b) Describe how you could extend your construction to produce graphs in which the
diameter exceeds the average distance by as large a factor as you'd like. (That is,
for every number ¢, can you produce a graph in which the diameter is more than

¢ times as large as the average distance?)



Chapter 3

Strong and Weak Ties

One of the powerful roles that networks play is to bridge the local and the global — to
offer explanations for how simple processes at the level of individual nodes and links can have
complex effects that ripple through a population as a whole. In this chapter, we consider
some fundamental social network issues that illustrate this theme: how information flows
through a social network, how different nodes can play structurally distinct roles in this
process, and how these structural considerations shape the evolution of the network itself
over time. These themes all play central roles throughout the book, adapting themselves
to different contexts as they arise. Our context in this chapter will begin with the famous
“strength of weak ties” hypothesis from sociology [190], exploring outward from this point
to more general settings as well.

Let’s begin with some backgound and a motivating question. As part of his Ph.D.
thesis research in the late 1960s, Mark Granovetter interviewed people who had recently
changed employers to learn how they discovered their new jobs [191]. In keeping with earlier
research, he found that many people learned information leading to their current jobs through
personal contacts. But perhaps more strikingly, these personal contacts were often described
by interview subjects as acquaintances rather than close friends. This is a bit surprising:
your close friends presumably have the most motivation to help you when you’re between
jobs, so why is it so often your more distant acquaintances who are actually to thank for
crucial information leading to your new job?

The answer that Granovetter proposed to this question is striking in the way it links
two different perspectives on distant friendships — one structural, focusing on the way
these friendships span different portions of the full network; and the other interpersonal,
considering the purely local consequences that follow from a friendship between two people
being either strong or weak. In this way, the answer transcends the specific setting of job-
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(a) Before B-C' edge forms. (b) After B-C edge forms.

Figure 3.1: The formation of the edge between B and C illustrates the effects of triadic
closure, since they have a common neighbor A.

seeking, and offers a way of thinking about the architecture of social networks more generally.
To get at this broader view, we first develop some general principles about social networks

and their evolution, and then return to Granovetter’s question.

3.1 Triadic Closure

In Chapter 2, our discussions of networks treated them largely as static structures — we take
a snapshot of the nodes and edges at a particular moment in time, and then ask about paths,
components, distances, and so forth. While this style of analysis forms the basic foundation
for thinking about networks — and indeed, many datasets are inherently static, offering us
only a single snapshot of a network — it is also useful to think about how a network evolves
over time. In particular, what are the mechanisms by which nodes arrive and depart, and
by which edges form and vanish?

The precise answer will of course vary depending on the type of network we’re considering,
but one of the most basic principles is the following:

If two people in a social network have a friend in common, then there is an
increased likelihood that they will become friends themselves at some point in the
future [347].

We refer to this principle as triadic closure, and it is illustrated in Figure 3.1: if nodes B and
C have a friend A in common, then the formation of an edge between B and C' produces
a situation in which all three nodes A, B, and C have edges connecting each other — a

structure we refer to as a triangle in the network. The term “triadic closure” comes from
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(a) Before new edges form. (b) After new edges form.

Figure 3.2: If we watch a network for a longer span of time, we can see multiple edges forming
— some form through triadic closure while others (such as the D-G edge) form even though
the two endpoints have no neighbors in common.

the fact that the B-C edge has the effect of “closing” the third side of this triangle. If
we observe snapshots of a social network at two distinct points in time, then in the later
snapshot, we generally find a significant number of new edges that have formed through this
triangle-closing operation, between two people who had a common neighbor in the earlier
snapshot. Figure 3.2, for example, shows the new edges we might see from watching the

network in Figure 3.1 over a longer time span.

The Clustering Coefficient. The basic role of triadic closure in social networks has
motivated the formulation of simple social network measures to capture its prevalence. One
of these is the clustering coefficient [320, 411]. The clustering coefficient of a node A is
defined as the probability that two randomly selected friends of A are friends with each
other. In other words, it is the fraction of pairs of A’s friends that are connected to each
other by edges. For example, the clustering coefficient of node A in Figure 3.2(a) is 1/6
(because there is only the single C-D edge among the six pairs of friends B-C, B-D, B-F,
C-D, C-E, and D-F), and it has increased to 1/2 in the second snapshot of the network in
Figure 3.2(b) (because there are now the three edges B-C, C-D, and D-E among the same
six pairs). In general, the clustering coefficient of a node ranges from 0 (when none of the
node’s friends are friends with each other) to 1 (when all of the node’s friends are friends
with each other), and the more strongly triadic closure is operating in the neighborhood of

the node, the higher the clustering coefficient will tend to be.
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Figure 3.3: The A-B edge is a bridge, meaning that its removal would place A and B in
distinct connected components. Bridges provide nodes with access to parts of the network
that are unreachable by other means.

Reasons for Triadic Closure. Triadic closure is intuitively very natural, and essentially
everyone can find examples from their own experience. Moreover, experience suggests some
of the basic reasons why it operates. One reason why B and C are more likely to become
friends, when they have a common friend A, is simply based on the opportunity for B and C'
to meet: if A spends time with both B and C, then there is an increased chance that they
will end up knowing each other and potentially becoming friends. A second, related reason
is that in the process of forming a friendship, the fact that each of B and C' is friends with
A (provided they are mutually aware of this) gives them a basis for trusting each other that
an arbitrary pair of unconnected people might lack.

A third reason is based on the incentive A may have to bring B and C' together: if A is
friends with B and C, then it becomes a source of latent stress in these relationships if B
and C' are not friends with each other. This premise is based in theories dating back to early
work in social psychology [217]; it also has empirical reflections that show up in natural but
troubling ways in public-health data. For example, Bearman and Moody have found that
teenage girls who have a low clustering coefficient in their network of friends are significantly
more likely to contemplate suicide than those whose clustering coefficient is high [48].

3.2 The Strength of Weak Ties

So how does all this relate to Mark Granovetter’s interview subjects, telling him with such
regularity that their best job leads came from acquaintances rather than close friends? In
fact, triadic closure turns out to be one of the crucial ideas needed to unravel what’s going

on.
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Figure 3.4: The A-B edge is a local bridge of span 4, since the removal of this edge would
increase the distance between A and B to 4.

Bridges and Local Bridges. Let’s start by positing that information about good jobs is
something that is relatively scarce; hearing about a promising job opportunity from someone
suggests that they have access to a source of useful information that you don’t. Now consider
this observation in the context of the simple social network drawn in Figure 3.3. The person
labeled A has four friends in this picture, but one of her friendships is qualitatively different
from the others: A’s links to C', D, and E connect her to a tightly-knit group of friends who
all know each other, while the link to B seems to reach into a different part of the network.
We could speculate, then, that the structural peculiarity of the link to B will translate into
differences in the role it plays in A’s everyday life: while the tightly-knit group of nodes A, C,
D, and E will all tend to be exposed to similar opinions and similar sources of information,
A’s link to B offers her access to things she otherwise wouldn’t necessarily hear about.

To make precise the sense in which the A-B link is unusual, we introduce the following
definition. We say that an edge joining two nodes A and B in a graph is a bridge if deleting
the edge would cause A and B to lie in two different components. In other words, this edge
is literally the only route between its endpoints, the nodes A and B.

Now, if our discussion in Chapter 2 about giant components and small-world properties
taught us anything, it’s that bridges are presumably extremely rare in real social networks.
You may have a friend from a very different background, and it may seem that your friendship

is the only thing that bridges your world and his, but one expects in reality that there will
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Figure 3.5: Each edge of the social network from Figure 3.4 is labeled here as either a strong
tie (S) or a weak tie (W), to indicate the strength of the relationship. The labeling in the
figure satisfies the Strong Triadic Closure Property at each node: if the node has strong ties
to two neighbors, then these neighbors must have at least a weak tie between them.

be other, hard-to-discover, multi-step paths that also span these worlds. In other words, if
we were to look at Figure 3.3 as it is embedded in a larger, ambient social network, we would
likely see a picture that looks like Figure 3.4.

Here, the A-B edge isn’t the only path that connects its two endpoints; though they may
not realize it, A and B are also connected by a longer path through F', G, and H. This kind
of structure is arguably much more common than a bridge in real social networks, and we
use the following definition to capture it. We say that an edge joining two nodes A and B
in a graph is a local bridge if its endpoints A and B have no friends in common — in other
words, if deleting the edge would increase the distance between A and B to a value strictly
more than two. We say that the span of a local bridge is the distance its endpoints would
be from each other if the edge were deleted [190, 407]. Thus, in Figure 3.4, the A-B edge is
a local bridge with span four; we can also check that no other edge in this graph is a local
bridge, since for every other edge in the graph, the endpoints would still be at distance two if
the edge were deleted. Notice that the definition of a local bridge already makes an implicit
connection with triadic closure, in that the two notions form conceptual opposites: an edge
is a local bridge precisely when it does not form a side of any triangle in the graph.

Local bridges, especially those with reasonably large span, still play roughly the same



3.2. THE STRENGTH OF WEAK TIES 53

role that bridges do, though in a less extreme way — they provide their endpoints with
access to parts of the network, and hence sources of information, that they would otherwise
be far away from. And so this is a first network context in which to interpret Granovetter’s
observation about job-seeking: we might expect that if a node like A is going to get truly
new information, the kind that leads to a new job, it might come unusually often (though
certainly not always) from a friend connected by a local bridge. The closely-knit groups that
you belong to, though they are filled with people eager to help, are also filled with people
who know roughly the same things that you do.

The Strong Triadic Closure Property. Of course, Granovetter’s interview subjects
didn’t say, “I learned about the job from a friend connected by a local bridge.” If we believe
that local bridges were overrepresented in the set of people providing job leads, how does
this relate to the observation that distant acquaintances were overrepresented as well?

To talk about this in any detail, we need to be able to distinguish between different levels
of strength in the links of a social network. We deliberately refrain from trying to define
“strength” precisely, but we mean it to align with the idea that stronger links represent closer
friendship and greater frequency of interaction. In general, links can have a wide range of
possible strengths, but for conceptual simplicity — and to match the friend/acquaintance
dichotomy that we're trying to explain — we’ll categorize all links in the social network as
belonging to one of two types: strong ties (the stronger links, corresponding to friends), and
weak ties (the weaker links, corresponding to acquaintances).!

Once we have decided on a classification of links into strong and weak ties, we can take a
social network and annotate each edge with a designation of it as either strong or weak. For
example, assuming we asked the nodes in the social network of Figure 3.4 to report which
of their network neighbors were close friends and which were acquaintances, we could get an
annotated network as in Figure 3.5.

It is useful to go back and think about triadic closure in terms of this division of edges
into strong and weak ties. If we recall the arguments supporting triadic closure, based on

opportunity, trust, and incentive, they all act more powerfully when the edges involved are

n addition to the difficulty in reducing a range of possible link strengths to a two-category strong/weak
distinction, there are many other subtleties in this type of classification. For example, in the discussion here,
we will take this division of links into strong and weak ties as fixed in a single snapshot of the network. In
reality, of course, the strength of a particular link can vary across different times and different situations.
For example, an employee of a company who is temporarily assigned to work with a new division of the
company for a few months may find that her full set of available social-network links remains roughly the
same, but that her links to people within the new division have been temporarily strengthened (due to the
sudden close proximity and increased contact), while her links to her old division have been temporarily
weakened. Similarly, a high-school student may find that links to fellow members of a particular sports team
constitute strong ties while that sport is in season, but that some of these links — to the teammates he
knows less well outside of the team — become weak ties in other parts of the year. Again, for our purposes,
we will consider a single distinction between strong and weak ties that holds throughout the analysis.
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strong ties than when they are weak ties. This suggests the following qualitative assumption:

If a node A has edges to nodes B and C, then the B-C' edge is especially likely
to form if A’s edges to B and C' are both strong ties.

To enable some more concrete analysis, Granovetter suggested a more formal (and somewhat

more extreme version) of this, as follows.

We say that a node A violates the Strong Triadic Closure Property if it has strong
ties to two other nodes B and C', and there is no edge at all (either a strong or
weak tie) between B and C. We say that a node A satisfies the Strong Triadic
Closure Property if it does not violate 1it.

You can check that no node in Figure 3.5 violates the Strong Triadic Closure Property, and
hence all nodes satisfy the Property. On the other hand, if the A-F' edge were to be a strong
tie rather than a weak tie, then nodes A and F' would both violate the Strong Triadic Closure
Property: Node A would now have strong ties to nodes E and F' without there being an
E-F edge, and node F' would have strong ties to both A and G without there being an
A-G edge. As a further check on the definition, notice that with the labeling of edges as
in Figure 3.5, node H satisfies the Strong Triadic Closure Property: H couldn’t possibly
violate the Property since it only has a strong tie to one other node.

Clearly the Strong Triadic Closure Property is too extreme for us to expect it hold across
all nodes of a large social network. But it is a useful step as an abstraction to reality,
making it possible to reason further about the structural consequences of strong and weak
ties. In the same way that an introductory physics course might assume away the effects of
air resistance in analyzing the flight of a ball, proposing a slightly too-powerful assumption
in a network context can also lead to cleaner and conceptually more informative analysis.
For now, then, let’s continue figuring out where it leads us in this case; later, we’ll return to
the question of its role as a modeling assumption.

Local Bridges and Weak Ties. We now have a purely local, interpersonal distinction
between kinds of links — whether they are weak ties or strong ties — as well as a global,
structural notion — whether they are local bridges or not. On the surface, there is no direct
connection between the two notions, but in fact using triadic closure we can establish a

connection, in the following claim.

Claim: If a node A in a network satifies the Strong Triadic Closure Property and
18 1nvolved in at least two strong ties, then any local bridge it is involved in must
be a weak tie.

In other words, assuming the Strong Triadic Closure Property and a sufficient number of

strong ties, the local bridges in a network are necessarily weak ties.
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Strong Triadic Closure says
the B-C edge must exist, but
the definition of a local bridge
says it cannot.

Figure 3.6: If a node satifies Strong Triadic Closure and is involved in at least two strong
ties, then any local bridge it is involved in must be a weak tie. The figure illustrates the
reason why: if the A-B edge is a strong tie, then there must also be an edge between B and
C, meaning that the A-B edge cannot be a local bridge.

We're going to justify this claim as a mathematical statement — that is, it will follow
logically from the definitions we have so far, without our having to invoke any as-yet-
unformalized intuitions about what social networks ought to look like. In this way, it’s
a different kind of claim from our argument in Chapter 2 that the global friendship network
likely contains a giant component. That was a thought experiment (albeit a very convinc-
ing one), requiring us to believe various empirical statements about the network of human
friendships — empirical statements that could later be confirmed or refuted by collecting
data on large social networks. Here, on the other hand, we’ve constructed a small num-
ber of specific mathematical definitions — particularly, local bridges and the Strong Triadic
Closure Property — and we can now justify the claim directly from these.

The argument is actually very short, and it proceeds by contradiction. Take some net-
work, and consider a node A that satisfies the Strong Triadic Closure Property and is involved
in at least two strong ties. Now suppose A is involved in a local bridge — say, to a node
B — that is a strong tie. We want to argue that this is impossible, and the crux of the
argument is depicted in Figure 3.6. First, since A is involved in at least two strong ties,
and the edge to B is only one of them, it must have a strong tie to some other node, which
we’ll call C. Now let’s ask: is there an edge connecting B and C'? Since the edge from A to
B is a local bridge, A and B must have no friends in common, and so the B-C' edge must

not exist. But this contradicts Strong Triadic Closure, which says that since the A-B and
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A-C' edges are both strong ties, the B-C' edge must exist. This contradiction shows that our
initial premise, the existence of a local bridge that is a strong tie, cannot hold, finishing the
argument.

This argument completes the connection we’'ve been looking for between the local prop-
erty of tie strength and the global property of serving as a local bridge. As such, it gives us
a way to think about the way in which interpersonal properties of social-network links are
related to broader considerations about the network’s structure. But since the argument is
based on some strong assumptions (mainly Strong Triadic Closure, since the other assump-
tion is very mild), it is also worth reflecting on the role that simplifying assumptions play in
a result like this.

First, simplifying assumptions are useful when they lead to statements that are robust
in practice, making sense as qualitative conclusions that hold in approximate forms even
when the assumptions are relaxed. This is the case here: the mathematical argument can
be summarized more informally and approximately as saying that in real life, a local bridge
between nodes A and B tends to be a weak tie because if it weren’t, triadic closure would
tend to produce short-cuts to A and B that would eliminate its role as a local bridge. Again,
one is tempted to invoke the analogy to freshman physics: even if the assumptions used
to derive the perfectly parabolic flight of a ball don’t hold exactly in the real world, the
conclusions about flight trajectories are a very useful, conceptually tractable approximation
to reality.

Second, when the underlying assumptions are stated precisely, as they are here, it becomes
possible to test them on real-world data. In the past few years researchers have studied the
relationship of tie strength and network structure quantitatively across large populations,
and have shown that the conclusions described here in fact hold in an approximate form.
We describe some of this empirical research in the next section.

Finally, this analysis provides a concrete framework for thinking about the initially sur-
prising fact that life transitions such as a new jobs are often rooted in contact with distant
acquaintances. The argument is that these are the social ties that connect us to new sources
of information and new opportunities, and their conceptual “span” in the social network
(the local bridge property) is directly related to their weakness as social ties. This dual role
as weak connections but also valuable conduits to hard-to-reach parts of the network — this
is the surprising strength of weak ties.

3.3 Tie Strength and Network Structure in Large-Scale
Data

The arguments connecting tie strength with structural properties of the underlying social

network make intriguing theoretical predictions about the organization of social networks
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in real life. For many years after Granovetter’s initial work, however, these predictions
remained relatively untested on large social networks, due to the difficulty in finding data
that reliably captured the strengths of edges in large-scale, realistic settings.

This state of affairs began to change rapidly once detailed traces of digital communication
became available. Such “who-talks-to-whom” data exhibits the two ingredients we need
for empirical evaluation of hypotheses about weak ties: it contains the network structure
of communication among pairs of people, and we can use the total time that two people
spend talking to each other as a proxy for the strength of the tie — the more time spent
communicating during the course of an observation period, the stronger we declare the tie
to be.

In one of the more comprehensive studies of this type, Onnela et al. studied the who-
talks-to-whom network maintained by a cell-phone provider that covered roughly 20% of a
national population [334]. The nodes correspond to cell-phone users, and there is an edge
joining two nodes if they made phone calls to each other in both directions over an 18-
week observation period. Because the cell phones in this population are generally used for
personal communication rather than business purposes, and because the lack of a central
directory means that cell-phone numbers are generally exchanged among people who already
know each other, the underlying network can be viewed as a reasonable sampling of the
conversations occurring within a social network representing a significant fraction of one
country’s population. Moreover, the data exhibits many of the broad structural features
of large social networks discussed in Chapter 2, including a giant component — a single

connected component containing most (in this case 84%) of the individuals in the network.

Generalizing the Notions of Weak Ties and Local Bridges. The theoretical formu-
lation in the preceding section is based on two definitions that impose sharp dichotomies
on the network: an edge is either a strong tie or a weak tie, and it is either a local bridge
or it isn’t. For both of these definitions, it is useful to have versions that exhibit smoother
gradations when we go to examine real data at a large scale.

Above, we just indicated a way to do this for tie strength: we can make the strength of
an edge a numerical quantity, defining it to be the total number of minutes spent on phone
calls between the two ends of the edge. It is also useful to sort all the edges by tie strength,
so that for a given edge we can ask what percentile it occupies this ordering of edges sorted
by strength.

Since a very small fraction of the edges in the cell-phone data are local bridges, it makes
sense to soften this definition as well, so that we can view certain edges as being “almost”
local bridges. To do this, we define the neighborhood overlap of an edge connecting A and
B to be the ratio

number of nodes who are neighbors of both A and B

3.1
number of nodes who are neighbors of at least one of A or B’ (3:1)
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Figure 3.7: A plot of the neighborhood overlap of edges as a function of their percentile in
the sorted order of all edges by tie strength. The fact that overlap increases with increasing
tie strength is consistent with the theoretical predictions from Section 3.2. (Image from
(334].)

where in the denominator we don’t count A or B themselves (even though A is a neighbor of
B and B is a neighbor of A). As an example of how this definition works, consider the edge
A-F in Figure 3.4. The denominator of the neighborhood overlap for A-F' is determined by
the nodes B, C, D, FE, (G, and J, since these are the ones that are a neighbor of at least one
of A or F. Of these, only C' is a neighbor of both A and F', so the neighborhood overlap is
1/6.

The key feature of this definition is that this ratio in question is 0 precisely when the
numerator is 0, and hence when the edge is a local bridge. So the notion of a local bridge
is contained within this definition — local bridges are the edges of neighborhood overlap 0
— and hence we can think of edges with very small neighborhood overlap as being “almost”
local bridges. (Since intuitively, edges with very small neighborhood overlap consist of nodes
that travel in “social circles” having almost no one in common.) For example, this definition
views the A-F edge as much closer to being a local bridge than the A-FE edge is, which

accords with intuition.
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Empirical Results on Tie Strength and Neighborhood Overlap. Using these defi-
nitions, we can formulate some fundamental quantitative questions based on Granovetter’s
theoretical predictions. First, we can ask how the neighborhood overlap of an edge depends
on its strength; the strength of weak ties predicts that neighborhood overlap should grow as
tie strength grows.

In fact, this is borne out extremely cleanly by the data. Figure 3.7 shows the neigh-
borhood overlap of edges as a function of their percentile in the sorted order of all edges
by tie strength. Thus, as we go to the right on the z-axis, we get edges of greater and
greater strength, and because the curve rises in a strikingly linear fashion, we also get edges
of greater and greater neighborhood overlap. The relationship between these quantities thus

aligns well with the theoretical prediction.?

The measurements underlying Figure 3.7 describe a connection between tie strength
and network structure at a local level — in the neighborhoods of individual nodes. It is
also interesting to consider how this type of data can be used to evaluate the more global
picture suggested by the theoretical framework, that weak ties serve to link together different
tightly-knit communities that each contain a large number of stronger ties. Here, Onnela et
al. provided an indirect analysis to address this question, as follows. They first deleted edges
from the network one at a time, starting with the strongest ties and working downward in
order of tie strength. The giant component shrank steadily as they did this, its size going
down gradually due to the elimination of connections among the nodes. They then tried the
same thing, but starting from the weakest ties and working upward in order of tie strength.
In this case, they found that the giant component shrank more rapidly, and moreover that
its remnants broke apart abruptly once a critical number of weak ties had been removed.
This is consistent with a picture in which the weak ties provide the more crucial connective
structure for holding together disparate communities, and for keeping the global structure

of the giant component intact.

Ultimately, this is just a first step toward evaluating theories of tie strength on net-
work data of this scale, and it illustrates some of the inherent challenges: given the size
and complexity of the network, we cannot simply look at the structure and “see what’s
there.” Indirect measures must generally be used, and since one knows relatively little about
the meaning or significance of any particular node or edge, it remains an ongoing research
challenge to draw richer and more detailed conclusions in the way that one can on small
datasets.

2Tt is of course interesting to note the deviation from this trend at the very right-hand edge of the plot
in Figure 3.7, corresponding to the edges of greatest possible tie strength. It is not clear what causes this
deviation, but it is certainly plausible that these extremely strong edges are associated with people who are
using their cell-phones in some unusual fashion.
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3.4 Tie Strength, Social Media, and Passive Engage-
ment

As an increasing amount of social interaction moves on-line, the way in which we maintain
and access our social networks begins to change as well. For example, as is well-known
to users of social-networking tools, people maintain large explicit lists of friends in their
profiles on these sites — in contrast to the ways in which such friendship circles were once
much more implicit, and in fact relatively difficult for individuals even to enumerate or
mentally access [244]. What effect does this have on social network structure more broadly?
Understanding the changes arising from these forms of technological mediation is a challenge
that was already being articulated in the early 1990s by researchers including Barry Wellman
[414, 413], as the Internet began making remote interaction possible for a broad public; these
issues have of course grown steadily more pervasive between then and now.

Tie strength can provide an important perspective on such questions, providing a lan-
guage for asking how on-line social activity is distributed across different kinds of links —
and in particular, how it is distributed across links of different strengths. When we see
people maintaining hundreds of friendship links on a social-networking site, we can ask how
many of these correspond to strong ties that involve frequent contact, and how many of these

correspond to weak ties that are activated relatively rarely.

Tie Strength on Facebook. Researchers have begun to address such questions of tie
strength using data from some of the most active social media sites. At Facebook, Cameron
Marlow and his colleagues analyzed the friendship links reported in each user’s profile, ask-
ing to what extent each link was actually used for social interaction, beyond simply being
reported in the profile [286]. In other words, where are the strong ties among a user’s friends?
To make this precise using the data they had available, they defined three categories of links
based on usage over a one-month observation period.

e A link represents reciprocal (mutual) communication, if the user both sent messages to
the friend at the other end of the link, and also received messages from them during

the observation period.

e A link represents one-way communication if the user sent one or more messages to the

friend at the other end of the link (whether or not these messages were reciprocated).

e A link represents a maintained relationship if the user followed information about the
friend at the other end of the link, whether or not actual communication took place;
“following information” here means either clicking on content via Facebook’s News
Feed service (providing information about the friend) or visiting the friend’s profile

more than once.
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All Friends Maintained Relationships

Figure 3.8: Four different views of a Facebook user’s network neighborhood, showing the
structure of links coresponding respectively to all declared friendships, maintained relation-
ships, one-way communication, and reciprocal (i.e. mutual) communication. (Image from

[286].)

Notice that these three categories are not mutually exclusive — indeed, the links classified
as reciprocal communication always belong to the set of links classified as one-way commu-
nication.

This stratification of links by their use lets us understand how a large set of declared
friendships on a site like Facebook translates into an actual pattern of more active social
interaction, corresponding approximately to the use of stronger ties. To get a sense of the
relative volumes of these different kinds of interaction through an example, Figure 3.8 shows
the network neighborhood of a sample Facebook user — consisting of all his friends, and all
links among his friends. The picture in the upper-left shows the set of all declared friendships
in this user’s profile; the other three pictures show how the set of links becomes sparser once

we consider only maintained relationships, one-way communication, or reciprocal communi-
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Figure 3.9: The number of links corresponding to maintained relationships, one-way com-
munication, and reciprocal communication as a function of the total neighborhood size for
users on Facebook. (Image from [286].)

cation. Moreover, as we restrict to stronger ties, certain parts of the network neighborhood
thin out much faster than others. For example, in the neighborhood of the sample user in
Figure 3.8, we see two distinct regions where there has been a particularly large amount of
triadic closure: one in the upper part of the drawing, and one on the right-hand side of the
drawing. However, when we restrict to links representing communication or a maintained
relationship, we see that a lot of the links in the upper region survive, while many fewer of
the links in the right-hand region do. One could conjecture that the right-hand region rep-
resents a set of friends from some earlier phase of the user’s life (perhaps from high school)
who declare each other as friends, but do not actively remain in contact; the upper region,
on the other hand, consists of more recent friends (perhaps co-workers) for whom there is
more frequent contact.

We can make the relative abundance of these different types of links quantitative through
the plot in Figure 3.9. On the x-axis is the total number of friends a user declares, and the
curves then show the (smaller) numbers of other link types as a function of this total. There
are several interesting conclusions to be drawn from this. First, it confirms that even for

users who report very large numbers of friends on their profile pages (on the order of 500),
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Figure 3.10: The total number of a user’s strong ties (defined by multiple directed messages)
as a function of the number of followees he or she has on Twitter. (Image from [222].)

the number with whom they actually communicate is generally between 10 and 20, and the
number they follow even passively (e.g. by reading about them) is under 50. But beyond this
observation, Marlow and his colleagues draw a further conclusion about the power of media
like Facebook to enable this kind of passive engagement, in which one keeps up with friends
by reading news about them even in the absence of communication. They argue that this
passive network occupies an interesting middle ground between the strongest ties maintained
by regular communication and the weakest ties from one’s distant past, preserved only in
lists on social-networking profile pages. They write, “The stark contrast between reciprocal
and passive networks shows the effect of technologies such as News Feed. If these people
were required to talk on the phone to each other, we might see something like the reciprocal
network, where everyone is connected to a small number of individuals. Moving to an
environment where everyone is passively engaged with each other, some event, such as a new
baby or engagement can propagate very quickly through this highly connected network.”

Tie Strength on Twitter. Similar lines of investigation have been carried out recently on
the social media site Twitter, where individual users engage in a form of micro-blogging by
posting very short, 140-character public messages known as “tweets.” Twitter also includes
social-network features, and these enable one to distinguish between stronger and weaker
ties: each user can specify a set of other users whose messages he or she will follow, and each

user can also direct messages specifically to another user. (In the latter case, the message
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remains public for everyone to read, but it is marked with a notation indicating that it is
intended for a particular user.) Thus, the former kind of interaction defines a social network
based on more passive, weak ties — it is very easy for a user to follow many people’s messages
without ever directly communicating with any of them. The latter kind of interaction —
especially when we look at users directing multiple messages to others — corresponds to a
stronger kind of direct interaction.

In a style analogous to the work of Marlow et al., Huberman, Romero, and Wu analyzed
the relative abundance of these two kinds of links on Twitter [222]. Specifically, for each
user they considered the number of users whose messages she followed (her “followees”), and
then defined her strong ties to consist of the users to whom she had directed at least two
messages over the course of an observation period. Figure 3.10 shows how the number of
strong ties varies as a function of the number of followees. As we saw for Facebook, even
for users who maintain very large numbers of weak ties on-line, the number of strong ties
remains relatively modest, in this case stabilizing at a value below 50 even for users with
over 1000 followees.

There is another useful way to think about the contrast between the ease of forming
links and the relative scarcity of strong ties in environments like Facebook and Twitter. By
definition, each strong tie requires the continuous investment of time and effort to maintain,
and so even people who devote a lot of their energy to building strong ties will eventually
reach a limit — imposed simply by the hours available in a day — on the number of ties
that they can maintain in this way. The formation of weak ties is governed by much milder
constraints — they need to be established at their outset but not necessarily maintained
continuously — and so it is easier for someone to accumulate them in large numbers. We
will encounter this distinction again in Chapter 13, when we consider how social networks
differ at a structural level from information networks such as the World Wide Web.

Understanding the effect that on-line media have on the maintenance and use of social
networks is a complex problem for which the underlying research is only in its early stages.
But some of these preliminary studies already highlight the ways in which networks of strong
ties can still be relatively sparse even in on-line settings where weak ties abound, and how
the nature of the underlying on-line medium can affect the ways in which different links are

used for conveying information.

3.5 Closure, Structural Holes, and Social Capital

Our discussion thus far suggests a general view of social networks in terms of tightly-knit
groups and the weak ties that link them. The analysis has focused primarily on the roles
that different kinds of edges of a network play in this structure — with a few edges spanning

different groups while most are surrounded by dense patterns of connections.
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Figure 3.11: The contrast between densely-knit groups and boundary-spanning links is re-
flected in the different positions of nodes A and B in the underyling social network.

There is a lot of further insight to be gained by asking about the roles that different nodes
play in this structure as well. In social networks, access to edges that span different groups is
not equally distributed across all nodes: some nodes are positioned at the interface between
multiple groups, with access to boundary-spanning edges, while others are positioned in the
middle of a single group. What is the effect of this heterogeneity? Following the expositional
lead of social-network researchers including Ron Burt [87], we can formulate an answer to
this question as a story about the different experiences that nodes have in a network like the
one in Figure 3.11 — particularly in the contrast between the experience of a node such as
A, who sits at the center of a single tightly-knit group, and node B, who sits at the interface
between several groups.

Embeddedness. Let’s start with node A. Node A’s set of network neighbors has been
subject to considerable triadic closure; A has a high clustering coefficient. (Recall that the
clustering coefficient is the fraction of pairs of neighbors who are themselves neighbors).

To talk about the structure around A it is useful to introduce an additional definition.
We define the embeddedness of an edge in a network to be the number of common neighbors
the two endpoints have. Thus, for example, the A-B edge has an embeddedness of two, since
A and B have the two common neighbors E and F. This definition relates to two notions

from earlier in the chapter. First, the embeddedness of an edge is equal to the numerator in
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the ratio that defines the neighborhood overlap in Equation (3.1) from Section 3.3. Second,
we observe that local bridges are precisely the edges that have an embeddedness of zero —
since they were defined as those edges whose endpoints have no neighbors in common.

In the example shown in Figure 3.11, what stands out about A is the way in which all
of his edges have significant embeddedness. A long line of research in sociology has argued
that if two individuals are connected by an embedded edge, then this makes it easier for
them to trust one another, and to have confidence in the integrity of the transactions (social,
economic, or otherwise) that take place between them [117, 118, 193, 194, 395]. Indeed, the
presence of mutual friends puts the interactions between two people “on display” in a social
sense, even when they are carried out in private; in the event of misbehavior by one of the
two parties to the interaction, there is the potential for social sanctions and reputational
consequences from their mutual friends. As Granovetter writes, “My mortification at cheat-
ing a friend of long standing may be substantial even when undiscovered. It may increase
when a friend becomes aware of it. But it may become even more unbearable when our
mutual friends uncover the deceit and tell one another” [194].

No similar kind of deterring threat exists for edges with zero embeddedness, since there
is no one who knows both people involved in the interaction. In this respect, the interactions
that B has with C' and D are much riskier than the embedded interactions that A experiences.
Moreover, the constraints on B’s behavior are made complicated by the fact that she is
subject to potentially contradictory norms and expectations from the different groups she
associates with [116].

Structural holes. Thus far we have been discussing the advantages that accrue to node A
in Figure 3.11 from the closure in his network neighborhood, and the embedded edges that
result from this. But a related line of research in sociology, catalyzed by influential work of
Burt [86], has argued that network positions such as node B’s, at the ends of multiple local
bridges, confer a distinct set of equally fundamental advantages.

The canonical setting for this argument is the social network within an organization or
company, consisting of people who are in some ways collaborating on common objectives and
in other ways implicitly competing for career advancement. Note that although we may be
thinking about settings in which there is a formal organizational hierarchy — encoding who
reports to whom — we’re interested in the more informal network of who knows whom, and
who talks to whom on a regular basis. Empirical studies of managers in large corporations has
correlated an individual’s success within a company to their access to local bridges [86, 87].
At a more abstract level, the central arguments behind these studies are also supported by
the network principles we have been discussing, as we now explore further.

Let’s go back to the network in Figure 3.11, imagining the network to represent the

interaction and collaboration among managers in a large company. In Burt’s language,
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node B, with her multiple local bridges, spans a structural hole in the organization — the
“empty space” in the network between two sets of nodes that do not otherwise interact
closely. (Unlike the term “local bridge,” which has a precise mathematical definition in
terms of the underlying graph, we will keep the term “structural hole” somewhat informal in
this discussion.) The argument is that B’s position offers advantages in several dimensions
relative to A’s. The first kind of advantage, following the observations in the previous
section, is an informational one: B has early access to information originating in multiple,
non-interacting parts of the network. Any one person has a limited amount of energy they
can invest in maintaining contacts across the organization, and B is investing her energy
efficiently by reaching out to different groups rather than basing all her contacts in the same
group.

A second, related kind of advantage is based on the way in which standing at one end of a
local bridge can be an amplifier for creativity [88]. Experience from many domains suggests
that innovations often arise from the unexpected synthesis of multiple ideas, each of them on
their own perhaps well-known, but well-known in distinct and unrelated bodies of expertise.
Thus, B’s position at the interface between three non-interacting groups gives her not only
access to the combined information from these groups, but also the opportunity for novel

ideas by combining these disparate sources of information in new ways.

Finally, B’s position in the network provides an opportunity for a kind of social “gate-
keeping” — she regulates the access of both C' and D to the tightly-knit group she belongs
to, and she controls the ways in which her own group learns about information coming from
C’s and D’s groups. This provides B with a source of power in the organization, and one
could imagine that certain people in this situation might try to prevent triangles from form-
ing around the local bridges they're part of — for example, another edge from C' or D into
B’s group would reduce B’s gatekeeping role.

This last point highlights a sense in which the interests of node B and of the organization
as a whole may not be aligned. For the functioning of the organization, accelerating the flow
of information between groups could be beneficial, but this building of bridges would come
at the expense of B’s latent power at the boundaries of these groups. It also emphasizes that
our analysis of structural holes is primarily a static one: we look at the network at a single
point in time, and consider the effects of the local bridges. How long these local bridges last
before triadic closure produces short-cuts around them, and the extent to which people in an
organization are consciously, strategically seeking out local bridges and trying to maintain
them, is less well understood; it is a topic of ongoing research [90, 188, 252, 259].

Ultimately, then, there are trade-offs in the relative positions of A and B. B’s position at
the interface between groups means that her interactions are less embedded within a single
group, and less protected by the presence of mutual network neighbors. On the other hand,

this riskier position provides her with access to information residing in multiple groups, and
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the opportunity to both regulate the flow of this information and to synthesize it in new

ways.

Closure and Bridging as Forms of Social Capital. All of these arguments are framed
in terms of individuals and groups deriving benefits from an underlying social structure or
social network; as such, they are naturally related to the notion of social capital [117, 118,
279, 342, 344]. Social capital is a term in increasingly widespread use, but it is a famously
difficult one to define [138]. In Alejandro Portes’s review of the topic, he writes, “Consensus
is growing in the literature that social capital stands for the ability of actors to secure benefits
by virtue of membership in social networks or other social structures” [342].

The term “social capital” is designed to suggest its role as part of an array of different
forms of capital, all of which serve as tangible or intangible resources that can be mobilized
to accomplish tasks. James Coleman and others speak of social capital alongside physical
capital — the implements and technologies that help perform work — and human capital —
the skills and talents that individual people bring to a job or goal [118]. Pierre Bourdieu offers
a related but distinct taxonomy, considering social capital in relation to economic capital —
consisting of monetary and physical resources — and cultural capital — the accumulated
resources of a culture that exist at a level beyond any one individual’s social circle, conveyed
through education and other broad social institutions [17, 75].

Borgatti, Jones, and Everett [74], summarizing discussions within the sociology commu-
nity, observe two important sources of variation in the use of the term “social capital.” First,
social capital is sometimes viewed as a property of a group, with some groups functioning
more effectively than others because of favorable properties of their social structures or net-
works. Alternately, it has also been considered as a property of an individual; used in this
sense, a person can have more or less social capital depending on his or her position in the
underlying social structure or network. A second, related, source of terminological variation
is based on whether social capital is a property that is purely intrinsic to a group — based
only on the social interactions among the group’s members — or whether it is also based on
the interactions of the group with the outside world.

A view at this level of generality does not yet specify what kinds of network structures
are the most effective for creating social capital, and our discussion earlier in this section
highlights several different perspectives on the question. The writings of Coleman and oth-
ers on social capital emphasize the benefits of triadic closure and embedded edges for the
reasons discussed above: they enable the enforcement of norms and reputational effects, and
hence can help protect the integrity of social and economic transactions. Burt, on the other
hand, discusses social capital as a tension between closure and brokerage — with the former
referring to Coleman’s conception and the latter referring to benefits arising from the ability

to “broker” interactions at the interface between different groups, across structural holes.
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In addition to the structural distinctions between these perspectives, they also illustrate
different focuses on groups versus individuals, and on the activity within a group versus
its contacts with a larger population. The contrasts are also related to Robert Putnam’s
dichotomy between bonding capital and bridging capital [344]; these terms, while intended
informally, correspond roughly to the kinds of social capital arising respectively from con-
nections within a tightly-knit group and from connections between such groups.

The notion of social capital thus provides a framework for thinking about social structures
as facilitators of effective action by individuals and groups, and a way of focusing discussions
of the different kinds of benefits conferred by different structures. Networks are at the heart
of such discussions — both in the way they produce closed groups where transactions can be
trusted, and in the way they link different groups and thereby enable the fusion of different
sources of information residing in these groups.

3.6 Advanced Material: Betweenness Measures and
Graph Partitioning

This is the first in a series of sections throughout the book labeled “Advanced Material.”
Each of these sections comes at the end of a chapter, and it explores mathematically more
sophisticated aspects of some of the models developed earlier in the chapter. They are
strictly optional, in that nothing later in the book builds on them. Also, while these sections
are technically more involved, they are written to be completely self-contained, except where
specific pieces of mathematical background are needed; this necessary background is spelled
out at the beginnings of the sections where it is required.

In this section, we will try formulating more concrete mathematical definitions for some of
the basic concepts from earlier in the chapter. The discussion in this chapter has articulated
a way of thinking about networks in terms of their tightly-knit regions and the weaker ties
that link them together. We have formulated precise definitions for some of the underlying
concepts, such as the clustering coefficient and the definition of a local bridge. In the process,
however, we have refrained from trying to precisely delineate what we mean by a “tightly-knit
region,” and how to formally characterize such regions.

For our purposes so far, it has been useful to be able to speak in this more general,
informal way about tightly-knit regions; it helps to be flexible since the exact characterization
of the notion may differ depending on the different domains in which we encounter it. But
there are also settings in which having a more precise, formal definition is valuable. In
particular, a formal definition can be crucial if we are faced with a network dataset and
actually want to identify densely connected groups of nodes within it.

This will be our focus here: describing a method that can take a network and break it

down into a set of tightly-knit regions, with sparser interconnections between the regions.
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Figure 3.12: A co-authorship network of physicists and applied mathematicians working on
networks [322]. Within this professional community, more tightly-knit subgroups are evident
from the network structure.

We will refer to this as the problem of graph partitioning, and the constituent parts the
network is broken into as the regions arising from the partitioning method. Formulating a
method for graph partitioning will implicitly require working out a set of definitions for all
these notions that are both mathematically tractable and also useful on real datasets.

To give a sense for what we might hope to achieve from such a method, let’s consider
two examples. The first, shown in Figure 3.12, depicts the co-authorships among a set of
physicists and applied mathematicians working on networks [322]. Recall that we discussed
co-authorship networks in Chapter 2 as a way of encoding the collaborations within a profes-
sional community. It’s clear from the picture that there are tightly-knit groups within this
community, and some people who sit on the boundaries of their respective groups. Indeed it
resembles, at a somewhat larger scale, some of the pictures of tightly-knit groups and weak
ties that we drew in schematic form earlier, in examples such as Figure 3.11. Is there a

general way to pull these groups out of the data, beyond using just our visual intuition?
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Figure 3.13: A karate club studied by Wayne Zachary [421] — a dispute during the course
of the study caused it to split into two clubs. Could the boundaries of the two clubs be
predicted from the network structure?

A second example, in Figure 3.13, is a picture of the social network of a karate club studied
by Wayne Zachary [421] and discussed in Chapter 1: a dispute between the club president
(node 34) and the instructor (node 1) led the club to split into two. Figure 3.13 shows the
network structure, with the membership in the two clubs after the division indicated by the
shaded and unshaded nodes. Now, a natural question is whether the structure itself contains
enough information to predict the fault line. In other words, did the split occur along a weak
interface between two densely connected regions? Unlike the network in Figure 3.12, or in
some of the earlier examples in the chapter, the two conflicting groups here are still heavily
interconnected. So to identify the division in this case, we need to look for more subtle
signals in the way in which edges between the groups effectively occur at lower “density”
than edges within the groups. We will see that this is in fact possible, both for the definitions

we consider here as well as other definitions.

A. A Method for Graph Partitioning

Many different approaches have been developed for the problem of graph partitioning, and
for networks with clear divisions into tightly-knit regions, there is often a wide range of
methods that will prove to be effective. While these methods can differ considerably in their
specifics, it is useful to identify the different general styles that motivate their designs.
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General Approaches to Graph Partitioning. One class of methods focuses on iden-
tifying and removing the “spanning links” between densely-connected regions. Once these
links are removed, the network begins to fall apart into large pieces; within these pieces,
further spanning links can be identified, and the process continues. We will refer to these as
dimsive methods of graph partitioning, since they divide the network up as they go.

An alternate class of methods starts from the opposite end of the problem, focusing on the
most tightly-knit parts of the network, rather than the connections at their boundaries. Such
methods find nodes that are likely to belong to the same region and merge them together.
Once this is done, the network consists of a large number of merged chunks, each containing
the seeds of a densely-connected region; the process then looks for chunks that should be
further merged together, and in this way the regions are assembled “bottom-up.” We refer
to these as agglomerative methods of graph partitioning, since they glue nodes together into
regions as they go.

To illustrate the conceptual differences between these two kinds of approaches, let’s con-
sider the simple graph in Figure 3.14(a). Intuitively, as indicated in Figure 3.14(b), there
appears to be a broad separation between one region consisting of nodes 1-7, and another
consisting of nodes 8-14. Within each of these regions, there is a further split: on the left
into nodes 1-3 and nodes 4-6; on the right into nodes 9-11 and nodes 12-14. Note how this
simple example already illustrates that the process of graph partitioning can usefully be
viewed as producing regions in the network that are naturally nested: larger regions poten-
tially containing several smaller, even more tightly-knit regions “nested” within them. This
is of course a familiar picture from everyday life, where — for example — a separation of
the gobal population into national groups can be further subdivided into sub-populations

within particular local areas within countries.

In fact, a number of graph partitioning methods will find the nested set of regions indi-
cated in Figure 3.14(b). Divisive methods will generally proceed by breaking apart the graph
first at the 7-8 edge, and subsequently at the remaining edges into nodes 7 and 8. Agglom-
erative methods will arrive at the same result from the opposite direction, first merging the
four triangles into clumps, and then finding that the triangles themselves can be naturally
paired off.

This is a good point at which to make the discussion more concrete, and to do so we
focus on a particular divisive method proposed by Girvan and Newman [184, 322]. The
Girvan-Newman method has been applied very widely in recent years, and to social network
data in particular. Again, however, we emphasize that graph partitioning is an area in which
there is an especially wide range of different approaches in use. The approach we discuss is
an elegant and particular widely-used one; however, understanding which types of methods

work best in different situations remains a subject of active research.
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(b) Tightly-knit regions and their nested structure

Figure 3.14: In many networks, there are tightly-knit regions that are intuitively apparent, and they can

even display a nested structure, with smaller regions nesting inside larger ones.

The Notion of Betweenness. To motivate the design of a divisive method for graph
partitioning, let’s think about some general principles that might lead us to remove the 7-8
edge first in Figure 3.14(a).

A first idea, motivated by the discussion earlier in this chapter, is that since bridges and
local bridges often connect weakly interacting parts of the network, we should try removing
these bridges and local bridges first. This is in fact an idea along the right lines; the problem
is simply that it’s not strong enough, for two reasons. First, when there are several bridges,
it doesn’t tell us which to remove first. As we see in Figure 3.14(a), where there are five
bridges, certain bridges can produce more reasonable splits than others. Second, there can
be graphs where no edge is even a local bridge, because every edge belongs to a triangle —
and yet there is still a natural division into regions. Figure 3.15 shows a simple example,

where we might want to identify nodes 1-5 and nodes 7-11 as tightly-knit regions, despite
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Figure 3.15: A network can display tightly-knit regions even when there are no bridges or
local bridges along which to separate it.

the fact that there are no local bridges to remove.

However, if we think more generally about what bridges and local bridges are doing,
then we can arrive at a notion that forms the central ingredient of the Girvan-Newman
method. Local bridges are important because they form part of the shortest path between
pairs of nodes in different parts of the network — without a particular local bridge, paths
between many pairs of nodes may have to be “re-routed” a longer way. We therefore define
an abstract notion of “traffic” on the network, and look for the edges that carry the most of
this traffic. Like crucial bridges and highway arteries, we might expect these edges to link
different densely-connected regions, and hence be good candidates for removal in a divisive
method.

We define our notion of traffic as follows. For each pair of nodes A and B in the graph
that are connected by a path, we imagine having one unit of fluid “flow” along the edges from
Ato B. (If A and B belong to different connected components, then no fluid flows between
them.) The flow between A and B divides itself evenly along all the possible shortest paths
from A to B: so if there are k shortest paths from A and B, then 1/k units of flow pass
along each one.

We define the betweenness of an edge to be the total amount of flow it carries, count-
ing flow between all pairs of nodes using this edge. For example, we can determine the
betweenness of each edge in Figure 3.14(a) as follows.

e Let’s first consider the 7-8 edge. For each node A in the left half of the graph, and
each node B in the right half of the graph, their full unit of flow passes through the
7-8 edge. On the other hand, no flow passing between pairs of nodes that both lie in
the same half uses this edge. As a result, the betweenness of the 7-8 edge is 7-7 = 49.

e The 3-7 edge carries the full unit of flow from each node among 1, 2, and 3 to each
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Figure 3.16: The steps of the Girvan-Newman method on the network from Figure 3.14(a).

node among 4-14. Thus, the betweenness of this edge is 3-11 = 33. The same goes for
the edges 6-7, 8-9, and 8-12.

e The 1-3 edge carries all the flow from 1 to every other node except 2. As a result, its
betweennness is 12. By strictly symmetric reasoning, the other edges linked from 3, 6,

9, and 12 into their respective triangles have betweenness 12 as well.

e Finally, the 1-2 edge only carries flow between its endpoints, so its betweenness is 1.
This also holds for the edges 4-5, 10-11, and 13-14.

Thus, betweenness has picked out the 7-8 edge as the one carrying the most traffic.

In fact, the idea of using betweenness to identify important edges draws on a long history
in sociology, where most attribute its first explicit articulation to Linton Freeman [73, 168,
169]. Its use by sociologists has traditionally focused more on nodes than on edges, where
the definition the same: the betweenness of a node is the total amount of flow that it carries,
when a unit of flow between each pair of nodes is divided up evenly over shortest paths. Like

edges of high betweenness, nodes of high betweenness occupy critical roles in the network
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(c) Step 3 (d) Step 4

Figure 3.17: The steps of the Girvan-Newman method on the network from Figure 3.15.

structure — indeed, because carrying a large amount of flow suggests a position at the
interface between tightly-knit groups, there are clear relationships of betweenness with our
earlier discussions of nodes that span structural holes in a social network [86].

The Girvan-Newman Method: Successively Deleting Edges of High Betweenness.
Edges of high betweenness are the ones that, over all pairs of nodes, carry the highest volume
of traffic along shortest paths. Based on the premise that these are the most “vital” edges
for connecting different regions of the network, it is natural to try removing these first. This
is the crux of the Girvan-Newman method, which can now be summarized as follows.

(1) Find the edge of highest betweenness — or multiple edges of highest betweenness, if
there is a tie — and remove these edges from the graph. This may cause the graph
to separate into multiple components. If so, this is the first level of regions in the

partitioning of the graph.

(2) Now recalculate all betweennesses, and again remove the edge or edges of highest be-
tweenness. This may break some of the existing components into smaller components;

if so, these are regions nested within the larger regions.

(...) Proceed in this way as long as edges remain in graph, in each step recalculating all

betweennesses and removing the edge or edges of highest betweenness.

Thus, as the graph falls apart first into large pieces and then into smaller ones, the method

naturally exposes a nested structure in the tightly-knit regions. In Figures 3.16 and 3.17
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we show how the method operates on the graphs from Figures 3.14(a) and 3.15 respectively.
Note how smaller regions emerge from larger ones as edges are successively removed.

The sequence of steps in Figure 3.17 in fact exposes some interesting points about how
the method works.

e When we calculate the betweennesses in the first step, the 5-7 edge carries all the flow
from nodes 1-5 to nodes 7-11, for a betweenness of 25. The 5-6 edge, on the other hand,
only carries flow from node 6 to each of nodes 1-5, for a betweenness of 5. (Similarly
for the 6-7 edge.)

e Once the 5-7 edge is deleted, however, we recalculate all the betweennesses for the
second step. At this point, all 25 units of flow that used to be on this deleted edge
have shifted onto the path through nodes 5, 6, and 7, and so the betweenness of the
5-6 edge (and also the 6-7 edge) has increased to 5 + 25 = 30. This is why these two
edges are deleted next.

In their original presentation of the method, Girvan and Newman showed its effectiveness
at partitioning a number of real network datasets into intuitively reasonable sets of regions.
For example, on Zachary’s karate club network in Figure 3.13, when the method is used to
remove edges until the graph first separates into two pieces, the resulting partition agrees
with the actual split that occurred in the club except for a single person — node 9 in the
figure. In real life, node 9 went with the instructor’s club, even though the graph partitioning
analysis here would predict that he would join the president’s club.

Zachary’s original analysis of the karate club employed a different approach that also
used the network structure. He first supplemented the network with numerical estimates of
tie strength for the edges, based on his empirical study of the relationships within the karate
club. He then identified a set of edges of minimum total strength whose removal would place
node 1 and node 34 (the rival leaders) in different connected components, and he predicted
this as the split. The approach Zachary used, deleting edges of minimum total strength so
as to separate two specified nodes, is known as the problem of finding a minimum cut in a
graph, and it has the been the subject of extensive research and applications [8, 164, 253]. On
the karate-club network, this minimum-cut approach produced the same split as the Girvan-
Newman method: it agreed with the split that actually occurred except for the outcome
of node 9, an alignment of predictions that emphasizes how different approaches to graph
partitioning can produce corresponding results. It is also interesting to note that Zachary
traced the anomalous nature of node 9 to a fact that the network structure could not capture:
at the time of the actual split, the person corresponding to node 9 was three weeks away
from completing a four-year quest to obtain a black belt, which he could only do with the
instructor (node 1).
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(a) A sample network (b) Breadth-first search starting at node A

Figure 3.18: The first step in the efficient method for computing betweenness values is to
perform a breadth-first search of the network. Here the results of breadth-first from node A
are shown; over the course of the method, breadth-first search is performed from each node
in turn.

Among the other examples discussed by Girvan and Newman, they provide a partition
of the co-authorship network from Figure 3.12, with the top level of regions suggested by
the different shadings of the nodes in that figure.

Ultimately, it is a challenge to rigorously evaluate graph partitioning methods and to
formulate ways of asserting that one is better than another — both because the goal is hard
to formalize, and because different methods may be more or less effective on different kinds
of networks. Moreover, a line of recent work by Leskovec et al. has argued that in real social-
network data, it is much easier to separate a tightly-knit region from the rest of the network
when it is relatively small, on the order of at most a few hundred nodes [275]. Studies on
a range of different social and information networks suggest that beyond this size, sets of
nodes become much more “inextricable” from the rest of the network, suggesting that graph
partitioning approaches on this type of data may produce qualitatively different kinds of
results for small networks and small regions than for large ones. This is an area of ongoing

investigation.

In the remainder of this section, we address a final important issue: how to actually
compute the betweenness quantities that are needed in order to make the Girvan-Newman

method work.
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B. Computing Betweenness Values

In order to perform the Girvan-Newman method, we need a way to find the edges of highest
betweenness in each step. This is done by computing all the betweennesses of all edges and
then looking for the ones with the highest values. The tricky part is that the definition
of betweenness involves reasoning about the set of all the shortest paths between pairs of
nodes. Since there could be a very large number of such shortest paths, how can we efficiently
compute betweenness without the overhead of actually listing out all such paths? This is
crucial for implementing the method on a computer to work with datasets of any reasonable
size.

In fact, there is a clever way to compute betweennesses efficiently [77, 317], and it is
based on the notion of breadth-first search from Section 2.3. We will consider the graph
from the perspective of one node at a time; for each given node, we will compute how the
total flow from that node to all others is distributed over the edges. If we do this for every
node, then we can simply add up the flows from all of them to get the betweennesses on
every edge.

So let’s consider how we would determine the flow from one node to all other nodes in
the graph. As an example, we'll look at the graph in Figure 3.18(a), focusing on how the
flow from node A reaches all other nodes. We do this in three high-level steps; below we
explain the details of how each of these steps works.

(1) Perform a breadth-first search of the graph, starting at A.
(2) Determine the number of shortest paths from A to each other node.

(3) Based on these numbers, determine the amount of flow from A to all other nodes that
uses each edge.

For the first step, recall that breadth-first search divides a graph into layers starting at a
given node (A in our case), with all the nodes in layer d having distance d from A. Moreover,
the shortest paths from A to a node X in layer d are precisely the paths that move downward
from A to X one layer at a time, thereby taking exactly d steps. Figure 3.18(b) shows the
result of breadth-first search from A in our graph, with the layers placed horizontally going
downward from A. Thus, for example, some inspection of the figure shows that there are
two shortest paths (each of length two) from A to F: one using nodes A, B, and F', and the
other using nodes A, C, and F.

Counting Shortest Paths. Now, let’s consider the second step: determining the number
of shortest paths from A to each other node. There is a remarkably clean way to do this, by
working down through the layers of the breadth-first search.
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# shortest A-J paths =
# shortest A-G paths +
# shortest A-H paths

# shortest A-|l paths =
# shortest A-F paths +
# shortest A-G paths

# shortest A-K paths
= # shortest A-l paths
+ # shortest A-J paths

Figure 3.19: The second step in computing betweenness values is to count the number of
shortest paths from a starting node A to all other nodes in the network. This can be done
by adding up counts of shortest paths, moving downward through the breadth-first search
structure.

To motivate this, consider a node like [ in Figure 3.18(b). All shortest-paths from A to
I must take their last step through either I’ or GG, since these are the two nodes above it
in the breadth-first search. (For terminological convenience, we will say that a node X is
above a node Y in the breadth-first search if X is in the layer immediately preceding Y, and
X has an edge to Y.) Moreover, in order to be a shortest path to I, a path must first be a
shortest path to one of F' or (G, and then take this last step to I. It follows that the number
of shortest paths from A to I is precisely the number of shortest paths from A to F', plus
the number of shortest paths from A to G.

We can use this as a general method to count the number of shortest paths from A to
all other nodes, as depicted in Figure 3.19. Each node in the first layer is a neighbor of A,
and so it has only one shortest path from A: the edge leading straight from A to it. So
we give each of these nodes a count of 1. Now, as we move down through the BFS layers,

we apply the reasoning discussed above to conclude that the number of shortest paths to
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Figure 3.20: The final step in computing betweenness values is to determine the flow values
from a starting node A to all other nodes in the network. This is done by working up from

the lowest layers of the breadth-first search, dividing up the flow above a node in proportion
to the number of shortest paths coming into it on each edge.

each node should be the sum of the number of shortest paths to all nodes directly above it
in the breadth-first search. Working downward through the layers, we thus get the number
of shortest paths to each node, as shown in Figure 3.19. Note that by the time we get to
deeper layers, it may not be so easy to determine these number by visual inspection — for
example, to immediately list the six different shortest paths from A to K — but it is quite
easy when they are built up layer-by-layer in this way.

Determining Flow Values. Finally, we come to the third step, computing how the flow
from A to all other nodes spreads out across the edges. Here too we use the breadth-first
search structure, but this time working up from the lowest layers. We first show the idea in

Figure 3.20 on our running example, and then describe the general procedure.

e Let’s start at the bottom with node K. A single unit of flow arrives at K, and an equal

number of the shortest paths from A to K come through nodes I and J, so this unit
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of flow is equally divided over the two incoming edges. Therefore we put a half-unit of

flow on each of these edges.

e Now, working upward, the total amount of flow arriving at I is equal to the one unit
actually destined for I plus the half-unit passing through to K, for a total of 3/2. How
does this 3/2 amount of flow get divided over the edges leading upward from I, to F
and G respectively? We see from the second step that there are twice as many shortest
paths from A through F' as through G, so twice as much of the flow should come from
F'. Therefore, we put one unit of the flow on F', and a half-unit of the flow on G, as
indicated in the figure.

e We continue in this way for each other node, working upward through the layers of the
breadth-first search.

From this, it is not hard to describe the principle in general. When we get to a node
X in the breadth-first search structure, working up from the bottom, we add up all the
flow arriving from edges directly below X, plus 1 for the flow destined for X itself. We then
divide this up over the edges leading upward from X, in proportion to the number of shortest
paths coming through each. You can check that applying this principle leads to the numbers
shown in Figure 3.20.

We are now essentially done. We build one of these breadth-first structures from each
node in the network, determine flow values from the node using this procedure, and then sum
up the flow values to get the betweenness value for each edge. Notice that we are counting
the flow between each pair of nodes X and Y twice: once when we do the breadth-first search
from X, and once when we do it from Y. So at the end we divide everything by two to
cancel out this double-counting. Finally, using these betweenness values, we can identify the
edges of highest betweenness for purposes of removing them in the Girvan-Newman method.

Final Observations. The method we have just described can be used to compute the
betweennesses of nodes as well as edges. In fact, this is already happening in the third step:
notice that we are implicitly keeping track of the amounts of flow through the nodes as well
as through the edges, and this is what is needed to determine the betweennesses of the nodes.

The original Girvan-Newman method described here, based on repeated removal of high-
betweenness edges, is a good conceptual way to think about graph partitioning, and it
works well on networks of moderate size (up to a few thousand nodes). However, for larger
networks, the need to recompute betweenness values in every step becomes computationally
very expensive. In view of this, a range of different alternatives have been proposed to identify
similar sets of tightly-knit regions more efficiently. These include methods of approximating

the betweenness [34] and related but more efficient graph partitioning approaches using
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divisive and agglomerative methods [35, 321]. There remains considerable interest in finding

fast partitioning algorithms that can scale to very large network datasets.

3.7 Exercises

1. In 2-3 sentences, explain what triadic closure is, and how it plays a role in the formation

of social networks. You can draw a schematic picture in case this is useful.

2. Consider the graph in Figure 3.21, in which each edge — except the edge connecting
b and ¢ — is labeled as a strong tie (S) or a weak tie (W).

According to the theory of strong and weak ties, with the strong triadic closure as-
sumption, how would you expect the edge connecting b and ¢ to be labeled? Give a
brief (1-3 sentence) explanation for your answer.

Figure 3.21:

3. In the social network depicted in Figure 3.22, with each edge labeled as either a strong
or weak tie, which nodes satisfy the Strong Triadic Closure Property from Chapter 3,
and which do not? Provide an explanation for your answer.

4. In the social network depicted in Figure 3.23 with each edge labeled as either a strong
or weak tie, which two nodes violate the Strong Triadic Closure Property? Provide an

explanation for your answer.

5. In the social network depicted in Figure 3.24, with each edge labeled as either a strong
or weak tie, which nodes satisfy the Strong Triadic Closure Property from Chapter 3,
and which do not? Provide an explanation for your answer.
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Figure 3.23: A graph with a strong/weak labeling.
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Chapter 4

Networks in Their Surrounding
Contexts

In Chapter 3 we considered some of the typical structures that characterize social net-
works, and some of the typical processes that affect the formation of links in the network. Our
discussion there focused primarily on the network as an object of study in itself, relatively
independent of the broader world in which it exists.

However, the contexts in which a social network is embedded will generally have signif-
icant effects on its structure, Each individual in a social network has a distinctive set of
personal characteristics, and similarities and compatibilities among two people’s characteris-
tics can strongly influence whether a link forms between them. Each individual also engages
in a set of behaviors and activities that can shape the formation of links within the network.
These considerations suggest what we mean by a network’s surrounding contexts: factors
that exist outside the nodes and edges of a network, but which nonetheless affect how the

network’s structure evolves.

In this chapter we consider how such effects operate, and what they imply about the
structure of social networks. Among other observations, we will find that the surrounding
contexts affecting a network’s formation can, to some extent, be viewed in network terms as
well — and by expanding the network to represent the contexts together with the individuals,
we will see in fact that several different processes of network formation can be described in

a common framework.

D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning about a Highly Connected World.
Cambridge University Press, 2010. Draft version: June 10, 2010.
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4.1 Homophily

One of the most basic notions governing the structure of social networks is homophily — the
principle that we tend to be similar to our friends. Typically, your friends don’t look like a
random sample of the underlying population: viewed collectively, your friends are generally
similar to you along racial and ethnic dimensions; they are similar in age; and they are also
similar in characteristics that are more or less mutable, including the places they live, their
occupations, their levels of affluence, and their interests, beliefs, and opinions. Clearly most
of us have specific friendships that cross all these boundaries; but in aggregate, the pervasive
fact is that links in a social network tend to connect people who are similar to one another.

This observation has a long history; as McPherson, Smith-Lovin, and Cook note in
their extensive review of research on homophily [294], the underlying idea can be found in
writings of Plato (“similarity begets friendship”) and Aristotle (people “love those who are
like themselves”), as well as in proverbs such as “birds of a feather flock together.” Its role
in modern sociological research was catalyzed in large part by influential work of Lazarsfeld
and Merton in the 1950s [269).

Homophily provides us with a first, fundamental illustration of how a network’s sur-
rounding contexts can drive the formation of its links. Consider the basic contrast between
a friendship that forms because two people are introduced through a common friend and
a friendship that forms because two people attend the same school or work for the same
company. In the first case, a new link is added for reasons that are intrinsic to the network
itself; we need not look beyond the network to understand where the link came from. In
the second case, the new link arises for an equally natural reason, but one that makes sense
only when we look at the contextual factors beyond the network — at some of the social
environments (in this case schools and companies) to which the nodes belong.

Often, when we look at a network, such contexts capture some of the dominant fea-
tures of its overall structure. Figure 4.1, for example, depicts the social network within a
particular town’s middle school and high school (encompassing grades 7-12) [304]; in this
image, produced by the study’s author James Moody, students of different races are drawn
as differently-colored circles. Two dominant divisions within the network are apparent. One
division is based on race (from left to right in the figure); the other, based on age and school
attendance, separates students in the middle school from those in the high school (from top
to bottom in the figure). There are many other structural details in this network, but the
effects of these two contexts stand out when the network is viewed at a global level.

Of course, there are strong interactions between intrinsic and contextual effects on the
formation of any single link; they are both operating concurrently in the same network. For
example, the principle of triadic closure — that triangles in the network tend to “close”
as links form between friends of friends — is supported by a range of mechanisms that

range from the intrinsic to the contextual. In Chapter 3 we motivated triadic closure by



4.1. HOMOPHILY 87

Figure 4.1: Homophily can produce a division of a social network into densely-connected, homogeneous
parts that are weakly connected to each other. In this social network from a town’s middle school and
high school, two such divisions in the network are apparent: one based on race (with students of different
races drawn as differently colored circles), and the other based on friendships in the middle and high schools

respectively [304].

hypothesizing intrinsic mechanisms: when individuals B and C' have a common friend A,
then there are increased opportunities and sources of trust on which to base their interactions,
and A will also have incentives to facilitate their friendship. However, social contexts also
provide natural bases for triadic closure: since we know that A-B and A-C' friendships
already exist, the principle of homophily suggests that B and C' are each likely to be similar
to A in a number of dimensions, and hence quite possibly similar to each other as well. As
a result, based purely on this similarity, there is an elevated chance that a B-C' friendship

will form; and this is true even if neither of them is aware that the other one knows A.

The point isn’t that any one basis for triadic closure is the “correct” one. Rather, as we

take into account more and more of the factors that drive the formation of links in a social



88 CHAPTER 4. NETWORKS IN THEIR SURROUNDING CONTEXTS

®

O—0Q

Figure 4.2: Using a numerical measure, one can determine whether small networks such as
this one (with nodes divided into two types) exhibit homophily.

network, it inevitably becomes difficult to attribute any individual link to a single factor.
And ultimately, one expects most links to in fact arise from a combination of several factors
— partly due to the effect of other nodes in the network, and partly due to the surrounding

contexts.

Measuring Homophily. When we see striking divisions within a network like the one in
Figure 4.1, it is important to ask whether they are “genuinely” present in the network itself,
and not simply an artifact of how it is drawn. To make this question concrete, we need to
formulate it more precisely: given a particular characteristic of interest (like race, or age),
is there a simple test we can apply to a network in order to estimate whether it exhibits
homophily according to this characteristic?

Since the example in Figure 4.1 is too large to inspect by hand, let’s consider this question
on a smaller example where we can develop some intuition. Let’s suppose in particular that
we have the friendship network of an elementary-school classroom, and we suspect that it
exhibits homophily by gender: boys tend to be friends with boys, and girls tend to be friends
with girls. For example, the graph in Figure 4.2 shows the friendship network of a (small)
hypothetical classroom in which the three shaded nodes are girls and the six unshaded nodes
are boys. If there were no cross-gender edges at all, then the question of homophily would
be easy to resolve: it would be present in an extreme sense. But we expect that homophily
should be a more subtle effect that is visible mainly in aggregate — as it is, for example, in
the real data from Figure 4.1. Is the picture in Figure 4.2 consistent with homophily?

There is a natural numerical measure of homophily that we can use to address questions
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like this [202, 319]. To motivate the measure (using the example of gender as in Figure 4.2),
we first ask the following question: what would it mean for a network not to exhibit ho-
mophily by gender? It would mean that the proportion of male and female friends a person
has looks like the background male/female distribution in the full population. Here’s a
closely related formulation of this “no-homophily” definition that is a bit easier to analyze:
if we were to randomly assign each node a gender according to the gender balance in the
real network, then the number of cross-gender edges should not change significantly relative
to what we see in the real network. That is, in a network with no homophily, friendships are
being formed as though there were random mixing across the given characteristic.

Thus, suppose we have a network in which a p fraction of all individuals are male, and
a q fraction of all individuals are female. Consider a given edge in this network. If we
independently assign each node the gender male with probability p and the gender female
with probability ¢, then both ends of the edge will be male with probability p?, and both
ends will be female with probability ¢?>. On the other hand, if the first end of the edge is
male and the second end is female, or vice versa, then we have a cross-gender edge, so this
happens with probability 2pq.

So we can summarize the test for homophily according to gender as follows:

Homophily Test: If the fraction of cross-gender edges is significantly less than
2pq, then there is evidence for homophily.

In Figure 4.2, for example, 5 of the 18 edges in the graph are cross-gender. Since p = 2/3
and ¢ = 1/3 in this example, we should be comparing the fraction of cross-gender edges to
the quantity 2pg = 4/9 = 8/18. In other words, with no homophily, one should expect to
see 8 cross-gender edges rather than than 5, and so this example shows some evidence of
homophily.

There are a few points to note here. First, the number of cross-gender edges in a random
assignment of genders will deviate some amount from its expected value of 2pg, and so
to perform the test in practice one needs a working definition of “significantly less than.”
Standard measures of statistical significance (quantifying the significance of a deviation below
a mean) can be used for this purpose. Second, it’s also easily possible for a network to have a
fraction of cross-gender edges that is significantly more than 2pq. In such a case, we say that
the network exhibits inverse homophily. The network of romantic relationships in Figure 2.7
from Chapter 2 is a clear example of this; almost all the relationships reported by the high-
school students in the study involved opposite-sex partners, rather than same-sex partners,
so almost all the edges are cross-gender.

Finally, it’s easy to extend our homophily test to any underlying characteristic (race,
ethnicity, age, native language, political orientation, and so forth). When the characteristic
can only take two possible values (say, one’s voting preference in a two-candidate election),
then we can draw a direct analogy to the case of two genders, and use the same formula
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2pq. When the characteristic can take on more than two possible values, we still perform a
general version of the same calculation. For this, we say that an edge is heterogeneous if it
connects two nodes that are different according to the characteristic in question. We then ask
how the number of heterogeneous edges compares to what we’d see if we were to randomly
assign values for the characteristic to all nodes in the network — using the proportions from
the real data as probabilities. In this way, even a network in which the nodes are classified
into many groups can be tested for homophily using the same underlying comparison to a

baseline of random mixing.

4.2 Mechanisms Underlying Homophily: Selection and
Social Influence

The fact that people tend to have links to others who are similar to them is a statement about
the structure of social networks; on its own, it does not propose an underlying mechanism
by which ties among similar people are preferentially formed.

In the case of immutable characteristics such as race or ethnicity, the tendency of people
to form friendships with others who are like them is often termed selection, in that people
are selecting friends with similar characteristics. Selection may operate at several different
scales, and with different levels of intentionality. In a small group, when people choose
friends who are most similar from among a clearly delineated pool of potential contacts,
there is clearly active choice going on. In other cases, and at more global levels, selection
can be more implicit. For example, when people live in neighborhoods, attend schools, or
work for companies that are relatively homogeneous compared to the population at large,
the social environment is already favoring opportunities to form friendships with others like
oneself. For this discussion, we will refer to all these effects cumulatively as selection.

When we consider how immutable characteristics interact with network formation, the
order of events is clear: a person’s attributes are determined at birth, and they play a
role in how this person’s connections are formed over the course of his or her life. With
characteristics that are more mutable, on the other hand — behaviors, activities, interests,
beliefs, and opinions — the feedback effects between people’s individual characteristics and
their links in the social network become significantly more complex. The process of selection
still operates, with individual characteristics affecting the connections that are formed. But
now another process comes into play as well: people may modify their behaviors to bring
them more closely into alignment with the behaviors of their friends. This process has
been variously described as socialization [233] and social influence [170], since the existing
social connections in a network are influencing the individual characteristics of the nodes.
Social influence can be viewed as the reverse of selection: with selection, the individual
characteristics drive the formation of links, while with social influence, the existing links in
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the network serve to shape people’s (mutable) characteristics.!

The Interplay of Selection and Social Influence. When we look at a single snapshot
of a network and see that people tend to share mutable characteristics with their friends, it
can be very hard to sort out the distinct effects and relative contributions of selection and
social influence. Have the people in the network adapted their behaviors to become more like
their friends, or have they sought out people who were already like them? Such questions can
be addressed using longitudinal studies of a social network, in which the social connections
and the behaviors within a group are both tracked over a period of time. Fundamentally, this
makes it possible to see the behavioral changes that occur after changes in an individual’s
network connections, as opposed to the changes to the network that occur after an individual
changes his or her behavior.

This type of methodology has been used, for example, to study the processes that lead
pairs of adolescent friends to have similar outcomes in terms of scholastic achievement and
delinquent behavior such as drug use [92]. Empirical evidence confirms the intuitive fact that
teenage friends are similar to each other in their behaviors, and both selection and social
influence have a natural resonance in this setting: teenagers seek out social circles composed
of people like them, and peer pressure causes them to conform to behavioral patterns within
their social circles. What is much harder to resolve is how these two effects interact, and
whether one is more strongly at work than the other. As longitudinal behavior relevant to
this question became available, researchers began quantifying the relative impact of these
different factors. A line of work beginning with Cohen and Kandel has suggested that while
both effects are present in the data, the outsized role that earlier informal arguments had
accorded to peer pressure (i.e. social influence) is actually more moderate; the effect of
selection here is in fact comparable to (and sometimes greater than) the effect of social
influence [114, 233].

Understanding the tension between these different forces can be important not just for
identifying underlying causes, but also for reasoning about the effect of possible interventions
one might attempt in the system [21, 396]. For example, once we find that illicit drug use
displays homophily across a social network — with students showing a greater likelihood to
use drugs when their friends do — we can ask about the effects of a program that targets
certain high-school students and influences them to stop using drugs. To the extent that the
observed homophily is based on some amount of social influence, such a program could have
a broad impact across the social network, by causing the friends of these targeted students
to stop using drugs as well. But one must be careful; if the observed homophily is arising

instead almost entirely from selection effects, then the program may not reduce drug use

IThere are other cognitive effects at work as well; for example, people may systematically misperceive
the characteristics of their friends as being more in alignment with their own than they really are [224]. For
our discussion here, we will not focus explicitly on such effects.
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beyond the students it directly targets: as these students stop using drugs, they change
their social circles and form new friendships with students who don’t use drugs, but the
drug-using behavior of other students is not strongly affected.

Another example of research addressing this subtle interplay of factors is the work of
Christakis and Fowler on the effect of social networks on health-related outcomes. In one
recent, study, using longitudinal data covering roughly 12,000 people, they tracked obesity
status and social network structure over a 32-year period [108]. They found that obese and
non-obese people clustered in the network in a fashion consistent with homophily, according
to the numerical measure described in Section 4.1: people tend to be more similar in obesity
status to their network neighbors than in a version of the same network where obesity status
is assigned randomly. The problem is then to distinguish among several hypotheses for why
this clustering is present: is it

(i) because of selection effects, in which people are choosing to form friendships with others
of similar obesity status?

(ii) because of the confounding effects of homophily according to other characteristics, in
which the network structure indicates existing patterns of similarity in other dimensions
that correlate with obesity status? or

(iii) because changes in the obesity status of a person’s friends was exerting a (presumably
behavioral) influence that affected his or her future obesity status?

Statistical analysis in Christakis and Fowler’s paper argues that, even accounting for effects of
types (i) and (ii), there is significant evidence for an effect of type (iii) as well: that obesity is
a health condition displaying a form of social influence, with changes in your friends’ obesity
status in turn having a subsequent effect on you. This suggests the intriguing prospect that
obesity (and perhaps other health conditions with a strong behavioral aspect) may exhibit
some amount of “contagion” in a social sense: you don’t necessarily catch it from your
friends the way you catch the flu, but it nonetheless can spread through the underlying
social network via the mechanism of social influence.

These examples, and this general style of investigation, show how careful analysis is
needed to distinguish among different factors contributing to an aggregate conclusion: even
when people tend to be similar to their neighbors in a social network, it may not be clear
why. The point is that an observation of homophily is often not an endpoint in itself, but
rather the starting point for deeper questions — questions that address why the homophily
is present, how its underlying mechanisms will affect the further evolution of the network,
and how these mechanisms interact with possible outside attempts to influence the behavior

of people in the network.
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Figure 4.3: An affiliation network is a bipartite graph that shows which individuals are
affiliated with which groups or activities. Here, Anna participates in both of the social foci
on the right, while Daniel participates in only one.

4.3 Affiliation

Thus far, we have been discussing contextual factors that affect the formation of links in
a network — based on similarities in characteristics of the nodes, and based on behaviors
and activities that the nodes engage in. These surrounding contexts have been viewed,
appropriately, as existing “outside” the network. But in fact, it’s possible to put these
contexts into the network itself, by working with a larger network that contains both people
and contexts as nodes. Through such a network formulation, we will get additional insight
into some broad aspects of homophily, and see how the simultaneous evolution of contexts
and friendships can be put on a common network footing with the notion of triadic closure
from Chapter 3.

In principle we could represent any context this way, but for the sake of concreteness we’ll
focus on how to represent the set of activities a person takes part in, and how these affect
the formation of links. We will take a very general view of the notion of an “activity” here.
Being part of a particular company, organization, or neigborhood; frequenting a particular
place; pursuing a particular hobby or interest — these are all activities that, when shared
between two people, tend to increase the likelihood that they will interact and hence form a
link in the social network [78, 161]. Adopting terminology due to Scott Feld, we’ll refer to
such activities as foci — that is, “focal points” of social interaction — constituting “social,
psychological, legal, or physical entit[ies| around which joint activities are organized (e.g.

workplaces, voluntary organizations, hangouts, etc.)” [161].

Affiliation Networks. As a first step, we can represent the participation of a set of people
in a set of foci using a graph as follows. We will have a node for each person, and a node

for each focus, and we will connect person A to focus X by an edge if A participates in X.
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Figure 4.4: One type of affiliation network that has been widely studied is the memberships
of people on corporate boards of directors [301]. A very small portion of this network (as of
mid-2009) is shown here. The structural pattern of memberships can reveal subtleties in the
interactions among both the board members and the companies.
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A very simple example of such a graph is depicted in Figure 4.3, showing two people (Anna
and Daniel) and two foci (working for a literacy tutoring organization, and belonging to a
karate club). The graph indicates that Anna participates in both of the foci, while Daniel

participates in only one.

We will refer to such a graph as an affiliation network, since it represents the affiliation of
people (drawn on the left) with foci (drawn on the right) [78, 323]. More generally, affiliation
networks are examples of a class of graphs called bipartite graphs. We say that a graph is
bipartite if its nodes can be divided into two sets in such a way that every edge connects a
node in one set to a node in the other set. (In other words, there are no edges joining a pair
of nodes that belong to the same set; all edges go between the two sets.) Bipartite graphs
are very useful for representing data in which the items under study come in two categories,
and we want to understand how the items in one category are associated with the items
in the other. In the case of affiliation networks, the two categories are the people and the

foci, with each edge connecting a person to a focus that he or she participates in. Bipartite
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graphs are often drawn as in Figure 4.3, with the two different sets of nodes drawn as two
parallel vertical columns, and the edges crossing between the two columns.

Affiliation networks are studied in a range of settings where researchers want to un-
derstand the patterns of participation in structured activities. As one example, they have
received considerable attention in studying the composition of boards of directors of major
corporations [301]. Boards of directors are relatively small advisory groups populated by
high-status individuals; and since many people serve on multiple boards, the overlaps in
their participation have a complex structure. These overlaps can be naturally represented
by an affiliation network; as the example in Figure 4.4 shows, there is a node for each person
and a node for each board, and each edge connects a person to a board that they belong to.

Affiliation networks defined by boards of directors have the potential to reveal interesting
relationships on both sides of the graph. Two companies are implicitly linked by having
the same person sit on both their boards; we can thus learn about possible conduits for
information and influence to flow between different companies. Two people, on the other
hand, are implicitly linked by serving together on a board, and so we learn about particular
patterns of social interaction among some of the most powerful members of society. Of
course, even the complete affiliation network of people and boards (of which Figure 4.4
is only a small piece) still misses other important contexts that these people inhabit; for
example, the seven people in Figure 4.4 include the presidents of two major universities and
a former Vice-President of the United States.?

Co-Evolution of Social and Affiliation Networks. It’s clear that both social networks
and affiliation networks change over time: new friendship links are formed, and people
become associated with new foci. Moreover, these changes represent a kind of co-evolution
that reflects the interplay between selection and social influence: if two people participate in
a shared focus, this provides them with an opportunity to become friends; and if two people
are friends, they can influence each other’s choice of foci.

There is a natural network perspective on these ideas, which begins from a network
representation that slightly extends the notion of an affiliation network. As before, we’ll
have nodes for people and nodes for foci, but we now introduce two distinct kinds of edges

as well. The first kind of edge functions as an edge in a social network: it connects two

2The structure of this network changes over time as well, and sometimes in ways that reinforce the points in
our present discussion. For example, the board memberships shown in Figure 4.4 are taken from the middle
of 2009; by the end of 2009, Arthur Levinson had resigned from the board of directors of Google (thus
removing one edge from the graph). As part of the news coverage of this resignation, the chair of the U.S.
Federal Trade Commission, Jon Leibowitz, explicitly invoked the notion of overlaps in board membership,
saying, “Google, Apple and Mr. Levinson should be commended for recognizing that overlapping board
members between competing companies raise serious antitrust issues, and for their willingness to resolve our
concerns without the need for litigation. Beyond this matter, we will continue to monitor companies that
share board members and take enforcement actions where appropriate” [219].
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Figure 4.5: A social-affiliation network shows both the friendships between people and their
affiliation with different social foci.

people, and indicates friendship (or alternatively some other social relation, like professional
collaboration). The second kind of edge functions as an edge in an affiliation network: it
connects a person to a focus, and indicates the participation of the person in the focus. We
will call such a network a social-affiliation network, reflecting the fact that it simultaneously
contains a social network on the people and an affiliation network on the people and foci.
Figure 4.5 depicts a simple social-affiliation network.

Once we have social-affiliation networks as our representation, we can appreciate that
a range of different mechanisms for link formation can all be viewed as types of closure
processes, in that they involve “closing” the third edge of a triangle in the network. In
particular, suppose we have two nodes B and C' with a common neighbor A in the network,
and suppose that an edge forms between B and C. There are several interpretations for
what this corresponds to, depending on whether A, B, and C are people or foci.

(i) If A, B, and C each represent a person, then the formation of the link between B and
C is triadic closure, just as in Chapter 3. (See Figure 4.6(a).)

(ii) If B and C represent people, but A represents a focus, then this is something different:
it is the tendency of two people to form a link when they have a focus in common. (See
Figure 4.6(b).) This is an aspect of the more general principle of selection, forming
links to others who share characteristics with you. To emphasize the analogy with
triadic closure, this process has been called focal closure [259].

(iii) If A and B are people, and C'is a focus, then we have the formation of a new affiliation:
B takes part in a focus that her friend A is already involved in. (See Figure 4.6(c).)
This is a kind of social influence, in which B’s behavior comes into closer alignment
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Figure 4.6: Each of triadic closure, focal closure, and membership closure corresponds to the
closing of a triangle in a social-affiliation network.

with that of her friend A. Continuing the analogy with triadic closure, we will refer to

this kind of link formation as membership closure.

Thus, three very different underlying mechanisms — reflecting triadic closure and aspects
of selection and social influence — can be unified in this type of network as kinds of closure:
the formation of a link in cases where the two endpoints already have a neighbor in common.
Figure 4.7 shows all three kinds of closure processes at work: triadic closure leads to a new
link between Anna and Claire; focal closure leads to a new link between Anna and Daniel;
and membership closure leads to Bob’s affiliation with the karate club. Oversimplifying the
mechanisms at work, they can be summarized in the following succinct way:

(i) Bob introduces Anna to Claire.
(i1) Karate introduces Anna to Daniel.

(71i) Anna introduces Bob to Karate.

4.4 Tracking Link Formation in On-Line Data

In this chapter and the previous one, we have identified a set of different mechanisms that

lead to the formation of links in social networks. These mechansisms are good examples
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Figure 4.7: In a social-affiliation network containing both people and foci, edges can form
under the effect of several different kinds of closure processes: two people with a friend in
common, two people with a focus in common, or a person joining a focus that a friend is
already involved in.

of social phenomena which are clearly at work in small-group settings, but which have
traditionally been very hard to measure quantitatively. A natural research strategy is to
try tracking these mechanisms as they operate in large populations, where an accumulation
of many small effects can produce something observable in the aggregate. However, given
that most of the forces responsible for link formation go largely unrecorded in everyday life,
it is a challenge to select a large, clearly delineated group of people (and social foci), and
accurately quantify the relative contributions that these different mechanisms make to the
formation of real network links.

The availability of data from large on-line settings with clear social structure has made
it possible to attempt some preliminary research along these lines. As we emphasized in
Chapter 2, any analysis of social processes based on such on-line datasets must come with
a number of caveats. In particular, it is never a prior: clear how much one can extrapolate
from digital interactions to interactions that are not computer-mediated, or even from one
computer-mediated setting to another. Of course, this problem of extrapolation is present
whenever one studies phenomena in a model system, on-line or not, and the kinds of mea-
surements these large datasets enable represent interesting first steps toward a deeper quan-
titative understanding of how mechanisms of link formation operate in real life. Exploring
these questions in a broader range of large datasets is an important problem, and one that
will become easier as large-scale data becomes increasingly abundant.

Triadic closure. With this background in mind, let’s start with some questions about
triadic closure. Here’s a first, basic numerical question: how much more likely is a link to
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Figure 4.8: A larger network that contains the example from Figure 4.7. Pairs of people can
have more than one friend (or more than one focus) in common; how does this increase the
likelihood that an edge will form between them?

form between two people in a social network if they already have a friend in common? (In
other words, how much more likely is a link to form if it has the effect of closing a triangle?)

Here’s a second question, along the same lines as the first: How much more likely is an
edge to form between two people if they have multiple friends in common? For example,
in Figure 4.8, Anna and Esther have two friends in common, while Claire and Daniel only
have one friend in common. How much more likely is the formation of a link in the first of
these two cases? If we go back to the arguments for why triadic closure operates in social
networks, we see that they all are qualitatively strengthened as two people have more friends
in common: there are more sources of opportunity and trust for the interaction, there are
more people with an incentive to bring them together, and the evidence for homophily is
arguably stronger.

We can address these questions empirically using network data as follows.
(i) We take two snapshots of the network at different times.

(ii) For each k, we identify all pairs of nodes who have exactly & friends in common in the
first snapshot, but who are not directly connected by an edge.

(iii) We define T'(k) to be the fraction of these pairs that have formed an edge by the time
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Figure 4.9: Quantifying the effects of triadic closure in an e-mail dataset [259]. The curve
determined from the data is shown in the solid black line; the dotted curves show a compar-
ison to probabilities computed according to two simple baseline models in which common
friends provide independent probabilities of link formation.

of the second snapshot. This is our empirical estimate for the probability that a link

will form between two people with £ friends in common.

(iv) We plot T'(k) as a function of k to illustrate the effect of common friends on the

formation of links.

Note that 7'(0) is the rate at which link formation happens when it does not close a triangle,
while the values of T'(k) for larger k determine the rate at which link formation happens
when it does close a triangle. Thus, the comparison between T'(0) and these other values
addresses the most basic question about the power of triadic closure.

Kossinets and Watts computed this function 7'(k) using a dataset encoding the full history
of e-mail communication among roughly 22,000 undergraduate and graduate students over
a one-year period at a large U.S. university [259]. This is a “who-talks-to-whom” type of
dataset, as we discussed in Chapter 2; from the communication traces, Kossinets and Watts
constructed a network that evolved over time, joining two people by a link at a given instant
if they had exchanged e-mail in each direction at some point in the past 60 days. They then
determined an “average” version of T'(k) by taking multiple pairs of snapshots: they built

a curve for T'(k) on each pair of snapshots using the procedure described above, and then
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averaged all the curves they obtained. In particular, the observations in each snapshot were
one day apart, so their computation gives the average probability that two people form a
link per day, as a function of the number of common friends they have.

Figure 4.9 shows a plot of this curve (in the solid black line). The first thing one notices
is the clear evidence for triadic closure: T'(0) is very close to 0, after which the probability
of link formation increases steadily as the number of common friends increases. Moreover,
for much of the plot, this probability increases in a roughly linear fashion as a function
of the number of common friends, with an upward bend away from a straight-line shape.
The curve turns upward in a particularly pronounced way from 0 to 1 to 2 friends: having
two common friends produces significantly more than twice the effect on link formation
compared to having a single common friend. (The upward effect from 8 to 9 to 10 friends is
also significant, but it occurs on a much smaller sub-population, since many fewer people in

the data have this many friends in common without having already formed a link.)

To interpret this plot more deeply, it helps to compare it to an intentionally simplified
baseline model, describing what one might have expected the data to look like in the presence
of triadic closure. Suppose that for some small probability p, each common friend that two
people have gives them an independent probability p of forming a link each day. So if two
people have k friends in common, the probability they fail to form a link on any given day is
(1 — p)*: this is because each common friend fails to cause the link to form with probability
1 — p, and these k trials are independent. Since (1 — p)* is the probability the link fails
to form on a given day, the probability that it does form, according to our simple baseline

model, is

Tbaseline(k) =1- (1 - p)k

We plot this curve in Figure 4.9 as the upper dotted line. Given the small absolute effect of
the first common friend in the data, we also show a comparison to the curve 1 — (1 — p)*~1,
which just shifts the simple baseline curve one unit to the right. Again, the point is not to
propose this baseline as an explanatory mechanism for triadic closure, but rather to look at
how the real data compares to it. Both the real curve and the baseline curve are close to
linear, and hence qualitatively similar; but the fact that the real data turns upward while the
baseline curve turns slightly downward indicates that the assumption of independent effects

from common friends is too simple to be fully supported by the data.

A still larger and more detailed study of these effects was conducted by Leskovec et
al. [272], who analyzed properties of triadic closure in the on-line social networks of LinkedIn,
Flickr, Del.icio.us, and Yahoo! Answers. It remains an interesting question to try under-
standing the similarities and variations in triadic closure effects across social interaction in

a range of different settings.
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Figure 4.10: Quantifying the effects of focal closure in an e-mail dataset [259]. Again, the
curve determined from the data is shown in the solid black line, while the dotted curve
provides a comparison to a simple baseline.

Focal and Membership Closure. Using the same approach, we can compute probabil-
ities for the other kinds of closure discussed earlier — specifically,

e focal closure: what is the probability that two people form a link as a function of the

number of foci they are jointly affiliated with?

o membership closure: what is the probability that a person becomes involved with a
particular focus as a function of the number of friends who are already involved in it?

As an example of the first of these kinds of closure, using Figure 4.8, Anna and Grace have
one activity in common while Anna and Frank have two in common. As an example of the
second, Esther has one friend who belongs to the karate club while Claire has two. How do
these distinctions affect the formation of new links?

For focal closure, Kossinets and Watts supplemented their university e-mail dataset with
information about the class schedules for each student. In this way, each class became a
focus, and two students shared a focus if they had taken a class together. They could then
compute the probability of focal closure by direct analogy with their computation for triadic
closure, determining the probability of link formation per day as a function of the number of
shared foci. Figure 4.10 shows a plot of this function. A single shared class turns out to have

roughly the same absolute effect on link formation as a single shared friend, but after this the
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Figure 4.11: Quantifying the effects of membership closure in a large online dataset: The
plot shows the probability of joining a LiveJournal community as a function of the number
of friends who are already members [32].

curve for focal closure behaves quite differently from the curve for triadic closure: it turns
downward and appears to approximately level off, rather than turning slightly upward. Thus,
subsequent shared classes after the first produce a “diminishing returns” effect. Comparing
to the same kind of baseline, in which the probability of link formation with £ shared classes
is 1 — (1 — p)* (shown as the dotted curve in Figure 4.10), we see that the real data turns
downward more significantly than this independent model. Again, it is an interesting open
question to understand how this effect generalizes to other types of shared foci, and to other
domains.

For membership closure, the analogous quantities have been measured in other on-line
domains that possess both person-to-person interactions and person-to-focus affiliations.
Figure 4.11 is based on the blogging site LiveJournal, where friendships are designated by
users in their profiles, and where foci correspond to membership in user-defined communities
[32]; thus the plot shows the probability of joining a community as a function of the number
of friends who have already done so. Figure 4.12 shows a similar analysis for Wikipedia [122].
Here, the social-affiliation network contains a node for each Wikipedia editor who maintains
a user account and user talk page on the system; and there is an edge joining two such editors
if they have communicated, with one editor writing on the user talk page of the other. Each
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Figure 4.12: Quantifying the effects of membership closure in a large online dataset: The
plot shows the probability of editing a Wikipedia articles as a function of the number of
friends who have already done so [122].

Wikipedia article defines a focus — an editor is associated with a focus corresponding to a
particular article if he or she has edited the article. Thus, the plot in Figure 4.12 shows the
probability a person edits a Wikipedia article as a function of the number of prior editors
with whom he or she has communicated.

As with triadic and focal closure, the probabilities in both Figure 4.11 and 4.12 increase
with the number k& of common neighbors — representing friends associated with the foci. The
marginal effect diminishes as the number of friends increases, but the effect of subsequent
friends remains significant. Moreover, in both sources of data, there is an initial increasing
effect similar to what we saw with triadic closure: in this case, the probability of joining a
LiveJournal community or editing a Wikipedia article is more than twice as great when you
have two connections into the focus rather than one. In other words, the connection to a
second person in the focus has a particularly pronounced effect, and after this the diminishing
marginal effect of connections to further people takes over.

Of course, multiple effects can operate simultaneously on the formation of a single link.
For example, if we consider the example in Figure 4.8, triadic closure makes a link between
Bob and Daniel more likely due to their shared friendship with Anna; and focal closure also
makes this link more likely due to the shared membership of Bob and Daniel in the karate
club. If a link does form between them, it will not necessarily be a priori clear how to

attribute it to these two distinct effects. This is also a reflection of an issue we discussed
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in Section 4.1, when describing some of the mechanisms behind triadic closure: since the
principle of homophily suggests that friends tend to have many characteristics in common,
the existence of a shared friend between two people is often indicative of other, possibly
unobserved, sources of similarity (such as shared foci in this case) that by themselves may
also make link formation more likely.

Quantifying the Interplay Between Selection and Social Influence. As a final
illustration of how we can use large-scale on-line data to track processes of link formation,
let’s return to the question of how selection and social influence work together to produce
homophily, considered in Section 4.2. We’ll make use of the Wikipedia data discussed earlier
in this section, asking: how do similarities in behavior between two Wikipedia editors relate
to their pattern of social interaction over time? [122]

To make this question precise, we need to define both the social network and an underlying
measure of behavioral similarity. As before, the social network will consist of all Wikipedia
editors who maintain talk pages, and there is an edge connecting two editors if they have
communicated, with one writing on the talk page of the other. An editor’s behavior will
correspond to the set of articles she has edited. There are a number of natural ways to define
numerical measures of similarity between two editors based on their actions; a simple one is

to declare their similarity to be the value of the ratio

number of articles edited by both A and B
number of articles edited by at least one of A or B’

(4.1)

For example, if editor A has edited the Wikipedia articles on [thaca NY and Cornell Uni-
versity, and editor B has edited the articles on Cornell Unwversity and Stanford University,
then their similarity under this measure is 1/3, since they have jointly edited one article
(Cornell) out of three that they have edited in total (Cornell, Ithaca, and Stanford). Note
the close similarity to the definition of neighborhood overlap used in Section 3.3; indeed,
the measure in Equation (4.1) is precisely the neighborhood overlap of two editors in the
bipartite affiliation network of editors and articles, consisting only of edges from editors to
the articles they’ve edited.?

Pairs of Wikipedia editors who have communicated are significantly more similar in their
behavior than pairs of Wikipedia editors who have not communicated, so we have a case
where homophily is clearly present. Therefore, we are set up to address the question of selec-
tion and social influence: is the homophily arising because editors are forming connections
with those who have edited the same articles they have (selection), or is it because editors

are led to the articles of those they talk to (social influence)?

3For technical reasons, a minor variation on this simple similarity measure is used for the results that
follow. However, since this variation is more complicated to describe, and the differences are not significant
for our purposes, we can think of similarity as consisting of the numerical measure just defined.
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Figure 4.13: The average similarity of two editors on Wikipedia, relative to the time (0)
at which they first communicated [122]. Time, on the z-axis, is measured in discrete units,
where each unit corresponds to a single Wikipedia action taken by either of the two editors.
The curve increases both before and after the first contact at time 0, indicating that both
selection and social influence play a role; the increase in similarity is steepest just before
time 0.

Because every action on Wikipedia is recorded and time-stamped, it is not hard to get
an initial picture of this interplay, using the following method. For each pair of editors A
and B who have ever communicated, record their similarity over time, where “time” here
moves in discrete units, advancing by one “tick” whenever either A or B performs an action
on Wikipedia (editing an article or communicating with another editor). Next, declare time
0 for the pair A-B to be the point at which they first communicated. This results in many
curves showing similarity as a function of time — one for each pair of editors who ever
communicated, and each curve shifted so that time is measured for each one relative to
the moment of first communication. Averaging all these curves yields the single plot in
Figure 4.13 — it shows the average level of similarity relative to the time of first interaction,
over all pairs of editors who have ever interacted on Wikipedia [122].

There are a number of things to notice about this plot. First, similarity is clearly increas-
ing both before and after the moment of first interaction, indicating that both selection and
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social influence are at work. However, the the curve is not symmetric around time 0; the
period of fastest increase in similarity is clearly occurring before 0, indicating a particular
role for selection: there is an especially rapid rise in similarity, on average, just before two
editors meet.* Also note that the levels of similarity depicted in the plot are much higher
than for pairs of editors who have not interacted: the dashed blue line at the bottom of the
plot shows similarity over time for a random sample of non-interacting pairs; it is both far
lower and also essentially constant as time moves forward.

At a higher level, the plot in Figure 4.13 once again illustrates the trade-offs involved in
working with large-scale on-line data. On the one hand, the curve is remarkably smooth,
because so many pairs are being averaged, and so differences between selection and social
influence show up that are genuine, but too subtle to be noticeable at smaller scales. On the
other hand, the effect being observed is an aggregate one: it is the average of the interaction
histories of many different pairs of individuals, and it does not provide more detailed insight
into the experience of any one particular pair.> A goal for further research is clearly to
find ways of formulating more complex, nuanced questions that can still be meaningfully
addressed on large datasets.

Overall, then, these analyses represent early attempts to quantify some of the basic
mechanisms of link formation at a very large scale, using on-line data. While they are
promising in revealing that the basic patterns indeed show up strongly in the data, they
raise many further questions. In particular, it natural to ask whether the general shapes of
the curves in Figures 4.9-4.13 are similar across different domains — including domains that
are less technologically mediated — and whether these curve shapes can be explained at a
simpler level by more basic underlying social mechanisms.

4.5 A Spatial Model of Segregation

One of the most readily perceived effects of homophily is in the formation of ethnically and
racially homogeneous neighborhoods in cities. Traveling through a metropolitan area, one
finds that homophily produces a natural spatial signature; people live near others like them,
and as a consequence they open shops, restaurants, and other businesses oriented toward the
populations of their respective neighborhoods. The effect is also striking when superimposed
on a map, as Figure 4.14 by Mébius and Rosenblat [302] illustrates. Their images depict the

4To make sure that these are editors with significant histories on Wikipedia, this plot is constructed using
only pairs of editors who each had at least 100 actions both before and after their first interaction with each
other.

5Because the individual histories being averaged took place at many distinct points in Wikipedia’s history,
it is also natural to ask whether the aggregate effects operated differently in different phases of this history.
This is a natural question for further investigation, but initial tests — based on studying these types of
properties on Wikipedia datasets built from different periods — show that the main effects have remained
relatively stable over time.



108 CHAPTER 4. NETWORKS IN THEIR SURROUNDING CONTEXTS

(a) Chicago, 1940 (b) Chicago, 1960

Figure 4.14: The tendency of people to live in racially homogeneous neighborhoods produces
spatial patterns of segregation that are apparent both in everyday life and when superim-
posed on a map — as here, in these maps of Chicago from 1940 and 1960 [302]. In blocks
colored yellow and orange the percentage of African-Americans is below 25, while in blocks
colored brown and black the percentage is above 75.

percentage of African-Americans per city block in Chicago for the years 1940 and 1960; in
blocks colored yellow and orange the percentage is below 25, while in blocks colored brown
and black the percentage is above 75.

This pair of figures also shows how concentrations of different groups can intensify over
time, emphasizing that this is a process with a dynamic aspect. Using the principles we’ve
been considering, we now discuss how simple mechansisms based on similarity and selection
can provide insight into the observed patterns and their dynamics.

The Schelling Model. A famous model due to Thomas Schelling [365, 366] shows how
global patterns of spatial segregation can arise from the effect of homophily operating at a
local level. There are many factors that contribute to segregation in real life, but Schelling’s
model focuses on an intentionally simplified mechanism to illustrate how the forces leading to
segregation are remarkably robust — they can operate even when no one individual explicitly
wants a segregated outcome.
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Figure 4.15: In Schelling’s segregation model, agents of two different types (X and 0) occupy
cells on a grid. The neighbor relationships among the cells can be represented very simply
as a graph. Agents care about whether they have at least some neighbors of the same type.

The general formulation of the model is as follows. We assume that there is a population
of individuals, whom we’ll call agents; each agent is of type X or type 0. We think of the
two types as representing some (immutable) characteristic that can serve as the basis for
homophily — for example, race, ethnicity, country of origin, or native language. The agents
reside in the cells of a grid, intended as a stylized model of the two-dimensional geography
of a city. As illustrated in Figure 4.15(a), we will assume that some cells of the grid contain
agents while others are unpopulated. A cell’s neighbors are the cells that touch it, including
diagonal contact; thus, a cell that is not on the boundary of the grid has eight neighbors.
We can equivalently think of the neighbor relationships as defining a graph: the cells are the
nodes, and we put an edge between two cells that are neighbors on the grid. In this view,
the agents thus occupy the nodes of a graph that are arranged in this grid-like pattern, as
shown in Figure 4.15(b). For ease of visualization, however, we will continue to draw things
using a geometric grid, rather than a graph.

The fundamental constraint driving the model is that each agent wants to have at least
some other agents of its own type as neighbors. We will assume that there is a threshold t
common to all agents: if an agent discovers that fewer than ¢ of its neighbors are of the same
type as itself, then it has an interest in moving to a new cell. We will call such an agent
unsatisfied with its current location. For example, in Figure 4.16(a), we indicate with an
asterisk all the agents that are unsatisfied in the arrangement from Figure 4.15(a), when the
threshold ¢ is equal to 3. (In Figure 4.16(a) we have also added a number after each agent.
This is simply to provide each with a unique name; the key distinction is still whether each

agent is of type X or type 0.)
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X1* xX2*
X3 o1 02
X4 X5 03 04 O5*
X6* 06 X7 X8
o7 08 X9* X10 X11
09 010 o111~
(a) An initial configuration.
X3 X6 O1 02
X4 X5 03 04
06 X2 X1 X7 X8
O11 o7 08 X9 X10 X11
05 09 o10*

(b) After one round of movement.

Figure 4.16: After arranging agents in cells of the grid, we first determine which agents are
unsatisfied, with fewer than ¢ other agents of the same type as neighbors. In one round, each
of these agents moves to a cell where they will be satisfied; this may cause other agents to
become unsatisfied, in which case a new round of movement begins.
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The Dynamics of Movement. Thus far, we have simply specified a set of agents that
want to move, given an underlying threshold; we now discuss how this gives the model its
dynamic aspect. Agents move in a sequence of rounds: in each round, we consider the
unsatisfied agents in some order, and for each one in turn, we have it move to an unoccupied
cell where it will be satisfied. After this, the round of movement has come to an end,
representing a fixed time period during which unsatisfied agents have changed where they
live. These new locations may cause different agents to be unsatisfied, and this leads to a
new round of movement.

In the literature on this model, there are numerous variations in the specific details of
how the movement of agents within a round is handled. For example, the agents can be
scheduled to move in a random order, or in an order that sweeps downward along rows of
the grid; they can move to the nearest location that will make them satisfied or to a random
one. There also needs to be a way of handling situations in which an agent is scheduled to
move, and there is no cell that will make it satisified. In such a case, the agent can be left
where it is, or moved to a completely random cell. Research has found that the qualitative
results of the model tend to be quite similar however these issues are resolved, and different
investigations of the model have tended to resolve them differently.

For example, Figure 4.16(b) shows the results of one round of movement, starting from
the arrangement in Figure 4.16(a), when the threshold ¢ is 3. Unsatisfied agents are scheduled
to move by considering them one row at a time working downward through the grid, and
each agent moves to the nearest cell that will make it satisfied. (The unique name of each
agent in the figure allows us to see where it has moved in Figure 4.16(b), relative to the initial
state in Figure 4.16(a).) Notice that in some concrete respects, the pattern of agents has
become more “segregated” after this round of movement. For example, in Figure 4.16(a),
there is only a single agent with no neighbors of the opposite type. After this first round of
movement, however, there are six agents in Figure 4.16(b) with no neighbors of the opposite
type. As we will see, this increasing level of segregation is the key behavior to emerge from
the model.

Larger examples. Small examples of the type in Figures 4.15 and 4.16 are helpful in
working through the details of the model by hand; but at such small scales it is difficult to
see the kinds of typical patterns that arise. For this, computer simulation is very useful.

There are many on-line computer programs that make it possible to simulate the Schelling
model; as with the published literature on the model, they all tend to differ slightly from
each other in their specifics. Here we discuss some examples from a simulation written by
Sean Luke [282], which is like the version of the model we have discussed thus far except
that unsatisfied agents move to a random location.

In Figure 4.17, we show the results of simulating the model on a grid with 150 rows and
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(a) A simulation with threshold 3. (b) Another simulation with threshold 3.

Figure 4.17: Two runs of a simulation of the Schelling model with a threshold ¢ of 3, on a
150-by-150 grid with 10,000 agents of each type. Each cell of the grid is colored red if it is
occupied by an agent of the first type, blue if it is occupied by an agent of the second type,
and black if it is empty (not occupied by any agent).

150 columns, 10,000 agents of each type, and 2500 empty cells. The threshold ¢ is equal to
3, as in our earlier examples. The two images depict the results of two different runs of the
simulation, with different random starting patterns of agents. In each case, the simulation
reached a point (shown in the figures) at which all agents were satisfied, after roughly 50
rounds of movement.

Because of the different random starts, the final arrangement of agents is different in
the two cases, but the qualitative similarities reflect the fundamental consequences of the
model. By seeking out locations near other agents of the same type, the model produces
large homogeneous regions, interlocking with each other as they stretch across the grid. In
the midst of these regions are large numbers of agents who are surrounded on all sides by
other agents of the same type — and in fact at some distance from the nearest agent of
the opposite type. The geometric pattern has become segregated, much as in the maps of
Chicago from Figure 4.14 with which we began the section.

Interpretations of the Model. We’ve now seen how the model works, what it looks
like at relatively large scales, and how it produces spatially segregated outcomes. But what
broader insights into homophily and segregation does it suggest?

The first and most basic one is that spatial segregation is taking place even though no
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Figure 4.18: With a threshold of 3, it is possible to arrange agents in an integrated pattern:
all agents are satisfied, and everyone who is not on the boundary on the grid has an equal
number of neighbors of each type.

individual agent is actively seeking it. Sticking to our focus on a threshold ¢ of 3, we see that
although agents want to be near others like them, their requirements are not particularly
draconian. For example, an agent would be perfectly happy to be in the minority among
its neighbors, with five neighbors of the opposite type and three of its own type. Nor are
the requirements globally incompatible with complete integration of the population. By
arranging agents in a checkerboard pattern as shown in Figure 4.18, we can make each agent
satisfied, and all agents not on the boundary of the grid have exactly four neighbors of each
type. This is a pattern that we can continue on as large a grid as we want.

Thus, segregation is not happening because we have subtly built it into the model —
agents are willing to be in the minority, and they could all be satisfied if we were only able
to carefully arrange them in an integrated pattern. The problem is that from a random
start, it is very hard for the collection of agents to find such integrated patterns. Much
more typically, agents will attach themselves to clusters of others like themselves, and these
clusters will grow as other agents follow suit. Moreover, there is a compounding effect
as the rounds of movement unfold, in which agents who fall below their threshold depart
for more homogeneous parts of the grid, causing previously satisfied agents to fall below
their thresholds and move as well — an effect that Schelling describes as the progressive
“unraveling” of more integrated regions [366]. In the long run, this process will tend to
cause segregated regions to grow at the expense of more integrated ones. The overall effect
is one in which the local preferences of individual agents have produced a global pattern that

none of them necessarily intended.
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a) After 20 steps b) After 150 steps
c) After 350 steps d) After 800 steps

Figure 4.19: Four intermediate points in a simulation of the Schelling model with a threshold
t of 4, on a 150-by-150 grid with 10,000 agents of each type. As the rounds of movement
progress, large homogeneous regions on the grid grow at the expense of smaller, narrower
regions.
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This point is ultimately at the heart of the model: although segregation in real life is
amplified by a genuine desire within some fraction of the population to belong to large
clusters of similar people — either to avoid people who belong to other groups, or to acquire
a critical mass of members from one’s own group — we see here that such factors are not
necessary for segregation to occur. The underpinnings of segregation are already present in
a system where individuals simply want to avoid being in too extreme a minority in their

own local area.

The process operates even more powerfully when we raise the threshold ¢ in our examples
from 3 to 4. Even with a threshold of 4, nodes are willing to have an equal number of
neighbors of each type; and a slightly more elaborate checkerboard example in the spirit of
Figure 4.18 shows that with careful placement, the agents can be arranged so that all are
satisfied and most still have a significant number of neighbors of the opposite type. But now,
not only is an integrated pattern very hard to reach from a random starting arrangement —
any vestiges of integration among the two types tends to collapse completely over time. As
one example of this, Figure 4.19 shows four intermediate points in one run of a simulation
with threshold 4 and other properties the same as before (a 150-by-150 grid with 10,000
agents of each type and random movement by unsatisfied agents) [282]. Figure 4.19(a) shows
that after 20 rounds of movement, we have an arrangement of agents that roughly resembles
what we saw with a lower threshold of 3. However, this does not last long: crucially, the
long tendrils where one type interlocks with the other quickly wither and retract, leaving
the more homogeneous regions shown after 150 rounds in Figure 4.19(b). This pulling-back
continues, passing through a phase with a large and small region of each type after 350
rounds (Figure 4.19(c)) eventually to a point where there is only a single significant region
of each type, after roughly 800 rounds (Figure 4.19(d)). Note that this is not the end of the
process, since there remain agents around the edges still looking for places to move, but by
this point the overall two-region layout has become very stable. Finally, we stress that this
figure corresponds to just a single run of the simulation — but computational experiments
show that the sequence of events it depicts, leading to almost complete separation of the two
types, is very robust when the threshold is this high.

Viewed at a still more general level, the Schelling model is an example of how character-
istics that are fixed and unchanging (such as race or ethnicity) can become highly correlated
with other characteristics that are mutable. In this case, the mutable characteristic is the
decision about where to live, which over time conforms to similarities in the agents’ (im-
mutable) types, producing segregation. But there are other, non-spatial manifestation of
the same effect, in which beliefs and opinions become correlated across racial or ethnic lines,
and for similar underlying reasons: as homophily draws people together along immutable
characteristics, there is a natural tendency for mutable characteristics to change in accor-

dance with the network structure.
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As a final point, we note that while the model is mathematically precise and self-
contained, the discussion has been carried out in terms of simulations and qualitative obser-
vations. This is because rigorous mathematical analysis of the Schelling model appears to
be quite difficult, and is largely an open research question. For partial progress on analyzing
properties of the Schelling model, see the work of Young [420], who compares properties of
different arrangements in which all agents are satisfied; Mobius and Rosenblat [302], who
perform a probabilistic analysis; and Vinkovié¢ and Kirman [401], who develop analogies to

models for the mixing of two liquids and other physical phenomena.

4.6 Exercises

Figure 4.20: A social network where triadic closure may occur.

1. Consider the social network represented in Figure 4.20. Suppose that this social net-
work was obtained by observing a group of people at a particular point in time and
recording all their friendship relations. Now suppose that we come back at some point
in the future and observe it again. According to the theories based on empirical studies
of triadic closure in networks, which new edge is most likely to be present? (I.e. which
pair of nodes, who do not currently have an edge connecting them, are most likely to
be linked by an edge when we return to take the second observation?) Also, give a
brief explanation for your answer.

2. Given a bipartite affiliation graph, showing the membership of people in different social
foci, researchers sometimes create a projected graph on just the people, in which we
join two people when they have a focus in common.

(a) Draw what such a projected graph would look like for the example of memberships

on corporate boards of directors from Figure 4.4. Here the nodes would be the
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seven people in the figure, and there would be an edge joining any two who serve

on a board of directors together.

(b) Give an example of two different affiliation networks — on the same set of people,
but with different foci — so that the projected graphs from these two different
affiliation networks are the same. This shows how information can be “lost” when
moving from the full affiliation network to just the projected graph on the set of
people.

Figure 4.21: An affiliation network on six people labeled A-F', and three foci labeled X, Y,
and Z.

3. Consider the affiliation network in Figure 4.21, with six people labeled A—F', and three
foci labeled X, Y, and Z.

(a) Draw the derived network on just the six people as in Exercise 2, joining two
people when they share a focus.

(b) In the resulting network on people, can you identify a sense in which the triangle
on the nodes A, ', and E has a qualitatively different meaning than the other
triangles that appear in the network? Explain.
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Figure 4.22: A graph on people arising from an (unobserved) affiliation network.

4. Given a network showing pairs of people who share activities, we can try to reconstruct

an affiliation network consistent with this data.

For example, suppose that you are trying to infer the structure of a bipartite affiliation
network, and by indirect observation you’ve obtained the projected network on just
the set of people, constructed as in Exercise 2: there is an edge joining each pair of
people who share a focus. This projected network is shown in Figure 4.22.

(a) Draw an affiliation network involving these six people, together with four foci that
you should define, whose projected network is the graph shown in Figure 4.22.

(b) Explain why any affiliation network capable of producing the projected network
in Figure 4.22 must have at least four foci.



Chapter 5

Positive and Negative Relationships

In our discussion of networks thus far, we have generally viewed the relationships con-
tained in these networks as having positive connotations — links have typically indicated
such things as friendship, collaboration, sharing of information, or membership in a group.
The terminology of on-line social networks reflects a largely similar view, through its em-
phasis on the connections one forms with friends, fans, followers, and so forth. But in most
network settings, there are also negative effects at work. Some relations are friendly, but
others are antagonistic or hostile; interactions between people or groups are regularly beset
by controversy, disagreement, and sometimes outright conflict. How should we reason about
the mix of positive and negative relationships that take place within a network?

Here we describe a rich part of social network theory that involves taking a network
and annotating its links (i.e., its edges) with positive and negative signs. Positive links
represent friendship while negative links represent antagonism, and an important problem
in the study of social networks is to understand the tension between these two forces. The
notion of structural balance that we discuss in this chapter is one of the basic frameworks for
doing this.

In addition to introducing some of the basics of structural balance, our discussion here
serves a second, methodological purpose: it illustrates a nice connection between local and
global network properties. A recurring issue in the analysis of networked systems is the way
in which local effects — phenomena involving only a few nodes at a time — can have global
consequences that are observable at the level of the network as a whole. Structural balance
offers a way to capture one such relationship in a very clean way, and by purely mathematical
analysis: we will consider a simple definition abstractly, and find that it inevitably leads to

certain macroscopic properties of the network.

D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning about a Highly Connected World.
Cambridge University Press, 2010. Draft version: June 10, 2010.
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5.1 Structural Balance

We focus here on perhaps the most basic model of positive and negative relationships, since
it captures the essential idea. Suppose we have a social network on a set of people, in which
everyone knows everyone else — so we have an edge joining each pair of nodes. Such a
network is called a clique, or a complete graph. We then label each edge with either + or —;
a + label indicates that its two endpoints are friends, while a — label indicates that its two
endpoints are enemies.

Note that since there’s an edge connecting each pair, we are assuming that each pair
of people are either friends or enemies — no two people are indifferent to one another,
or unaware of each other. Thus, the model we’re considering makes the most sense for a
group of people small enough to have this level of mutual awareness (e.g. a classroom, a
small company, a sports team, a fraternity or sorority), or for a setting such as international
relations, in which the nodes are countries and every country has an official diplomatic
position toward every other.!

The principles underlying structural balance are based on theories in social psychology
dating back to the work of Heider in the 1940s [216], and generalized and extended to
the language of graphs beginning with the work of Cartwright and Harary in the 1950s
(97, 126, 204]. The crucial idea is the following. If we look at any two people in the group
in isolation, the edge between them can be labeled + or —; that is, they are either friends
or enemies. But when we look at sets of three people at a time, certain configurations of +’s
and —’s are socially and psychologically more plausible than others. In particular, there are
four distinct ways (up to symmetry) to label the three edges among three people with +’s
and —’s; see Figure 5.1. We can distinguish among these four possibilities as follows.

e Given a set of people A, B, and C, having three pluses among them (as in Figure 5.1(a))
is a very natural situation: it corresponds to three people who are mutual friends.

e Having a single plus and two minuses in the relations among the there people is also
very natural: it means that two of the three are friends, and they have a mutual enemy
in the third. (See Figure 5.1(c).)

e The other two possible labelings of the triangle on A, B, and C' introduce some amount
of psychological “stress” or “instability” into the relationships. A triangle with two
pluses and one minus corresponds (as in Figure 5.1(b)) to a person A who is friends
with each of B and C', but B and C' don’t get along with each other. In this type of
situation, there would be implicit forces pushing A to try to get B and C' to become

'Later, in Section 5.5, we will consider the more general setting in which not every pair of nodes is
necessarily connected by an edge.
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+

(a) A, B, and C are mutual friends: balanced. (b) A is friends with B and C, but they don’t get
along with each other: not balanced.

(¢) A and B are friends with C' as a mutual en- (d) A, B, and C are mutual enemies: not bal-
emy: balanced. anced.

Figure 5.1: Structural balance: Each labeled triangle must have 1 or 3 positive edges.

friends (thus turning the B-C' edge label to +); or else for A to side with one of B or
C' against the other (turning one of the edge labels out of A to a —).

e Similarly, there are sources of instability in a configuration where each of A, B, and C'
are mutual enemies (as in Figure 5.1(d)). In this case, there would be forces motivating
two of the three people to “team up” against the third (turning one of the three edge
labels to a +).

Based on this reasoning, we will refer to triangles with one or three +’s as balanced, since
they are free of these sources of instability, and we will refer to triangles with zero or two
+’s as unbalanced. The argument of structural balance theorists is that because unbalanced
triangles are sources of stress or psychological dissonance, people strive to minimize them in

their personal relationships, and hence they will be less abundant in real social settings than
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balanced not balanced

Figure 5.2: The labeled four-node complete graph on the left is balanced; the one on the
right is not.

balanced triangles.

Defining Structural Balance for Networks. So far we have been talking about struc-
tural balance for groups of three nodes. But it is easy to create a definition that naturally
generalizes this to complete graphs on an arbitrary number of nodes, with edges labeled by
+’s and —’s.

Specifically, we say that a labeled complete graph is balanced if every one of its triangles
is balanced — that is, if it obeys the following:

Structural Balance Property: For every set of three nodes, if we consider the three
edges connecting them, either all three of these edges are labeled +, or else exactly
one of them is labeled +.

For example, consider the two labeled four-node networks in Figure 5.2. The one on
the left is balanced, since we can check that each set of three nodes satisfies the Structural
Balance Property above. On the other hand, the one on the right is not balanced, since among
the three nodes A, B, C, there are exactly two edges labeled +, in violation of Structural
Balance. (The triangle on B, C, D also violates the condition.)

Our definition of balanced networks here represents the limit of a social system that has
eliminated all unbalanced triangles. As such, it is a fairly extreme definition — for example,
one could instead propose a definition which only required that at least some large percentage
of all triangles were balanced, allowing a few triangles to be unbalanced. But the version

with all triangles balanced is a fundamental first step in thinking about this concept; and



5.2. CHARACTERIZING THE STRUCTURE OF BALANCED NETWORKS 123

mutual
mutual friends antagonism mutual friends
inside X between inside Y
sets
set X setY

Figure 5.3: If a complete graph can be divided into two sets of mutual friends, with complete
mutual antagonism between the two sets, then it is balanced. Furthermore, this is the only
way for a complete graph to be balanced.

as we will see next, it turns out to have very interesting mathematical structure that in fact
helps to inform the conclusions of more complicated models as well.

5.2 Characterizing the Structure of Balanced Networks

At a general level, what does a balanced network (i.e. a balanced labeled complete graph)
look like? Given any specific example, we can check all triangles to make sure that they
each obey the balance conditions; but it would be much better to have a simple conceptual
description of what a balanced network looks like in general.

One way for a network to be balanced is if everyone likes each other; in this case, all
triangles have three + labels. On the other hand, the left-hand side of Figure 5.2 suggests
a slightly more complicated way for a network to be balanced: it consists of two groups of
friends (A, B and C, D), with negative relations between people in different groups. This is
actually true in general: suppose we have a labeled complete graph in which the nodes can
be divided into two groups, X and Y, such that every pair of nodes in X like each other,
every pair of nodes in Y like each other, and everyone in X is the enemy of everyone in
Y. (See the schematic illustration in Figure 5.3.) You can check that such a network is
balanced: a triangle contained entirely in one group or the other has three + labels, and a
triangle with two people in one group and one in the other has exactly one + label.

So this describes two basic ways to achieve structural balance: either everyone likes

each other; or the world consists of two groups of mutual friends with complete antagonism
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between the groups. The surprising fact is the following: these are the only ways to have
a balanced network. We formulate this fact precisely as the following Balance Theorem,
proved by Frank Harary in 1953 [97, 204]:

Balance Theorem: If a labeled complete graph is balanced, then either all pairs
of nodes are friends, or else the nodes can be divided into two groups, X andY
such that every pair of nodes in X like each other, every pair of nodes in'Y like

each other, and everyone in X is the enemy of everyone in'Y .

The Balance Theorem is not at all an obvious fact, nor should it be initially clear why it

is true. Essentially, we’re taking a purely local property, namely the Structural Balance

Property, which applies to only three nodes at a time, and showing that it implies a strong

global property: either everyone gets along, or the world is divided into two battling factions.
We’re now going to show why this claim in fact is true.

Proving the Balance Theorem. Establishing the claim requires a proof: we're going to
suppose we have an arbitrary labeled complete graph, assume only that it is balanced, and
conclude that either everyone is friends, or that there are sets X and Y as described in the
claim. Recall that we worked through a proof in Chapter 3 as well, when we used simple
assumptions about triadic closure in a social network to conclude all local bridges in the
network must be weak ties. Our proof here will be somewhat longer, but still very natural
and straightforward — we use the definition of balance to directly derive the conclusion of
the claim.

To start, suppose we have a labeled complete graph, and all we know is that it’s balanced.
We have to show that it has the structure in the claim. If it has no negative edges at all,
then everyone is friends, and we're all set. Otherwise, there is at least one negative edge,
and we need to somehow come up with a division of the nodes into sets of mutual friends
X and Y, with complete antagonism between them. The difficulty is that, knowing so little
about the graph itself other than that it is balanced, it’s not clear how we’re supposed to
identify X and Y.

Let’s pick any node in the network — we’ll call it A — and consider things from A’s
perspective. Every other node is either a friend of A or an enemy of A. Thus, natural
candidates to try for the sets X and Y would be to define X to be A and all its friends, and
define Y to be all the enemies of A. This is indeed a division of all the nodes, since every
node is either a friend or an enemy of A.

Recall what we need to show in order for these two sets X and Y to satisfy the conditions
of the claim:

(i) Every two nodes in X are friends.

(ii) Every two nodes in Y are friends.
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friends of A enemies of A

Figure 5.4: A schematic illustration of our analysis of balanced networks. (There may be
other nodes not illustrated here.)

(iii) Every node in X is an enemy of every node in Y.

Let’s argue that each of these conditions is in fact true for our choice of X and Y. This will
mean that X and Y do satisfy the conditions of the claim, and will complete the proof. The
rest of the argument, establishing (i), (ii), and (iii), is illustrated schematically in Figure 5.4.

For (i), we know that A is friends with every other node in X. How about two other
nodes in X (let’s call them B and C) — must they be friends? We know that A is friends
with both B and C, so if B and C were enemies of each other, then A, B, and C' would
form a triangle with two 4 labels — a violation of the balance condition. Since we know
the network is balanced, this can’t happen, so it must be that B and C' in fact are friends.
Since B and C' were the names of any two nodes in X, we have concluded that every two
nodes in X are friends.

Let’s try the same kind of argument for (ii). Consider any two nodes in Y (let’s call them
D and E) — must they be friends? We know that A is enemies with both D and E, so if D
and F were enemies of each other, then A, D, and E would form a triangle with no + labels
— a violation of the balance condition. Since we know the network is balanced, this can’t
happen, so it must be that D and FE in fact are friends. Since D and E were the names of
any two nodes in Y, we have concluded that every two nodes in Y are friends.

Finally, let’s try condition (iii). Following the style of our arguments for (i) and (ii),
consider a node in X (call if B) and a node in Y (call it D) — must they be enemies? We
know A is friends with B and enemies with D, so if B and D were friends, then a, B, and
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D would form a triangle with two + labels — a violation of the balance condition. Since
we know the network is balanced, this can’t happen, so it must be that B and D in fact
are enemies. Since B and D were the names of any node in X and any node in Y, we have
concluded that every such pair constitutes a pair of enemies.

So, in conclusion, assuming only that the network is balanced, we have described a
division of the nodes into two sets X and Y, and we have checked conditions (i), (ii), and
(iii) required by the claim. This completes the proof of the Balance Theorem.

5.3 Applications of Structural Balance

Structural balance has grown into a large area of study, and we’ve only described a simple
but central example of the theory. In Section 5.5, we discuss two extensions to the basic
theory: one to handle graphs that are not necessarily complete, and one to describe the
structure of complete graphs that are “approximately balanced,” in the sense that most but
not all their triangles are balanced.

There has also been recent research looking at dynamic aspects of structural balance
theory, modeling how the set of friendships and antagonisms in a complete graph — in other
words, the labeling of the edges — might evolve over time, as the social network implicitly
seeks out structural balance. Antal, Krapivsky, and Redner [20] study a model in which we
start with a random labeling (choosing + or — randomly for each edge); we then repeatedly
look for a triangle that is not balanced, and flip one of its labels to make it balanced. This
captures a situation in which people continually reassess their likes and dislikes of others, as
they strive for structural balance. The mathematics here becomes quite complicated, and
turns out to resemble the mathematical models one uses for certain physical systems as they
reconfigure to minimize their energy [20, 287].

In the remainder of this section, we consider two further areas in which the ideas of struc-
tural balance are relevant: international relations, where the nodes are different countries;
and on-line social media sites where users can express positive or negative opinions about

each other.

International Relations. International politics represents a setting in which it is natural
to assume that a collection of nodes all have opinions (positive or negative) about one another
— here the nodes are nations, and + and — labels indicate alliances or animosity. Research
in political science has shown that structural balance can sometimes provide an effective
explanation for the behavior of nations during various international crises. For example,
Moore [306], describing the conflict over Bangladesh’s separation from Pakistan in 1972,
explicitly invokes structural balance theory when he writes, “[T]he United States’s somewhat

surprising support of Pakistan ... becomes less surprising when one considers that the USSR
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(a) Three Emperors’ League 1872 (b) Triple Alliance 1882 (¢) German-Russian Lapse 1890
81

(d) French-Russian Alliance 1891— (e) Entente Cordiale 1904 (f) British Russian Alliance 1907
94

Figure 5.5: The evolution of alliances in Europe, 1872-1907 (the nations GB, Fr, Ru, It, Ge,
and AH are Great Britain, France, Russia, Italy, Germany, and Austria-Hungary respec-
tively). Solid dark edges indicate friendship while dotted red edges indicate enmity. Note
how the network slides into a balanced labeling — and into World War 1. This figure and
example are from Antal, Krapivsky, and Redner [20].

was China’s enemy, China was India’s foe, and India had traditionally bad relations with
Pakistan. Since the U.S. was at that time improving its relations with China, it supported
the enemies of China’s enemies. Further reverberations of this strange political constellation
became inevitable: North Vietnam made friendly gestures toward India, Pakistan severed
diplomatic relations with those countries of the Eastern Bloc which recognized Bangladesh,
and China vetoed the acceptance of Bangladesh into the U.N.”

Antal, Krapivsky, and Redner use the shifting alliances preceding World War I as another
example of structural balance in international relations — see Figure 5.5. This also reinforces
the fact that structural balance is not necessarily a good thing: since its global outcome is
often two implacably opposed alliances, the search for balance in a system can sometimes

be seen as a slide into a hard-to-resolve opposition between two sides.
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Trust, Distrust, and On-Line Ratings. A growing source for network data with both
positive and negative edges comes from user communities on the Web where people can
express positive or negative sentiments about each other. Examples include the technology
news site Slashdot, where users can designate each other as a “friend” or a “foe” [266],
and on-line product-rating sites such as Epinions, where a user can express evaluations of

different products, and also express trust or distrust of other users.

Guha, Kumar, Raghavan, and Tomkins performed an analysis of the network of user
evaluations on Epinions [201]; their work identified an interesting set of issues that show
how the trust/distrust dichotomy in on-line ratings has both similarities and differences
with the friend/enemy dichotomy in structural balance theory. One difference is based on a
simple structural distinction: we have been considering structural balance in the context of
undirected graphs, whereas user evaluations on a site like Epinions form a directed graph.
That is, when a user A expresses trust or distrust of a user B, we don’t necessarily know
what B thinks of A, or whether B is even aware of A.

A more subtle difference between trust/distrust and friend /enemy relations becomes ap-
parent when thinking about how we should expect triangles on three Epinions users to
behave. Certain patterns are easy to reason about: for example, if user A trusts user B,
and user B trusts user C, then it is natural to expect that A will trust C'. Such triangles
with three forward-pointing positive edges make sense here, by analogy with the all-positive
(undirected) triangles of structural balance theory. But what if A distrusts B and B dis-
trusts C: should we expect A to trust or to distrust C'? There are appealing arguments
in both directions. If we think of distrust as fundamentally a kind of enemy relationship,
then the arguments from structural balance theory would suggest that A should trust C-:
otherwise we’'d have a triangle with three negative edges. On the other hand, if A’s distrust
of B expresses A’s belief that she is more knowledgeable and competent than B — and if
B’s distrust of C reflects a corresponding belief by B — then we might well expect that A

will distrust C', and perhaps even more strongly than she distrusts B.

It is reasonable to expect that these two different interpretations of distrust may each
apply, simply in different settings. And both might apply in the context of a single product-
rating site like Epinions. For example, among users who are primarily rating best-selling
books by political commentators, trust/distrust evaluations between users may become
strongly aligned with agreement or disagreement in these users’ own political orientations.
In such a case, if A distrusts B and B distrusts C', this may suggest that A and C' are
close to each other on the underlying political spectrum, and so the prediction of structural
balance theory that A should trust C' may apply. On the other hand, among users who are
primarily rating consumer electronics products, trust/distrust evaluations may largely reflect
the relative expertise of users about the products (their respective features, reliability, and
so forth). In such a case, if A distrusts B and B distrusts C, we might conclude that A is
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Figure 5.6: A complete graph is weakly balanced precisely when it can be divided into multiple sets of

mutual friends, with complete mutual antagonism between each pair of sets.

far more expert than C', and so should distrust C as well.

Ultimately, understanding how these positive and negative relationships work is impor-
tant for understanding the role they play on social Web sites where users register subjective
evaluations of each other. Research is only beginning to explore these fundamental questions,
including the ways in which theories of balance — as well as related theories — can be used
to shed light on these issues in large-scale datasets [274].

5.4 A Weaker Form of Structural Balance

In studying models of positive and negative relationships on networks, researchers have also

formulated alternate notions of structural balance, by revisiting the original assumptions we
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used to motivate the framework.

In particular, our analysis began from the claim that there are two kinds of structures on
a group of three people that are inherently unbalanced: a triangle with two positive edges
and one negative edge (as in Figure 5.1(b)); and a triangle with three negative edges (as in
Figure 5.1(d)). In each of these cases, we argued that the relationships within the triangle
contained a latent source of stress that the network might try to resolve. The underlying
arguments in the two cases, however, were fundamentally different. In a triangle with two
positive edges, we have the problem of a person whose two friends don’t get along; in a
triangle with three negative edges, there is the possibility that two of the nodes will ally
themselves against the third.

James Davis and others have argued that in many settings, the first of these factors may
be significantly stronger than the second [127]: we may see friends of friends trying to recon-
cile their differences (resolving the lack of balance in Figure 5.1(b)), while at the same time
there could be less of a force leading any two of three mutual enemies (as in Figure 5.1(d)) to
become friendly. It therefore becomes natural to ask what structural properties arise when
we rule out only triangles with exactly two positive edges, while allowing triangles with three

negative edges to be present in the network.

Characterizing Weakly Balanced Networks. More precisely, we will say that a com-
plete graph, with each edge labeled by + or —, is weakly balanced if the following property
holds.

Weak Structural Balance Property: There is no set of three nodes such that the
edges among them consist of exactly two positive edges and one negative edge.

Since weak balance imposes less of a restriction on what the network can look like, we
should expect to see a broader range of possible structures for weakly balanced networks
— beyond what the Balance Theorem required for networks that were balanced under our
original definition. And indeed, Figure 5.6 indicates a new kind of structure that can arise.
Suppose that the nodes can be divided into an arbitrary number of groups (possibly more
than two), so that two nodes are friends when they belong to the same group, and enemies
when they belong to different groups. Then we can check that such a network is weakly
balanced: in any triangle that contains at least two positive edges, all three nodes must
belong to the same group. Therefore, the third edge of this triangle must be positive as well
— in other words, the network contains no triangles with exactly two + edges.

Just as the Balance Theorem established that all balanced networks must have a simple
structure, an analogous result holds for weakly balanced networks: they must have the

structure depicted in Figure 5.6, with any number of groups.

Characterization of Weakly Balanced Networks: If a labeled complete graph is
weakly balanced, then its nodes can be divided into groups in such a way that
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friends of A enemies of A

Figure 5.7: A schematic illustration of our analysis of weakly balanced networks. (There
may be other nodes not illustrated here.)

every two nodes belonging to the same group are friends, and every two nodes
belonging to different groups are enemies.

The fact that this characterization is true in fact provided another early motivation for
studying weak structural balance. The Cartwright-Harary notion of balance predicted only
dichotomies (or mutual consensus) as its basic social structure, and thus did not provide
a model for reasoning about situations in which a network is divided into more than two
factions. Weak structural balance makes this possible, since weakly balanced complete graphs

can contain any number of opposed groups of mutual friends [127].

Proving the Characterization. It is not hard to give a proof for this characteriza-
tion, following the structure of our proof for the Balance Theorem, and making appropriate
changes where necessary. Starting with a weakly balanced complete graph, the characteriza-
tion requires that we produce a division of its nodes into groups of mutual friends, such that
all relations between nodes in different groups are negative. Here is how we will construct
this division.

First, we pick any node A, and we consider the set consisting of A and all its friends.
Let’s call this set of nodes X. We’d like to make X our first group, and for this to work, we
need to establish two things:

(i) All of A’s friends are friends with each other. (This way, we have indeed produced a
group of mutual friends).



132 CHAPTER 5. POSITIVE AND NEGATIVE RELATIONSHIPS

(ii) A and all his friends are enemies with everyone else in the graph. (This way, the people
in this group will be enemies with everyone in other groups, however we divide up the
rest of the graph.)

Fortunately, ideas that we already used inside the proof of the Balance Theorem can be
adapted to our new setting here to establish (i) and (ii). The idea is shown in Figure 5.7.
First, for (i), let’s consider two nodes B and C' who are both friends with A. If B and C
were enemies of each other, then the triangle on nodes A, B, and C' would have exactly two
+ labels, which would violate weak structural balance. So B and C' must indeed be friends
with each other.

For (ii), we know that A is enemies with all nodes in the graph outside X, since the
group X is defined to include all of A’s friends. How about an edge between a node B in X
and a node D outside X? If B and D were friends, then the triangle on nodes A, B, and D
would have exactly two + labels — again, a violation of weak structural balance. So B and
D must be enemies.

Since properties (i) and (ii) hold, we can remove the set X — consisting of A and all his
friends — from the graph and declare it to be the first group. We now have a smaller complete
graph that is still weakly balanced; we find a second group in this graph, and proceed to
remove groups in this way until all the nodes have been assigned to a group. Since each
group consists of mutual friends (by property (i)), and each group has only negative relations
with everyone outside the group (by property (ii)), this proves the characterization.

It is interesting to reflect on this proof in relation to the proof of the Balance Theorem —
in particular, the contrast reflected by the small differences between Figures 5.4 and 5.7. In
proving the Balance Theorem, we had to reason about the sign of the edge between D and
E, to show that the enemies of the set X themselves formed a set Y of mutual friends. In
characterizing weakly balanced complete graphs, on the other hand, we made no attempt to
reason about the D-FE edge, because weak balance imposes no condition on it: two enemies
of A can be either friends or enemies. As a result, the set of enemies in Figure 5.7 might not
be a set of mutual friends when only weak balance holds; it might consist of multiple groups
of mutual friends, and as we extract these groups one by one over the course of the proof,
we recover the multi-faction structure illustrated schematically in Figure 5.6.

5.5 Advanced Material: Generalizing the Definition of
Structural Balance

In this section, we consider more general ways of formulating the idea of structural balance
in a network. In particular, our definition of structural balance thus far is fairly demanding

in two respects:
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1
+

Figure 5.8: In graphs that are not complete, we can still define notions of structural balance
when the edges that are present have positive or negative signs indicating friend or enemy
relations.

1. It applies only to complete graphs: we require that each person know and have an
opinion (positive or negative) on everyone else. What if only some pairs of people
know each other?

2. The Balance Theorem, showing that structural balance implies a global division of the
world into two factions [97, 204], only applies to the case in which every triangle is
balanced. Can we relax this to say that if most triangles are balanced, then the world
can be approximately divided into two factions?

In the two parts of this section, we discuss a pair of results that address these questions. The
first is based on a graph-theoretic analysis involving the notion of breadth-first search from
Chapter 2, while the second is typical of a style of proof known as a “counting argument.”
Throughout this section, we will focus on the original definition of structural balance from

Sections 5.1 and 5.2, rather than the weaker version from Section 5.4.
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(a) A graph with signed edges. (b) Filling in the missing edges to
achieve balance.
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(¢) Dividing the graph into two sets.

Figure 5.9: There are two equivalent ways to define structural balance for general (non-complete) graphs.
One definition asks whether it is possible to fill in the remaining edges so as to produce a signed complete
graph that is balanced. The other definition asks whether it is possible to divide the nodes into two sets X

and Y so that all edges inside X and inside Y are positive, and all edges between X and Y are negative.

A. Structural Balance in Arbitrary (Non-Complete) Networks

First, let’s consider the case of a social network that is not necessarily complete — that is,
there are only edges between certain pairs of nodes, but each of these edges is still labeled
with + or —. So now there are three possible relations between each pair of nodes: a positive
edge, indicating friendship; a negative edge, indicating enmity; or the absence of an edge,
indicating that the two endpoints do not know each other. Figure 5.8 depicts an example of
such a signed network.

Defining Balance for General Networks. Drawing on what we’ve learned from the
special case of complete graphs, what would be a good definition of balance for this more

general kind of structure? The Balance Theorem suggests that we can view structural balance
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in either of two equivalent ways: a local view, as a condition on each triangle of the network;
or a global view, as a requirement that the world be divided into two mutually opposed sets
of friends. Each of these suggests a way of defining structure balance for general signed
graphs.

1. One option would be to treat balance for non-complete networks as a problem of filling
in “missing values.” Suppose we imagine, as a thought experiment, that all people
in the group in fact do know and have an opinion on each other; the graph under
consideration is not complete only because we have failed to observe the relations
between some of the pairs. We could then say that the graph is balanced if it possible
to fill in all the missing labeled edges in such a way that the resulting signed complete
graph is balanced. In other words, a (non-complete) graph is balanced if it can be
“completed” by adding edges to form a signed complete graph that is balanced.

For example, Figure 5.9(a) shows a graph with signed edges, and Figure 5.9(b) shows
how the remaining edges can be “filled in” to produce a balanced complete graph:
we declare the missing edge between nodes 3 and 5 to be positive, and the remaining
missing edges to be negative, and one can check that this causes all triangles to be
balanced.

2. Alternately, we could take a more global view, viewing structural balance as implying
a division of the network into two mutually opposed sets of friends. With this in mind,
we could define a signed graph to be balanced if it is possible to divide the nodes into
two sets X and Y, such that any edge with both ends inside X or both ends inside Y
is positive, and any edge with one end in X and the other in Y is negative. That is,
people in X are all mutual friends to the extent that they know each other; the same
is true for people in Y; and people in X are all enemies of people in Y to the extent
that they know each other.

Continuing the example from Figure 5.9(a), in Figure 5.9(c) we show how to divide
this graph into two sets with the desired properties.

This example hints at a principle that is true in general: these two ways of defining balance
are equivalent. An arbitrary signed graph is balanced under the first definition if and only
if it is balanced under the second definition.

This is actually not hard to see. If a signed graph is balanced under the first definition,
then after filling in all the missing edges appropriately, we have a signed complete graph to
which we can apply the Balance Theorem. This gives us a division of the network into two
sets X and Y that satisfies the properties of the second definition. On the other hand, if
a signed graph is balanced under the second definition, then after finding a division of the

nodes into sets X and Y, we can fill in positive edges inside X and inside Y, and fill in
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Figure 5.10: If a signed graph contains a cycle with an odd number of negative edges, then it
is not balanced. Indeed, if we pick one of the nodes and try to place it in X, then following
the set of friend /enemy relations around the cycle will produce a conflict by the time we get
to the starting node.

negative edges between X and Y, and then we can check that all triangles will be balanced.
So this gives a “filling-in” that satisfies the first definition.

The fact that the two definitions are equivalent suggests a certain “naturalness” to the
definition, since there are fundamentally different ways to arrive at it. It also lets us use
either definition, depending on which is more convenient in a given situation. As the example
in Figure 5.9 suggests, the second definition is generally more useful to work with — it tends
to be much easier to think about dividing the nodes into two sets than to reason about filling

in edges and checking triangles.

Characterizing Balance for General Networks. Conceptually, however, there is some-
thing not fully satisfying about either definition: the definitions themselves do not provide
much insight into how to easily check that a graph is balanced. There are, after all, lots of
ways to choose signs for the missing edges, or to choose ways of splitting the nodes into sets
X and Y. And if a graph is not balanced, so that there is no way to do these things suc-
cessfully, what could you show someone to convince them of this fact? To take just a small
example to suggest some of the difficulties, it may not be obvious from a quick inspection
of Figure 5.8 that this is not a balanced graph — or that if we change the edge connecting
nodes 2 and 4 to be positive instead of negative, it becomes a balanced graph.

In fact, however, all these problems can be remedied if we explore the consequences of
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the definitions a little further. What we will show is a simple characterization of balance in
general signed graphs, also due to Harary [97, 204]; and the proof of this characterization
also provides an easy method for checking whether a graph is balanced.

The characterization is based on considering the following question: what prevents a
graph from being balanced? Figure 5.10 shows a graph that is not balanced (obtained from
Figure 5.9(a) and changing the sign of the edge from node 4 to node 5). It also illustrates a
reason why it’s not balanced, as follows. If we start at node 1 and try to divide the nodes
into sets X and Y, then our choices are forced at every step. Suppose we initially decide
that node 1 should belong to X. (For the first node, it doesn’t matter, by symmetry.) Then
since node 2 is friends with node 1, it too must belong to X. Node 3, an enemy of 2, must
therefore belong to Y'; hence node 4, a friend of 3, must belong to Y as well; and node
5, an enemy of 4, must belong to X. The problem is that if we continue this reasoning
one step further, then node 1, an enemy of 5, should belong to ¥ — but we had already
decided at the outset to put it into X. We had no freedom of choice during this process —
so this shows that there is no way to divide the nodes in sets X and Y so as to satisfy the
mutual-friend /mutual-enemy conditions of structural balance, and hence the signed graph
in Figure 5.10 is not balanced.

The reasoning in the previous paragraph sounds elaborate, but in fact it followed a simple
principle: we were walking around a cycle, and every time we crossed a negative edge, we had
to change the set into which we were putting nodes. The difficulty was that getting back
around to node 1 required crossing an odd number of negative edges, and so our original
decision to put node 1 into X clashed with the eventual conclusion that node 1 ought to be
inY.

This principle applies in general: if the graph contains a cycle with an odd number of
negative edges, then this implies the graph is not balanced. Indeed, if we start at any node A
in the cycle and place it in one of the two sets, and then we walk around the cycle placing the
other nodes where they must go, the identity of the set where we're placing nodes switches
an odd number of times as we go around the cycle. Thus we end up with the “wrong set”
by the time we make it back to A.

A cycle with an odd number of negative edges is thus a very simple-to-understand reason
why a graph is not balanced: you can show someone such a cycle and immediately convince
them that the graph is not balanced. For example, the cycle back in Figure 5.8 consisting of
nodes, 2, 3, 6, 11, 13, 12, 9, 4 contains five negative edges, thus supplying a succinct reason
why this graph is not balanced. But are there other, more complex reasons why a graph is
not balanced?

In fact, though it may seem initially surprising, cycles with an odd number of negative

edges are the only obstacles to balance. This is the crux of the following claim [97, 204].

Claim: A signed graph is balanced if and only if it contains no cycle with an odd
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Figure 5.11: To determine if a signed graph is balanced, the first step is to consider only the
positive edges, find the connected components using just these edges, and declare each of
these components to be a supernode. In any balanced division of the graph into X and Y,
all nodes in the same supernode will have to go into the same set.

number of negative edges.

We now show how to prove this claim; this is done by designing a method that analyzes the
graph and either finds a division into the desired sets X and Y, or else finds a cycle with an
odd number of negative edges.

Proving the Characterization: Identifying Supernodes. Let’s recall what we’re try-
ing to do: find a division of the nodes into sets X and Y so that all edges inside X and Y are
positive, and all edges crossing between X and Y are negative. We will call a partitioning
into sets X and Y with these properties a balanced division. We now describe a procedure
that searches for a balanced division of the nodes into sets X and Y; either it succeeds, or
it stops with a cycle containing an odd number of negative edges. Since these are the only
two possible outcomes for the procedure, this will give a proof of the claim.

The procedure works in two main steps: the first step is to convert the graph to a reduced
one in which there are only negative edges, and the second step is to solve the problem on

this reduced graph. The first step works as follows. Notice that whenever two nodes are



5.5. ADVANCED MATERIAL: GENERALIZING THE DEFINITION OF STRUCTURAL BALANCE13!

r'd ~
Vd S
/ S o
+ o
| N
\
\ - + \
N @ )
O O \
N + + \
\
O '
N o
\\\ //
\\ Pd
~S o -~

_— e - —

Figure 5.12: Suppose a negative edge connects two nodes A and B that belong to the same
supernode. Since there is also a path consisting entirely of positive edges that connects A
and B through the inside of the supernode, putting this negative edge together with the
all-positive path produces a cycle with an odd number of negative edges.

connected by a positive edge, they must belong to the same one of the sets X or Y in a
balanced division. So we begin by considering what the connected components of the graph
would be if we were to only consider positive edges. These components can be viewed as a
set of contiguous “blobs” in the overall graph, as shown in Figure 5.11. We will refer to each
of these blobs as a supernode: each supernode is connected internally via positive edges, and
the only edges going between two different supernodes are negative. (If there were a positive
edge linking two different supernodes, we should have combined them together into a single
supernode.)

Now, if any supernode contains a negative edge between some pair of nodes A and B,
then we already have a cycle with an odd number of negative edges, as illustrated in the
example of Figure 5.12. Consider the path of positive edges that connects A and B inside
the supernode, and then close off a cycle by including the negative edge joining A and B.
This cycle has only a single negative edge, linking A and B, and so it shows that the graph
is not balanced.

If there are no negative edges inside any of the supernodes, then there is no “internal”
problem with declaring each supernode to belong entirely to one of X or Y. So the problem
is now how to assign a single label “X” or “Y” to each supernode, in such a way that
these choices are all consistent with each other Since the decision-making is now at the

level of supernodes, we create a new version of the problem in which there is a node for each
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Figure 5.13: The second step in determining whether a signed graph is balanced is to look for
a labeling of the supernodes so that adjacent supernodes (which necessarily contain mutual
enemies) get opposite labels. For this purpose, we can ignore the original nodes of the graph
and consider a reduced graph whose nodes are the supernodes of the original graph.

supernode, and an edge joining two supernodes if there is an edge in the original that connects
the two supernodes. Figure 5.13 shows how this works for the example of Figure 5.11: we
essentially forget about the individual nodes inside the supernodes, and build a new graph
at the level of the large “blobs.” Of course, having done so, we can draw the graph in a less
blob-like way, as in Figure 5.14.

We now enter the second step of the procedure, using this reduced graph whose nodes are
the supernodes of the original graph.

Proving the Characterization: Breadth-First Search of the Reduced Graph. Re-
call that only negative edges go between supernodes (since a positive edge between two su-
pernodes would have merged them together into a single one). As a result, our reduced graph
has only negative edges. The remainder of the procedure will produce one of two possible
outcomes.

1. The first possible outcome is to label each node in the reduced graph as either X or
Y, in such a way that every edge has endpoints with opposite labels. From this we



5.5. ADVANCED MATERIAL: GENERALIZING THE DEFINITION OF STRUCTURAL BALANCE14:

Figure 5.14: A more standard drawing of the reduced graph from the previous figure. A
negative cycle is visually apparent in this drawing.

can create a balanced division of the original graph, by labeling each node the way its
supernode is labeled in the reduced graph.

2. The second possible outcome will be to find a cycle in the reduced graph that has an
odd number of edges. We can then convert this to a (potentially longer) cycle in the
original graph with an odd number of negative edges: the cycle in the reduced graph
connects supernodes, and corresponds to a set of negative edges in the original graph.
We can simply “stitch together” these negative edges using paths consisting entirely
of positive edges that go through the insides of the supernodes. This will be a path
containing an odd number of negative edges in the original graph.

For example, the odd-length cycle in Figure 5.14 through nodes A through F can be
realized in the original graph as the darkened negative edges shown in Figure 5.15.
This can then be turned into a cycle in the original graph by including paths through
the supernodes — in this example using the additional nods 3 and 12.

In fact, this version of the problem when there are only negative edges is known in graph
theory as the problem of determining whether a graph is bipartite: whether its nodes can be
divided into two groups (in this case X and Y') so that each edge goes from one group to the
other. We saw bipartite graphs when we considered affiliation networks in Chapter 4, but
there the fact that the graphs were bipartite was apparent from the ready-made division of

the nodes into people and social foci. Here, on the other hand, we are handed a graph “in
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Figure 5.15: Having found a negative cycle through the supernodes, we can then turn this
into a cycle in the original graph by filling in paths of positive edges through the inside of
the supernodes. The resulting cycle has an odd number of negative edges.

the wild,” with no pre-specified division into two sets, and we want to know if it is possible
to identify such a division. We now show a way to do this using the idea of breadth-first
search from Chapter 2, resulting either in the division we seek, or in a cycle of odd length.

We simply perform breadth-first search starting from any “root” node in the graph,
producing a set of layers at increasing distances from this root. Figure 5.16 shows how this
is done for the reduced graph in Figure 5.14, with node G as the starting root node. Now,
because edges cannot jump over successive layers in breadth-first search, each edge either
connects two nodes in adjacent layers or it connects two nodes in the same layer. If all
edges are of the first type, then we can find the desired division of nodes into sets X and
Y: we simply declare all nodes in even-numbered layers to belong to X, and all nodes in
odd-numbered layers to belong to Y. Since edges only go between adjacent layers, all edges
have one end in X and the other end in Y, as desired.

Otherwise, there is an edge connecting two nodes that belong to the same layer. Let’s
call them A and B (as they are in Figure 5.16). For each of these two nodes, there is a path
that descends layer-by-layer from the root to it. Consider the last node that is common to
these two paths — let’s call this node D (as it is in Figure 5.16). The D-A path and the
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An odd cycle is
formed from two
equal-length paths
leading to an edge
inside a single layer.

Figure 5.16: When we perform a breadth-first search of the reduced graph, there is either
an edge connecting two nodes in the same layer or there isn’t. If there isn’t, then we can
produce the desired division into X and Y by putting alternate layers in different sets. If
there is such an edge (such as the edge joining A and B in the figure), then we can take two
paths of the same length leading to the two ends of the edge, which together with the edge
itself forms an odd cycle.

D-B path have the same length k, so a cycle created from the two of these plus the A-B
edge must have length 2k + 1: an odd number. This is the odd cycle we seek.

And this completes the proof. To recap: if all edges in the reduced graph connect nodes
in adjacent layers of the breadth-first search, then we have a way to label the nodes in the
reduced graph as into X and Y, which in turn provides a balanced division of the nodes in
the original graph into X and Y. In this case, we’'ve established that the graph is balanced.
Otherwise, there is an edge connecting two nodes in the same layer of the breadth-first
search, in which case we produce an odd cycle in the reduced graph as in Figure 5.16. In
this case, we can convert into this to a cycle in the original graph containing an odd number
of negative edges, as in Figure 5.15. Since these are the only two possibilities, this proves

the claim.
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B. Approximately Balanced Networks

We now return to the case in which the graph is complete, so that every node has a positive
or negative relation with every other node, and we think about a different way of generalizing
the characterization of structural balance.

First let’s write down the original Balance Theorem again, with some additional format-

ting to make its logical structure clear.

Claim: If all triangles in a labeled complete graph are balanced, then either

(a) all pairs of nodes are friends, or else
(b) the nodes can be divided into two groups, X and Y, such that
(1) every pair of nodes in X like each other,

(i1) every pair of nodes in'Y like each other, and

(11i) everyone in X is the enemy of everyone in Y.

The conditions of this theorem are fairly extreme, in that we require every single triangle
to be balanced. What if we only know that most triangles are balanced? It turns out that
the conditions of the theorem can be relaxed in a very natural way, allowing us to prove
statements like the following one. We phrase it so that the wording remains completely

parallel to that of the Balance Theorem.

Claim: If at least 99.9% of all triangles in a labeled complete graph are balanced,
then either

(a) there is a set consisting of at least 90% of the nodes in which at least 90%

of all pairs are friends, or else
(b) the nodes can be divided into two groups, X and Y, such that
(1) at least 90% of the pairs in X like each other,
(11) at least 90% of the pairs in'Y like each other, and
(111) at least 90% of the pairs with one end in X and the other end in'Y are

enemies.

This is a true statement, though the choice of numbers is very specific. Here is a more general

statement that includes both the Balance Theorem and the preceding claim as special cases.

Claim: Let € be any number such that 0 < e < %, and define 6 = /e. If at least
1 — ¢ of all triangles in a labeled complete graph are balanced, then either

(a) there is a set consisting of at least 1 — 0 of the nodes in which at least 1 — 6

of all pairs are friends, or else
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(b) the nodes can be divided into two groups, X and Y, such that

(i) at least 1 — & of the pairs in X like each other,
(i1) at least 1 — & of the pairs in'Y like each other, and
(111) at least 1 —§ of the pairs with one end in X and the other end in'Y are

enemies.

Notice that the Balance Theorem is the case in which € = 0, and the other claim above is
the case in which € = .001 (since in this latter case, § = ¢/ = .1).

We now prove this last claim. The proof is self-contained, but it is most easily read
with some prior experience in what is sometimes called the analysis of “permutations and
combinations” — counting the number of ways to choose particular subsets of larger sets.

The proof loosely follows the style of the proof we used for the Balance Theorem: we
will define the two sets X and Y to be the friends and enemies, respectively, of a designated
node A. Things are trickier here, however, because not all choices of A will give us the
structure we need — in particular, if a node is personally involved in too many unbalanced
triangles, then splitting the graph into its friends and enemies may give a very disordered
structure. Consequently, the proof consists of two steps. We first find a “good” node that
is not involved in too many unbalanced triangles. We then show that if we divide the graph

into the friends and enemies of this good node, we have the desired properties.

Warm-Up: Counting Edges and Triangles. Before launching into the proof itself,
let’s consider some basic counting questions that will show up as ingredients in the proof.
Recall that we have a complete graph, with an (undirected) edge joining each pair of nodes.
If N is the number of nodes in the graph, how many edges are there? We can count this
quantity as follows. There are N possible ways to choose one of the two endpoints, and then
N —1 possible ways to choose a different node as the other endpoint, for a total of N(N —1)
possible ways to choose the two endpoints in succession. If we write down a list of all these
possible pairs of endpoints, then an edge with endpoints A and B will appear twice on the
list: once as AB and once as BA. In general, each edge will appear twice on the list, and so
the total number of edges is N(N — 1)/2.

A very similar argument lets us count the total number of triangles in the graph. Specif-
ically, there are N ways to pick the first corner, then N — 1 ways to pick a different node as
the second corner, and then N — 2 ways to pick a third corner different from the first two.
This yields a total of N(N — 1)(N — 2) sequences of three corners. If we write down this
list of N(N — 1)(IV —2) sequences, then a triangle with corners A, B, and C will appear six
times: as ABC, ACB, BAC, BCA,CAB, and CBA. In general, each triangle will appear
six times in this list, and so the total number of triangles is

N(N —1)(N —2)
6
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The First Step: Finding a “Good” Node. Now let’s move on to the first step of the
proof, which is to find a node that isn’t involved in too many unbalanced triangles.

Since we are assuming that at most an ¢ fraction of triangles are unbalanced, and the
total number of triangles in the graph is N(N —1)(N —2)/6, it follows that the total number
of unbalanced triangles is at most eN(N — 1)(N — 2)/6. Suppose we define the weight of a
node to be the number of unbalanced triangles that it is a part of; thus, a node of low weight
will be precisely what we're seeking — a node that is in relatively few unbalanced triangles.

One way to count the total weight of all nodes would be to list — for each node —
the unbalanced triangles that it belongs to, and then look at the length of all these lists
combined. In these combined lists, each triangle will appear three times — once in the
list for each of its corners — and so the total weight of all nodes is exactly three times
the number of unbalanced triangles. As a result, the total weight of all nodes is at most
3eN(N —1)(N —2)/6 =eN(N —1)(N —2)/2.

There are N nodes, so the average weight of a node is at most e(N — 1)(N — 2)/2. It’s
not possible for all nodes to have weights that are strictly above the average, so there is at
least one node whose weight is equal to the average or below it. Let’s pick one such node and
call it A. This will be our “good” node: a node whose weight is at most e(N —1)(N —2)/2.2
Since (N — 1)(N — 2) < N?, this good node is in at most eN?/2 triangles, and because the
algebra is a bit simpler with this slightly larger quantity, we will use it in the rest of the
analysis.

The Second Step: Splitting the Graph According to the Good Node. By analogy
with the proof of the Balance Theorem, we divide the graph into two sets: a set X consisting
of A and all its friends, and a set Y consisting of all the enemies of A, as illustrated in
Figure 5.17. Now, using the definition of unbalanced triangles, and the fact that node A is
not involved in too many of them, we can argue that there are relatively few negative edges
inside each of X and Y, and relatively few positive edges between them. Specifically, this
works as follows.

e Fach negative edge connecting two nodes in X creates a distinct unbalanced triangle
involving node A. Since there are at most e N?/2 unbalanced triangles involving A,
there are at most e N?/2 negative edges inside X.

e A closely analogous argument applies to Y: Each negative edge connecting two nodes
in Y creates a distinct unbalanced triangle involving node A, and so there are at most
eN?/2 negative edges inside Y.

2This is a very common trick in counting arguments, referred to as the pigeonhole principle: to compute
the average value of a set of objects, and then argue that there must be at least one node that is equal to
the average or below. (Also, of course, there must be at least at least one object that is equal to the average
or above, although this observation isn’t useful for our purposes here.)
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mainly negative

mainly mainly

positive positive

friends of A a good node A enemies of A

Figure 5.17: The characterization of approximately balanced complete graphs follows from
an analysis similar to the proof of the original Balance Theorem. However, we have to be
more careful in dividing the graph by first finding a “good” node that isn’t involved in too
many unbalanced triangles.

e And finally, an analogous argument applies to edges with one end in X and the other
end in Y. Each such edge that is positive creates a distinct unbalanced triangle in-
volving A, and so there are at most e N?/2 positive edges with one end in X and the
other end in Y.

We now consider several possible cases, depending on the sizes of the sets X and Y. Essen-
tially, if either of X or Y consists of almost the entire graph, then we show that alternative
(a) in the claim holds. Otherwise, if each of X and Y contain a non-negligible number of
nodes, then we show that alternative (b) in the claim holds. We're also going to assume, to
make the calculations simpler, that N is even and that the quantity 0 N is a whole number,
although this is not in fact necessary for the proof.

To start, let x be the number of nodes in X and y be the number of nodes in Y. Suppose
first that z > (1 —9)N. Since € < % and § = /e, it follows that 6 < %, and so x > %N. Now,
recall our earlier counting argument that gave a formula for the number of edges in a complete
graph, in terms of its number of nodes. In this case, X has x nodes, so it has x(x — 1)/2
edges. Since z > 1N, this number of edges is at least (N +1)(3N)/2 > (1N)?/2 = N?/3.
There are at most eN?/2 negative edges inside X, and so the fraction of negative edges

inside X is at most
eN?/2

T — e =48
N3 € 0° < 0,
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where we use the facts that e = 6% and § < % We thus conclude that if X contains at least
(1 — §)N nodes, then it is a set containing at least a 1 — § fraction of the nodes in which at
least 1 — 0 of all pairs are friends, satisfying part (a) in the conclusion of the claim.

The same argument can be applied if Y contains at least (1 — d) N nodes. Thus we are
left with the case in which both X and Y contain strictly fewer than (1 — 0)N, and in this
case we will show that part (b) in the conclusion of the claim holds. First, of all the edges
with one end in X and the other in Y, what fraction are positive? The total number of edges
with one end in X and the other end in Y can be counted as follows: there are z ways to
choose the end in X, and then y ways to choose the end in Y, for a total of xy such edges.
Now, since each of x and y are less than (1 — §)N, and they add up to N, this product zy
is at least (ON)(1 — )N = (1 — §)N? > §N?/2, where the last inequality follows from the
fact that § < % There are at most e N?/2 positive edges with one end in X and the other
in Y, so as a fraction of the total this is at most

eN?/2 ¢

DY S v
SNZ2 5 0% <.

Finally, what fraction of edges inside each of X and Y are negative? Let’s calculate
this for X; the argument for Y is exactly the same. There are x(z — 1)/2 edges inside X
in total, and since we're in the case where x > d/N, this total number of edges is at least
(6N +1)(6N)/2 > (6N)?/2 = §°N?/2. There are at most e N?/2 negative edges inside X,
so as a fraction of the total this is at most

eN?/2 ¢

02N2j2 ~ §2 0.

Thus, the division of nodes into sets X and Y satisfies all the requirements in conclusion (b)
of the claim, and so the proof is complete.

As a final comment on the claim and its proof, one might feel that the difference between
1 — £ in the assumption of the claim and 1 — /¢ is a bit excessive: as we saw above, when
e = .001, this means we need to assume that 99.9% of all triangles are balanced in order to
get sets with a 90% density of edges having the correct sign. But in fact, it is possible to
construct examples showing that this relationship between € and 9§ is in fact essentially the
best one can do. In short, the claim provides the kind of approximate version of the Balance
Theorem that we wanted at a qualitative level, but we need to assume a fairly small fraction

of unbalanced triangles in order to be able to start drawing strong conclusions.

5.6 Exercises

1. Suppose that a team of anthropologists is studying a set of three small villages that
neighbor one another. Each village has 30 people, consisting of 2-3 extended families.
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Everyone in each village knows all the people in their own village, as well as the people
in the other villages.

When the anthropologists build the social network on the people in all three villages
taken together, they find that each person is friends with all the other people in their
own village, and enemies with everyone in the two other villages. This gives them a
network on 90 people (i.e., 30 in each village), with positive and negative signs on its
edges.

According to the definitions in this chapter, is this network on 90 people balanced?
Give a brief explanation for your answer.

2. Consider the network shown in Figure 5.18: there is an edge between each pair of
nodes, with five of the edges corresponding to positive relationships, and the other five
of the edges corresponding to negative relationships.

Figure 5.18: A network with five positive edges and five negative edges.

Each edge in this network participates in three triangles: one formed by each of the
additional nodes who is not already an endpoint of the edge. (For example, the A-B
edge participates in a triangle on A, B, and C, a triangle on A, B, and D, and a
triangle on A, B, and E. We can list triangles for the other edges in a similar way.)

For each edge, how many of the triangles it participates in are balanced, and how many
are unbalanced. (Notice that because of the symmetry of the network, the answer will
be the same for each positive edge, and also for each negative edge; so it is enough to
consider this for one of the positive edges and one of the negative edges.)

3. When we think about structural balance, we can ask what happens when a new node
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tries to join a network in which there is existing friendship and hostility. In Fig-
ures 5.19-5.22, each pair of nodes is either friendly or hostile, as indicated by the + or
— label on each edge.

Figure 5.19: A 3-node social network in which all pairs of nodes know each other, and all
pairs of nodes are friendly toward each other.

(a) D joins the network by becom- (b) D joins the network by becomn-
ing friends with all nodes. ing enemies with all nodes.

Figure 5.20: There are two distinct ways in which node D can join the social network from
Figure 5.19 without becoming involved in any unbalanced triangles.

First, consider the 3-node social network in Figure 5.19, in which all pairs of nodes
know each other, and all pairs of nodes are friendly toward each other. Now, a fourth
node D wants to join this network, and establish either positive or negative relations
with each existing node A, B, and C. It wants to do this in such a way that it
doesn’t become involved in any unbalanced triangles. (I.e. so that after adding D and
the labeled edges from D, there are no unbalanced triangles that contain D.) Is this
possible?

In fact, in this example, there are two ways for D to accomplish this, as indicated in

Figure 5.20. First, D can become friends with all existing nodes; in this way, all the
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triangles containing it have three positive edges, and so are balanced. Alternately, it

can become enemies with all existing nodes; in this way, each triangle containing it has

exactly one positive edge, and again these triangles would be balanced.

So for this network, it was possible for D to join without becoming involved in any

unbalanced triangles. However, the same is not necessarily possible for other networks.

We now consider this kind of question for some other networks.

(a)

Figure 5.21: All three nodes are mutual enemies.

Consider the 3-node social network in Figure 5.21, in which all pairs of nodes
know each other, and each pair is either friendly or hostile as indicated by the
+ or — label on each edge. A fourth node D wants to join this network, and
establish either positive or negative relations with each existing node A, B, and
C. Can node D do this in such a way that it doesn’t become involved in any
unbalanced triangles?

e [f there is a way for D to do this, say how many different such ways there
are, and give an explanation. (That is, how many different possible labelings
of the edges out of D have the property that all triangles containing D are
balanced?)

e If there is no such way for D to do this, give an explanation why not.

(In this and the subsequent questions, it possible to work out an answer by rea-

soning about the new node’s options without having to check all possibilities.)

Same question, but for a different network. Consider the 3-node social network in
Figure 5.22, in which all pairs of nodes know each other, and each pair is either
friendly or hostile as indicated by the 4+ or — label on each edge. A fourth node
D wants to join this network, and establish either positive or negative relations
with each existing node A, B, and C'. Can node D do this in such a way that it

doesn’t become involved in any unbalanced triangles?

e If there is a way for D to do this, say how many different such ways there

are, and give an explanation. (That is, how many different possible labelings
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Figure 5.22: Node A is friends with nodes B and C', who are enemies with each other.

of the edges out of D have the property that all triangles containing D are
balanced?)

e If there is no such way for D to do this, give an explanation why not.

(c¢) Using what you've worked out in Questions 2 and 3, consider the following ques-
tion. Take any labeled complete graph — on any number of nodes — that is not
balanced; i.e. it contains at least one unbalanced triangle. (Recall that a labeled
complete graph is a graph in which there is an edge between each pair of nodes,
and each edge is labeled with either + or —.) A new node X wants to join this
network, by attaching to each node using a positive or negative edge. When, if
ever, is it possible for X to do this in such a way that it does not become involved
in any unbalanced triangles? Give an explanation for your answer. (Hint: Think
about any unbalanced triangle in the network, and how X must attach to the nodes
in it.)

4. Together with some anthropologists, you're studying a sparsely populated region of a
rain forest, where 50 farmers live along a 50-mile-long stretch of river. Each farmer
lives on a tract of land that occupies a 1-mile stretch of the river bank, so their tracts
exactly divide up the 50 miles of river bank that they collectively cover. (The numbers

are chosen to be simple and to make the story easy to describe.)

The farmers all know each other, and after interviewing them, you’ve discovered that
each farmer is friends with all the other farmers that live at most 20 miles from him or
her, and is enemies with all the farmers that live more than 20 miles from him or her.

You build the signed complete graph corresponding to this social network, and you
wonder whether it satisfies the Structural Balance property. This is the question: is
the network structurally balanced or not? Provide an explanation for your answer.
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Chapter 6

Games

In the opening chapter of the book, we emphasized that the “connectedness” of a complex
social, natural, or technological system really means two things: first, an underlying structure
of interconnecting links; and second, an interdependence in the behaviors of the individuals
who inhabit the system, so that the outcome for any one depends at least implicitly on the
combined behaviors of all. The first issue — network structure — was addressed in the first part
of the book using graph theory. In this second part of the book, we study interconnectedness
at the level of behavior, developing basic models for this in the language of game theory.

Game theory is designed to address situations in which the outcome of a person’s decision
depends not just on how they choose among several options, but also on the choices made
by the people they are interacting with. Game-theoretic ideas arise in many contexts. Some
contexts are literally games; for example, choosing how to target a soccer penalty kick and
choosing how to defend against it can be modeled using game theory. Other settings are
not usually called games, but can be analyzed with the same tools. Examples include the
pricing of a new product when other firms have similar new products; deciding how to bid in
an auction; choosing a route on the Internet or through a transportation network; deciding
whether to adopt an aggressive or a passive stance in international relations; or choosing
whether to use performance-enhancing drugs in a professional sport. In these examples,
each decision-maker’s outcome depends on the decisions made by others. This introduces a
strategic element that game theory is designed to analyze.

As we will see later in Chapter 7, game-theoretic ideas are also relevant to settings where
no one is overtly making decisions. Evolutionary biology provides perhaps the most striking
example. A basic principle is that mutations are more likely to succeed in a population
when they improve the fitness of the organisms that carry the mutation. But often, this

fitness cannot be assessed in isolation; rather, it depends on what all the other (non-mutant)
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organisms are doing, and how the mutant’s behavior interacts with the non-mutants’ be-
haviors. In such situations, reasoning about the success or failure of the mutation involves
game-theoretic definitions, and in fact very closely resembles the process of reasoning about
decisions that intelligent actors make. Similar kinds of reasoning have been applied to the
success or failure of new cultural practices and conventions — it depends on the existing
patterns of behavior into which they are introduced. This indicates that the ideas of game
theory are broader than just a model of how people reason about their interactions with oth-
ers; game theory more generally addresses the question of which behaviors tend to sustain
themselves when carried out in a larger population.

Game-theoretic ideas will appear in many places throughout the book. Chapters 8 and
9 describe two initial and fundamental applications: to network traffic, where travel time
depends on the routing decisions of others; and to auctions, where the success of a bidder
depends on how the other bidders behave. There will be many further examples later in the
book, including the ways in which prices are set in markets and the ways in which people
choose to adopt new ideas in situations where adoption decisions are affected by what others
are doing.

As a first step, then, we begin with a discussion of the basic ideas behind game theory.
For now, this will involve descriptions of situations in which people interact with one an-
other, initially without an accompanying graph structure. Once these ideas are in place, we
will bring graphs back into the picture in subsequent chapters, and begin to consider how
structure and behavior can be studied simultaneously.

6.1 What is a Game?

Game theory is concerned with situations in which decision-makers interact with one another,
and in which the happiness of each participant with the outcome depends not just on his
or her own decisions but on the decisions made by everyone. To help make the definitions
concrete, it’s useful to start with an example.

A First Example. Suppose that you're a college student, and you have two large pieces of
work due the next day: an exam, and a presentation. You need to decide whether to study
for the exam, or to prepare for the presentation. For simplicity, and to make the example as
clean as possible, we’ll impose a few assumptions. First, we’ll assume you can either study
for the exam or prepare for the presentation, but not both. Second, we’ll assume you have an
accurate estimate of the expected grade you'll get under the outcomes of different decisions.

The outcome of the exam is easy to predict: if you study, then your expected grade is a
92, while if you don’t study, then your expected grade is an 80.

The presentation is a bit more complicated to think about. For the presentation, you're
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doing it jointly with a partner. If both you and your partner prepare for the presentation,
then the presentation will go extremely well, and your expected joint grade is a 100. If just
one of you prepares (and the other doesn’t), you'll get an expected joint grade of 92; and if
neither of you prepares, your expected joint grade is 84.

The challenge in reasoning about this is that your partner also has the same exam the
next day, and we’ll assume that he has the same expected outcome for it: 92 if he studies,
and 80 if he doesn’t. He also has to choose between studying for the exam and preparing for
the presentation. We’ll assume that neither of you is able to contact the other, so you can’t
jointly discuss what to do; each of you needs to make a decision independently, knowing that
the other will also be making a decision.

Both of you are interested in maximizing the average grade you get, and we can use the
discussion above to work out how this average grade is determined by the way the two of
you invest your efforts:

e [f both of you prepare for the presentation, you’ll both get 100 on the presentation and
80 on the exam, for an average of 90.

e If both of you study for the exam, you’ll both get 92 on the exam and 84 on the
presentation, for an average of 88.

e If one of you studies for the exam while the other prepares for the presentation, the

result is as follows.

— The one who prepares for the presentation gets a 92 on the presentation but only
an 80 on the exam, for an average of 86.

— On the other hand, the one who studies for the exam still gets a 92 on the
presentation — since it’s a joint grade, this person benefits from the fact that one
of the two of you prepared for it. This person also get a 92 on the exam, through
studying, and so gets an average of 92.

There’s a simple tabular way to summarize all these outcomes, as follows. We represent
your two choices — to prepare for the presentation, or to study for the exam — as the rows
of a 2 x 2 table. We represent your partner’s two choices as the columns. So each box in
this table represents a decision by each of you. In each box, we record the average grade
you each receive: first yours, then your partner’s. Writing all this down, we have the table
shown in Figure 6.1.

This describes the set-up of the situation; now you need to figure out what to do: prepare
for the presentation, or study for the exam? Clearly, your average grade depends not just on
which of these two options you choose, but also on what your partner decides. Therefore, as

part of your decision, you have to reason about what your partner is likely to do. Thinking
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Your Partner

Presentation Exam

Y, Presentation 90, 90 86,92
ou

Exam 92, 86 88, 88

Figure 6.1: Exam or Presentation?

about the strategic consequences of your own actions, where you need to consider the effect
of decisions by others, is precisely the kind of reasoning that game theory is designed to
facilitate. So before moving on to the actual outcome of this exam-or-presentation scenario,
it is useful to introduce some of the basic definitions of game theory, and then continue the
discussion in this language.

Basic Ingredients of a Game. The situation we've just described is an example of a
game. For our purposes, a game is any situation with the following three aspects.

(i) There is a set of participants, whom we call the players. In our example, you and your
partner are the two players.

(ii) Each player has a set of options for how to behave; we will refer to these as the player’s
possible strategies. In the example, you and your partner each have two possible

strategies: to prepare for the presentation, or to study for the exam.

(iii) For each choice of strategies, each player receives a payoff that can depend on the
strategies selected by everyone. The payoffs will generally be numbers, with each
player preferring larger payoffs to smaller payoffs. In our current example, the payoff
to each player is the average grade he or she gets on the exam and the presentation.
We will generally write the payoffs in a payoff matriz as in Figure 6.1.

Our interest is in reasoning about how players will behave in a given game. For now we
focus on games with only two players, but the ideas apply equally well to games with any
number of players. Also, we will focus on simple, one-shot games: games in which the
players simultaneously and independently choose their actions, and they do so only once. In
Section 6.10 at the end of this chapter, we discuss how to reinterpret the theory to deal with
dynamic games, in which actions can be played sequentially over time.

6.2 Reasoning about Behavior in a Game

Once we write down the description of a game, consisting of the players, the strategies, and
the payoffs, we can ask how the players are likely to behave — that is, how they will go
about selecting strategies.
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Underlying Assumptions. In order to make this question tractable, we will make a
few assumptions. First, we assume everything that a player cares about is summarized
in the player’s payoffs. In the Exam-or-Presentation Game described in Section 6.1, this
means that the two players are solely concerned with maximizing their own average grade.
However, nothing in the framework of game theory requires that players care only about
personal rewards. For example, a player who is altruistic may care about both his or her
own benefits, and the other player’s benefit. If so, then the payoffs should reflect this; once
the payoffs have been defined, they should constitute a complete description of each player’s
happiness with each of the possible outcomes of the game.

We also assume that each player knows everything about the structure of the game. To
begin with, this means that each player knows his or her own list of possible strategies. It
seems reasonable in many settings to assume that each player also knows who the other
player is (in a two-player game), the strategies available to this other player, and what his
or her payoff will be for any choice of strategies. In the Exam-or-Presentation Game, this
corresponds to the assumption that you realize you and your partner are each faced with the
choice of studying for the exam or preparing for the presentation, and you have an accurate
estimate of the expected outcome under different courses of action. There is considerable
research on how to analyze games in which the players have much less knowledge about the
underlying structure, and in fact John Harsanyi shared the 1994 Nobel Prize in Economics
for his work on games with incomplete information [208].

Finally, we suppose that each individual chooses a strategy to maximize her own payoff,
given her beliefs about the strategy used by the other player. This model of individual
behavior, which is usually called rationality, actually combines two ideas. The first idea is
that each player wants to maximize her own payoff. Since the individual’s payoff is defined to
be whatever the individual cares about, this hypothesis seems reasonable. The second idea
is that each player actually succeeds in selecting the optimal strategy. In simple settings,
and for games played by experienced players, this too seems reasonable. In complex games,
or for games played by inexperienced players, it is surely less reasonable. It is interesting
to consider players who make mistakes and learn from the play of the game. There is an
extensive literature which analyzes problems of this sort [175], but we will not consider these

issues here.

Reasoning about Behavior in the Exam-or-Presentation Game. Let’s go back to
the Exam-or-Presentation Game and ask how we should expect you and your partner — the
two players in the game — to behave.

We first focus on this from your point of view. (The reasoning for your partner will be
symmetric, since the game looks the same from his point of view.) It would be easier to

decide what to do if you could predict what your partner would do, but to begin with, let’s
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consider what you should do for each possible choice of strategy by your partner.

e First, if you knew your partner was going to study for the exam, then you would get a
payoff of 88 by also studying, and a payoff of only 86 by preparing for the presentation.
So in this case, you should study for the exam.

e On the other hand, if you knew that your partner was going to prepare for the pre-
sentation, then you’d get a payoff of 90 by also preparing for the presentation, but a
payoff of 92 by studying for the exam. So in this case too, you should study for the

exaln.

This approach of considering each of your partner’s options separately turns out to be a very
useful way of analyzing the present situation: it reveals that no matter what your partner
does, you should study for the exam.

When a player has a strategy that is strictly better than all other options regardless of
what the other player does, we will refer to it as a strictly dominant strategy. When a player
has a strictly dominant strategy, we should expect that they will definitely play it. In the
Exam-or-Presentation Game, studying for the exam is also a strictly dominant strategy for
your partner (by the same reasoning), and so we should expect that the outcome will be for
both of you to study, each getting an average grade of 88.

So this game has a very clean analysis, and it’s easy to see how to end up with a prediction
for the outcome. Despite this, there’s something striking about the conclusion. If you and
your partner could somehow agree that you would both prepare for the presentation, you
would each get an average grade of 90 — in other words, you would each be better off.
But despite the fact that you both understand this, this payoff of 90 cannot be achieved by
rational play. The reasoning above makes it clear why not: even if you were to personally
commit to preparing for the presentation — hoping to achieve the outcome where you both
get 90 — and even if your partner knew you were doing this, your partner would still have
an incentive to study for the exam so as to achieve a still-higher payoff of 92 for himself.

This result depends on our assumption that the payoffs truly reflect everything each
player values in the outcome — in this case, that you and your partner only care about
maximizing your own average grade. If, for example, you cared about the grade that your
partner received as well, then the payoffs in this game would look different, and the outcome
could be different. Similarly, if you cared about the fact that your partner will be angry at
you for not preparing for the joint presentation, then this too should be incorporated into
the payoffs, again potentially affecting the results. But with the payoffs as they are, we are
left with the interesting situation where there is an outcome that is better for both of you —

an average grade of 90 each — and yet it cannot be achieved by rational play of the game.



6.2. REASONING ABOUT BEHAVIOR IN A GAME 161

A Related Story: The Prisoner’s Dilemma. The outcome of the Exam-or-Presentation
Game is closely related to one of the most famous examples in the development of game the-
ory, the Prisoner’s Dilemma. Here is how this example works.

Suppose that two suspects have been apprehended by the police and are being interro-
gated in separate rooms. The police strongly suspect that these two individuals are respon-
sible for a robbery, but there is not enough evidence to convict either of them of the robbery.
However, they both resisted arrest and can be charged with that lesser crime, which would
carry a one-year sentence. Each of the suspects is told the following story. “If you confess,
and your partner doesn’t confess, then you will be released and your partner will be charged
with the crime. Your confession will be sufficient to convict him of the robbery and he will
be sent to prison for 10 years. If you both confess, then we don’t need either of you to testify
against the other, and you will both be convicted of the robbery. (Although in this case
your sentence will be less — 4 years only — because of your guilty plea.) Finally, if neither
of you confesses, then we can’t convict either of you of the robbery, so we will charge each
of you with resisting arrest. Your partner is being offered the same deal. Do you want to
confess?”

To formalize this story as a game we need to identify the players, the possible strategies,
and the payoffs. The two suspects are the players, and each has to choose between two possi-
ble strategies — Confess (C') or Not-Confess (NC'). Finally, the payoffs can be summarized
from the story above as in Figure 6.2. (Note that the payoffs are all 0 or less, since there are
no good outcomes for the suspects, only different gradations of bad outcomes.)

Suspect 2
NC C
NC | —-1,—-1 | —10,0
0,—10 | —4,—4

Suspect 1

Figure 6.2: Prisoner’s Dilemma

As in the Exam-or-Presentation Game, we can consider how one of the suspects — say

Suspect 1 — should reason about his options.

e If Suspect 2 were going to confess, then Suspect 1 would receive a payoff of —4 by
confessing and a payoff of —10 by not confessing. So in this case, Suspect 1 should

confess.

e If Suspect 2 were not going to confess, then Suspect 1 would receive a payoff of 0 by
confessing and a payoff of —1 by not confessing. So in this case too, Suspect 1 should
confess.

So confessing is a strictly dominant strategy — it is the best choice regardless of what the

other player chooses. As a result, we should expect both suspects to confess, each getting a
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payoff of —4.

We therefore have the same striking phenomenon as in the Exam-or-Presentation Game:
there is an outcome that the suspects know to be better for both of them — in which they
both choose not to confess — but under rational play of the game there is no way for them
to achieve this outcome. Instead, they end up with an outcome that is worse for both of
them. And here too, it is important that the payoffs reflect everything about the outcome of
the game; if, for example, the suspects could credibly threaten each other with retribution
for confessing, thereby making confessing a less desirable option, then this would affect the
payoffs and potentially the outcome.

Interpretations of the Prisoner’s Dilemma. The Prisoner’s Dilemma has been the
subject of a huge amount of literature since its introduction in the early 1950s [343, 346],
since it serves as a highly streamlined depiction of the difficulty in establishing cooperation
in the face of individual self-interest. While no model this simple can precisely capture
complex scenarios in the real world, the Prisoner’s Dilemma has been used as an interpretive
framework for many different real-world situations.

For example, the use of performance-enhancing drugs in professional sports has been
modeled as a case of the Prisoner’s Dilemma game [210, 367]. Here the athletes are the
players, and the two possible strategies are to use performance-enhancing drugs or not. If
you use drugs while your opponent doesn’t, you’ll get an advantage in the competition, but
you'll suffer long-term harm (and may get caught). If we consider a sport where it is difficult
to detect the use of such drugs, and we assume athletes in such a sport view the downside as a
smaller factor than the benefits in competition, we can capture the situation with numerical
payoffs that might look as follows. (The numbers are arbitrary here; we are only interested
in their relative sizes.)

Athlete 2
Don’t Use Drugs Use Drugs
Athlete 1 Don’t Use Drugs 3,3 1,4
Use Drugs 4,1 2,2

Figure 6.3: Performance-Enhancing Drugs

Here, the best outcome (with a payoff of 4) is to use drugs when your opponent doesn’t,
since then you maximize your chances of winning. However, the payoff to both using drugs
(2) is worse than the payoff to both not using drugs (3), since in both cases you're evenly
matched, but in the former case you're also causing harm to yourself. We can now see that
using drugs is a strictly dominant strategy, and so we have a situation where the players use
drugs even though they understand that there’s a better outcome for both of them.

More generally, situations of this type are often referred to as arms races, in which
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two competitors use an increasingly dangerous arsenal of weapons simply to remain evenly
matched. In the example above, the performance-enhancing drugs play the role of the
weapons, but the Prisoner’s Dilemma has also been used to interpret literal arms races
between opposing nations, where the weapons correspond to the nations’ military arsenals.

To wrap up our discussion of the Prisoner’s Dilemma, we should note that it only arises
when the payoffs are aligned in a certain way — as we will see in the remainder of the chapter,
there are many situations where the structure of the game and the resulting behavior looks
very different. Indeed, even simple changes to a game can change it from an instance of
the Prisoner’s Dilemma to something more benign. For example, returning to the Exam-
or-Presentation Game, suppose that we keep everything the same as before, except that we
make the exam much easier, so that you’ll get a 100 on it if you study, and a 96 if you don’t.

Then we can check that the payoff matrix now becomes

Your Partner

Presentation Exam

Y. Presentation 98, 98 94, 96
ou

Ezam 96, 94 92,92

Figure 6.4: Exam-or-Presentation Game with an easier exam.

Furthermore, we can check that with these new payoffs, preparing for the presentation
now becomes a strictly dominant strategy; so we can expect that both players will play this
strategy, and both will benefit from this decision. The downsides of the previous scenario
no longer appear: like other dangerous phenomena, the Prisoner’s Dilemma only manifests
itself when the conditions are right.

6.3 Best Responses and Dominant Strategies

In reasoning about the games in the previous section, we used two fundamental concepts
that will be central to our discussion of game theory. As such, it is useful to define them
carefully here, and then to look further at some of their implications.

The first concept is the idea of a best response: it is the best choice of one player, given a
belief about what the other player will do. For instance, in the Exam-or-Presentation Game,
we determined your best choice in response to each possible choice of your partner.

We can make this precise with a bit of notation, as follows. If S is a strategy chosen by
Player 1, and T is a strategy chosen by Player 2, then there is an entry in the payoff matrix
corresponding to the pair of chosen strategies (S,7'). We will write P;(S,T) to denote the
payoff to Player 1 as a result of this pair of strategies, and P»(S,T) to denote the payoff to
Player 2 as a result of this pair of strategies. Now, we say that a strategy S for Player 1 is
a best response to a strategy T for Player 2 if S produces at least as good a payoff as any
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other strategy paired with 7"
Pl(Sa T) > P1<S/7T>

for all other strategies S’ of Player 1. Naturally, there is a completely symmetric definition
for Player 2, which we won’t write down here. (In what follows, we’ll present the definitions
from Player 1’s point of view, but there are direct analogues for Player 2 in each case.)

Notice that this definition allows for multiple different strategies of Player 1 to be tied as
the best response to strategy T'. This can make it difficult to predict which of these multiple
different strategies Player 1 will use. We can emphasize that one choice is uniquely the best
by saying that a strategy S of Player 1 is a strict best response to a strategy T for Player 2
if S produces a strictly higher payoff than any other strategy paired with 7"

Pl(S,T) > Pl(S,,T)

for all other strategies S” of Player 1. When a player has a strict best response to T, this is
clearly the strategy she should play when faced with T'.

The second concept, which was central to our analysis in the previous section, is that of
a strictly dominant strategy. We can formulate its definition in terms of best responses as
follows.

o We say that a dominant strategy for Player 1 is a strategy that is a best response to
every strategy of Player 2.

o We say that a strictly dominant strategy for Player 1 is a strategy that is a strict best
response to every strategy of Player 2.

In the previous section, we made the observation that if a player has a strictly dominant
strategy, then we can expect him or her to use it. The notion of a dominant strategy is
slightly weaker, since it can be tied as the best option against some opposing strategies. As
a result, a player could potentially have multiple dominant strategies, in which case it may
not be obvious which one should be played.

The analysis of the Prisoner’s Dilemma was facilitated by the fact that both players had
strictly dominant strategies, and so it was easy to reason about what was likely to happen.
But most settings won’t be this clear-cut, and we now begin to look at games which lack
strictly dominant strategies.

A Game in Which Only One Player Has a Strictly Dominant Strategy. As a first
step, let’s consider a setting in which one player has a strictly dominant strategy and the
other one doesn’t. As a concrete example, we consider the following story.

Suppose there are two firms that are each planning to produce and market a new product;

these two products will directly compete with each other. Let’s imagine that the population
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of consumers can be cleanly divided into two market segments: people who would only buy
a low-priced version of the product, and people who would only buy an upscale version.
Let’s also assume that the profit any firm makes on a sale of either a low price or an upscale
product is the same. So to keep track of profits it’s good enough to keep track of sales. Each
firm wants to maximize its profit, or equivalently its sales, and in order to do this it has to
decide whether its new product will be low-priced or upscale.

So this game has two players — Firm 1 and Firm 2 — and each has two possible strategies:
to produce a low-priced product or an upscale one. To determine the payoffs, here is how
the firms expect the sales to work out.

e First, people who would prefer a low-priced version account for 60% of the population,
and people who would prefer an upscale version account for 40% of the population.

e Firm 1 is the much more popular brand, and so when the two firms directly compete
in a market segment, Firm 1 gets 80% of the sales and Firm 2 gets 20% of the sales.
(If a firm is the only one to produce a product for a given market segment, it gets all
the sales.)

Based on this, we can determine payoffs for different choices of strategies as follows.

e [f the two firms market to different market segments, they each get all the sales in that
segment. So the one that targets the low-priced segment gets a payoff .60 and the one
that targets the upscale segment gets .40.

e If both firms target the low-priced segment, then Firm 1 gets 80% of it, for a payoff of
A48, and Firm 2 gets 20% of it, for a payoff of .12.

e Analogously, if both firms target the upscale segment, then Firm 1 gets a payoff of
(.8)(.4) = .32 and Firm 2 gets a payoff of (.2)(.4) = .08.

This can be summarized in the following payoff matrix.

Firm 2
Low-Priced Upscale
. Low-Priced A48, .12 .60, .40
Firm 1
Upscale .40, .60 .32,.08

Figure 6.5: Marketing Strategy

Notice that in this game, Firm 1 has a strictly dominant strategy: for Firm 1, Low-Priced
is a strict best response to each strategy of Firm 2. On the other hand, Firm 2 does not
have a dominant strategy: Low-Priced is its best response when Firm 1 plays Upscale, and

Upscale is its best response when Firm 1 plays Low-Priced.
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Still, it is not hard to make a prediction about the outcome of this game. Since Firm 1 has
a strictly dominant strategy in Low-Priced, we can expect it will play it. Now, what should
Firm 2 do? If Firm 2 knows Firm 1’s payoffs, and knows that Firm 1 wants to maximize
profits, then Firm 2 can confidently predict that Firm 1 will play Low-Priced. Then, since
Upscale is the strict best response by Firm 2 to Low-Priced, we can predict that Firm 2 will
play Upscale. So our overall prediction of play in this marketing game is Low-Priced by Firm

1 and Upscale by Firm 2, resulting in payoffs of .60 and .40 respectively.

Note that although we’re describing the reasoning in two steps — first the strictly dom-
inant strategy of Firm 1, and then the best response of Firm 2 — this is still in the context
of a game where the players move simultaneously: both firms are developing their marketing
strategies concurrently and in secret. It is simply that the reasoning about strategies natu-
rally follows this two-step logic, resulting in a prediction about how the simultaneous play
will occur. It’s also interesting to note the intuitive message of this prediction. Firm 1 is
so strong that it can proceed without regard to Firm 2’s decision; given this, Firm 2’s best

strategy is to stay safely out of the way of Firm 1.

Finally, we should also note how the Marketing Strategy Game makes use of the knowl-
edge we assume players have about the game being played and about each other. In particu-
lar, we assume that each player knows the entire payoff matrix. And in reasoning about this
specific game, it is important that Firm 2 knows that Firm 1 wants to maximize profits, and
that Firm 2 knows that Firm 1 knows its own profits. In general, we will assume that the
players have common knowledge of the game: they know the structure of the game, they know
that each of them know the structure of the game, they know that each of them know that
each of them know, and so on. While we will not need the full technical content of common
knowledge in anything we do here, it is an underlying assumption and a topic of research in
the game theory literature [28]. As mentioned earlier, it is still possible to analyze games in
situations where common knowledge does not hold, but the analysis becomes more complex
[208]. It’s also worth noting that the assumption of common knowledge is a bit stronger than
we need for reasoning about simple games such as the Prisoner’s Dilemma, where strictly
dominant strategies for each player imply a particular course of action regardless of what
the other player is doing.

6.4 Nash Equilibrium

When neither player in a two-player game has a strictly dominant strategy, we need some
other way of predicting what is likely to happen. In this section, we develop methods for

doing this; the result will be a useful framework for analyzing games in general.
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An Example: A Three-Client Game. To frame the question, it helps to think about a
simple example of a game that lacks strictly dominant strategies. Like our previous example,
it will be a marketing game played between two firms; however, it has a slightly more intricate
set-up. Suppose there are two firms that each hope to do business with one of three large
clients, A, B, and C. Each firm has three possible strategies: whether to approach A, B, or
C'. The results of their two decisions will work out as follows.

e [f the two firms approach the same client, then the client will give half its business to
each.

e Firm 1 is too small to attract business on its own, so if it approaches one client while

Firm 2 approaches a different one, then Firm 1 gets a payoff of 0.

e If Firm 2 approaches client B or C on its own, it will get their full business. However,
A is a larger client, and will only do business with the firms if both approach A.

e Because A is a larger client, doing business with it is worth 8 (and hence 4 to each firm
if it’s split), while doing business with B or C' is worth 2 (and hence 1 to each firm if
it’s split).

From this description, we can work out the following payoff matrix.

Firm 2
A B C
A 14,4 10,2 | 0,2
Fim1 B [0,0 |1,1 | 0,2
C 10,0 10,2 | 1,1

Figure 6.6: Three-Client Game

If we study how the payoffs in this game work, we see that neither firm has a dominant
strategy. Indeed, each strategy by each firm is a strict best response to some strategy by the
other firm. For Firm 1, A is a strict best response to strategy A by Firm 2, B is a strict best
response to B, and C' is a strict best response to C'. For Firm 2, A is a strict best response
to strategy A by Firm 1, C' is a strict best response to B, and B is a strict best response to
C. So how should we reason about the outcome of play in this game?

Defining Nash Equilibrium. In 1950, John Nash proposed a simple but powerful prin-
ciple for reasoning about behavior in general games [313, 314], and its underlying premise
is the following: even when there are no dominant strategies, we should expect players to
use strategies that are best responses to each other. More precisely, suppose that Player 1

chooses a strategy S and Player 2 chooses a strategy T'. We say that this pair of strategies
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(S,T) is a Nash equilibrium if S is a best response to 7', and 7T is a best response to S.
This is not a concept that can be derived purely from rationality on the part of the players;
instead, it is an equilibrium concept. The idea is that if the players choose strategies that
are best responses to each other, then no player has an incentive to deviate to an alternative
strategy — so the system is in a kind of equilibrium state, with no force pushing it toward a
different outcome. Nash shared the 1994 Nobel Prize in Economics for his development and
analysis of this idea.

To understand the idea of Nash equilibrium, we should first ask why a pair of strategies
that are not best responses to each other would not constitute an equilibrium. The answer is
that the players cannot both believe that these strategies will be actually used in the game,
as they know that at least one player would have an incentive to deviate to another strategy.
So Nash equilibrium can be thought of as an equilibrium in beliefs. If each player believes
that the other player will actually play a strategy that is part of a Nash equilibrium, then
she is willing to play her part of the Nash equilibrium.

Let’s consider the Three-Client Game from the perspective of Nash equilibrium. If Firm
1 chooses A and Firm 2 chooses A, then we can check that Firm 1 is playing a best response
to Firm 2’s strategy, and Firm 2 is playing a best response to Firm 1’s strategy. Hence, the
pair of strategies (A, A) forms a Nash equilibrium. Moreover, we can check that this is the
only Nash equilibrium. No other pair of strategies are best responses to each other.!

This discussion also suggests two ways to find Nash equilibria. The first is to simply
check all pairs of strategies, and ask for each one of them whether the individual strategies
are best responses to each other. The second is to compute each player’s best response(s) to

each strategy of the other player, and then find strategies that are mutual best responses.

6.5 Multiple Equilibria: Coordination Games

For a game with a single Nash equilibrium, such as the Three-Client Game in the previ-
ous section, it seems reasonable to predict that the players will play the strategies in this
equilibrium: under any other play of the game, at least one player will not be using a best
response to what the other is doing. Some natural games, however, can have more than one
Nash equilibrium, and in this case it becomes difficult to predict how rational players will
actually behave in the game. We consider some fundamental examples of this problem here.

A Coordination Game. A simple but central example is the following Coordination
Game, which we can motivate through the following story. Suppose you and a partner are

'In this discussion, each player only has three available strategies: A, B, or C. Later in this we will
introduce the possibility of more complex strategies in which players can randomize over their available
options. With this more complex formulation of possible strategies, we will find additional equilibria for the
Three-Client Game.
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each preparing slides for a joint project presentation; you can’t reach your partner by phone,
and need to start working on the slides now. You have to decide whether to prepare your
half of the slides in PowerPoint or in Apple’s Keynote software. Either would be fine, but
it will be much easier to merge your slides together with your partner’s if you use the same
software.

So we have a game in which you and your partner are the two players, choosing Power-
Point or choosing Keynote form the two strategies, and the payoffs are as shown in Figure 6.7.

Your Partner
PowerPoint  Keynote
Y. PowerPoint 1,1 0,0
ou
Keynote 0,0 1,1

Figure 6.7: Coordination Game

This is called a Coordination Game because the two players’ shared goal is really to
coordinate on the same strategy. There are many settings in which coordination games
arise. For example, two manufacturing companies that work together extensively need to
decide whether to configure their machinery in metric units of measurement or English units
of measurement; two platoons in the same army need to decide whether to attack an enemy’s
left flank or right flank; two people trying to find each other in a crowded mall need to decide
whether to wait at the north end of the mall or at the south end. In each case, either choice
can be fine, provided that both participants make the same choice.

The underlying difficulty is that the game has two Nash equilibria — i.e., (Power-
Point, PowerPoint) and (Keynote, Keynote) in our example from Figure 6.7. If the players
fail to coordinate on one of the Nash equilibria, perhaps because one player expects Power-
Point to be played and the other expects Keynote, then they receive low payoffs. So what
do the players do?

This remains a subject of considerable discussion and research, but some proposals have
received attention in the literature. Thomas Schelling [364] introduced the idea of a focal
point as a way to resolve this difficulty. He noted that in some games there are natural
reasons (possibly outside the payoff structure of the game) that cause the players to focus
on one of the Nash equilibria. For example, suppose two drivers are approaching each other
at night on an undivided country road. Each driver has to decide whether to move over to
the left or the right. If the drivers coordinate — making the same choice of side — then they
pass each other, but if they fail to coordinate, then they get a severely low payoff due to the
resulting collision. Fortunately, social convention can help the drivers decide what to do in
this case: if this game is being played in the U.S.; convention strongly suggests that they
should move to the right, while if the game is being played in England, convention strongly

suggests that they should move to the left. In other words, social conventions, while often
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arbitrary, can sometimes be useful in helping people coordinate among multiple equilibria.

Variants on the Basic Coordination Game. One can enrich the structure of our basic
Coordination Game to capture a number of related issues surrounding the problem of mul-
tiple equilibria. To take a simple extension of our previous example, suppose that both you
and your project partner each prefer Keynote to PowerPoint. You still want to coordinate,
but you now view the two alternatives as unequal. This gives us the payoff matrix for an
Unbalanced Coordination Game, shown in Figure 6.8.

Your Partner
PowerPoint  Keynote
Y PowerPoint 1,1 0,0
ou
Keynote 0,0 2,2

Figure 6.8: Unbalanced Coordination Game

Notice that (PowerPoint, PowerPoint) and (Keynote, Keynote) are still both Nash equi-
libria for this game, despite the fact that one of them gives higher payoffs to both players.
(The point is that if you believe your partner will choose PowerPoint, you still should choose
PowerPoint as well.) Here, Schelling’s theory of focal points suggests that we can use a
feature intrinsic to the game — rather than an arbitrary social convention — to make a
prediction about which equilibrium will be chosen by the players. That is, we can predict
that when the players have to choose, they will select strategies so as to reach the equilib-
rium that gives higher payoffs to both of them. (To take another example, consider the two
people trying to meet at a crowded mall. If the north end of the mall has a bookstore they
both like, while the south end consists of a loading dock, the natural focal point would be
the equilibrium in which they both choose the north end.)

Things get more complicated if you and your partner don’t agree on which software you

prefer, as shown in the payoff matrix of Figure 6.9.

Your Partner
PowerPoint  Keynote
Y. PowerPoint 1,2 0,0
ou
Keynote 0,0 2,1

Figure 6.9: Battle of the Sexes

In this case, the two equilibria still correspond to the two different ways of coordinating,
but your payoff is higher in the (Keynote, Keynote) equilibrium, while your partner’s payoff
is higher in the (PowerPoint, PowerPoint) equilibrium. This game is traditionally called the
Battle of the Sexes, because of the following motivating story. A husband and wife want to

see a movie together, and they need to choose between a romantic comedy and an action
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movie. They want to coordinate on their choice, but the (Romance, Romance) equilibrium
gives a higher payoff to one of them while the (Action,Action) equilibrium gives a higher
payoff to the other.

In Battle of the Sexes, it can be hard to predict the equilibrium that will be played using
either the payoff structure or some purely external social convention. Rather, it helps to know
something about conventions that exist between the two players themselves, suggesting how
they resolve disagreements when they prefer different ways of coordinating.

It’s worth mentioning one final variation on the basic Coordination Game, which has
attracted attention in recent years. This is the Stag Hunt Game [374]; the name is motivated
by the following story from writings of Rousseau. Suppose that two people are out hunting;
if they work together, they can catch a stag (which would be the highest-payoff outcome),
but on their own each can catch a hare. The tricky part is that if one hunter tries to catch
a stag on his own, he will get nothing, while the other one can still catch a hare. Thus, the
hunters are the two players, their strategies are Hunt Stag and Hunt Hare, and the payoffs
are as shown in Figure 6.10.

Hunter 2
Hunt Stag  Hunt Hare
Hunter 1 Hunt Stag 4,4 0,3
Hunt Hare 3,0 3,3

Figure 6.10: Stag Hunt

This is quite similar to the Unbalanced Coordination Game, except that if the two players
miscoordinate, the one who was trying for the higher-payoff outcome gets penalized more
than the one who was trying for the lower-payoff outcome. (In fact, the one trying for the
lower-payoff outcome doesn’t get penalized at all.) As a result, the challenge in reasoning
about which equilibrium will be chosen is based on the trade-off between the high payoff of
one and the low downside of miscoordination from the other.

It has been argued that the Stag Hunt Game captures some of the intuitive challenges
that are also raised by the Prisoner’s Dilemma. The structures are clearly different, since
the Prisoner’s Dilemma has strictly dominant strategies; both, however, have the property
that players can benefit if they cooperate with each other, but risk suffering if they try
cooperating while their partner doesn’t. Another way to see some of the similarities between
the two games is to notice that if we go back to the original Exam-or-Presentation Game and
make one small change, then we end up changing it from an instance of Prisoner’s Dilemma
to something closely resembling Stag Hunt. Specifically, suppose that we keep the grade
outcomes the same as in Section 6.1, except that we require both you and your partner to
prepare for the presentation in order to have any chance of a better grade. That is, if you

both prepare, you both get a 100 on the presentation, but if at most one of you prepares, you
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both get the base grade of 84. With this change, the payoffs for the Exam-or-Presentation
Game become what is shown in Figure 6.11.

Your Partner

Presentation Eram

Y. Presentation 90, 90 82,88
ou

Exam 88, 82 88, 88

Figure 6.11: Exam-or-Presentation Game (Stag Hunt version)

We now have a structure that closely resembles the Stag Hunt Game: coordinating on
(Presentation, Presentation) or (Exam,Ezam) are both equilibria, but if you attempt to go
for the higher-payoff equilibrium, you risk getting a low grade if your partner opts to study
for the exam.

6.6 Multiple Equilibria: The Hawk-Dove Game

Multiple Nash equilibria also arise in a different but equally fundamental kind of game, in
which the players engage in a kind of “anti-coordination” activity. Probably the most basic
form of such a game is the Hawk-Dove Game, which is motivated by the following story.

Suppose two animals are engaged in a contest to decide how a piece of food will be
divided between them. Each animal can choose to behave aggressively (the Hawk strategy)
or passively (the Dove strategy). If the two animals both behave passively, they divide the
food evenly, and each get a payoff of 3. If one behaves aggressively while the other behaves
passively, then the aggressor gets most of the food, obtaining a payoff of 5, while the passive
one only gets a payoff of 1. But if both animals behave aggressively, then they destroy the
food (and possibly injure each other), each getting a payoff of 0. Thus we have the payoff
matrix in Figure 6.12.

Animal 2

D H

Animal 1 3,3 | 1,5
51 10,0

Figure 6.12: Hawk-Dove Game

This game has two Nash equilibria: (D, H) and (H, D). Without knowing more about the
animals we cannot predict which of these equilibria will be played. So as in the coordination
games we looked at earlier, the concept of Nash equilibrium helps to narrow down the set of
reasonable predictions, but it does not provide a unique prediction.

The Hawk-Dove game has been studied in many contexts. For example, suppose we sub-

stitute two countries for the two animals, and suppose that the countries are simultaneously



6.7. MIXED STRATEGIES 173

choosing whether to be aggressive or passive in their foreign policy. Each country hopes
to gain through being aggressive, but if both act aggressively they risk actually going to
war, which would be disastrous for both. So in equilibrium, we can expect that one will
be aggressive and one will be passive, but we can’t predict who will follow which strategy.
Again we would need to know more about the countries to predict which equilibrium will be
played.

Hawk-Dove is another example of a game that can arise from a small change to the payoffs
in the Exam-or-Presentation Game. Let’s again recall the set-up from the opening section,
and now vary things so that if neither you nor your partner prepares for the presentation,
you will get a very low joint grade of 60. (If one or both of you prepare, the grades for the
presentation are the same as before.) If we compute the average grades you get for different
choices of strategies in this version of the game, we have the payoffs in Figure 6.13.

Your Partner

Presentation Exam

Y. Presentation 90, 90 86, 92
ou

Ezam 92, 86 76,76

Figure 6.13: Exam or Presentation? (Hawk-Dove version)

In this version of the game, there are two equilibria: (Presentation, Exam) and (Ezam,
Presentation). Essentially, one of you must behave passively and prepare for the presentation,
while the other achieves the higher payoff by studying for the exam. If you both try to avoid
the role of the passive player, you end up with very low payoffs, but we cannot predict from
the structure of the game alone who will play this passive role.

The Hawk-Dove game is also known by a number of other names in the game theory
literature. For example, it is frequently referred to as the game of Chicken, to evoke the
image of two teenagers racing their cars toward each other, daring each other to be the one
to swerve out of the way. The two strategies here are Swerve and Don’t Swerve: the one who
swerves first suffers humiliation from his friends, but if neither swerves, then both suffer an
actual collision.

6.7 Mixed Strategies

In the previous two sections, we have been discussing games whose conceptual complexity
comes from the existence of multiple equilibria. However, there are also games which have
no Nash equilibria at all. For such games, we will make predictions about players’ behavior
by enlarging the set of strategies to include the possibility of randomization; once players
are allowed to behave randomly, one of John Nash’s main results establishes that equilibria
always exist [313, 314].
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Probably the simplest class of games to expose this phenomenon are what might be called
“attack-defense” games. In such games, one player behaves as the attacker, while the other
behaves as the defender. The attacker can use one of two strategies — let’s call them A
and B — while the defender’s two strategies are “defend against A” or “defend against B.”
If the defender defends against the attack the attacker is using, then the defender gets the
higher payoff; but if the defender defends against the wrong attack, then the attacker gets
the higher payoff.

Matching Pennies. A simple attack-defense game is called Matching Pennies, and is
based on a game in which two people each hold a penny, and simultaneously choose whether
to show heads (H) or tails (7) on their penny. Player 1 loses his penny to player 2 if they
match, and wins player 2’s penny if they don’t match. This produces a payoff matrix as
shown in Figure 6.14.

Player 2
H T
Player 1 H-1+41 | +1,-1
T | +1,—-1 | —1,+1

Figure 6.14: Matching Pennies

Matching pennies is a simple example of a large class of interesting games with the
property that the payoffs of the players sum to zero in every outcome. Such games are called
zero-sum games, and many attack-defense games — and more generally, games where the
players’ interests are in direct conflict — have this structure. Games like Matching Pennies
have in fact been used as metaphorical descriptions of decisions made in combat; for example,
the Allied landing in Europe on June 6, 1944 — one of the pivotal moments in World War
IT — involved a decision by the Allies whether to cross the English Channel at Normandy or
at Calais, and a corresponding decision by the German army whether to mass its defensive
forces at Normandy or Calais. This has an attack-defense structure that closely resembles
the Matching Pennies game [123].

The first thing to notice about Matching Pennies is that there is no pair of strategies
that are best responses to each other. To see this, observe that for any pair of strategies,
one of the players gets a payoff of —1, and this player would improve his or her payoff to
+1 by switching strategies. So for any pair of strategies, one of the players wants to switch

what they’re doing.?

Incidentally, although it’s not crucial for the discussion here, it’s interesting to note that the Three-
Client Game used as an example in Section 6.4 can be viewed intuitively as a kind of hybrid of the Matching
Pennies Game and the Stag Hunt Game. If we look just at how the two players evaluate the options of
approaching Clients B and C, we have Matching Pennies: Firm 1 wants to match, while Firm 2 wants to
not match. However, if they coordinate on approaching Client A, then they both get even higher payoffs —
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This means that if we treat each player as simply having the two strategies H or T', then
there is no Nash equilibrium for this game. This is not so surprising if we consider how
Matching Pennies works. A pair of strategies, one for each player, forms a Nash equilibrium
if even given knowledge of each other’s strategies, neither player would have an incentive to
switch to an alternate strategy. But in Matching Pennies, if Player 1 knows that Player 2 is
going to play a particular choice of H or T, then Player 1 can exploit this by choosing the
opposite and receiving a payoff of +1. Analogous reasoning holds for Player 2.

When we think intuitively about how games of this type are played in real life, we see
that players generally try to make it difficult for their opponents to predict what they will
play. This suggests that in our modeling of a game like Matching Pennies, we shouldn’t treat
the strategies as simply H or T, but as ways of randomizing one’s behavior between H and
T. We now see how to build this into a model for the play of this kind of game.

Mixed Strategies. The simplest way to introduce randomized behavior is to say that
each player is not actually choosing H or T' directly, but rather is choosing a probability with
which she will play H. So in this model, the possible strategies for Player 1 are numbers
p between 0 and 1; a given number p means that Player 1 is committing to play H with
probability p, and T with probability 1 — p. Similarly, the possible strategies for Player 2
are numbers ¢ between 0 and 1, representing the probability that Player 2 will play H.

Since a game consists of a set of players, strategies, and payoffs, we should notice that
by allowing randomization, we have actually changed the game. It no longer consists of
two strategies by each player, but instead a set of strategies corresponding to the interval
of numbers between 0 and 1. We will refer to these as mixed strategies, since they involve
“mixing” between the options H and T'. Notice that the set of mixed strategies still includes
the original two options of committing to definitely play H or T'; these two choices correspond
to selecting probabilities of 1 or 0 respectively, and we will refer to them as the two pure
strategies in the game. To make things more informal notationally, we will sometimes refer
to the choice of p = 1 by Player 1 equivalently as the “pure strategy H”, and similarly for
p=0and g=1or 0.

Payoffs from Mixed Strategies. With this new set of strategies, we also need to deter-
mine the new set of payoffs. The subtlety in defining payoffs is that they are now random
quantities: each player will get +1 with some probability, and will get —1 with the remain-
ing probability. When payoffs were numbers it was obvious how to rank them: bigger was
better. Now that payoffs are random, it is not immediately obvious how to rank them: we
want a principled way to say that one random outcome is better than another.

To think about this issue, let’s start by considering Matching Pennies from Player 1’s

analogously to the two hunters coordinating to hunt stag.
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point of view, and focus first on how she evaluates her two pure strategies of definitely playing
H or definitely playing T'. Suppose that Player 2 chooses the strategy ¢; that is, he commits
to playing H with probability ¢ and T with probability 1 — ¢. Then if Player 1 chooses pure
strategy H, she receives a payoff of —1 with probability ¢ (since the two pennies match with
probability ¢, in which event she loses), and she receives a payoff of +1 with probability 1 —g¢
(since the two pennies don’t match with probability 1 —gq). Alternatively, if Player 1 chooses
pure strategy T, she receives +1 with probability ¢, and —1 with probability (1—gq). So even
if Player 1 uses a pure strategy, her payoffs can still be random due to the randomization
employed by Player 2. How should we decide which of H or T is more appealing to Player
1 in this case?

In order to rank random payoffs numerically, we will attach a number to each distribution
that represents how attractive this distribution is to the player. Once we have done this, we
can then rank outcomes according to their associated number. The number we will use for
this purpose is the expected value of the payoff. So for example, if Player 1 chooses the pure
strategy H while Player 2 chooses a probability of ¢, as above, then the expected payoff to
Player 1 is

(=D(@)+ (1A —g)=1-2¢

Similarly, if Player 1 chooses the pure strategy 7" while Player 2 chooses a probability of g,
then the expected payoff to Player 1 is

((g) + (=1)(1 —q) =2¢ - 1.

We will assume players are seeking to maximize the expected payoff they get from a choice
of mixed strategies. Although the expectation is a natural quantity, it is a subtle question
whether maximizing expectation is a reasonable modeling assumption about the behavior
of players. By now, however, there is a well-established foundation for the assumption that
players rank distributions over payoffs according to their expected values [288, 363, 398], and
so we will follow it here.

We have now defined the mixed-strategy version of the Matching Pennies game: strategies
are probabilities of playing H, and payoffs are the expectations of the payoffs from the four
pure outcomes (H, H),(H,T),(T,H), and (T,T). We can now ask whether there is a Nash
equilibrium for this richer version of the game.

Equilibrium with Mixed Strategies. We define a Nash equilibrium for the mixed-
strategy version just as we did for the pure-strategy version: it is a pair of strategies (now
probabilities) so that each is a best response to the other.

First, let’s observe that no pure strategy can be part of a Nash equilibrium. This is
equivalent to the reasoning we did at the outset of this section. Suppose, for example, that

the pure strategy H (i.e. probability p = 1) by Player 1 were part of a Nash equilibrium.
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Then Player 2’s unique best response would be the pure strategy H as well (since Player 2
gets +1 whenever he matches). But H by Player 1 is not a best response to H by Player
2, so in fact this couldn’t be a Nash equilibrium. Analogous reasoning applies to the other
possible pure strategies by the two players. So we reach the natural conclusion that in any
Nash equilibrium, both players must be using probabilities that are strictly between 0 and
1.

Next, let’s ask what Player 1’s best response should be to the strategy ¢ used by Player
2. Above, we determined that the expected payoff to Player 1 from the pure strategy H in
this case is

1 —2q,

while the expected payoff to Player 1 from the pure strategy T is
2qg — 1.

Now, here’s the key point: if 1 — 2g # 2g — 1, then one of the pure strategies H or T is
in fact the unique best response by Player 1 to a play of ¢ by Player 2. This is simply
because one of 1 — 2q or 2q — 1 is larger in this case, and so there is no point for Player 1
to put any probability on her weaker pure strategy. But we already established that pure
strategies cannot be part of any Nash equilibrium for Matching Pennies, and because pure
strategies are the best responses whenever 1 — 2q # 2¢q — 1, probabilities that make these
two expectations unequal cannot be part of a Nash equilibrium either.

So we’ve concluded that in any Nash equilibrium for the mixed-strategy version of Match-
ing Pennies, we must have

1—-2¢g=2q—1,

or in other words, ¢ = 1/2. The situation is symmetric when we consider things from Player
2’s point of view, and evaluate the payoffs from a play of probability p by Player 1. We
conclude from this that in any Nash equilibrium, we must also have p = 1/2.

Thus, the pair of strategies p = 1/2 and ¢ = 1/2 is the only possibility for a Nash
equilibrium. We can check that this pair of strategies in fact do form best responses to each
other. As a result, this is the unique Nash equilibrium for the mixed-strategy version of
Matching Pennies.

Interpreting the Mixed-Strategy Equilibrium for Matching Pennies. Having de-
rived the Nash equilibrium for this game, it’s useful to think about what it means, and how
we can apply this reasoning to games in general.

First, let’s picture a concrete setting in which two people actually sit down to play
Matching Pennies, and each of them actually commits to behaving randomly according to
probabilities p and ¢ respectively. If Player 1 believes that Player 2 will play H strictly more
than half the time, then she should definitely play 7" — in which case Player 2 should not
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be playing H more than half the time. The symmetric reasoning applies if Player 1 believes
that Player 2 will play T strictly more than half the time. In neither case would we have
a Nash equilibrium. So the point is that the choice of ¢ = 1/2 by Player 2 makes Player 1
indifferent between playing H or T the strategy ¢ = 1/2 is effectively “non-exploitable” by
Player 1. This was in fact our original intuition for introducing randomization: each player
wants their behavior to be unpredictable to the other, so that their behavior can’t be taken
advantage of. We should note that the fact that both probabilities turned out to be 1/2 is
a result of the highly symmetric structure of Matching Pennies; as we will see in subsequent
examples in the next section, when the payoffs are less symmetric, the Nash equilibrium can
consist of unequal probabilities.

This notion of indifference is a general principle behind the computation of mixed-strategy
equilibria in two-player, two-strategy games when there are no equilibria involving pure
strategies: each player should randomize so as to make the other player indifferent between
their two alternatives. This way, neither player’s behavior can be exploited by a pure strategy,
and the two choices of probabilities are best responses to each other. And although we won’t
pursue the details of it here, a generalization of this principle applies to games with any
finite number of players and any finite number of strategies: Nash’s main mathematical
result accompanying his definition of equilibrium was to prove that every such game has at
least one mixed-strategy equilibrium [313, 314].

It’s also worth thinking about how to interpret mixed-strategy equilibria in real-world
situations. There are in fact several possible interpretations that are appropriate in different

situations:

e Sometimes, particularly when the participants are genuinely playing a sport or game,
the players may be actively randomizing their actions [107, 337, 405]: a tennis player
may be randomly deciding whether to serve the ball up the center or out to the side of
the court; a card-player may be randomly deciding whether to bluff or not; two children
may be randomizing among rock, paper, and scissors in the perennial elementary-school

contest of the same name. We will look at examples of this in the next section.

e Sometimes the mixed strategies are better viewed as proportions within a population.
Suppose for example that two species of animals, in the process of foraging for food,
regularly engage in one-on-one attack-defense games with the structure of Matching
Pennies. Here, a single member of the first species always plays the role of attacker,

and a single member of the second species always plays the role of defender.

Let’s suppose that each individual animal is genetically hard-wired to always play H
or always play T'; and suppose further that the population of each species consists half
of animals hard-wired to play H, and half of animals hard-wired to play 7. Then with
this population mixture, H-animals in each species do exactly as well on average, over
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many random interactions, as T-animals. Hence the population as a whole is in a kind
of mixed equilibrium, even though each individual is playing a pure strategy. This
story suggests an important link with evolutionary biology, which has in fact been
developed through a long line of research [375, 376]; this topic will be our focus in
Chapter 7.

e Maybe the most subtle interpretation is based on recalling, from Section 6.4, that Nash
equilibrium is often best thought of as an equilibrium in beliefs. If each player believes
that her partner will play according to a particular Nash equilibrium, then she too
will want to play according to it. In the case of Matching Pennies, with its unique
mixed equilibrium, this means that it is enough for you to expect that when you meet
an arbitrary person, they will play their side of Matching Pennies with a probability
of 1/2. In this case, playing a probability of 1/2 makes sense for you too, and hence
this choice of probabilities is self-reinforcing — it is in equilibrium — across the entire

population.

6.8 Mixed Strategies: Examples and Empirical Anal-
ysis

Because mixed-strategy equilibrium is a subtle concept, it’s useful to think about it through
further examples. We will focus on two main examples, both drawn from the realm of sports,
and both with attack-defense structures. The first is stylized and partly metaphorical, while
the second represents a striking empirical test of whether people in high-stakes situations
actually follow the predictions of mixed-strategy equilibrium. We conclude the section with

a general discussion of how to identify all the equilibria of a two-player, two-strategy game.

The Run-Pass Game. First, let’s consider a streamlined version of the problem faced by
two American football teams as they plan their next play in a football game. The offense
can choose either to run or to pass, and the defense can choose either to defend against the
run or to defend against the pass. Here is how the payoffs work.

e If the defense correctly matches the offense’s play, then the offense gains 0 yards.
o [f the offense runs while the defense defends against the pass, the offense gains 5 yards.

o [f the offense passes while the defense defends against the run, the offense gains 10
yards.

Hence we have the payoff matrix shown in Figure 6.15.
(If you don’t know the rules of American football, you can follow the discussion simply

by taking the payoff matrix as self-contained. Intuitively, the point is simply that we have
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Defense
Defend Pass Defend Run
Offense Pass 0,0 10, —10
Run 5, —H 0,0

Figure 6.15: Run-Pass Game

an attack-defense game with two players named “offense” and “defense” respectively, and
where the attacker has a stronger option (pass) and a weaker option (run).)

Just as in Matching Pennies, it’s easy to check that there is no Nash equilibrium where
either player uses a pure strategy: both have to make their behavior unpredictable by ran-
domizing. So let’s work out a mixed-strategy equilibrium for this game: let p be the prob-
ability that the offense passes, and let ¢ be the probability that the defense defends against
the pass. (We know from Nash’s result that at least one mixed-strategy equilibrium must
exist, but not what the actual values of p and ¢ should be.)

We use the principle that a mixed equilibrium arises when the probabilities used by each
player makes his opponent indifferent between his two options.

e First, suppose the defense chooses a probability of ¢ for defending against the pass.
Then the expected payoff to the offense from passing is

(0)(g) + (10)(1 — ¢) = 10 — 10g,
while the expected payoff to the offense from running is
(5)(g) + (0)(1 = q) = 5¢.

To make the offense indifferent between its two strategies, we need to set 10—10g = 5q,
and hence ¢ = 2/3.

e Next, suppose the offense chooses a probability of p for passing. Then the expected
payoff to the defense from defending against the pass is

(0)(p) + (=5)(1 — p) = 5p — 5,

with the expected payoff to the defense from defending against the run is

(=10)(p) + (0)(1 — p) = —10p.

To make the defense indifferent between its two strategies, we need to set 5p—5 = —10p,
and hence p = 1/3.

Thus, the only possible probability values that can appear in a mixed-strategy equilibrium
are p = 1/3 for the offense, and g = 2/3 for the defense, and this in fact forms an equilibrium.
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Notice also that the expected payoff to the offense with these probabilities is 10/3, and the
corresponding expected payoff to the defense is —10/3. Also, in contrast to Matching Pennies,
notice that because of the asymmetric structure of the payoffs here, the probabilities that
appear in the mixed-strategy equilibrium are unbalanced as well.

Strategic Interpretation of the Run-Pass Game. There are several things to notice
about this equilibrium. First, the strategic implications of the equilibrium probabilities are
intriguing and a bit subtle. Specifically, although passing is the offense’s more powerful
weapon, it uses it less than half the time: it places only probability p = 1/3 on passing. This
initially seems counter-intuitive: why not spend more time using your more powerful option?
But the calculation that gave us the equilibrium probabilities also supplies the answer to
this question. If the offense placed any higher probability on passing, then the defense’s
best response would be to always defend against the pass, and the offense would actually do
worse in expectation.

We can see how this works by trying a larger value for p, like p = 1/2. In this case, the
defense will always defend against the pass, and so the offense’s expected payoff will be 5/2,
since it gains 5 half the time and 0 the other half the time:

(1/2)(0) + (1/2)(5) = 5/2.

Above, we saw that with the equilibrium probabilities, the offense has an expected payoft
of 10/3 > 5/2. Moreover, because p = 1/3 makes the defense indifferent between its two
strategies, an offense that uses p = 1/3 is guaranteed to get 10/3 > 5/2 no matter what the
defense does.

One way to think about the real power of passing as a strategy is to notice that in
equilibrium, the defense is defending against the pass 2/3 of the time, even though the
offense is using it only 1/3 of the time. So somehow the threat of passing is helping the
offense, even though it uses it relatively rarely.

This example clearly over-simplifies the strategic issues at work in American football:
there are many more than just two strategies, and teams are concerned with more than just
their yardage on the very next play. Nevertheless, this type of analysis has been applied
quantitatively to statistics from American football, verifying some of the main qualitative
conclusions at a broad level — that teams generally run more than they pass, and that the
expected yardage gained per play from running is close to the expected yardage gained per

play from passing for most teams [82, 84, 355].

The Penalty-Kick Game. The complexity of American football makes it hard to cast it
truly accurately as a two-person, two-strategy game. We now focus on a different setting,
also from professional sports, where such a formalization can be done much more exactly —

the modeling of penalty kicks in soccer as a two-player game.
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In 2002, Ignacio Palacios-Huerta undertook a large study of penalty kicks from the per-
spective of game theory [337], and we focus on his analysis here. As he observed, penalty
kicks capture the ingredients of two-player, two-strategy games remarkably faithfully. The
kicker can aim the ball to the left or the right of the goal, and the goalie can dive to either
the left or right as well.> The ball moves to the goal fast enough that the decisions of the
kicker and goalie are effectively being made simultaneously; and based on these decisions the
kicker is likely to score or not. Indeed, the structure of the game is very much like Matching
Pennies: if the goalie dives in the direction where the ball is aimed, he has a good chance of
blocking it; if the goalie dives in the wrong direction, it is very likely to go in the goal.

Based on an analysis of roughly 1400 penalty kicks in professional soccer, Palacios-Huerta
determined the empirical probability of scoring for each of the four basic outcomes: whether
the kicker aims left or right, and whether the goalie dives left or right. This led to a payoff
matrix as shown in Figure 6.16.

Goalie
L R
0.58, —0.58 | 0.95,—0.95
0.93,—-0.93 | 0.70,—0.70

Kicker L
R

Figure 6.16: The Penalty-Kick Games (from empirical data [337]).

There are a few contrasts to note in relation to the basic Matching Pennies Game. First,
a kicker has a reasonably good chance of scoring even when the goalie dives in the correct
direction (although a correct choice by the goalie still greatly reduces this probability).
Second, kickers are generally right-footed, and so their chance of scoring is not completely
symmetric between aiming left and aiming right.*

Despite these caveats, the basic premise of Matching Pennies is still present here: there
is no equilibrium in pure strategies, and so we need to consider how players should random-
ize their behavior in playing this game. Using the principle of indifference as in previous
examples, we see that if ¢ is the probability that a goalie chooses L, we need to set ¢ so as
to make the kicker indifferent between his two options:

(-:58)(q) + (:95)(1 — q) = (.93)(q) + (