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Abstract—An achievable bit rate per source–destination pair
in a wireless network of n randomly located nodes is determined
adopting the scaling limit approach of statistical physics. It is
shown that randomly scattered nodes can achieve, with high
probability, the same 1=

p
n transmission rate of arbitrarily lo-

cated nodes. This contrasts with previous results suggesting that
a 1=

p
n logn reduced rate is the price to pay for the randomness

due to the location of the nodes. The network operation strategy
to achieve the result corresponds to the transition region between
order and disorder of an underlying percolation model. If nodes
are allowed to transmit over large distances, then paths of con-
nected nodes that cross the entire network area can be easily
found, but these generate excessive interference. If nodes transmit
over short distances, then such crossing paths do not exist. Per-
colation theory ensures that crossing paths form in the transition
region between these two extreme scenarios. Nodes along these
paths are used as a backbone, relaying data for other nodes, and
can transport the total amount of information generated by all the
sources. A lower bound on the achievable bit rate is then obtained
by performing pairwise coding and decoding at each hop along
the paths, and using a time division multiple access scheme.

Index Terms—Ad-hoc networks, capacity, percolation theory,
scaling laws, throughput, wireless networks.

I. INTRODUCTION

WIRELESS networks are modeled as a set of nodes that
exchange messages using radio transmissions. A natural

question that arises in such systems is what amount of informa-
tion the source nodes can send to the destination nodes as the
number grows. The ground breaking work of [10] has shown
that, in a network of arbitrarily located nodes, when each node
wishes to communicate to a destination located at a nonvanish-
ingly small distance away, the amount of information that can be
exchanged by each source–destination pair must go to zero, as

tends to infinity, at least at rate . This result, originally
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viewed as a consequence of the interference model used, has
been later extended to hold in a more general information theo-
retic setting [18], assuming only that radio signals are strongly
attenuated over distances, following a sufficiently high power
decay law, or an exponential attenuation law, which is the typ-
ical case if there is absorption in the medium [7].

The authors in [10] have also shown that when nodes are
randomly located, each source–destination pair can achieve a
bit rate only of order , by using a specific multihop
strategy. Alternative strategies have also been proposed to
achieve the same bound [5], [13], [17]. All of these results sug-
gest that a factor is the price to pay for the randomness
due to the location of the nodes. Nevertheless, the information
theoretic upper bound of [18] does not preclude a rate higher
than to be achievable.

This paper shows that a rate is achievable in networks
of randomly located nodes. Hence, there is no gap between the
capacity of randomly located, and arbitrarily located nodes, at
least up to scaling and in the high attenuation regime. The con-
structive strategy that achieves the rate is based on mul-
tihop transmission, pairwise coding and decoding at each hop,
and a time-division multiple-access (TDMA) scheme. The proof
of the result follows from percolation theory arguments.

Percolation theory [9], [15] is a field of mathematics and sta-
tistical physics that provides models of phase transition phe-
nomena that are observed in nature. It has been used in the past
to study connectivity of wireless networks [1], [3], [6], [8], [16],
but to the best of our knowledge our paper is the first attempt to
exploit percolation to derive information capacity results. We
hope that the connection that we establish here can be used in
the future to solve other information and network theoretic ques-
tions where spatial randomness plays a key role.

To give a glance at the connection we establish in this paper,
let us consider the following question originally due to Broad-
bent and Hammersley to introduce percolation theory [2]. Water
is poured on one side of a large (ideally infinite) porous stone.
What is the probability that the water finds a path to the oppo-
site side? By modeling the stone as a square grid in which each
edge can be open and hence traversed by water with probability

, and closed otherwise, independently of all other edges, one
can show that for water percolates trough the stone
with probability one. One can then ask at what rate the water
percolates and how it depends on . In other words, how rich in
disjoint paths is the connected component of open edges? In this
paper, we construct a mapping such that the open grid edges of a
percolation model correspond to the presence of wireless trans-
mitters in certain locations of the plane, and the open percolating
paths represent a wireless backbone that is used to multihop data
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across the network. Accordingly, to maximize the information
flow, we want to operate the network at , above the
percolation threshold, so that we can guarantee the existence
of many disjoint paths that traverse the network, but also have

, so to avoid overcrowding and excessive interference. We
show that controlling the parameter corresponds to controlling
the transmission bit-rate of the nodes as , and we find
that the optimal scaling law corresponds to some .

Finally, we want to spend few additional words on some re-
lated literature. Capacity scaling laws of wireless networks have
received enormous attention in the recent literature, see [4], [5],
[10], [11], [13], [14], [17], [18] and references therein. Typi-
cally, in these works there are two ways of letting the number of
nodes tend to infinity. One can either keep the area where the
network is deployed constant, and let the node density tend
to infinity (dense networks); or one can keep the node density
constant, and increase the area to infinity (extended networks).
In both of these settings, network theoretic lower bounds on
achievable transmission rates can be obtained constructively,
for given communication strategies and power attenuation laws;
while information theoretic upper bounds must be obtained al-
lowing arbitrary communication strategies and assuming only
the power decay law in the propagation medium.

Our lower bound is based on a constructive strategy and holds
for extended networks with bounded transmitted and received
power, assuming only a power decay law whose tail exhibits a
power law behavior with exponent , or an exponential
attenuation. In the case of dense networks, results hold as long
as near field effects of electromagnetic propagation can be ne-
glected. When these come into play, as noted in [4], computed
bounds reduce to , and the wireless communication model
becomes questionable unless the physical size of the transmit-
ters tends to zero. Our proposed strategy also achieves the op-
timal average multihop delay required to reach the destination,
as defined in [5].

The rest of the paper is organized as follows. In Section II,
we summarize the network model and in Section III the main
results. In Section IV, we give an overview of our protocol and
provide some intuition on why it achieves the optimal transmis-
sion rate. In Section V, we formalize the correspondence with
percolation theory and show how to construct the wireless back-
bone. Section VI describes the four phases of the protocol and
proves our main results. Section VII is devoted to the dense net-
work case. Finally, Section VIII concludes the paper. Percola-
tion theory results are given in the Appendix.

II. NETWORK MODEL

We construct a random extended network by placing nodes
according to a Poisson point process of unit intensity on the
plane and focus our attention to the square

. Similarly, we construct a dense network by placing
nodes according to a Poisson point process of intensity over
a square of unit area. We are mainly concerned with events that
occur inside these squares with high probability (w.h.p.); that is,
with probability tending to one as .

We pick uniformly at random a matching of source–destina-
tion pairs, so that each node is the destination of exactly one
source. We assume all nodes transmit at constant power , and
that node receives the transmitted signal from node with
power , where indicates the path loss be-
tween and . Being interested only in a lower bound on the
achievable rate, we restrict ourselves to a model of communica-
tion where the interference at the receiver is simply regarded as
noise. Hence, any two nodes can establish a direct communica-
tion link, over a channel of unit bandwidth, of rate

bit/s

where is the ambient noise power at the receiver. Our scaling
results do not change considering a bandwidth , or all
nodes transmitting at constant rate , independent of distance,
but using different powers for transmission.

The per-node throughput is defined as the number
of bits per second that w.h.p. all nodes can (simultaneously)
transmit to their intended destinations. For any source–desti-
nation pair, the communication delay is the number of
hops needed to reach the destination, averaged over all network
realizations.

Throughout the paper, we use the following probabilistic vari-
ation of the order notation. We write w.h.p., if
there exists a constant such that

We also write , as , if
in the sense indicated above.

III. CONTRIBUTION

Theorem 1: Let the Euclidean distance between two nodes
and be denoted by . Let the power attenuation function

be with , or and
. We have that

bit/s

is achievable in a random extended network, with a corre-
sponding average number of hops

Theorem 2: Let the power attenuation function be
with , or and . We

have that

bit/s

is achievable in a random dense network, with a corresponding
average number of hops
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Fig. 1. Nodes inside a slab of constant width access a highway in single hops
of length at most proportional to log

p
n. Multiple hops along the highway are

of length bounded above by a constant.

We note that the result of Theorem 2 relies on an ideal power
attenuation function that is singular at the origin. In practice,
this result holds as long as near field effects are negligible and it
is presented for completeness, as it matches the dense network
model of [10]. Most of the paper is devoted to the proof of The-
orem 1, while Theorem 2 is proven in Section VII, by adapting
few steps of the main proof.

IV. OVERVIEW OF THE SOLUTION

The proposed solution is based on multihop routing, and ex-
ploits the formation of paths percolating across the network. We
divide the nodes into disjoint sets that cross the network area.
These sets form a “highway system” of nodes that can carry in-
formation across the network at constant rate, using short hops.
The rest of the nodes access the highway system using single
hops of longer length. The communication strategy is then di-
vided into four consecutive phases. In a first phase, nodes drain
their information to the highway, in a second phase information
is carried horizontally across the network through the highway,
in a third phase it is carried vertically, and in a last phase infor-
mation is delivered from the highway to the destination nodes.
Fig. 1 shows a schematic representation of the first phase. In
each phase we use point-to-point coding and decoding on each
Gaussian channel between transmitters and receivers, and de-
sign an appropriate time schedule for transmission.

Given the construction outlined above, and letting all nodes
transmit with the same power , we might expect the longer
hops needed in the first and last phases of the strategy to have
a lower bit-rate, due to the higher power loss across longer dis-
tances. However, one needs to take into account other compo-
nents that influence the bit-rate, namely, interference, and relay
of information from other nodes. It turns out that when all these
components are accounted for, the bottleneck is due to the in-
formation carried through the highway.

We now give a short sketch of the proof. First, we notice that
the highway system consists of paths of hops whose length is
uniformly bounded above by some constant. Then, using a time
division protocol, we show that a constant transmission rate can
be achieved along each path. However, we also need to account
for the relay of information coming from all nodes that access a
given path. The number of these nodes is at most proportional to

. This is ensured by associating to each path only those nodes
that are within a slab of constant width that crosses the network
area, see Fig. 1. It follows that the rate of communication of each
node on the highway paths can be of order .

Fig. 2. Construction of the bond percolation model. We declare each square on
the left-hand side of the picture open if there is at least a Poisson point inside
it, and closed otherwise. This corresponds to associate an edge to each square,
traversing it diagonally, as depicted on the right-hand side of the figure, and
declare the edge either open or closed according to the state of the corresponding
square.

Now, let us consider the rate of the nodes that access the
highway in single hops. The proof is completed by showing that
these nodes, requiring single hops of length at most proportional
to , and not having any relay burden, can sustain a rate
higher than .

Notice that there are three key points in our reasonings: 1)
there exist paths of hop length bounded above by a constant
that cross the entire network forming the highway system, 2)
these paths can be put into a one to one correspondence with

slabs of constant width, each containing at most a constant
times number of nodes, and (iii) these paths are somehow
regularly spaced so that there is always one within a
distance factor from any node in the network.

In the following, a mapping to a discrete percolation model
ensures the existence of many crossing paths. A time division
strategy, in conjunction to a counting argument, shows that each
path in the highway system can have a constant rate, and that
nodes can access the highway at a rate at least proportional to

. Finally, some simple concentration bounds show that the
number of nodes that access any given path is at most a constant
times .

V. THE HIGHWAY

To begin our construction, we partition the box into sub-
squares of constant side length , as depicted in the left-hand
side of Fig. 2. Let be the number of Poisson points inside

. By appropriately choosing , we can arrange that the proba-
bility that a square contains at least a Poisson point is as high as
we want. Indeed, for all , we have

(1)

We say that a square is open if it contains at least one point,
and closed otherwise. Notice that squares are open (closed) with
probability , independently of each other.

We now map this model into a discrete edge-percolation
model on the square grid. We draw an horizontal edge across
half of the squares, and a vertical edge across the others, as
shown on the right-hand side of Fig. 2. In this way we obtain a
grid of horizontal and vertical edges, each edge being open,
independently of all other edges, with probability . We call a
path of open if it contains only open edges. Note that, for

large enough, our construction produces winding open paths
that cross the entire network area, see Fig. 3 for a simulation of
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Fig. 3. Horizontal paths in a 40 � 40 bond percolation model obtained by
computer simulation. Each square is traversed by an open edge with probability
p (p = 0:7 here). Closed edges are not depicted.

this. It is convenient at this point to denote the number of edges
composing the side length of the box by , where

is rounded up such that is an integer. By Theorem 5 in
Appendix I, we can choose large enough such that there are
w.h.p. paths crossing the network area from left to right,
and these can be grouped into disjoint sets of paths,
each group crossing a rectangle of size , for
all , small enough, and a vanishingly small so that
the side length of each rectangle is an integer. See Fig. 8 for a
schematic representation of this. The same is true if we divide
the area into vertical rectangles and look for paths crossing the
area from bottom to top. Using the union bound, we conclude
that there exist both horizontal and vertical disjoint paths w.h.p.
These paths form a backbone, that we call the highway system.

VI. CAPACITY OF THE HIGHWAY

Along the paths of the highway system, we choose one node
per edge, that acts as a relay. This is possible as the paths are
formed by open edges, which are associated to squares that con-
tain at least one node. The paths are thus made of a chain of
nodes such that the distance between any two consecutive nodes
is at most .

To achieve a constant rate along a path, we now divide time
into slots. The idea is that when a node along a path transmits,
other nodes that are sufficiently far away can simultaneously
transmit, without causing excessive interference. The following
theorem makes this precise, ensuring that a constant rate , in-
dependent of , can be achieved w.h.p. on all the paths simul-
taneously. The theorem is stated in slightly more general terms
considering nodes at distance in the edge percolation grid

, rather than simply neighbors, as this will turn useful again
later. Notice that the rate along a crossing path can be immedi-
ately obtained by letting .

Fig. 4. The situation depicted represents the case d = 1. Gray squares can
transmit simultaneously. Notice that around each grey square there is a “silence”
region of squares that are not allowed to transmit in the given time slot.

Theorem 3: For any integer , there exist an ,
such that in each square there is a node that can transmit
w.h.p. at rate to any destination located within distance

. Furthermore, as tends to infinity, we have

(2)

Proof: We divide time into a sequence of successive
slots, with . Then, we consider disjoint sets of
subsquares that are allowed to transmit simultaneously, as
depicted in Fig. 4.

Let us focus on one given subsquare . The transmitter in
transmits toward a destination located in a square at distance

at most (diagonal) subsquares away. First, we find an upper
bound for the interference at the receiver. We notice that the
transmitters in the eight closest subsquares are located at Eu-
clidean distance at least from the receiver, see Fig. 4.
The 16 next closest subsquares are at Euclidean distance at least

, and so on. By extending the sum of the interferences
to the whole plane, this can then be bounded as follows:

(3)

notice that this sum clearly converges if or .
Next, we want to bound from below the signal received from

the transmitter. We observe first that the distance between the
transmitter and the receiver is at most . Hence, the
signal at the receiver can be bounded by

(4)



FRANCESCHETTI et al.: WIRELESS NETWORKS VIA PERCOLATION THEORY 1013

Finally, by combining (3) and (4), we obtain a lower bound on
the function

(5)

which does not depend on , and hence the first part of the the-
orem immediately follows.

We now look at the asymptotic behavior of (5) for .
Again by combining (3) and (4) and taking the limit for ,
after some computations it follows easily that

which also implies that

Finally, accounting for the time division into
time slots, the actual rate available in each square is

.

The proof of the following Corollary is immediate by
switching the role of transmitters and receivers in the above
proof. Distances remain the same, and all equations still hold.

Corollary 1: For any integer , there exist an ,
such that in each square there is a node that can can re-
ceive w.h.p. at rate from any transmitter located within
distance .

Furthermore, as tends to infinity, we have w.h.p.

(6)

A. Routing Protocol

Given the results of the previous section, we can now describe
a routing protocol that achieves per-node rate. The
protocol uses four separate phases, and in each phase time is di-
vided into slots. A first phase is used to drain information to the
highway, a second one to transport information on the horizontal
highways connecting the left and right edges of the domain, a
third one to transport information on the vertical highways con-
necting the top and bottom edges of the domain, and a fourth
one to deliver information to the destinations. The draining and
delivery phases use direct transmission and multiple time slots,
while the highway phases use both multiple hops and multiple
time slots. We show that the communication bottleneck is in the
highway phase which can achieve a per-node rate of .

We start by proving two simple lemmas that will turn to be
useful in the computation of the rate.

Lemma 1: If we partition the box into an integer number
of subsquares of constant side length , then there

are w.h.p. less than nodes in each subsquare.
Proof: The proof follows from Chernoff’s bound in Ap-

pendix II. Let be the event that there is at least one subsquare
with more than nodes. Since the number of nodes in

each subsquare of the partition is a Poisson random variable of
parameter , by the union and Chernoff bounds, we have

as tend to infinity.

Lemma 2: If we partition the box into an integer number
of rectangles of side lengths , then there are

w.h.p. less than nodes in each rectangle.
Proof: Again, the proof follows from Chernoff’s bound

in Appendix II. Let be the event that there is at least one
rectangle with more than nodes. Since the number of
nodes in each rectangle is a Poisson random variable of
parameter , by the union and Chernoff bounds, we have

as tends to infinity.

The next Lemma illustrates the achievable rate in the draining
phase of the protocol, occurring in a single hop.

Lemma 3: Every node inside can achieve w.h.p. a rate to
some node on the highway system of

Proof: We want to compute an achievable rate from
sources to the highways. Recall that . By Theorem
5 in Appendix I we can partition the square into an integer
number of rectangles of size and choose

and such that there are at least crossing paths in
each rectangle w.h.p. We then slice the network area into hori-
zontal strips of constant width , by choosing appropriately
such that there are at least as many paths as slices inside each
rectangle of size . We can then impose
that nodes from the th slice communicate directly with the th
horizontal path. Note that each path may not be fully contained
in its corresponding slice, but it may deviate from it. However,
a path is never farther than from its corresponding
slice.

More precisely, to each source in the th slab, we assign an
entry point on the th horizontal path. The entry point is de-
fined as the node on the horizontal path closest to the vertical
line drawn from the source point, see Fig. 5. The source then
transmits directly to the entry point. Theorem 5 and the triangle
inequality ensure that the distance between sources and entry
points is never larger than . This is because each
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Fig. 5. The draining phase.

rectangle contains paths, and therefore each source
finds its highway within the same rectangle.

Hence, to compute the rate at which nodes can communicate
to the entry points, we let and apply the
second part of Theorem 3. We obtain that one node per square
can communicate to its entry point at rate

Now we note that as there are possibly many nodes in the
squares, they have to share this bandwidth. Using Lemma 1, we
conclude that the transmission rate of each node in the draining
phase of our protocol is at least , which concludes
the proof.

The following lemma illustrates the achievable rate on the
multihop routes along the highway.

Lemma 4: The nodes along the highways can achieve w.h.p.
a per-node rate of

Proof: We divide horizontal and vertical information flow,
adopting the following multihop routing policy: pairwise coding
and decoding is performed along horizontal highways, until we
reach the crossing with the target vertical highway. Then, the
same is performed along the vertical highways until we reach
the appropriate exit point for delivery.

We start by considering the horizontal traffic. Let a node be
sitting on the th horizontal highway and compute the traffic that
goes through it. Notice that, at most, the node will relay all the
traffic generated in the th slice of width .

According to Lemma 2, a node on a horizontal highway must
relay traffic for at most nodes. As the maximal distance
between hops is constant, by applying Theorem 3 we conclude
that an achievable rate along the highways is , with
high probability.

The problem of the vertical traffic is the dual of the previous
one. We can use the same arguments to compute the receiving
rate of the nodes. Since each node is the destination of exactly
one source, the rate per node becomes the same as above.

The following Lemma illustrates the achievable rate in the
receiving phase of the protocol, occurring in a single hop.

Lemma 5: Every destination node can receive w.h.p. infor-
mation from the highway at rate .

Proof: The delivery phase consists in communicating from
the highway system to the actual destination. We proceed ex-
actly in the same way as in Lemma 3, but in the other direction,
that is, horizontal delivery from the vertical highways.

We divide the network area into vertical slices of constant
width, and define a mapping between slabs and vertical paths.
We assume that communication occurs from an exit point lo-
cated on the highway, which is defined as the node of the ver-
tical path closest to the horizontal line drawn from the destina-
tion. Again, the distance between exit points and destination is
at most . We can thus let in
Corollary 1, and conclude that each square can be served at rate

As there are at most nodes in each square by Lemma 1,
the rate per node is at least equal to .

We are finally ready to provide a proof of Theorem 1.

Proof: We observe by Lemmas 3, 4, and 5, that if

(7)

then the overall per-node rate is limited by the highway phase
only, and the proof follows immediately from Lemma 4. Hence,
we have to make sure that we can satisfy (7). Recall that

and by Theorem 5 that and are constrained to be
such that

(8)

From (7) and (8) it follows that we can choose and

to conclude the proof of the first
part of the theorem.

As for the second part of the theorem, we need to bound the
number of hops needed to reach the destination with the de-
scribed protocol. For any source–destination pair, the number of
hops is given by two plus the number of hops on the highway,
which is at most twice the number of hops of a crossing path be-
tween the shortest sides of a rectangle of size . Re-
call now that in each rectangle there are w.h.p. at least
disjoint crossing paths between its shortest sides, and at most

edges. Letting be the total number of hops along
all crossing paths inside a rectangle and be the number of
hops of path , we have by taking the expectation with respect
to the network realization

(9)
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By taking the expectation inside the sum, it now follows that
the average number of hops to reach the destination is at most
proportional to .

VII. DENSE NETWORKS

In this section, we consider the model where nodes are dis-
tributed according to a Poisson point process of intensity over
a square of unit area. Furthermore, we take an attenuation func-
tion of the form

In this case, we divide that network into squares of size .
We obtain thus the same number of little squares as in the pre-
vious model. The average number of nodes in each little square
is also the same, namely . Therefore, all the percolation re-
sults above still hold for this model, and we can find as many
highways as above.

To derive the lower bound on the capacity, we have to com-
pute the throughput along the highways, as well as the rate at
which nodes can send data toward the highways. Both of these
throughputs were computed using Theorem 3, so it is enough
here to give an adapted version of such theorem.

Theorem 4: For any integer , there exist an ,
such that in each square there is a node that can transmit
w.h.p. at rate to any destination located within distance

. Furthermore, as tends to infinity, we have

Proof: We set up the same time division scheme as in The-
orem 3, with time slots, where . Similarly, the 8
closest interferers are located at least squares away from
the receiver, the next 16 interferers at distance , and so
on. The difference here is that now squares have size . The
sum of the interferences at the receiver can be bounded as fol-
lows:

(10)

This sum clearly converges if or .
As the receiver is at most squares away from the trans-

mitter, the Euclidean distance between them is less than
. The strength of the signal at the

receiver is thus

(11)

We now take the limit of the signal to noise plus interference
ratio for . By combining (10) and (11) one obtains a
constant bound, independent of

SNIR

This means that a constant rate is achievable w.h.p. in each time
slot. This proves the first part of the theorem.

The same computation shows that if increases with , the
above limit still holds whenever tends to zero.
Therefore, if , a constant rate is achievable w.h.p.
for each active transmission. However, as there are

time slots in our TDMA scheme, the actual throughput avail-
able for each square must be divided by , and thus

VIII. CONCLUSION

We have found that the capacity of wireless networks of ran-
domly located nodes has the same asymptotic behavior as the
capacity of arbitrary networks: nodes in a random network can
transmit at the same rate as nodes in an arbitrary network and
there is no price to pay—at least asymptotically—for the ad-
ditional randomness present in the system. This result closes
a previous gap between upper and lower bounds on the op-
timal per-node transmission rate that consistently appeared in
different proofs proposed in the literature.

We were able to close this gap by exploiting a connection be-
tween percolation theory and the way we scale the transmission
ranges of the nodes. By scaling the ranges at a sufficiently slow
rate, a wireless backbone containing paths that cross the network
area exists with high probability, but this covers all the nodes,
generating excessive interference. By scaling the ranges at a
higher rate, this backbone does not form at all. Previous results
used the first kind of scaling to prove a capacity lower bound.
We noticed that percolation theory ensures that a different kind
of backbone forms in the transition region between this two ex-
treme scalings. This does not cover all the nodes, nevertheless
it is sufficiently rich in crossing paths so that it can transport the
total amount of traffic. By operating the network in this transi-
tion region between order and disorder, we are able to prove our
tight bound. Interestingly, the choice of the adopted scaling law
depends on the physical attenuation inside the medium where
wireless propagation takes place.

Finally, we point out that the problem of optimizing the
throughput pre-constant remains open, as well as extensions to
models which take random fading into account.

APPENDIX I
PERCOLATION THEORY RESULTS

In this section, we build the percolation theory background
that is needed to show the existence of a cluster of nodes forming
the highway system. We consider the independent bond percola-
tion model on the square lattice. That is, we declare each edge of
an infinite square grid open with probability and closed oth-
erwise, independently of all other edges. and let denote a



1016 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 3, MARCH 2007

box of side length embedded in the square lattice. We denote
by the event that there is a crossing path connecting the
left side of with its right side. We need a series of results
that culminate with Theorem 5 below. The proofs of the first
two propositions follow standard arguments, and are reported
for completeness.

Proposition 1: For and for all , we have

where .
Proof: Let be a box of side length centered at

the origin of the square lattice, and be the event
that there is a path connecting the origin to the boundary of

. Denoting by the number of open paths of length
starting at the origin

since a path connecting the origin to the boundary of has
length at least As paths of length are open with probability

, we can bound this probability by

where denotes the number of paths of length starting
at the origin. This number is obviously not larger than

Combining these three inequalities we have

where .
Let us now order the vertices on the left side of the box

starting from the bottom, and let be the event that there exist a
crossing path starting from the th vertex. There is a nonrandom
index so that

Now choose the box with this th vertex being at the origin;
see Fig. 6 for an illustration of this construction with . We
then write

The proposition above has shown that when is small enough
the box cannot be crossed from left to right. We now turn
to the dual question of the existence of a crossing path when
is sufficiently high. The following result exploits the concept of
the dual lattice that is often used in percolation theory. The

Fig. 6. The probability of crossing the box B starting from the third vertex
from the bottom of B is less than the probability of reaching the boundary of
box B starting from its center.

Fig. 7. The boxB is drawn with a continuous line, the dual box S is drawn
with a dashed line. Whenever there is not a top to bottom crossing in the S ,
then there must be a left to right crossing in B .

dual lattice is defined by placing a vertex in each square of the
lattice, and joining two such vertices by an edge whenever the
corresponding squares share a side, see Fig. 7. We can also con-
struct a dual of the random grid by drawing an edge in the dual
lattice, if it does not cross an edge of the original random grid,
and deleting it otherwise.

Proposition 2: For and for all , we have

where is as before.
Proof: Let us consider the box , and the corresponding

dual box as depicted in Fig. 7. Let be the event that
there is a left to right crossing path of . Its complement
is the event that there exists a top to bottom crossing path in .
This last statement, which is immediate by inspection of Fig. 7,
is given a complete topological proof in [12].

By rotating the box by 90 and applying Proposition 1 to the
dual lattice, we have that, for all

The result now follows immediately.
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Fig. 8. There exists a large number of crossing paths inB that behave almost
as straight lines.

We now turn to the question of how many crossing paths there
are when is sufficiently high. To show the existence of many
disjoint crossing paths, we need one more result, that is [9, The-
orem 2.45]. We state this result next and refer to [9] for a proof.
We define an event to be increasing if adding an edge in any
realization of the random network where occurs, leads to a
configuration which is still in . Notice that the event of having
a crossing from the left to the right side of is an increasing
event. Next we define to be the event defined by the
set of configurations in for which remains true even if we
change the states of up to arbitrary edges. A little thinking re-
veals that this is just the event that edge-disjoint crossings
exist. More formally, one can refer to the max-flow min-cut the-
orem to show this, see for example, [19]. The set is some-
times called the interior of of depth . We have the following
lemma.

Lemma 6: Let be an increasing event, and let be as
defined above. We have

for any
Given the results above we can now show the existence of

many disjoint crossing paths. It turns out that for all , if
we divide the box into rectangular slices of side length

, then if we choose sufficiently high, each of these
rectangles contains at least a constant times number of
disjoint crossings between the two shortest sides. This means
that not only there exist a large number of crossings of ,
but also that these crossings behave almost as straight lines in
connecting the two sides of the box, as they do not “wiggle”
more than a amount.

More formally, for any given , let us partition into
rectangles of sides , see Fig. 8. We
choose as the smallest value such that the number of
rectangles in the partition is an integer. It is easy to
see that as . We let be the maximal
number of edge-disjoint left to right crossings of rectangle
and let . The result is the following.

Fig. 9. Crossing the rectangle from left to right implies that there cannot be a
top to bottom crossing in the dual graph. Hence, there cannot be a path from the
center to the boundary of any of the dual of them+ 1 squares centered on the
upper boundary of the rectangle.

Theorem 5: For all and satisfying
, there exists a such that

Proof: Let be the event that there exists a left to right
crossing of rectangle . With reference to Fig. 9, for all ,
and so in particular for , we have

(12)

where the first inequality follows from the same argument as
in the proof of Proposition 2 and should be clear by looking at
Fig. 9, and the last inequality follows from Proposition 1 applied
to the dual lattice. We now use the increment trick of Lemma 6
to obtain such crossings in . For all

, by Lemma 6 and (12), we have

(13)

Since , we have, by letting

(14)

We finally consider the probability of having at most
edge-disjoint left to right crossings in every rectangle . By
independence and using (14), we have

(15)
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Since , we have that (15) tends to zero if

(16)

To complete the proof we can choose small enough so
that (16) is satisfied.

APPENDIX II
CHERNOFF BOUND FOR A POISSON RANDOM VARIABLE

We have used the following Chernoff bound for a Poisson
random variable of parameter

for (17)

Proof:

(18)

For any and applying Markov inequality we have

(19)

Letting we finally obtain

(20)
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