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7 Short-length routes in low-cost networks via

Poisson line patterns

David J. Aldous∗ and Wilfrid S. Kendall

Abstract

In designing a network to link n points in a square of area n, one
might be guided by the following two desiderata. First, the total net-
work length should not be much greater than the length of the shortest
network connecting all points. Second, the average route length (taken
over source-destination pairs) should not be much greater than the average
straight-line distance. How small can we make these two excesses? Speak-
ing loosely, for a non-degenerate configuration the total network length
must be at least of order n and the average straight-line distance must
be at least of order n1/2, so it seems implausible that a single network
might exist in which the excess over the first minimum is o(n) and the
excess over the second minimum is o(n1/2). But in fact one can do better:
for an arbitrary configuration one can construct a network where the first
excess is o(n) and the second excess is almost as small as O(log n). The
construction is conceptually simple and uses stochastic methods: over the
minimum-length connected network (Steiner tree) superimpose a sparse
stationary and isotropic Poisson line process. Together with a few addi-
tions (required for technical reasons), the mean values of the excess for
the resulting random network satisfy the above asymptotics; hence a stan-
dard application of the probabilistic method guarantees the existence of
deterministic networks as required (speaking constructively, such networks
can be constructed using simple rejection sampling). The key ingredient
is a new result about the Poisson line process. Consider two points at
distance r apart, and delete from the line process all lines which sepa-
rate these two points. The resulting pattern of lines partitions the plane
into cells; the cell containing the two points has mean boundary length
≈ 2r + constant × log r. Turning to lower bounds, consider a sequence of
networks in [0,

√
n]2 satisfying a weak equidistribution assumption. We

show that if the first excess is O(n) then the second excess cannot be
o(
√

log n).
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1 Introduction

We start with a counter-intuitive observation and its motivation, which prompted
us to probe more deeply into the underlying question.

Consider n points (“cities”, say) in a square of area n. Using the terminology
of computer science, we are interested in both the worst-case setting where
the points are located arbitrarily in the square, and the average case setting
where the points are random, independent and uniformly distributed. Consider
a connected network (a road network, say), made up of a finite number of
straight line segments and linking these n points and perhaps other junction
points. Recall that the minimum length connected network on a configuration
of points xn = {x1, . . . , xn} is the Steiner tree ST(xn).

It is well known and straightforward to prove [9, 11] that in both the worst
case and the average case the (mean) total network length len(ST(xn)) grows as
order O(n). When designing a network, it is reasonable to regard total network
length as a “cost”. A natural corresponding “benefit” would be the existence (in
some average sense) of short routes between points. Let ℓ(xi, xj) be the route-
length (length of shortest path) between points xi and xj in a given network,
and let |xi − xj | denote Euclidean distance (so ℓ(xi, xj) ≥ |xi − xj |). A good
network should satisfy the following informal criterion:

The short routes property: Averaging over pairs (i, j) chosen
uniformly at random, the route-length ℓ(xi, xj) between points xi

and xj is not much larger than the Euclidean distance |xi − xj |.

A first take on a statistic to measure this property for a connected network
G(xn) is the ratio statistic, based on averaging the ratios of network route-
lengths versus Euclidean distances. Consider a network G(xn) to be the config-
uration of points xn = {x1, . . . , xn} together with a collection of line segments
which combine to connect every xi to every other xj .

Definition 1 (Ratio statistic). Let average(i,j) denote the average over all dis-
tinct pairs (i, j). Then

ratio(G(xn)) = average
(i,j)

ℓ(xi, xj)

|xi − xj |
− 1 ≥ 0 . (1)

Consider a network G(xn) based on n uniform random points xn ⊂ [0,
√
n]2,

having (say) twice the total length of the Steiner tree. Initially we speculated
that in this case the expectation E [ratio(G(xn))] would at best converge to some
strictly positive constant as n→ ∞. However this intuition is wrong:
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Counterintuitive observation (see section 5.3). It is possible
to construct networks over well-dispersed configurations whose to-
tal lengths are greater than the corresponding Steiner tree lengths
by only an asymptotically negligible factor, but for which the ra-
tio statistic converges to zero as total network length converges to
infinity.

These considerations were originally motivated by analysis of real-world net-
works. Consider for example the “core” part of the UK rail network; that part
which links the 40 largest cities. Given a statistic R designed to capture the
“short routes” property, one can then consider how closely the observed value of
R approaches optimality. Of course the real network has evolved according to a
complex historical process heavily influenced by topography; nevertheless it is
of interest to consider whether its value of R is close to the minimum possible
value of R taken over all possible networks connecting the 40 cities but of no
greater total length.

One is then led to ask what statistic R might best capture the imprecisely ex-
pressed “short routes” property, and our consideration of n cities in an idealised
square [0,

√
n]2 is designed to illuminate this question. The above counterin-

tuitive observation can be interpreted as implying that the ratio statistic of
Definition 1 is probably not a good choice of statistic, because we prove this
observation by constructing networks which are approximately optimal by this
criterion and yet are plainly rather different from many plausible real-world
networks. What is a good choice of statistic will be discussed in a companion
paper, along with some real-world examples.

Informally, the counter-intuitive observation suggests that we can construct
networks for configurations of n points which have total network length ex-
ceeding that of the Steiner tree by just o(n), and such that the average excess
of network distance over Euclidean distance is o(n1/2) (bearing in mind that
average Euclidean distance for “evenly spread out” configurations should be
O(n1/2)). In fact much more is true: whatever the configuration of n points in
[0,

√
n]2 (hence, even in “worst case” scenarios) we can construct such networks

with average excess of network distance over Euclidean distance barely more
than O(log n). This we can work on an additive rather than a multiplicative
scale:

Definition 2 (Excess average length for a network). The excess route length
for a network G(xn) is

excess (G(xn)) = average
(i,j)

(ℓ(xi, xj) − |xi − xj |) . (2)

Theorem 1 (Upper bound on minimum excess network length). For each n let
x

n be an arbitrary configuration of n points in a square of area n. The following
asymptotics hold for large n:

(a) Let wn → ∞. There exist networks G(xn) connecting up the points such
that
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(i) len(G(xn)) − len(ST(xn)) = o(n);

(ii) excess(G(xn)) = o(wn logn).

(b) Let ε > 0. There exist networks G(xn) connecting up the points such that

(i) len(G(xn)) − len(ST(xn)) ≤ εn;

(ii) excess(G(xn)) = O(log n).

This result is proved in Sections 2 and 3. The idea is to build a hierarchical
network. Details are given at the start of Section 3, but here is a sketch. At
small scales routes use the underlying Steiner tree. At large scales, routes use
a sparse collection of randomly oriented lines (a realisation of a stationary and
isotropic Poisson line process); this is the key ingredient that permits an excess
of at most o(wn log(n)), respectively O(log(n)) (Section 2). We believe that
only these two scales are needed, but to simplify matters (so as to avoid non-
elementary analysis of Steiner trees and geodesics in Poisson line networks) we
introduce an intermediate scale consisting of a widely-spaced grid. Thus a route
from an originating city navigates through the Steiner tree to a grid line and
then along the grid line to a line of the Poisson line process, and then navigates
in the reverse sense down to the destination city. (For technical reasons the
discussion in Section 3 also introduces occasional small rectangles to permit
circumnavigation around Steiner tree “hot-spots”). The key ingredient in the
analysis is a calculation concerning the Poisson line process, which has separate
interest as a result in stochastic geometry (Theorem 4 below). Consider two
points at distance r apart, and delete all lines from the line process which
separate these two points. The resulting pattern of lines partitions the plane
into cells; the cell containing the two points has mean boundary length which
for large r is asymptotic to 2r + constant × log r.

Note that randomness arises only through use of the Poisson line process to
supply a relatively small number of long straight connections; the point pattern
xn is arbitrary. The probabilistic method may now be used to prove the exis-
tence of a non-random networks satisfying the asymptotics described in Theorem
1, based on applying Markov’s inequality to the expectations E [len(G(xn))] −
len(ST(xn)) = o(n), et cetera.

For lower bounds it is necessary to impose some condition on the empirical
distribution of the points in xn, since if all the points concentrate on a line
then the excess is zero! We need a quantitative condition on equidistribution of
points over a region, formalised via the following truncated Vasershtein coupling
scheme.

Definition 3 (Quantitative equidistribution condition). Let xn for varying n
form a sequence of configurations in the plane, let µn be a probability measure
on the plane, and and let Ln > 0. Say x

n is Ln-equidistributed as µn if there
exists a coupling of random variables (Xn, Yn) such that

(a) Xn has uniform distribution on the finite point-set xn,

(b) Yn has distribution µn,
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(c) E

[
min

(
1, |Xn−Yn|

Ln

)]
→ 0 as n→ ∞.

A sufficient condition for the following result is that xn is Ln-equidistributed
as the uniform distribution on the square of area n, for some Ln = o(

√
logn).

The purpose of introducing the non-uniform distribution µn in Definition 3 is
to permit us to express Theorem 2 below in terms of weaker and more local
conditions: for example a consequence of Theorem 2(b) is that we may replace
the uniform reference distribution by any distribution µ on [0, 1]2 with a con-
tinuous density component, rescaled to produce a distribution µn on [0, n1/2]2.
In particular the geometry of [0, n1/2]2 plays no rôle in this result.

We choose to express Definition 3 in stochastic terms purely for convenience
of exposition. For example, arguments using the connection of total variation
to coupling show that xn is Ln-equidistributed as the uniform distribution on
[o,

√
n]2 if the following non-stochastic condition is satisfied: for some sequence

of numbers λn → ∞ with λn/Ln → 0 and n/λ2
n being integral,

1

n

∑∣∣#(xn ∩box) − λ2
n

∣∣ → 0 ,

with the sum being taken over n/λ2
n boxes partitioning [o,

√
n]2 into cells of

sidelength λn. Thus a wide range of possible point patterns can be seen to be
Ln-equidistributed in the above sense.

Theorem 2 (Lower bound on minimum excess network length). Let x
n be a

configuration of n points in a square [0,
√
n]2. Let Ln = o(

√
logn). Suppose

either

(a) x
n is Ln-equidistributed as the uniform distribution on the square of area
n;

or (more generally)

(b) for some fixed ρ and ε, there is a subcollection y
k(n) of k(n) points, all

lying in a disk Dn of area πρn, such that k(n) > πρnε, and such that
y

k(n) is Ln-equidistributed as the uniform distribution on Dn.

Let G(xn) be a network based on the full collection of n points. If len(G(xn))/n
remains bounded as n→ ∞, then

excess(G(xn)) = Ω(
√

logn) . (3)

(Thus, lim infn→∞ excess(G(xn))/
√

logn > 0.)

Configurations xn produced by independent uniform sampling from [0,
√
n]2

satisfy the conditions of this theorem (see Remark 2), but so will many other
configurations exhibiting both clustering and repulsion. The proof of the the-
orem is given in Section 4, and exploits a tension between the two following
facts:
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(a) An efficient route between xi and xj must run approximately parallel to
the Euclidean geodesic, and hence will tend to make almost orthogonal
intersections with random segments perpendicular to this geodesic.

(b) On the other hand, the equidistribution condition means that two points
xi and xj randomly chosen from the subcollection must be nearly inde-
pendent uniform draws from Dn, which permits the derivation of upper
bounds on the probability of nearly orthogonal intersections of the form
given in fact (a).

Finally, one might hope to improve the result by imposing a more restrictive
assumption than the requirement that len(G(xn)/n remains bounded as n→ ∞.
This requirement is weaker than either of our two alternative assumptions on
len(G(xn))−len(ST(xn)) in the upper bound (since len(ST(xn)) = O(n)). How-
ever we are unable to improve (3) under either of the two stronger assumptions.

2 The Poisson line process network

Our upper bound on minimal excess (G(xn)) is based on a result from stochastic
geometry (Theorem 4 below) which is of independent interest.

Recall that a Poisson line process in the plane R2 is constructed as a Poisson
point process whose points lie in the space which parametrises the set of lines
in the plane. We will consider only undirected lines, which will be parametrised
by (r, θ) ∈ R × [0, π) where r is the signed distance from the line to a reference
point and θ is the angle the line makes with a reference axis. A stationary and
isotropic Poisson line process has intensity measure invariant under rotations
and translations of R2: a stationary and isotropic Poisson line process Π of unit
intensity is one for which the number of lines of Π hitting a unit segment has
expectation 1 (further facts about Poisson line processes may be found in [10,
Chapter 8]). We are interested in the cell containing two fixed points which is
formed by the lines of Π that do not separate the two points, because this can
be used as the efficient long-distance part of a network route between the two
points (see Lemma 3.3). Theorem 4 establishes an asymptotic upper bound for
the length of the mean cell perimeter in case of wide separation between the
two points; we prepare for this by using a Buffon argument to derive an exact
double-integral expression for the mean cell perimeter length:

Theorem 3 (Mean perimeter length). Let Π be a stationary and isotropic
Poisson line process of unit intensity. Fix two points vi, vj which are distance m
apart. Delete the lines of Π which separate the two points vi, vj. The remaining
line pattern partitions the plane: the cell C(vi, vj) containing the two fixed points
has mean perimeter E [len ∂C(vi, vj)] = 2m+Jm, where Jm is given by the double
integral
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Jm = E [len∂C(vi, vj)]−2m =
1

2

∫∫

R2

(φ− sinφ) exp
(
− 1

2 (η −m)
)
dx .

(4)

Here η = η(x) is a sum of distances |vi − x| + |vj − x|, while φ = φ(x) is the
exterior angle at x of the triangle with vertices x, vi, vj (see Figure 1).

φ

rη -  r

v
i

v
j

x

θψ

s_

Figure 1: Definition of η and φ. Note that φ is the sum of the two interior
angles ψ and θ.

Proof. This proof can be phrased in terms of measure-theoretic stochastic geom-
etry, using the language of Palm distributions and Campbell measure. Since we
deal only with constructions based on Poisson processes, we are able to adopt a
less formal but more transparent exposition, for the sake of a wider readership.

Let s be the line segment of length m with end-points vi, vj . The idea of
the proof is to measure E [len ∂C(vi, vj)] by computing the expected number of
hits on ∂C(vi, vj) made by an independent homogeneous isotropic Poisson line

process Π̃, again of unit intensity. Each hit corresponds to one of the points in
the intersection point process X = {ι(ℓ, ℓ̃) : ℓ ∈ Π, ℓ̃ ∈ Π̃}, where

ι(ℓ, ℓ̃) =

{
x if ℓ ∩ ℓ̃ = {x} ,
undefined if ℓ, ℓ̃ are parallel.

(5)

Note that with probability 1 the intersection point ι(ℓ, ℓ̃) is defined for all ℓ ∈ Π,

ℓ̃ ∈ Π̃.
Not all intersection points x ∈ X correspond to hits on ∂C(vi, vj). The

condition for x = ι(ℓ, ℓ̃) ∈ X to represent a hit on ∂C(vi, vj) is that ℓ should not
hit s (for otherwise it cannot be involved in the construction of ∂C(vi, vj)) and
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that x is not separated from s by any line from Π\{ℓ}. Recall that the Slivynak
theorem [10, §4.4, example 4.3] implies that Π\{ℓ} conditional on ℓ ∈ Π is itself
a homogeneous isotropic unit-rate Poisson line process. Consequently, under the
condition that ℓ does not hit s, the conditional probability of x = ι(ℓ, ℓ̃) ∈ X
representing a hit on ∂C(vi, vj) is equal to the probability p(x) of there being
no line in Π which cuts both the segment from vi to x and the segment from vj

to x.
A classic counting argument from stochastic geometry then reveals that

p(x) = exp
(
− 1

2 (|vi − x| + |vj − x| −m)
)

= exp
(
− 1

2 (η −m)
)
. (6)

Accordingly, if ν is the intensity of the point process X then we may compute
the mean number of hits on ∂C(vi, vj) as

∫∫

R2

ν P

[
ℓ 6⇑ s |x = ι(ℓ, ℓ̃) ∈ X

]
exp

(
− 1

2 (η −m)
)
dx

= 2m+

∫∫

R2

ν P

[
ℓ 6⇑ s, ℓ̃ 6⇑ s |x = ι(ℓ, ℓ̃) ∈ X

]
exp

(
− 1

2 (η −m)
)
dx. (7)

Here “ℓ 6⇑ s” stands for “the line ℓ does not hit s” – noting that the conditioning
in this context forces the Poisson line ℓ to pass through x but does not fix its
orientation – and on the right-hand side the summand 2m corresponds to the
fact that hits of Π̃ on s count as automatic double hits on ∂C(vi, vj).

Condition on x = ι(ℓ, ℓ̃) ∈ X (which is to say, condition on there being

Poisson lines ℓ ∈ Π, ℓ̃ ∈ Π̃ both passing through x) and consider

(a) the angle ξ1 made by ℓ with the line through vi and x;

(b) the angle ξ2 between ℓ and ℓ̃.

By isotropy of Π the random angle ξ1 is Uniform(0, π). Conditional on ξ1
and more generally on Π with an ℓ ∈ Π passing through x, the intersection
of Π̃ with ℓ is a Poisson point process on ℓ of unit intensity. Moreover if the
intersection points are marked with angles of intersection ξ2 then the mark ξ2
has mark density 1

2 sin ξ2 over ξ2 ∈ [0, π) (consider the length of the silhouette
of a portion of ℓ viewed at angle ξ2). Hence the conditional distribution of ξ2 for

x = ι(ℓ, ℓ̃) has density 1
2 sin ξ2 over ξ2 ∈ [0, π), and so we can compute (working

with ξ2 modulo π)

P

[
ℓ 6⇑ s, ℓ̃ 6⇑ s |x = ι(ℓ, ℓ̃)

]

=
1

π

∫ φ

0

(∫ φ−ξ1

−ξ1

| sin ξ2|
2

dξ2

)
dξ1 =

φ− sin(φ)

π
(8)

where φ = θ + ψ is the exterior angle at x of the triangle formed by x, vi, vj

(see Figure 1).
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Finally the intensity ν of X can be computed as π
2 , for example by computing

the mean number of hits of the unit disk by Π, then by computing the average
length of the intersection of the disk with a line of Π conditional on that line
hitting the disk. Thus

Jm = E [len(∂C(vi, vj))] − 2m

= ν

∫∫

R2

P

[
ℓ 6⇑ s, ℓ̃ 6⇑ s |x = ι(ℓ, ℓ̃) ∈ X

]
exp

(
− 1

2 (η −m)
)
dx

=
1

2

∫∫

R2

(φ− sinφ) exp
(
− 1

2 (η −m)
)
dx (9)

as required.

We now state and prove the main result of this section: an O(logm) upper
bound on the mean perimeter excess length Jm.

Theorem 4 (Asymptotic upper bound on mean perimeter length). The mean
perimeter excess length Jm is subject to the following asymptotic upper bound:

Jm ≤ O(logm) as m→ ∞ . (10)

Proof. Without loss of generality, place the points vi and vj at (−m
2 , 0) and

(m
2 , 0). The double integral in (4) possesses mirror symmetry about each of the

two axes, so we can write

Jm = 2

∫∫

[0,∞)2

(φ− sinφ) exp
(
− 1

2 (η −m)
)
dx

= 2

∫ π/2

0

∫ m
2

sec θ

0

(φ− sinφ) exp
(
− 1

2 (η −m)
)
r dr dθ+

+ 2

∫ π

π/2

∫ ∞

0

(φ− sinφ) exp
(
− 1

2 (η −m)
)
r dr dθ (11)

(using polar coordinates (r, θ) about the second point vj located at (m
2 , 0)).

The integrand in the second summand is dominated by π exp
(
− r

2

)
r, which

is integrable over (r, θ) ∈ (0,∞) × (π
2 , π). (In this region geometry shows that

η−m > r(1−cos θ) ≥ r.) Thus we can apply Lebesgue’s dominated convergence
theorem to deduce that the second summand is O(1) as m→ ∞, hence may be
neglected.

In fact we can also show that part of the first summand generates an O(1)
term: the dominated convergence theorem can be applied for any ε ∈ (0, π/2]
to show that

2

∫ π/2

0

∫ m
2

sec θ

ε

(φ− sinφ) exp
(
− 1

2 (η −m)
)
r dr dθ = O(1) ,

since the integrand is dominated by π exp
(
− r

2 (1 − cos θ)
)
r over the region

(r, θ) ∈ (0,∞)×(ε, π
2 ) (in this region geometry shows that η−m > r(1−cos θ) >

9



r(1 − cos ε)). Thus for fixed ε ∈ (0, π
2 ) as m → ∞ we have the asymptotic ex-

pression

Jm = 2

∫ ε

0

∫ m
2

sec θ

0

(φ− sinφ) exp
(
− 1

2 (η −m)
)
r dr dθ +O(1) ,

where the implicit constant of the O(1) term depends on the choice ofε > 0.
Now in the region where 0 < θ < ε and 0 < r < m

2 sec θ we know that
φ < 2θ < 2ε, and moreover φ − sinφ is an increasing function of φ. Therefore
there is a constant Cε, converging to zero as ε→ 0, such that in this region

φ− sinφ ≤ 2θ − sin(2θ) ≤ Cε

8

(2θ)3

6
≤ Cε

1 − cos θ

3
sin θ .

Hence (as m→ ∞ for fixed ε > 0)

2

∫ ε

0

∫ m
2

sec θ

0

(φ− sinφ) exp
(
− 1

2 (η −m)
)
rdrdθ

≤ 2
3Cε

∫ ε

0

∫ m
2

sec θ

0

(1 − cos θ) sin θ exp
(
− r

2 (1 − cos θ)
)
rdrdθ

= 8
3Cε

∫ ε

0

(∫ m
4

(sec θ−1)

0

se−sds

)
sin θ dθ

1 − cos θ
(using s = r

2 (1 − cos θ))

≤ 8
3Cε

∫ m
4

(sec ε−1)

0

(∫ v

0

se−sds

)
1

1 + 4v/m

dv

v
(using v = m

4 (sec θ − 1))

≤ 8
3Cε log

(
m
4 (sec ε− 1)

)
+O(1) .

Remark 1. More careful analysis yields useful o(1)-asymptotics: in fact it can
be shown that as m→ ∞ so

Jm = 8
3

(
logm+ γ + 5

3

)
+ o(1) , (12)

where γ is the Euler-Mascheroni constant: γ = limm→∞
((∑m

1
1
r

)
− logm

)
.

These o(1)-asymptotics show very good agreement with simulation: see for ex-
ample the simulation reported in the legend of Figure 2.

3 A low-cost network with short routes

In this section we prove Theorem 1: for a given configuration xn ⊂ [0,
√
n]2

we construct networks G(xn) for which both len(G(xn)) − len(ST(xn)) and
excess(G(xn) are small. The network is constructed by augmenting the Steiner
tree network ST(xn) in a hierarchical manner. The construction is stochastic:
we construct a random augmentation for which the mean values of these excess
values obey the desired asymptotics and then apply the probabilistic method
to establish existence of the desired non-stochastic networks. Working from the
largest scale downwards, we construct

10



Figure 2: Simulation of semi-perimeters for 1000 independent cells for unit-
rate Poisson line process, with points located at distance 108 units apart. The
figure is subject to vertical exaggeration: y-axis is scaled at 104 times x-axis.
Empirical mean excess semi-perimeter is 27.63 with standard error ±0.28, versus
predicted mean excess semi-perimeter 27.5528 (using o(1)-asymptotics).

1. a stationary and isotropic Poisson line process Π of intensity η, where
η will be small: note that this can be constructed from a unit intensity
process by scaling by a magnification factor of 1/η. A simple computation
[10, Section 8.4] shows that the mean total length of the intersection of
the resulting line pattern with [0,

√
n]2 equals πηn.

2. A medium-scale rectangular grid with cell side-length sn ∼ (logn)1/3. To-
tal length of this grid in [0,

√
n]2 is bounded above by

2(1 +
√

n
sn

)
√
n = o(n) .

3. The Steiner tree ST(xn).

4. A small number (at most n/2) of small hot-spot cells based on a small-
scale rectangular grid with cell side-length tn ∼ 1

(log n)1/6
. A cell in this

11



S T ( x  )n

Π

s
n

Figure 3: Illustration of construction of network to deliver an upper bound on
mean excess route-length. Points are indicated by small circles. In this figure
there is just one hot-spot cell.

grid is described as a hot-spot cell if it contains two or more points. These
hot-spot cells are used to by-pass regions where the Steiner tree might
become complicated and expensive in terms of network traversal. We add
further small segments connecting each hot-spot cell perimeter to points
within the hot-spot cell. Total length of these additions can be bounded
by

4
n

2
tn + n

tn
2

= o(n) .

Thus the mean excess length of this augmented network is o(n) + πηn. The
construction is illustrated in Figure 3. Note that we can choose sn and tn
such that n1/2/sn and sn/tn are integers, so that the small-scale lattice is a
refinement of the medium-scale lattice, which itself refines the square [0,

√
n]2.

3.1 Worst-case results for Steiner trees

We first record two elementary results on Steiner trees. The first result bounds
the length of a Steiner tree in terms of the square-root of the number of points
(for the planar case).

Lemma 3.1. Consider a configuration x
k of k points in a square of side r:

there is a constant C1 not depending on k or r such that

len
(
ST(xk)

)
≤ C1

√
kr . (13)

Proof. See [9, Section 2.2].

The second result provides a local bound on length contributed by a larger
Steiner tree in a small square containing a fixed number of points.

12



Lemma 3.2. Consider the Steiner tree ST (xn) for an arbitrary configuration
x

n in the plane. Let G be the restriction of the network ST (xn) to a fixed open
square of side-length t. Suppose k points x1, . . . , xk of the configuration x

n lie
within the square. Then

len(G) ≤ t
(
4 + C1

√
k + 1

)
. (14)

Proof. Let y1, . . . , ym be the locations at which ST (xn) crosses into the interior
of the square. (Note: m = 0 is possible if {x1, . . . , xk} = xn: in this case choose
y1 arbitrarily from the perimeter of the square.) Then

len(G) ≤ len(ST({x1, . . . , xk, y1, . . . , ym})) by minimality of ST (xn),

≤ len(ST({x1, . . . , xk, y1})) + 4t using square perimeter,

≤ t
(
4 + C1

√
k + 1

)
using the previous lemma.

3.2 Route-lengths in the medium-large network

The part of the construction involving the medium-scale grid and the Poisson
line process is useful in variant problems, so we separate out the following esti-
mate involving these ingredients.

Lemma 3.3. Let n1/2/sn be an integer. Consider the superposition of the
rectangular grid with cell side-length sn and the Poisson line process of intensity
η, intersected with the square [0, n1/2]2. Let vi, vj be vertices of the grid. Then

E [route-length vi to vj ] ≤ |vi − vj | + C2
1
η log(η

√
2n)

for an absolute constant C2.

Proof. Let C(vi, vj) be the cell of Π containing vi and vj (having deleted lines
from Π which separate vi from vj). Let R(vi, vj) be the rectangle bounded by
vi and vj ; then by convexity the route-length from vi to vj is bounded above by

1

2
len ∂ (R(vi, vj) ∩ C(vi, vj)) ≤ 1

2
len∂C(vi, vj) ,

whose mean value can be computed by recognising that the Poisson line process
is a rescaled version of a homogeneous isotropic unit rate Poisson line process.
Hence by scaling the asymptotic upper bound of Theorem 4 we have

E

[
1

2
len ∂ (R(vi, vj) ∩ C(vi, vj))

]
− |vi − vj |

≤ O

(
1

η
log (η|vi − vj |)

)
= O

(
1

η
log
(
η
√

2n
))

.
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3.3 Navigating the augmented network

We now explain how to move from points of xn up to a vertex of the medium-
scale grid.

Given xi ∈ xn, if this is in one of the hot-spot cells then move to the
perimeter of the hot-spot cell and thence to a suitable point of departure on
the perimeter, with route-length at most 5

2 tn. Now move along the Steiner
tree within the relevant medium-scale grid box to the box perimeter; however

by-pass all hot-spot cells. There are (sn/tn)
2

=
(
(logn)1/3(log n)1/6

)2
= logn

small squares each of which involves a route-length of either 2tn (if a hot-spot
box which will be by-passed) or tn(4 + C1

√
2) (if not, by Lemma 3.2). Hence

the total trip to the medium-scale grid box perimeter (including emergence from
the initial hot-spot, if required) has length at most

5
2 tn + tn(4+C1

√
2)×s2n/t2n ∼ 5

2 tn +(4+C1

√
2)×(log n)5/6 = o(log n) .

Furthermore the route length from perimeter to vertex of medium-scale grid box
is at most 1

2sn ∼ 1
2 (log n)1/3 = o(logn) . So for each xi there is a medium-scale

grid vertex vi for which route-length from xi to vi is o(log n) . Combining with
Lemma 3.3 and noting that the medium-scale grid geometry forces |vi − vj | ≤
|xi − xj | + 2 sn√

2
, we find

E [route-length from xi to xj ]− |xi − xj | ≤
√

2sn + o(log n) +C2
1
η log

(
η
√

2n
)
.

Averaging over the points of xn, it follows that the dominant contribution comes
from the cell semi-perimeters, and indeed

E [excess(G(xn))] ≤ O
(

1
η log

(
η
√

2n
))

,

at a cost in terms of network length which exceeds len(ST(xn)) by a stochastic
quantity of mean πηn+ o(n).

The two different results of Theorem 1 follow by choosing η to behave in two
different ways:

(a) either η → 0, ηwn → ∞,

(b) or η = ε > 0.

In either case we can apply the probabilistic method to exhibit existence of
the required deterministic networks for cases (a) and (b) of Theorem 1. For
example in case (a) it is then the case that E [len(G(xn)) − len(ST(xn))] ≤ ncn
and E [excess(G(xn))] ≤ cnwn logn for some cn → 0. But then for any fixed
n we can apply Markov’s inequality: P [len(G(xn)) − len(ST(xn)) > 3ncn] ≤ 1

3
and P [excess(G(xn)) > 3cnwn log n] ≤ 1

3 . Hence there is positive probability
that the random network satisfies both len(G(xn)) − len(ST(xn)) ≤ 3ncn and
excess(G(xn)) ≤ 3cnwn logn, hence such a network exists for each n.

We can view these applications of Markov’s inequality as indicating a simple
rejection sampling algorithm to be used to generate the required sequence of
networks.
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4 A lower bound on average excess route-length

In this section we prove Theorem 2. The proof is divided into four parts. Firstly
(Subsection 4.1) we show how to reduce the problem to an analogous case in
which the excess is computed for two random points drawn independently and
uniformly from the whole disk Dn of area πρn given in condition (b) of the
theorem. Then (Subsection 4.2) we show that the network geodesic must run
almost parallel to the Euclidean geodesic if the excess is small. On the other
hand (Subsection 4.3) we can use the uniformity of the two random points to
control the extent to which network segments can run both close to and nearly
parallel to the Euclidean geodesic. Finally (Subsection 4.4) we use the opposing
estimates of Subsections 4.2 and 4.3 to derive a proof of the theorem using the
method of contradiction.

4.1 Reduction to case of a pair of uniformly random points

First we indicate how condition (a) of Theorem 2 implies condition (b). Un-
der condition (a) we can use the coupling between Xn and Yn to show that
#{xn ∩Dn}/n → πρ: therefore for large n the number of points in xn ∩Dn

is approximately πρn. On the other hand the same coupling can be used to
bound the total variation distance between the two conditional distributions
L (Yn|Xn ∈ Dn) and L (Yn|Yn ∈ Dn) = Uniform(Dn), and to show that this
bound tends to zero. We can then use rejection sampling techniques to couple
L (Yn|Xn ∈ Dn) and Uniform(Dn) so that the truncated Vasershtein distance
tends to zero as n → ∞; as the distance is a metric we can combine this cou-
pling with the (conditioned) coupling of L (Xn|Xn ∈ Dn) and L (Yn|Xn ∈ Dn)
to obtain a coupling which satisfies condition (b).

We now note that it is sufficient to consider the analogous result for a con-
figuration xn of n points in the disk Dn. For then we can apply the result to
the lesser configuration yk(n) (for k(n) as given in condition (b) of Theorem 2)
and obtain

excess(G(yk(n))) = Ω(
√

log k(n)) = Ω(
√

log πρnε) = Ω(
√

log n) ,

while

excess(G(yk(n))) =
n(n− 1)

k(n)(k(n) − 1)
excess (G(xn))

≤ 1

πρε(πρε− 1/n)
excess (G(xn)) ,

from which Theorem 2 follows.
We therefore consider xn ⊂ Dn being Ln-equidistributed as the uniform

distribution on Dn. So by definition there is a coupling (X1, Y1) (here we omit
dependence on n) where X1 has uniform distribution on xn, Y1 has uniform
distribution on Dn and

∆n = E

[
min

(
1,

|X1 − Y1|
Ln

)]
→ 0 as n→ ∞. (15)
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Write (X2, Y2) for an independent copy of X1, Y1. In the definition of excess
it makes no asymptotic difference if we allow j = i in average(i,j), so we may
take

excess(G(xn)) = E [ℓ(X1, X2) − |X1 −X2|] . (16)

Set
An = [|Y1 −X1| ≤ Ln] ∩ [|Y2 −X2| ≤ Ln] (17)

so that by Markov’s inequality

P [An] ≥ 1 − 2∆n. (18)

Define ℓ(Y1, Y2) by supposing that Yi is plumbed in to the network using a
connection by a temporary line segment with endpoints Yi and Xi. A direct
computation shows that on the event An

ℓ(Y1, Y2) − |Y1 − Y2| ≤
(ℓ(X1, X2) + |X1 − Y1| + |X2 − Y2|) − (|X1 −X2| − |X1 − Y1| − |X2 − Y2|)

≤ ℓ(X1, X2) − |X1 −X2| + 4Ln.

Consequently

E [ℓ(Y1, Y2) − |Y1 − Y2|;An] ≤ excess(G(xn)) + 4Ln . (19)

By hypothesis Ln = o(
√

logn), and so the proof of Theorem 2 reduces to showing
that the left side (the excess for two random points chosen uniformly in the disk)
is Ω(

√
logn).

4.2 Near-parallelism for case of small excess

We now substantiate our previous remark that the network geodesic must run
almost parallel to the Euclidean geodesic if the excess is small.

It is convenient to situate the disk Dn in the complex plane C so as to have
a compact notation for rotations. For t > 0 we define Zt and Φ by

exp (iΦ) =
Y2 − Y1

|Y2 − Y1|
,

Zt = Y1 + t× exp (iΦ) . (20)

Let γ : [0, ℓ(Y1, Y2)] → C be the unit-speed network geodesic running from
Y1 to Y2 (using the temporary plumbing to move from Y1 to X1 and then again
from Y2 to X2). Then (bearing in mind that |γ′(t)| = 1)

ℓ(Y1, Y2) =

∫ ℓ(Y1,Y2)

0

|γ′(s)| ds ≥
∫ |Y1−Y2|

0

|γ′(τ(t))| τ ′(t)dt , (21)

where τ(t) is the first time s at which 〈γ(s) − Y1, exp (iΦ)〉 = t. (Note that
our networks are formed from finite collections of line segments. Hence τ ′ will
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Figure 4: Illustration of construction of Y1, Y2, and Zt. The angles θ(t) and δ1,
δ2, . . . are computed using the angles of incidence of network segments on the
perpendicular running through Zt; Υt,χ is the minimum of absolute values of

all such angles of points of intersection within
√

2tχ+ χ2 of Zt.

be defined and finite save perhaps at a finite number of times.) This and the
following constructions are illustrated in Figure 4.

Defining θ(t) by sec θ(t) = τ ′(t), and using sec θ ≥ 1 + 1
2θ

2, we deduce

ℓ(Y1, Y2) ≥ |Y1 − Y2| +
1

2

∫ |Y1−Y2|

0

θ(t)2dt . (22)

Furthermore we can use Pythagoras and the geodesic property of Euclidean
line segments to show the following. Let H(t) be the maximum |r| for which,
for some s,

γ(s) = Zt + ir exp (iΦ) .

If the excess for the network geodesic from Y1 to Y2 is bounded above by
ℓ(Y1, Y2) − |Y1 − Y2| ≤ χ then H(t) ≤

√
2tχ+ χ2.

Let Υt,χ be the smallest |δ| such that some network segment intersects the
perpendicular {Zt + ir exp iΦ : r ∈ R} at angle π/2 + δ and at distance at most√

2tχ+ χ2 from Zt (thus δ is the angle of incidence of this network segment on
the perpendicular). If ℓ(Y1, Y2) − |Y1 − Y2| ≤ χ and |Y1 − Y2| ≥ κ

√
ρn, we can
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use (22) to deduce

ℓ(Y1, Y2) − |Y1 − Y2| ≥
1

2

∫ κ
√

ρn

0

Υ2
t,χdt− 1

2

(
π2

4

)
× (|X1 − Y1| + |X2 − Y2|) .

(The second summand allows for the temporary plumbing in of connections
X1Y1 and X2Y2, for which the angle θ(t) ∈ (0, π

2 ) is not controlled by permanent
network segments). So introduce the event

Bκ,χ = [ℓ(Y1, Y2) − |Y1 − Y2| ≤ χ , |Y1 − Y2| ≥ κ
√
ρn] (23)

and recall from Equation (17) the event An = ∩2
i=1[|Yi − Xi| ≤ Ln]. Taking

expectations, we deduce

E [ℓ(Y1, Y2) − |Y1 − Y2| ; Bκ,χ ∩An]

≥ 1

2

∫ κ
√

ρn

0

E
[
Υ2

t,χ ; Bκ,χ ∩An

]
dt− π2

4
Ln .

Using integration by parts to replace the expectation by a probability,

E [ℓ(Y1, Y2) − |Y1 − Y2| ; Bκ,χ ∩An] +
π2

4
Ln

≥
∫ κ

√
ρn

0

∫ ∞

0

P [[Υt,χ > u] ∩Bκ,χ ∩An]u dudt

=

∫ κ
√

ρn

0

∫ ∞

0

(P [Bκ,χ ∩An] − P [[Υt,χ ≤ u] ∩Bκ,χ ∩An]) u dudt

≥
∫ κ

√
ρn

0

∫ ∞

0

max (P [Bκ,χ ∩An] − P [Υt,χ ≤ u] , 0)u dudt . (24)

Note also that from the definitions ofBκ,χ andAn, using (18), (19) and Markov’s
inequality

1 − P [Bκ,χ ∩An] = 1 − P [An] + P [An \Bκ,χ]

≤ 2∆n + P [|Y1 − Y2| < κ
√
ρn] +

excess(G(xn)) + 4Ln

χ
. (25)

To make progress we now need to find an upper bound for P [Υt,χ ≤ u] and this
is the subject of the next section.

4.3 Upper bounds using uniform random variables

Firstly we compute an upper bound on the joint density of the quantities Zt

and Φ from the previous section, illustrated in Figure 5.
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Figure 5: Illustration of construction in Lemma 4.1.

Lemma 4.1. Suppose Y1, Y2 are independent uniformly distributed random
points in a disk Dn of radius

√
ρn and centre 0 in the complex plane C. With

Zt and Φ defined as in (20), the joint density of Zt and Φ is given over C×[0, 2π)
by

I [z − teφ ∈ Dn]
(t+ s(z, φ))2

2π2ρ2n2
dz dφ , (26)

where eφ = eiφ is the unit vector making angle φ with a reference x-axis, and
s(z, φ) is the distance from z to the disk boundary ∂Dn in the direction φ (thus
in particular z + s(z, φ)eφ is on the disk boundary).

Proof. Express the joint density for Y1, Y2 as a product of a uniform density
over Dn for Y1 and polar coordinates r, φ about Y1 for Y2:

I [y1 ∈ Dn]
dy1
πρn

I
[
y1 + reiφ ∈ Dn

] r dr dφ

πρn
.

Obtain the result by integrating out the r variable and transforming the y1
variable to z by z = y1 + teiφ.
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Corollary 1. The density for Zt and Φ (mod π) is

f(z, φ) =
(

I [z − teφ ∈ Dn]
(t+ s(z, φ))

2

2
+ I [z + teφ ∈ Dn]

(t+ s(z, π + φ))
2

2

)
×

× I [0 ≤ φ < π]
dz dφ

π2ρ2n2
. (27)

with an upper bound

f(z, φ) ≤ 4 × I [0 ≤ φ < π]
dz dφ

π2ρn
. (28)

Proof. Equation (27) follows immediately from adding the two expressions from
Equation (26) for φ (mod π). The upper bound follows by noting

1. the maximum will occur when z − teφ runs along a diameter as t varies;

2. furthermore when one of z ± teφ lies on the disk boundary;

3. and furthermore when z = 0 is located at the centre of the disk (so t =
s(z,±φ) =

√
ρn).

Now consider the line segment St,χ centred at Zt, with end-points given

by the pair ±i
√

2tχ+ χ2 exp (iΦ); and consider the rose-of-directions empirical
measure of angles made by intersections of network edges with this segment:

Rt,χ(A) = # { network intersections on St,χ with angle of incidence lying in A}
(29)

(here angles are measured modulo π, and A ⊆ [0, π)). We may apply a Buffon-
type argument to bound E [Rt,χ(A)] using Inequality (28). Consider the contri-
bution to the expectation from a fixed line segment of the network of length ℓ:
the result of disintegrating the integral expression for this according to the value
of φ is an integral of f(z, φ) with respect to z over a region formed by intersecting

the disk with a parallelogram of base side-length ℓ and height 2
√

2tχ+ χ2 sinα
(here the angle α depends implicitly on φ and z). Of course the integral vanishes
if φ 6∈ A. Thus Inequality (28) yields a bound

E [Rt,χ(A)] ≤ 4

π2ρn
×
∫

G(xn)

∫

A

2
√

2tχ+ χ2 sinαdαdz.

For constant χ, the event [Υt,χ ≤ u] is the event [Rt,χ(π
2 −u, π

2 +u) ≥ 1] and so

P [Υt,χ ≤ u] ≤ E
[
Rt,χ(π

2 − u, π
2 + u)

]
≤ 16

π2ρ

len(G(xn))

n

√
2tχ+ χ2×u .

(30)
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4.4 Calculations

We have assembled the ingredients for the proof of Theorem 2, and so now can
perform the calculations to get a quantitative lower bound.

We proceed by contradiction. Suppose that excess(G(xn)) = o(
√

logn).
Inspecting (25) we see that we can choose χ = χn = o(

√
log n) and some small

κ > 0 such that for all sufficiently large n

P [Bκ,χ ∩An] ≥ 2−1/3. (31)

So we can combine (19) and (24) (and the fact that π2/4 < 3) to get

excess(G(xn)) + 7Ln ≥
∫ κ

√
ρn

0

∫ ∞

0

max
(
2−1/3 − P [Υt,χ ≤ u] , 0

)
u du dt.

By (30) and hypothesis of Theorem 2, there exists a constant B such that

P [Υt,χ ≤ u] ≤
√
B

12

√
2tχ+ χ2 × u.

Applying the formula
∫∞
0

max(0, α− βu)u du = α3

6β2 we see

excess(G(xn))+7Ln ≥ 1

B

∫ κ
√

ρn

0

1

2tχ+ χ2
dt =

log(κ
√
ρn+ χ

2 ) − log χ
2

2χB
. (32)

Recall this holds under the assumption that χn = o(
√

logn) and that κ > 0
is constant. We are given that Ln = o(

√
logn), and we have supposed for the

purposes of contradiction that excess(G(xn)) = o(
√

logn). But then (32) takes
the form

o(
√

logn) ≥ Ω(log n)

o(
√

logn)
,

which is impossible. We deduce we must have excess(G(xn)) = Ω(
√

logn).

5 Closing remarks and supplements

5.1 Spatial network design

Within the realm of spatial network design, the closest work we know is that
of Gastner and Newman [1], who consider the similar notion of a distribution
network for transporting material from one central vertex to all other vertices.
They give a simulation study (their Figure 2) of a certain algorithm on random
points, and comment

Thus, it appears to be possible to grow networks that cost only a
little more than the [minimum-length] network, but which have far
less circuitous routes.

Our Theorem 1 provides a strong formalisation of this idea.
An algorithm for minimizing excess for a given length is described in [8],

where results for a 39 point configuration are shown. But neither this nor [1]
has led to study of n→ ∞ asymptotics.
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5.2 Fractal structure of the Steiner tree on random points

A longstanding topic of interest in statistical physics is that of the continuum
limits of various discrete two-dimensional self-avoiding walks arising in proba-
bility models, eg

• uniform self-avoiding walks on the lattice,

• paths within uniform spanning trees in the lattice,

• paths within minimum spanning trees in the lattice.

This study has recently been complemented by spectacular successes of rigorous
theory [5]. It is conjectured that routes in Steiner trees on random points have
similar fractal properties [7]: route-length between points at distance n should
grow as nγ for some γ > 1. However, as our construction shows, such results
have little relevance to spatial network design.

5.3 The counterintuitive observation

The counterintuitive observation following Definition 1 follows quickly from the
work of Theorem 1. Suppose the configuration xn is well-dispersed, in the
weak sense that for some γ ∈ (0, 1) we find the number of point pairs within
nγ/2 of each other is o

((
n
2

)
nγ−1

)
(certainly this is the case for most patterns

generated by uniform random sampling from [0,
√
n]2). Consider a network

G(xn) produced by augmenting the Steiner tree according to the construction in
the proof of Theorem 1. Using the properties of this construction, the following
can be shown

E [ratio (G(xn))] = E

[
average

(i,j)

ℓ(xi, xj)

|xi − xj |
− 1

]

≤ constant × o(nγ−1) + (1 − o(nγ−1))

(
O(log

√
2n)

nγ/2

)

≤ O

(
max

(
1

n1−γ
,
logn

nγ/2

))
.

5.4 Derandomisation

Theorem 1 is a purely deterministic assertion, though our proof used randomi-
sation (supplied by the Poisson line process). It seems intuitively plausible that
one could give a purely deterministic proof, say by replacing the Poisson line
process with a suitable sparse set of deterministically positioned lines having a
dense set of orientations.

5.5 Quantifying equidistribution

The classical equidistribution property
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the empirical distribution of {n−1/2xn
i , 1 ≤ i ≤ n} converges weakly

to the uniform distribution on [0, 1]2

is equivalent (by a straightforward argument) to the property

xn is Ln-equidistributed as the uniform distribution on the square
of area n, for some Ln = o(n1/2).

Replacing one sequence of Ln by another slower-growing sequence makes equidis-
tribution a stronger assumption, and so our assumption in Theorem 2(a) (equidis-

tribution for some Ln = o(log1/2 n)) is stronger than the classical equidistri-
bution property. Indeed Theorem 2 fails under the classical equidistribution
property, as the following example shows.

Example 5.1. Let Ln = nγ for some γ ∈
(

3
8 ,

1
2

)
. There exist networks G(xn)

which are Ln-equidistributed as the uniform distribution on the square of area
n, for which len(G(xn)) = o(n) whilst excess(G(xn)) → 0.

For example: partition [0, n1/2]2 into subsquares of side Ln/ logn, construct
the complete graph on all centres of such subsquares, allocate the n points evenly
amongst subsquares and position them arbitrarily close to the centres.

As is apparent from the non-stochastic condition implying Ln-equidistribution,
there is a wide variety of configurations satisfying Ln-equidistribution. Here we
consider the particular case of independent uniform sampling, and show that
this generates an Ln-equidistributed sequence of configurations.

Remark 2. Sample the configuration xn independently and uniformly from
[0,

√
n]2. Let Ln → ∞, perhaps arbitrarily slowly. Then the probability that the

configuration xn is Ln-equidistributed with the uniform distribution converges
to 1. This follows by dividing [0,

√
n]2 into cells of side-length asymptotic to

Ln/
√

2, by conditioning on xn, and by “blurring” the points of xn by replacing
each point x ∈ xn by an independent draw taken uniformly from the cell con-
taining x. Then a uniform random draw Ỹn of one of the blurred points can be
coupled to lie within Ln of a uniform random draw Xn from the finite configu-
ration xn. A simple argument using the Binomial distribution then shows that
the total variation distance between Ỹn and Uniform([0,

√
n]2) tends to zero; it

follows that Xn can be coupled to a Uniform([0,
√
n]2) random variable Yn so

that

E

[
min

(
1,

|Xn − Yn|
Ln

)
|xn

]
→ 0 ,

where the convergence takes place in probability.

5.6 Poisson line process networks

Remark 1 indicates that more can be said about the mean semi-perimeter

1
2 E [len(∂C(vi, vj))] ,

and this will be returned to in later work. For example, consider the network
formed entirely from a Poisson line pattern. If the pattern is conditioned to
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contain points vi, vj then the perimeter ∂C(vi, vj) will be close to providing a
genuine network geodesic.

Note that questions about C(vi, vj) bear a family resemblance to the D.G. Kendall
conjecture about the asymptotic shape of large cells in a Poisson line pattern.
However C(vi, vj) is the result of a very explicit conditioning and hence explicit
and rather complete answers can be obtained by direct methods, in contrast to
the striking work on resolving the conjecture about large cells [6, 4, 3, 2].

5.7 An open question

In the random points model we can pose a more precise question. Over choices
of network G subject to the constraint

E [len(G(xn)) − len(ST(xn))] = o(n) ,

or the constraint
E [len(G(xn)] = O(n) ,

what is the minimum value of E [excess(G(xn))]? Our results pin down this
minimum value, in the latter case to the range [Ω

(√
logn

)
, O(log n)] and in the

former case the range [Ω
(√

logn
)
, o(wn logn)]. But it remains an open question

what should be the exact order of magnitude.
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