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The Annals of Probability 
1996, Vol. 24, No. 2, 1036-1048 

ON THE CHEMICAL DISTANCE FOR SUPERCRITICAL 
BERNOULLI PERCOLATION 

BY PETER ANTAL1 AND AGOSTON PISZTORA2 

Swiss Reinsurance Company and Courant Institute 
of Mathematical Sciences 

We prove large deviation estimates at the correct order for the graph 
distance of two sites lying in the same cluster of an independent perco- 
lation process. We improve earlier results of Gartner and Molchanov and 
Grimmett and Marstrand and answer affirmatively a conjecture of Kozlov. 

1. Introduction and statement of results. In this article we study for 
d > 2 independent (Bernoulli) bond percolation on the d-dimensional cubic 
lattice _d = (Zd, Ed), where Ed = {{x, y}; Ei=l,..,d I xi - YiI = 1} stands for 
the set of edges between nearest neighbors in Zd/. That is, all bonds are open 
with probability p and closed with probability 1 - p independently of each 
other. The corresponding probability measure on {0, 1}1d is denoted by P. 

A path of _d of length n (> 1) is a sequence (x0, xl, . .. , xn) of nearest- 
neighbor vertices. A path consisting of distinct vertices is called self-avoiding. 
We say that a path is open (closed) if all bonds between successive vertices of 
the path are open (closed). For x E Ed we denote by Cx the cluster of x, that 
is, the set of all vertices which are connected to x by a path, whose edges are 
all open. Throughout this paper we shall assume that p is strictly larger than 
the critical probability 

(1. 1) PC := sup{p: a(p) = 01, 

where 0(p) is the probability that the cluster of the origin has infinite cardi- 
nality. 

We shall write x + y to say that two sites, x and y, are in the same cluster. 
For such sites we denote by D(x, y) the minimal length of an open path con- 
necting x to y. This quantity is sometimes also called the chemical distance 
of x and y. On Zd we shall use the distance induced by the norm 

(1.2) Iy S Yi. 
i=1 , .., d 

The main object of this paper is to prove the following large deviation 
bounds. 
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ON THE CHEMICAL DISTANCE 1037 

THEOREM 1.1. Let p > p, Then there exists a constant p = p(p, d) E 
[1, oo) such that 

(1.3) limsup-logIP[O + y, D(O, y) > plyl] < 0. 

THEOREM 1.2. Let p > pc. Then, for any y E Zd, 

(1.4) limsup-logIP[O + y, D(O, y) > l] < 0. 

Applying Theorem 1.1 together with the Borel-Cantelli lemma, we obtain the 
following comparison result for D and the usual distance. 

COROLLARY 1.3. Let p > pc. Then P-almost surely 

(1.5) lim sup I DD(0, y)1{ 1 } < p(p, d), 

where p(p, d) is the constant introduced in Theorem 1.1. 

REMARK. It is easy to see that the probabilities in (1.3) and (1.4) decay 
at most exponentially; that is, we also have lower bounds of the same order. 
In the case of (1.3) we can pick for any p > 1 a fixed path -y with a length 
Jyj E [plyl, plyl + 2] joining 0 to y. Then IP[O 0 y, D(O, y) > plyl] is larger 
than the probability that -y is an isolated open path; that is, -y is open and all 
other bonds adjacent to some vertex of -y are closed. (Note that in this case -y is 
the only path joining 0 to y.) This probability obviously decays exponentially 
in IyI and this yields for every p > 1 the claimed exponential lower bound for 
the probability considered in (1.3). The same argument works for Theorem 1.2. 

Let us give some comments concerning our results. First of all, we would 
like to point out that the main difficulty of the proof of (1.3) and (1.4) is to 
derive bounds of the correct (i.e., here exponential) order. In fact, polynomial 
(respectively, subexponential) bounds have earlier been derived by various au- 
thors; cf. 16], [7] and [8]. 

Theorem 1.1 improves an earlier result of Gartner and Molchanov (see 
Lemma 2.8 in [6]), where a polynomial upper bound is given for the decay 
of the probability in (1.3) for the case of site percolation with sufficiently high 
parameter. The improvement now is that we show that the true leading asymp- 
totic behavior is in fact exponential and it holds in the whole supercritical 
regime. Corollary 1.3 has an important application in trapping problems, as 
discussed in [2]. In fact, this result is one of the key ingredients which enable 
us to derive asymptotic lower bounds for the survival probability of a random 
walk, which is killed by obstacles made of the closed bonds of a percolation 
process. Although we only treat the case of bond percolation, our calculations 
can obviously also be adapted to the site case. We refrained from treating both 
cases here for the sake of clarity. 
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1038 P. ANTAL AND A. PISZTORA 

Our result stated in Theorem 1.2 answers a question of Kozlov, which has 
appeared in the context of the study of the Darcy equation for random porous 
media [3]. Theorem 1.2 improves the subexponential large deviation upper 
bound of Grimmett and Marstrand; see the last equation in [7]. 

2. Renormalization. In this section we develop a renormalization tech- 
nique for Bernoulli percolation. This is in the same spirit as the technique 
introduced in [11]; however, in our case the geometry of the renormalization 
is different and therefore an additional argument [cf. (2.16) and (2.18)] is 
needed in order to prove the required properties of the renormalized process. 

Let us first introduce some additional notation. A box B is a subset of 7d of 
the form {x E Zd I ri < xi < si, 1 < i < d}, where r, s E Rd. We fix an integer 
N > 1. We shall see that only large values of N will be of interest; therefore, 
we shall implicitly assume in each definition involving N that N is at least 
so large that the definition makes sense. We now chop Zd into disjoint boxes 
as follows: we set BO(N) to be the box [-N, N]d n 7d and define, for i E Ed, 

(2.6) Bi(N) := Ti(2N+l)Bo(N), 

where Tb stands for the shift in Zd with b (E Zd. The boxes (Bi(N))iZd define 
a partition of Zd. We now define the renormalized lattice as the graph with 
vertex set (Bi(N))iEzd and edge set {{Bi(N), Bj(N)}, Ij - i = 1}. We shall 
identify this graph with a copy Of _d, whose vertices we denote by bold letters 
in order to distinguish them from the vertices of the original lattice. We shall 
also need another family of boxes, namely, 

(2.7) Bl(N) :=Ti(2N+1)B0(5N/4). 

We now define for N E N, the following set of bonds: 

(2.8) ,(N) = f {ke(l), (k + 1)e(l)}; k = 0, ..., LN1/2 }, 

where e( 1) stands for the first unit vector in Z7 . Finally, we set 6i - 

'Ti(2N+1)e(N). 
Next we need the notion of a crossing cluster in a box (see [11]). We say 

that a cluster -6 contained in some box B' is a crossing cluster for B C B', if 
for all d directions there is an open path contained in vr n B joining the left 
face to the right face of the box B. 

We now assume that N > 10 and introduce the events 

R(N) := crossing cluster v in B'(N) for BR(N), all open paths 
(2.9) contained in BR(N) of radius larger than 1 N are connected 

to v within B'(N) and v is crossing for each subbox B C 
B'(N) of side length larger than N}, 

(2.10) SiN) := {there is at least one open bond in ij}. 
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ON THE CHEMICAL DISTANCE 1039 

We now define a map AN from (2 to the space (2' {O, 1}1d (with the Afield 
generated by the finite-dimensional cylinders) by 

(2.11) (ONW).x 1R (N nS (N (W). 

We denote the image measure of P under this map by PN. This defines a 
(dependent) site percolation process on the renormalized lattice. Sometimes 
we shall call the renormalized process the macroscopic process in order to 
distinguish it from the original (microscopic) bond percolation process. We 
shall call the sites of the macroscopic process white and black (instead of 
occupied and vacant); that is, the site x E Ed is white if (ONW)X = 1, otherwise 
it is black. 

Next we need the notion of *-connectedness. We say that a subset of Zd iS 
*-connected if it is connected with respect to the adjacency relation 

(2.12) x* y X4 max xi - yi =1. 
i=l, ...,d 

We are now able to state the main result of this section. 

PROPOSITION 2.1. 

If F C Ed is a *-connected set of white sites, then there is a micro- 
(2.13) scopic cluster contained in Ui~f B'(N), which is crossing for each 

box BR(N), i E r. 

Moreover, for each p > pc, there exists a function 5: N -> [0, 1) with 
limN, jp(N) = 1, such that 'PN stochastically dominates the law of an 
independent site percolation process with parameter p(N), meaning that, for 
any increasing event A, 

(2.14) PN(A) > IPN(N)(A), 

where P* denotes the law of an independent site percolation process with pa- 
rameter q. 

PROOF. Property (2.13) is an obvious consequence of the occurrence of the 
events R(N) for all i E r. To prove the second part, it is enough to check that 
(2.14) holds for any local increasing event A (local means that A depends only 
on finitely many sites). This will follow from the next proposition. 

PROPOSITION 2.2. We have, as N -- oc, 

(2.15) a(N) := sup sup esssuplPN[YZ = 0 l 0-(Yx., x E Bo(L) \ {z})] -O 0, 
L>3 zEBo(L) 

where Y denotes the coordinate process on f'; cf. (2.11). 

PROOF. Let us first explain the outline of the proof. By Theorem 3.2 in 
[11] (d > 3) and Theorem 5 in [10] (d = 2), we can control the (unconditioned) 
probability of the event {Yz = 0}. This will be used to derive an iterative 
inequality for a(N) from which it will follow that a(N) is either always larger 
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1040 P. ANTAL AND A. PISZTORA 

than a constant or tends to 0 for N -> 00. To exclude the first possibility, 
we shall introduce a mixture of PN with the measure corresponding to an 
independent site percolation process and show that if we replace P in the 
definition of a(N) by the mixed measure, then the iterative inequality is still 
satisfied. In the case of the independent measure, it is obvious that we are in 
the right regime and by a continuity argument we shall conclude this for PN, 
too. 

Next we fix N > 10 and pick L > 3. We introduce for p E [0, 1] the following 
family of measures on ?1: 

(2.16) QN := PPN + (1 -P)q(N) 

where q(N) := PAYO = 1] and P* denotes the law of an independent site 
percolation process with parameter q. We set 

(2.17) f3(p, L, N) := sup ess sup QP%[Yz = 0 o-(Y, x E Bo(L) \ {z})]. 
zEBo(L) 

We shall prove that there exist constants c1, c2 > 0, depending only on (p, d), 
such that, for all p E [0, 1] and for all N with 1 - 4 3dc1 exp(-c2N1/2) > 0, 

(2.18) 83(p, L, N)(1 - 3dp(p, L, N)) < cl exp(-c2N1/2). 

Let us admit (2.18) for a moment and conclude the proof of the proposition. 
As a consequence of (2.18) we see that either 

(2.19) /3 > 13-d(1?+ 1- 4 3dc, exp(-c2Nl!2)) 

or 

(2.20) 3< 3 d(1 _4. 3dc exp(-c2Nl/2)) 

Next we claim that, for N and L fixed, 83(p, L, N) is a continuous function of 
p. Since the suprema in (2.17) run over a finite set and the conditional expec- 
tation in (2.17) depends only on finitely many sites, the continuity boils down 
to the fact that any macroscopic configuration v E {0, l}Bo(L) has strictly pos- 
itive probability under PN. To see this, consider, for instance, the microscopic 
configurations where each bond between sites in UXEBO(L) BX(N) is open, up 
to those lying in UJ. -=o 6x (which are closed). 

Because of this continuity argument we now see that, for fixed N and 
L, /(0, L, N) and /(1, L, N) satisfy both either (2.19) or (2.20). Now 
/3(0, L, N) is equal to PN[Yo = 0] by definition, and by Theorem 3.2 in [11] 
and Theorem 5 in [10] this probability tends to O for N -- o0. Therefore, 
for N large enough, /3(1, L, N) also satisfies (2.20). Since the r.h.s. of this 
inequality does not depend on L, 

(2.21) a(N) 2-3 d( 1 - 4. 3dci exp(-c2N1/2)), 

which implies the claim of the proposition. 
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ON THE CHEMICAL DISTANCE 1041 

So, let us now show (2.18). For this we pick z E BO(L) and introduce the 
sets 

(Z):={XE~d X * z~//1 :=XI(Z) n Bo(L), 

./2 := BO(L) \ (41 U {z}). 

Note that by the choice of L these sets are nonempty. The o--field o-(Y., x E 
BL \ {z}) is atomic and the atoms are of the form P1 n V2 with Pi E {0, 1}i. 

LEMMA 2.3. There exist strictly positive constants C3, C4, C6, C7, depending 
only on (p, d), such that 

(2.22) Q%[{Yz = 0} n V1 n P2] < c3e-C4NQP[v2] + c6eC7N/2 QP [Pl n V2] 

PROOF. It is enough to verify (2.22) for p = 0 and p = 1. Then by convexity 
it holds for any p E [0, 1]. We begin with the case p = 1. We have 

(2.23) QN[{YZ = ?} n ri n V2] < P[Rc n V2] + P[Sc n V1 n P2], 

where we have dropped the N dependence of the events Rz and Sz [defined 
in (2.9) and (2.10)] and with a slight abuse of notation we have identified Pi 
with 4l (vi) [see (2.11)]. 

From Theorem 3.2 in [11] and Theorem 5 in [10], we know that 

(2.24) P[Rc ] < C3 exp(-C4N). 

By the definition of the event S, it is obvious that, for certain strictly positive 
C5, C7, 

(2.25) exp(-c5 LN1/2j) = IP[Sc] 
1 

c6exp(-c7N1/2). 

Using the fact that, under IP, Rz is independent of v2 and Sz is independent 
of P1 and P2, we obtain (2.22) for p = 1. The case p = 0 is obvious [using (2.24) 
and (2.25)]. O 

We now obtain by the lemma above 

(2.26) QP [Yz = 011 
c exp(P27N1/2). (2.26) Q<[YZ = 0 1 V n2] < c3 exp(-c4N) QP [P l ] + C6 exp-C7N2 

The next step is to derive a lower bound on Q%[V1 V2]. It is convenient to 
introduce for i E {0, 1} the sets 

C'(Pl) := {x E i-,1; = i}. 

Using {Yx = 0} 1 Sc, we have first, for p = 1 and p = 0, 

QN[ I ]QP[ o YX= O q {Y =1}n V2]/QN[V2] 
(2.27) xEC1(V1) 

> (exp(-c5N1/2)) QN[ n C() = v2] 
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1042 P. ANTAL AND A. PISZTORA 

[note that II7(z) I = 3d - 1]. By convexity [and by rewriting (2.27) with absolute 
probabilities], we see that (2.27) extends to all p E [0, 1]. We now proceed as 
follows: 

QP[E f {YX = 1} V 2] > (1- Q[Y = 0 | P2]) 
xeC1 (0) xeC'(.v ) + 

(2.28) > (1- E QN[YX = ? V2]) 
XEw// + 

> (1 3dp(p, L, N)) + 

where /3(p, L, N) is the quantity defined in (2.17). Combining (2.26), (2.27) 
and (2.28), we see that, for any P1 and P2, 

(2.29) QP = P n1 2] c3 exp(-c4N + 3dc5N 12) + c6 exp(-c7N 1/2). 

Since the r.h.s. of the last inequality is independent of Pi', P2 and z, /3(p, L, N) 
is itself bounded by the expression on the r.h.s. of (2.29). Note that, if 1 - 
3d3(p , L, N) < 0, then (2.18) is trivially satisfied. Therefore, we can assume 
1 - 3dj3(p, L, N) > 0. In this case, by using the bound given in (2.29), we can 
easily verify (2.18) for certain positive c1 and c2. D 

3. Construction of a short path. The heart of the proof of our main 
theorems is a deterministic construction of a path between two sites in the 
same cluster. The construction uses the renormalization of the previous section 
and involves microscopic and macroscopic arguments at the same time. 

Let us first introduce some additional notation. In the whole section we 
consider a fixed microscopic configuration W E Q2. We also fix some integer N 
and look at the induced macroscopic configuration 4N(W) E Q'. We denote by 
4* the set of all *-connected macroscopic black clusters; that is, the elements 
of 4* are the *-connected components of the set of black sites of Zd/. For i E Zd 
we denote by CU the element of 4* containing i. We use the convention that 
CU=0, if iis white. 

For a finite subset A c Zd we introduce different types of boundaries, 
namely, 

(3.30) doutA = fi E Ac: 3 j E A, {i, j} E Ed 

(3.31) inlA:= fi E A: 3 j E Ac, {i, j} E Ed} 

which are called the outer (respectively the inner) boundaries of A. We shall 
use the convention that for a white site i E 7d we define OUtCU* ={i}. 

Observe that for any finite set A c 7d there are only finitely many connected 
components of Ac and exactly one of them has infinite cardinality. We denote 
these components by Ac, Ac and assume that Ac is the infinite component. 
We call the components Ac, ... , Ac holes. If Ac is connected, then we say that 

This content downloaded from 128.32.135.128 on Fri, 22 Nov 2013 18:32:45 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


ON THE CHEMICAL DISTANCE 1043 

A has no holes. We set 

(3.32) A:= AUAU ..UA'. 

We define the external outer (respectively, external inner) boundary of A as 

(3.33) doUtA := doutAl, 

(3.34) din A:= diAd 

By Lemma 1.1 in [11] we have the following property, which is crucial for 
the remainder of our discussion: 

For any finite *-connected set A, the external boundaries do1utA 
and d8n A are *-connected. 

The last definition we need is the notion of surrounding sets. For two subsets 
U, V of /d we say that U surrounds V if V C U. An equivalent definition is 
that any self-avoiding path of infinite length starting at some point of V hits 
U. In particular, any finite set is surrounded by itself as well as by its outer 
(respectively, inner) external boundary. 

We now come to the main result of this section. We consider two sites x, 
y E Zd. Let a(x) and a(y) be the unique sites of the renormalized lattice such 
that x E Ba(x) and y E Ba(y). For notational convenience we have dropped 
the N-dependence, since N will be fixed during the whole section. We set 
n I a(x) - a(y)I and choose a macroscopic path A = (a0, a,, . .. , an) with 
a0 = a(x) and an = a(y). We also define the set of *-connected black clusters 
intersecting A; that is, 

(3.36) C {C= , a E Al = {C* E A*, C* n A =A 0}. 
Our main result now is the following proposition. 

PROPOSITION 3.1. If x and y are in the same microscopic cluster, then there 
exists a microscopic self-avoiding open path y joining x to y, such that y is 
contained in 

(3.37) W:= UYAb Bb) 
aEA bECa* 

where Bb is the box defined in (2.7) and C* := C* U dOutC* (note that d OutC: 
{a} if a is white). In particular, we have 

(3.38) D(O, y) < WI. 

PROOF. It is enough to construct a not necessarily self-avoiding path lying 
in W, since we can always extract from this path a self-avoiding one. Since x 
and y are in the same microscopic cluster, there is an open path oa starting 
at y with the endpoint x. This path is of course not necessarily in W, but we 
will show that we can modify oa in such way that the modified path has all 
vertices in W. 
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1044 P. ANTAL AND A. PISZTORA 

If x and y are both in the same box B'a (this is only possible if n < 2) 
and moreover the site a is white, then our claim directly follows from the 
occurrence of the event Ra. Therefore, in what follows, we shall assume that 
w is not such a configuration. It is convenient to prove first the following 
statement. 

LEMMA 3.2. Assume that there is no cluster in C which surrounds both a(x) 
and a(y). Then there exists a white vertex e E A with the following properties: 

(3.39) e is not surrounded by any cluster in C; 

(3.40) the crossing cluster of Be is connected to x by a path contained in W. 

PROOF. If there is no cluster in C which surrounds a(x), then e = a(x) 
satisfies both of the above conditions. Indeed, in this case a(x) is white and 
o- leaves the box B'e (the case where x and y are both in B'e was already 
excluded), so (3.40) follows from the occurrence of Ra(x). 

We denote by S the subset of C consisting of all clusters which surround 
a(x). By the previous discussion we can assume that ? is not empty. We now 
introduce the following order on ?: for S1, S2 E S we set 

(3.41) SI < S2 X SI C S2. 

It is easy to see that for this order S is a totally ordered finite set and we denote 
by S its maximal element. We then have a(x) E S and S is not surrounded by 
any other cluster in C. Moreover, because of the assumption that no element of 
C surrounds a(x) and a(y) simultaneously, we see that a(y) V S and therefore 
the path A leaves S. We denote by e the "last" vertex of A [recall that A is 
a directed path going from a(x) to a(y)], which belongs to d"S. Then e is 
clearly white and not surrounded by any cluster in C. 

Next we show that e satisfies (3.40). For this we consider X, the set of sites 
in the renormalized lattice which correspond to the boxes Bi visited by a. Then 
X is a *-connected finite set containing a(x) and a(y). Since S surrounds a(x) 
but not a*(y), we see that X has nonempty intersection with S and also with 

SC. Therefore, we also have X n dexttS 0; that is, the microscopic path a 
enters the union of the boxes Bi, i E Ind aotS. Recall that a is a directed path 
going from y to x. 

Consider now oa n UiEdoutS Bi and let u be the vertex in this set with the 
largest index. Let u be the vertex in d8otS with u E BU. Then it follows from 
the occurrence of Ru and from the fact that o- is not entirely contained in B', 
that u is a vertex of the crossing cluster of B . We also see, using (2.13) and 
(3.35), that the crossing cluster of u is connected to the crossing cluster of e 
by an open microscopic path in UiEdouts B' and therefore in W. 

So we have to show that u is connected to x by an open path contained in 
W. This path is constructed as follows: we follow the path a- from u (in the 
direction of increasing index) until we arrive at x or hit a box corresponding to 
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a white macroscopic site. If we arrive at x before hitting such a box, then the 
piece of o- connecting u to x is in W and we are finished. Otherwise the path of 
enters a white box corresponding to a hole H C Sc, since, by the definition of 
u, o- will never hit after u a box corresponding to a site at the external outer 
boundary of S. In the following we have to distinguish between several types 
of configurations, to which we shall also refer later: 

(i) If a(x) V H, then we modify o- as follows. We denote by vf and by v1 
the first and last vertex of o- which is in a box of H. The piece of o- between u 
and vf is by construction in the union of boxes corresponding to sites of S and 
therefore in W. Now vf and v1 are in boxes which correspond to sites of din H 
and because of (2.13) and (3.35) they are connected by an open microscopic 
path in UiedntH BR, which is a subset of W, since din H C doutS. So we can 
replace o- between vf and vl by an open path in W. 

(ii) If a(x) E H, then we define vf as before. Now our macroscopic path A 
intersects 8~t H. Let h be a site of H din H. By the same argument as before, 
we can connect vf to the crossing cluster of Bj by a path in W. 

(iia) If there is no cluster in C which surrounds a(x), then we can connect h 
to a(x) [note that a(x) is white in this case] by a *-connected white macroscopic 
path by just following A and the external outer boundaries of the black clusters 
which eventually intersect A between a(x) and h. This implies again the 
existence of a microscopic path with the required properties. 

(iib) If a(x) is surrounded by another black cluster S' in C, then we can 
construct in the same way as in the case (iia) a path in W which connects u to 
the crossing cluster of that box BR, v E doutS', where a enters for the last time 
a box corresponding to a site of this boundary. But now we are in the same 
situation as at the beginning of our construction and we can proceed in the 
same way to arrive at x or at the boundary of the next surrounding cluster of 
a(x) and so on. This finishes the proof of the lemma. L 

We can now proceed with the proof of Proposition 3.1. We shall have to 
distinguish between two cases: 

Case I [There is no cluster in C which surrounds both a(x) and a(y)]. In 
this case we can directly apply the previous lemma to see that there are two 
vertices e(x), e(y) E A which are both not surrounded by any cluster of C and 
the crossing clusters of BH(x) (resp. BH(y) are connected to x (resp. y) by open 
microscopic paths lying in W. 

Next we show that e(x) and e(y) are in the same *-connected white cluster. 
Our claim then immediately follows from (2.13). The argument is the following: 
if all vertices of A between e(x) and e(y) are white, then there is nothing 
to prove. Otherwise let a, be the last white vertex of A after e(x). Since 
neither e(x) nor e(y) is surrounded by any black cluster in C, a, belongs to 
the external outer boundary of some black cluster and we can connect a1 by 
a *-connected macroscopic path to the "last" point of A, which belongs to this 
boundary. We repeat the construction for this point instead of e1, and so on, 
until we arrive at the first white vertex of A before e(y) and then we are done. 
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Case II [There is a cluster in C which surrounds both a(x) and a(y)]. In 
this case we are only interested in the smallest [with respect to the total order 
defined in (3.41)] of all these clusters, which we denote by T. 

Assume first that both a(x) and a(y) belong to T. If o- is contained in 
the union of boxes corresponding to sites of T, then our claim is immediate. 
Otherwise we follow o- (going from y to x) until it enters a white box. This box 
belongs to a (possibly infinite) connected component of TC and we know that O- 
leaves this component, since a(x) E T. Thus we can modify o- in the same way 
as we did in the proof of Lemma 3.2 [in case (i)] using the *-connectedness 
of the external outer boundary of T (resp., of the external inner boundary) of 
each hole of T. 

Consider now the case where exactly one of the sites a(x) and a(y), say 
a(y), belongs to T. Then a(x) is in a hole H(x) C T'. Using exactly the same 
construction as in (ii) in the proof of Lemma 3.2, we can connect x by a micro- 
scopic open path in W to the crossing cluster of the box, where o- leaves H(x) 
for the last time. Then the next box visited by o- lies in T and we can proceed 
in the same way as in the previous case, where a(x) and a(y) were both in T. 

The last case to look at is the situation where a(x) and a(y) are both in 
holes of T, which we denote by H(x) and H(y), respectively. If H(x) 7& H(y), 
then we use the same construction as before to connect x and y to sites which 
are boxes corresponding to sites of T. 

Consider now the case H(x) = H(y) = H. By analogy to Case I we denote 
by e(x) the first vertex of A after a(x) which has the property that e(x) is 
white and not surrounded by any (black) cluster contained in H. Similarly, 
let e(y) be the last vertex of A before a(y) with this property. By exactly the 
same reasoning as in case (ii) in the proof of Lemma 3.2, we know that there 
are microscopic open paths in W which connect x to the crossing cluster of 
e(x) [resp. y to the crossing cluster of e(y)]. Since A intersects T, there are 
vertices v1 and v2 such that v1 is the first and v2 the last vertex of A which 
belongs to 8lnH = dinH. Therefore, we can connect the crossing clusters of 
v1 and v2 traveling along white boxes corresponding to sites in din H. Finally, 
by analogous arguments as in Case I (considering only clusters in H), we can 
connect e(x) to v1 and e(y) to v2 by macroscopic open paths and this implies 
our claim. LI 

4. Proof of the theorems. We can now combine the results of the previ- 
ous two sections to give the proofs of Theorems 1.1 and 1.2. 

PROOF OF THEOREM 1.1. Let N > 10 and consider the renormalized lattice 
as described in Section 2. For y E Ed denote by a(y) the unique site such that 
y E Ba(y) and set n := Ja(y)J. Fix a macroscopic path A of length n joining 0 
to a(y). We denote by a0, . .. -,.an the vertices of this path [where ao = 0 and 
an = a(y)]. 

By Proposition 3.1 we know that we have, for any p > 1, 

(4.42) {0 ?* y, D(0, y) > plyll C { WJ > plyl}. 
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Observe that there is a constant c = c(d) > 0 such that 

(4.43) IWI < Ndc(n +l+ 1 IC* 
c* EC 

Using (2.14), we obtain 

(4.44) IP[0 ? y, D(0, Y) > PIYI] < PN[n + 1 + L IC>I >Cpc YJ 

(4.45) < 
~~~~PP(Nn + 1 + L |C*| > pcN dIyI] 

C*EC 

To estimate the last probability, we use a construction described by Fontes 
and Newman [5]. The main idea is to introduce preclusters (C)iEZd. These are 
independent random subsets of Zd with the property that the distribution of 
Ci is that of C* for all i E Zd. Then we know by Lemma 1.3 in [4] that the 
r.h.s. of (4.44) is smaller than 

(4.46) IPII(N)[ 1 I + 1) > pcNd 1] 

and in the brackets we now have a sum of i.i.d. random variables. By the 
results of Menshikov [9] and Aizenman and Barsky [1], we know that, for 
k(N) large enough, we have, for some h > 0, 

(4.47) Ek(N)[exp{h(CCOI + 1)}] < oo. 

We choose N = N(p, d) such that 1(N) is in this regime. Now N is fixed and, 
for IyI large enough, we have IyI/(n+1) > N. We next choose p = p(p, d) such 
that E[IC* I + 1] < pcN-d+l. By Cramer's theorem, the probability in (4.46) has 
exponential decay in n (therefore also in IyI) and this proves our claim. O 

PROOF OF THEOREM 1.2. We start again with y E Zd fixed and the macro- 
scopic path A of length n = la(y)l joining 0 to a(y). We have again 

(4.48) {0 ?* y, D(0, y) > 1} C {IWI > l} 

and therefore by the same argument as before 

IP[0 ?* y, D(0, y) > 1] <IP*()LCa +)> lcN] PL? Y.D(Ov ) > I ' AN)[ E (IC ai I + 1)] 

< (n + 1)Pp(N)[IC*1 + 1 > IcNd/(n + 1)]. 

By picking N as in (4.47) and using Chebyshev's inequality, we obtain our 
claim. L 
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