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Abstract In this review paper, we shall discuss some recent results concern-
ing several models of random geometric graphs, including the Gilbert disc
model Gr, the k-nearest neighbour model Gnn

k and the Voronoi model GP .
Many of the results concern finite versions of these models. In passing, we
shall mention some of the applications to engineering and biology.

1 Introduction

Place a million points uniformly at random in a large square and connect ev-
ery point to the six points closest to it. What can we say about the resulting
graph? Is it connected, and, if not, does it contain a connected component
with at least a hundred thousand vertices? In this paper, we consider such
questions for some of the most natural models of a random geometric graph,
including the one above. From a practical point of view, these graphs are ex-
cellent models for ad-hoc wireless networks, in which some radio transceivers
lie scattered over a large region, and where each transceiver can only com-
municate with a few others nearby. From a more mathematical standpoint,
the models act as a bridge between the theory of classical random graphs [17]
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and that of percolation [18], and our study of them will draw inspiration and
use tools from both these more established fields. (It is tempting to write
“older” fields, but in fact Gilbert’s pioneering papers [31, 32] appeared only
shortly after those of Broadbent and Hammersley on percolation, and those
of Erdős and Rényi on random graphs.)

For all the models, we will take the vertex set to be a unit intensity Poisson
process P in R2, or the restriction of P to a square, so it is convenient to
make some remarks about this at the outset. All our finite results will carry
over to the case of uniformly distributed points, but for their proofs, and for
the statements of our infinite results, it is far better to use a Poisson process.

There are several ways of defining such a process, of which the following is
perhaps the easiest to describe. First recall that a Poisson random variable
of mean λ is a discrete random variable X for which

P(X = k) = e−λ λk

k!
.

As is usual, we will denote this by X ∼ Po(λ). Now tessellate R2 with unit
squares, and consider a family (Xi) of independent random variables, indexed
by the squares, where each Xi ∼ Po(1). We place Xi points uniformly at
random in the square i. The result is a unit intensity Poisson process P.

One of the key features of this model is its independence: the number of
points of P in a measurable region A ⊂ R2 is a Poisson random variable with
mean |A| (the Lebesgue measure of A), regardless of what is happening out-
side A. Moreover, conditioned on there being k points in A, their distribution
is uniform. See [18] for more background.

Throughout the paper, the phrase “with high probability” will mean “with
probability tending to one as n →∞”. Also, all logarithms in this paper are
to the base e.

2 The Gilbert disc model

Our first model was introduced and studied by E.N. Gilbert in 1961 [31], and
has since become known as the disc model or Gilbert model. To define it,
fix r > 0, let P be a Poisson process of intensity one in the plane R2, and
connect two points of P by an edge if the distance between them is less than
r. Denote the resulting infinite graph by Gr.

2.1 Percolation

Although Gilbert’s main focus was the study of communications networks,
he noted that Gr could also model the spread of a contagious disease. For the
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second application, and perhaps also for the first, one is primarily interested
in percolation, in the following sense. Let us suppose that, without loss of
generality, the origin is one of the points of P. Writing a = πr2, and θ(a) for
the probability that the origin belongs to an infinite connected component of
Gr, Gilbert defined the critical area ac as

ac = sup{a : θ(a) = 0}.

In other words, for a > ac, there is a non-zero probability that the disease
spreads, or that communication is possible to some arbitrarily distant nodes
of the network. In this case we say that the model percolates. Since θ(a) is
clearly monotone, θ(a) = 0 if a < ac. Currently the best known bounds, due
to Hall [36], are

2.184 ≤ ac ≤ 10.588,

although in a recent paper Balister, Bollobás and Walters [13] used 1-
independent percolation to show that, with confidence 99.99%,

4.508 ≤ ac ≤ 4.515,

which is consistent with the non-rigorous bounds

4.51218 ≤ ac ≤ 4.51228

obtained by Quintanilla, Torquato and Ziff [50].
We can consider the same problem in d dimensions, where we use balls of

volume v rather than discs, and define θd(v) and vd
c in the obvious manner.

Penrose [47] proved the following.

Theorem 1.
vd

c → 1 as d →∞.

Most of the volume in a high-dimensional ball is close to the boundary, and
hence one might expect that the same conclusion holds for a two-dimensional
annulus where the ratio of the inner and outer radii tends to 1. This is indeed
true, and was proved independently by Balister, Bollobás and Walters [12]
and Franceschetti, Booth, Cook, Meester and Bruck [28]. However, as shown
in [12], the corresponding result for square annuli is false. A general condition
under which the critical area tends to 1 is given in [14].

2.2 Connectivity

Penrose [48, 49] considered the following finite version of Gr. For this, we
only consider points of P lying in a fixed square Sn of area n, again joining
two points if the distance between them is less than r. Penrose proved the
following result on the connectivity of the resulting model Gr(n).
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Theorem 2. If πr2 = log n + α then

P(Gr(n) is connected) → e−e−α

.

In particular, the above probability tends to 1 iff α →∞.

This result has an exact analogue in the theory of classical random
graphs [17]. Indeed, in both cases the obstructions to connectivity are iso-
lated vertices. In fact, for both models, it is not hard to calculate the expected
number of isolated vertices, and then to show that their number has a distri-
bution that is approximately Poisson. The hard part is to show that there are
no other obstructions. For Gr(n), Penrose first shows that the obstructions
must be small, that is, of area at most C log n (with our normalization). This
he achieves by discretization. Since many of the proofs of the theorems we
will discuss use this technique, we give a brief account of it, for this case. The
basic idea is to tessellate our large square with smaller squares of side length
r/
√

5. Any component in Gr(n) must be surrounded by a connected path
consisting of, say, l vacant squares, none of which can contain any points of
P. Even though the number of such paths of squares is exponential in l, if the
component is large (so that l ≥ K for some absolute constant K), it is not
hard to show that the probability of such a vacant path existing anywhere
in Sn tends to zero. Thus, with high probability, if Gr(n) is disconnected,
it contains a small component. Penrose completes his proof with a delicate
local argument, showing that, for the relevant range of values of r, this small
component is, with high probability, an isolated vertex.

As shown by Penrose, the story for k-connectivity also mirrors that for
classical random graphs, in that the principal obstructions are vertices of
degree exactly k−1. For detailed statements and proofs, the reader is referred
to [49].

There are various ways to generalize this model. One, treated thoroughly
in [43], is to choose the disc radii to be independent and identically distributed
random variables. Another possibility is to keep the radii fixed at r, but vary
the intensity of the underlying Poisson process. In one such model, suggested
by Etherington, Hoge and Parkes [24], the intensity ρ(x) of P at distance x
from the origin is given by a gaussian distribution, so that

ρ(x) = n
π e−x2

.

This model GGauss
r (n) was analyzed in detail by Balister, Bollobás, Sarkar

and Walters [8], who determined the threshold for connectivity.

Theorem 3. If

2r
√

log n = log log n− 1
2 log log log n + f(n),

then, with high probability, GGauss
r (n) is connected if f(n) → ∞ and discon-

nected if f(n) → −∞.
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2.3 Coverage

For most of the remainder of this section, we will imagine that the points of
our Poisson process P are sensors designed to monitor a large square region
Sn of area n. Such monitoring is feasible if the sensing discs Dr(p) cover Sn,
so that

Sn ⊂
⋃

p∈P
Dr(p).

How large should we make r = r(n) so that this occurs with high probability?
Before turning to recent results, we consider the original application of

Moran and Fazekas de St Groth [45]. They considered the problem of covering
the surface of a sphere with circular caps, and write:

This problem arises in practice in the study of the theory of the manner in which antibodies

prevent virus particles from attacking cells. Thus an influenza virus may be considered to

be a sphere of radius about 40mµ. Antibodies are supposed to be cigar-shaped molecules of

length about 27mµ and of a thickness which will be neglected. The antibodies are assumed

to attach themselves at their ends to the virus particle, standing up rigidly on the surface

and thus shielding a circular area on the virus from possible contact with the surface of a

cell.

Also noteworthy is their simulation method:

...an experiment was carried out using table tennis balls. These had a mean diameter of

37.2mm. with a standard deviation around this mean of 0.02mm. One hundred holes of

diameter 29.9mm. were punched in an aluminium sheet forming one side of a flat box. The

balls were held firmly against the holes by a foam rubber pad, and sprayed with a duco

paint. After drying they were removed and replaced at random by hand. Forty sprayings

were done in each of three sets of 100 balls.

This was also one of the problems considered by Gilbert [32], who per-
formed his simulations on an IBM 7094 computer. His paper contains the
following critical observation, which we will state in the context of our orig-
inal formulation of the problem. For the (open) discs Dr(p) to cover Sn, it
is not only necessary but also sufficient that the following three conditions
hold:

• Every intersection of 2 disc boundaries inside Sn is covered by a third disc
• Every intersection of a disc boundary with ∂Sn is covered by a second disc
• There is at least one such intersection (of either type)

Hall [35] used this observation to establish the following criterion.

Theorem 4. If
πr2 = log n + log log n + f(n),
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then a necessary and sufficient condition for the discs Dr(p) to cover Sn with
high probability is that f(n) →∞.

The proof proceeds by showing that if r is as in the statement of Theo-
rem 4, then the expected number of uncovered intersections is asymptotically
4e−f(n). Thus if f(n) →∞, by Gilbert’s observation, we obtain coverage with
high probability. For the other direction, Hall applies the second moment
method (to the uncovered area).

Slightly later, Janson [38] obtained very general results on the probability
of coverage. For our case, his result is as follows.

Theorem 5. If
πr2 = log n + log log n + x,

then as n →∞
P(Sn is covered) → e−e−x

.

Recently, a shorter proof of Theorem 5, with bounds on the error term,
was obtained by Balister, Bollobás, Sarkar and Walters [11]. The idea is that,
while the uncovered intersections occur in groups, these groups consist simply
of the intersections bordering the uncovered regions, which are small (area
C/ log n), and essentially form their own Poisson process of intensity e−f(n).
(It is very unlikely that two such uncovered regions are close, because the
discs bordering them are, on their scale, almost half-planes. Moreover, the
expected number of sides of an uncovered region is the same as that of any
other “atomic” region, namely 4. To make these heuristics rigorous, one can
use the Stein-Chen method [2].)

2.4 Colouring

Both Hall [35] and Janson [38] considered not only the case of coverage, but
also that of k-coverage. Our square Sn is said to be k-covered by the discs
Dr(p) if every point of Sn is contained in at least k discs. This property is
useful for sensor networks, since it allows for the possibility that up to k − 1
sensors in a small region might simultaneously fail. Now, in our model, for a
fixed instance of P, suppose that we increase r until Sn is covered. It turns
out that just a small additional increase in r ensures k-coverage.

Theorem 6 ([11, 38]). For any fixed k ≥ 1, if

πr2 = log n + k log log n + x,

then as n →∞
P(Sn is k-covered) → e−e−x/(k−1)!.
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However, suppose we are more optimistic and instead request the following.
We would like to devise a rota system so that each sensor can sleep for most
of the time, for example, to extend battery life. A natural way of doing this
would be to colour the set of sensors with k colours, and arrange that only
the sensors with colour ` are active in the `th time slot. After k time slots
have expired, we repeat the process. In order to detect an event occurring
anywhere and at any time, it is necessary that the sensors in each colour class
themselves form a single cover of Sn. Thus our question becomes: for fixed
k, how large should r be to ensure that the sensors can be partitioned into k
groups, each of which covers the sensing region? We call this the problem of
sentry selection, since each of the groups is a group of sentries keeping watch
over the region while the others are sleeping.

It is important to note that a k-cover of an arbitrary set cannot always be
partitioned into k single covers. For instance, let S be the set of all subsets
of A = {1, 2, . . . , n} of size k. The n sets Si = {B ∈ S : i ∈ B}, 1 ≤ i ≤ n,
form a k-cover of S which cannot even be partitioned into two single covers
if n ≥ 2k− 1. This example shows that a solution to our problem must make
some use of its geometric setting. Also, even restricting ourselves to discs
of equal radii, it is possible to construct k-covers of the plane that are not
d(2k + 2)/3e-partitionable. Thus we must also make use of the probabilistic
setting.

Let n, r ∈ R. For k ∈ N, write Ek
r for the event that the discs Dr(p) form

a k-cover of Sn, and F k
r for the event that they may be partitioned into k

single covers of Sn. Balister, Bollobás, Sarkar and Walters [11] proved that
most random k-covers are in fact k-partitionable.

Theorem 7. With notation as above,

P(Ek
r \ F k

r ) ≤ ck

log n
,

for some constant ck.

They also proved that this is sharp, up to the value of the constant ck.
Two hitting time versions of Theorem 7 are also obtained: if we fix n and
slowly increase r, or if we fix r and add points uniformly at random to a given
area, then with high probability, k-partitionability occurs as soon as we have
k-coverage. In particular, Theorem 6 holds also for k-partitionability.

Let us suppose that πr2 ≥ log n + (k − 1
2 ) log log n and attempt to prove

Theorem 7. For this range of values of r, a typical point in Sn is covered at
least log n times. Intuitively, in most of Sn, we can simply colour the discs
randomly, and the probability of failure, that is, of a point x ∈ Sn not being
covered by discs of every colour, will be negligible. Indeed, if the level of
coverage is at least 3k log log n everywhere, we can apply the Lovász local
lemma to prove that a suitable colouring exists. However, there will be many
regions in Sn which are covered less than 3k log log n times. Call these thinly
covered regions. It turns out that, with high probability, such regions occur
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in small, well-separated clusters. At the scale of the clusters, the curvature
of the discs is negligible, so that they behave like half-planes.

Let us examine one such cluster. We will probably find some very thinly
covered regions, which are covered less than 3k times. These turn out to
have a very useful property (with high probability): some set of k − 1 discs
D1, . . . , Dk−1 covers all of them. This facilitates the following simple deter-
ministic colouring method. Suppose that all the discs are actually half-planes.
Remove the Di, and suppose that we still have a cover of Sn (otherwise, we
did not have a k-cover to begin with). By Helly’s theorem, we can find three
of the half-planes which cover Sn, which we colour with colour k and remove.
Now restore Dk−1 and repeat the procedure, colouring three half-planes with
colour k−1 before removing them. Because of the property mentioned above,
we can repeat the process k − 2 times, using all the colours, and the level
of coverage in the cluster will never drop to zero until we have finished. We
do this for every cluster, and, outside the clusters, we complete the colouring
using the Lovász local lemma, as before.

The actual proofs require somewhat more detailed estimates than the
above sketch suggests. As a by-product, we can identify the principal obstruc-
tions to k-partitionability in a k-cover as small non-partitionable k-covered
configurations which are covered by k−2 common discs. Since these configu-
rations are very small, the curvature of the discs forming them is negligible,
so that our obstructions are essentially 2-covers with half-planes which can-
not be partitioned into two single covers. It is therefore of interest to classify
such configurations. Such a classification is presented in [11].

2.5 Thin strips

Suppose that instead of examining points of a Poisson process P inside a
large square, we instead consider the restriction of P to a thin strip T . As
before, we will join two points of P at distance less than r. Such a model
was suggested by the engineering problem of building an electronic “fence”
surrounding a large region. The points of P are sensors, and the fence consists
of a thin strip of sensors bordering the region, which has the ability to detect
intruders if there is no continuous path crossing it, no point of which lies
within distance r/2 of any sensor. Note that this is a different condition from
both connectivity of the underlying graph Gr[T ] of sensors and coverage of
the sensing regions (of radius r/2). Indeed, if T is a long thin rectangle, our
requirement is weaker than both connectivity of Gr[T ] and coverage of T by⋃

p∈P∩T Dr/2(p). However, it is not hard to see that the new condition is both
necessary and sufficient not only for the ability to detect intruders, but also
for the ability to relay information longitudinally across T , assuming that
the transmission range of the sensors is r. Informally, if there is a continuous
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crossing path γ avoiding all the sensing regions, then the sensors on one side
of γ will be unable to communicate with those on the other side.

To fix ideas, let Th = R × [0, h], and construct the infinite graph Gr[Th].
Define a separating path to be a continuous simple path in Th starting at
some point on the line y = h, ending at some point on the line y = 0, and
not passing strictly within distance r/2 of any point of P ∩ Th. This path
would be a feasible path for an intruder to take in order to avoid detection. It
also identifies a communication breakdown in the information transmission
problem. We wish to estimate the frequency with which these paths occur
along Th, but some care is needed with the definition of when two such paths
are essentially the same. To this end, we say that a component of Gr[Th] is
good if it contains a vertex strictly within distance

√
3

2 r of the top of Th, and
also a vertex strictly within distance

√
3

2 r of the bottom of Th. The significance
of the factor

√
3

2 is that the good components can be ordered along Th, since
no good component can “jump over” another. Now we may define a break in
Gr[Th] to be a partition of the good components into two classes: those on
the left of the break and those on the right. It is not hard to see that any
separating path defines a break, and conversely that, given a break, there
exists a separating path which separates the components on each side of the
break. However, two separating paths γ1 and γ2 may correspond to the same
break. The point of this definition is that the breaks count separating paths
that are essentially different.

s t

a b

Fig. 1 A break between two good components. Figure taken from [4].

Horizontal translation is an ergodic transformation on the probability
space of this model, and consequently it is possible to define the intensity
Ih,r of breaks along Th. (In fact, this can also be seen directly.) Loosely
speaking, a long section of Th of length ` will contain approximately `Ih,r

breaks. Our problems thus reduce to the single problem of estimating Ih,r.
This was done by Balister, Bollobás, Kumar and Sarkar [4, 6].

Theorem 8. The intensity of breaks I(h, r) is given by

Ih,r = r1/3ε(hr−1/3) exp(−hr + O(hr−5/3)),
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where
log ε(z) = αz + β + oz(1).

Numerical simulations give α ≈ 1.12794 and β ≈ −1.05116. The proof is
long and complicated, so we shall content ourselves with a very brief outline.
First, a discretization argument shows that, for moderately large values of
r and h, the breaks are typically narrow, that is, they tend to cut straight
across Th and have width Θ(r). Next, a version of Theorem 8 is obtained
for h ≤

√
3

2 r. This involves, among other things, an area-preserving rescaling
of Th near a break, which approximates disc boundaries by parabolas and
enables us to replace the two parameters r and h by the single parameter
z = hr−1/3. (We also make use of a quantitative version of Perron’s theorem
for eigenvalues of strictly positive matrices.) To extend this to larger values
of h, we require two additional lemmas. The first is a technical lemma on
the typical shape of a break: loosely speaking we require that most breaks
are “rectangular”. The second lemma states that Ih,r is approximately mul-
tiplicative, in the sense that if r ≥ 6 and h = h1 + h2 with h1, h2 ≥ r, then
there is some c > 0 such that

cr−1Ih1,rIh2,r ≤ Ih,r ≤ 50hIh1,rIh2,r.

Naturally, the proof of this begins by splitting the strip Th into two strips
Th1 and Th2 , but many difficulties arise at the interface, and we also require
our bound on the expected width of a break established earlier.

For many applications, it is useful to know information about the distribu-
tion of the breaks, rather than simply their expected number. It is possible to
show, using the Stein-Chen method [2], that for r ≥ 6 and x > 0, the proba-
bility that Gr[Th] restricted to [0, x/Ih,r] contains exactly k breaks tends to
e−xxk/k! as h → ∞. For this, we need to know that, for large values of h,
the good components are typically wide, and this necessitates a somewhat
elaborate discretization argument, owing to complications arising from tiles
of our discretization intersecting previously examined regions. For details,
see [4].

3 The k-nearest neighbour model

Our second model is very similar to the first. As before, we begin with a
Poisson process P of intensity one in the plane R2. This time, however, we
join each point p ∈ P to its k nearest neighbours: those points of P which are
the closest, in the usual euclidean norm, to p. (With probability one, there are
no ties.) Initially, this creates a directed graph with out-degree k: however, we
convert this into an undirected graph by removing the orientations. Note that
while the maximum degree of the resulting graph Gnn

k may be significantly
more than k, the average degree is certainly between k and 2k, and it is not
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hard to see (from elementary properties of the Poisson distribution) that, as
k → ∞, the average degree is (1 + o(1))k. The maximum degree is at most
6k [44].

This is also a very natural model for a transceiver network: one can imag-
ine, for instance, that each transceiver can initiate a connection with at most
k others. Indeed, this was the original application, and as such was studied
in a series of papers in the engineering literature (see [62] and the references
therein).

3.1 Percolation

Percolation in this model is defined as for the Gilbert model, one difference
being that k is an integer, so that there is some hope of determining the
percolation threshold exactly. To be precise, suppose that the origin is one
of the points of P, write θnn(k) for the probability that the origin belongs to
an infinite connected component of Gnn

k , and define kc by the formula

kc = min{k : θ(k) > 0}.

Simulations [7] suggest that θnn(1) = θnn(2) = 0 and that θnn(3) ≈ 0.985, so
that kc = 3, but proving this is another matter. The best published bounds
are due to Teng and Yao [53], and Bagchi and Bansal [3], who show that

2 ≤ kc ≤ 188,

although in a paper to be published, Balister, Bollobás and Walters [15] used
a certain oriented 1-independent percolation model to prove that

kc ≤ 11,

and that kc = 3 with confidence 99.99%.
As for the Gilbert model, we can consider the same problem in d dimen-

sions. This was done by Häggström and Meester [34]. Writing kc(d) for the
d-dimensional analogue of kc, they proved that there exists a d0 such that

kc(d) = 2 for all d ≥ d0,

and carried out Monte Carlo simulations which suggest that

kc(d) =

{
3 for d = 2
2 for d ≥ 3.
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3.2 Connectivity

Since all transceiver networks are finite, it is natural to consider finite ver-
sions of the model Gnn

k . With this in mind, we restrict attention to points
of P within a fixed square Sn of area n, and ask questions about the graph
Gn,k formed by joining each point of P within Sn to its k nearest neighbours
within Sn. Note that this is different from the subgraph of Gnn

k induced by the
vertices of P within Sn. One can now ask for an analogue of Penrose’s theo-
rem. In other words, how large should we make k = k(n) so as to make Gn,k

connected with high probability? The obstructions to connectivity cannot be
isolated vertices, since there are no isolated vertices in our new model: the
minimum degree of Gn,k is at least k. On the other hand, it is not hard to see
that, for connectivity, we should look at the range k = Θ(log n). To see this,
imagine tessellating the square Sn with small squares Qi of area about log n.
Then the probability that a small square contains no points of the process is
about e− log n = n−1, so that, with high probability, every small square con-
tains at least one point. A short calculation now shows that, if k ≥ 50 log n,
then P(Po(5π log n) > k) = o(n−1), so that, again with high probability, ev-
ery point of Gn,k contained in a square Qi is joined to every other point in
Qi, and also to every point in every adjacent square. This is enough to make
Gn,k connected. For a lower bound, imagine a small cluster of k + 1 points
surrounded by a large annulus containing no points of P. These points will
form a component of Gn,k if the thickness of the annulus is greater than the
(euclidean) diameter of the cluster it encloses, and if each point outside the
annulus has all its k nearest neighbours outside the annulus. It is easy to ex-
hibit an example of such a configuration which occurs in a specified location
with probability e−ck: the constant c depends on the exact specifications of
the configuration. It is now a simple matter to show that if e−ck ≥ n−c′ for
some c′ < 1 (i.e. if k ≤ c′′ log n for some c′′ < 1/c), such a configuration will,
with high probability, occur somewhere in Sn, disconnecting Gn,k.

Define cl and cu by

cl = sup{c : P(Gn,bc log nc is connected) → 0},

and
cu = inf{c : P(Gn,bc log nc is connected) → 1}.

Xue and Kumar [62] were the first to publish bounds on cl and cu: they
obtained cl ≥ 0.074 and cu ≤ 5.1774, although a bound of cu ≤ 3.8597 can be
read out of earlier work of Gonzáles-Barrios and Quiroz [33]. Subsequently,
Wan and Yi [60] showed that cu ≤ e and Xue and Kumar [63] improved
their bound to cu ≤ 1/ log 2. The best bounds to date are due to Balister,
Bollobás, Sarkar and Walters [7], who proved that cl ≥ 0.3043 and cu ≤
1/ log 7 ≈ 0.5139.
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In some sense, the lower bound comes from optimizing the shape (and
other characteristics) of the cluster of k + 1 points alluded to above. The
details are far from straightforward, however, and most of the work consists
of optimizing the region outside the “empty” annulus. For the upper bound
in [7], it is important to show first that the obstructions to connectivity are
small (of area C log n). For this, in turn, one first needs to observe that no two
edges belonging to different components to Gn,k may cross, and indeed that,
for k = Θ(log n), any two edges belonging to different components of Gn,k

are, with high probability, separated by a certain minimum distance (which
depends on k). One can then mimic Penrose’s discretization argument to
prohibit the existence of two large components, with high probability. The
remainder of the proof is very different in character and we will not discuss
it here.

The natural conjecture that cl = cu = c was made in [7] and proved in [10].
More precisely, we have the following theorem.

Theorem 9. There exists a constant ccrit such that if c < ccrit and k =
bc log nc then P(Gn,k is connected) → 0 as n → ∞, and if c > ccrit and
k = bc log nc then P(Gn,k is connected) → 1 as n →∞.

One of the ideas in the proof of Theorem 9 is that the essentials of a small
component in Gn,k can be captured “up to ε” by a sufficiently fine discretiza-
tion (depending on ε but not on k), which can then be scaled for different
values of k. The details, however, are complicated. The proof suggests that
c = “0.3043” (where “0.3043” refers to the bound on cl from [7] mentioned
above). To some extent, this is backed up by simulations [7].

From the above results, it follows from the theorems in [9] that also cl =
cu = c for the problem of s-connectivity, for any fixed s. For information on
the directed model Dn,k, related coverage problems, and several conjectures,
see the papers [7, 9].

3.3 Sharp thresholds

We have seen that, for the Gilbert model, very precise results are known
about the nature of the transition from non-connectivity to connectivity.
For the k-nearest neighbour model, the picture is much less clear, since the
obstructions to connectivity are only conjectural. Writing

p(n, k) = P(Gn,k is connected),

let us fix n and focus on the case k ≈ c log n, where c is the critical constant
from the previous section. We would like to know how quickly p(n, k) changes
from almost 0 to almost 1 as k increases. Specifically, write

kn(p) = min{ k : p(n, k) ≥ p }.
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It seems very likely that, for any 0 < ε < 1, there exists C(ε) such that, for
all sufficiently large n,

kn(1− ε) < C(ε) + kn(ε). (1)

However, this is not known. What is known is that, for fixed k, p(n, k) de-
creases sharply from almost 1 to almost 0 as n increases. (One has to increase
n by a multiplicative factor to make p(n, k) go from 1 − ε to ε, but that is
only to be expected since k ≈ c log n.) Ignoring problems at the boundary, the
basic idea is that if p(n, k) = 1−ε, say, then we can consider the square SM2n

as the union of M2 copies of Sn, each of which contains a small disconnecting
component with probability about ε. Consequently,

p(M2n, k) ≈ (1− ε)M2
< ε,

for a suitable multiplier M = M(ε). In [9], a weak form of (1) is derived from
this result via a complicated double-counting argument.

4 Random Tessellations

Random tessellations of R3 were introduced into the study of rock formations
by Delesse [22] 160 years ago, and in recent years they have been used to study
a great variety of problems from kinetics to polymers, ecological systems
and DNA replication (see, among others, Evans [25], Fanfoni and Tomellini
[26], [27], Ramos, Rikvold and Novotny [51], Tomellini, Fanfoni and Volpe
[54], [55], and Pacchiarotti, Fanfoni and Tomellini [46]). In this section we
shall concentrate on planar tessellations and give a brief review of the results
concerning percolation on the two most frequently studied models, the so
called Voronoi and Johnson–Mehl tessellations.

Strictly speaking, it would suffice to discuss the Johnson–Mehl tessellations
only, since a Voronoi tessellation is just a special Johnson–Mehl tessellation.
Nevertheless, as Voronoi tessellations have been studied for much longer and
are much more basic than Johnson–Mehl tessellations, we shall discuss them
in a separate subsection.

In fact, first we shall describe a rather general tessellation in Rd, a trivial
extension of the one defined by Johnson and Mehl. Suppose that ‘particles’
(also called ‘nucleation centres’) arrive at certain times according to some
spatial process, which may be deterministic or random. The moment a par-
ticle arrives, it starts to grow a ‘crystal’ at a certain pace, which may be
constant or varying, either deterministically, or in a random way, occupy-
ing the ‘unoccupied’ space around it as it grows. Whatever space a particle
occupies belongs to that particle or crystal forever.

In this very general model, the crystal of a ‘fast’ particle may well overtake
and surround the crystal formed by an earlier, but ‘slow’ particle, and the
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crystal of a particle may well consist of an infinite number of components.
Not surprisingly, such a general model does not seem to be of much use.
Needless to say, it is easy to define even more general models of crystals: e.g.,
we may use different norms rather than the Euclidean.

In the Johnson–Mehl model, all particles have the same constant speed,
so the crystals are simply connected regions and a particle arriving in the
crystal of another particle does not even start to form any crystal of its own,
so may be ignored. In a Voronoi tessellation the particles not only have the
same speed, but also arrive at the same time.

4.1 Random Voronoi Percolation

Let us start with a slightly different definition of a Voronoi tessellation. Let Z
be a set of points in Rd. (In our terminology above, Z is the set of ‘particles’ or
‘nucleation centres’ that grow into ‘crystals’ or ‘tiles’.) For z ∈ Z, let Vz be the
closed ‘cell’ consisting of those points of Rd that are at most as far from z as
from any other point of Z. In all cases of interest, Z is taken to be a countable
set without accumulation points; also, Z is not too ‘lop-sided’: its convex hull
is the entire space Rd. In particular, each cell Vz is the intersection of finitely
many closed half-spaces, so is a convex polyhedron with finitely many faces.
Trivially, each Vz is the closure of its interior Uz; also the total boundary
of the cells,

⋃
z 6=z′∈Z Vz ∩ Vz′ , has measure 0. The tessellation or tiling of

Rd into the ‘cells’ or ‘tiles’ Vz is the Voronoi tessellation associated with Z.
As we have already remarked, these tessellations were first introduced by
Delesse [22] to study the formation of rocks; their mathematical study was
initiated only a little later by Dirichlet [23] in connection with quadratic
forms, and their detailed study was started by Voronoi [59] about sixty years
later. Today, in mathematics they tend to be called Voronoi tessellations (or
tilings), although occasionally they are named after Dirichlet.

In a random Voronoi tessellation the set Z used to define the Voronoi cells
is taken to be a homogeneous Poisson process P on Rd, of intensity 1, say.
The choice of the points z ensures that, with probability 1, the tessellation
has no ‘pathologies’ (in fact, is as ‘regular’ as possible): any two cells Vz, Vz′

are either disjoint or share a full (d−1)-dimensional face, and in every vertex
of a cell precisely d + 1 cells meet.

Having defined the cells Vz associated with the points z ∈ P, we define
a graph GP with vertex set P by joining two vertices by an edge if their
cells share a (d − 1)-dimensional face. Now, a random Voronoi percolation
in Rd is simply a site percolation on GP , where GP itself depends on the
random set P. To spell it out, let 0 < p < 1 be a parameter, and assign one
of two states to each vertex of GP , open or closed, such that, given P, each
vertex is open with probability p, and the state of a vertex is independent
from the set of states assigned to the other vertices. As always, our system
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Fig. 2 Part of a random Voronoi tiling in R2. The dots are the points of a Poisson process.
Figure adapted from [19].

is said to percolate if the graph GP contains an infinite path all of whose
vertices are open. Equivalently, we may colour a cell black with probability
p, independently of the colours of the other cells, and colour a point of Rd

black if it belongs to a black cell: then percolation means that the set of black
points has an unbounded component.

There is a more user-friendly way of defining random Voronoi percolation:
in this approach we take two independent Poisson processes on Rd, P+ and
P−, with intensities p and 1−p, respectively. Then P = P+∪P− is a Poisson
process of intensity 1, P+ is the set of black (open) points, and P− is the set
of white (open) points that are used to define Voronoi cells. Define a graph
on P+ by joining two of its points z and z′ if there is a path in Rd from
z to z′ which does not go nearer to another point of P = P+ ∪ P− than
to the nearer of z and z′. We have percolation if this graph has an infinite
component.

By making use of Kolmogorov’s 0-1 law one can show that, for each 0 <
p < 1, the probability of percolation is either 0 or 1. In the first instance, we
are interested in the critical probability pc = pc(d) such that for p < pc the
probability of percolation is 0, and for p > pc it is 1.

Unlike in the case of the classical bond and site percolations on lattices, it
is not entirely immediate that this critical probability pc(d) is non-trivial, i.e.,
0 < pc(d) < 1. A way of showing this is to use (P+,P−) to define appropriate
1-independent percolations on Zd that imply bounds on pc(d). However, in
order to prove better bounds for pc(d), we have to work rather hard.

For large d, Balister, Bollobás and Quas [5] have proved the following
bounds on pc(d). The proof of the lower bound is fairly easy, but that of the
upper bound is more difficult.
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Theorem 10. If d is sufficiently large then the critical probability pc(d) for
random Voronoi percolation on Rd satisfies

2−d (9d log d)−1 ≤ pc(d) ≤ C2−d
√

d log d,

where C is an absolute constant.

Not surprisingly, most of the interest in random Voronoi percolation cen-
tres round percolation in the plane. In fact, in one of the early papers on
percolation, Frisch and Hammersley [30] challenged mathematicians to work
on problems of this kind. From the late 1970s, much numerical work was
done on random Voronoi percolation in the plane (see, e.g., Winterfeld,
Scriven and Davis [61], Jerauld, Hatfield, Scriven and Davis [39], and Jer-
auld, Scriven and Davis [40]). In particular, Winterfeld, Scriven and Davis
estimated that the critical probability for random Voronoi percolation in the
plane is 0.500±0.010. In spite of this, it was not even proved that the critical
probability pc(2) is strictly between 0 and 1.

The 1990s brought about substantial mathematical work on random
Voronoi percolation, notably by Vahidi-Asl and Wierman [56, 57, 58], Zvav-
itch [64], Aizenman [1], Benjamini and Schramm [16] and Freedman [29]. Of
these papers, only [64] is about the critical probability: in this paper Zvavitch
proved that pc(2) ≥ 1/2.

Even without computer experiments, it is difficult not to guess that the
critical probability pc(2) is exactly 1/2, but a guess like this is very far from
a mathematical proof. Such a proof was given by Bollobás and Riordan [19]
in 2006.

Theorem 11. The critical probability for random Voronoi percolation in the
plane is 1/2.

Very crudely, the ‘reason why’ the critical probability is 1/2 is ‘self-duality’.
For any rectangle R, either there is a ‘black crossing’ from top to bottom
or a ‘white crossing’ from left to right. In particular, if p = 1/2 then the
probability that for a given square S there is a black crossing from top to
bottom is precisely 1/2. All this is very well, but there are major difficulties
in piecing together such crossings to form appropriate paths.

In fact, ‘self-duality’ is the reason why the critical probability for bond
percolation in the plane is 1/2, but after Harris’s proof [37] ten years passed
before Kesten [41] could prove the matching upper bound. By now there
are numerous elegant and simple proofs of this fundamental Harris–Kesten
theorem (see Bollobás and Riordan [20, 18]), but it seems that there is no
easy way of adapting any of these proofs to random Voronoi percolation,
as the technical problems of overcoming ‘singularities’ are constantly in the
way. Indeed, in order to prove Theorem 11, Bollobás and Riordan [19] had to
find a much more involved and delicate argument than those used to tackle
percolation on lattices.
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To conclude this subsection, let us mention an important question con-
cerning random Voronoi percolation in the plane: is it conformally invariant?
(Rather than explaining what this question means, we refer the reader to Ben-
jamini and Schramm [16] and to Chapter 8 of Bollobás and Riordan [18].) Let
us just add that in 1994 Aizenman, Langlands, Pouliot and Saint-Aubin [42]
made the famous conjecture that under rather weak conditions percolation in
the plane is conformally invariant. This has been proved for site percolation in
the triangular lattice by Smirnov [52]. Since random Voronoi percolation has
much more built-in symmetry than percolation on lattices, like the triangular
lattice, it would not be unreasonable to expect that conformal invariance is
easiest to prove in this case. Unfortunately, so far this expectation has not
been justified.

4.2 Random Johnson–Mehl Percolation

This time we shall consider only Johnson–Mehl percolation in the plane. Let
us recall the definition in the simplest case. ‘Particles’ or ‘nucleation centres’
arrive randomly on the plane at random times, according to a homogeneous
Poisson process P on R2 × [0,∞), of intensity 1, say. Thus, if z = (w, t) ∈ P
then at time t a nucleation centre arrives in the point w ∈ R2. As soon as
this nucleation centre arrives, it starts to grow at speed 1, say, so that by
time t + u it reaches every point x within distance u of w, and claims it for
its crystal, provided it had not been claimed by another nucleation centre. A
little more formally, if a nucleation centre w ∈ R2 arrives at time t then its
crystal Vz = V(w,t) consists of all points x such that

d2(x, w) + t ≤ d2(x,w′) + t′

for every point z′ = (w′, t′) ∈ P. (Here d2(x, x′) is the Euclidean distance
of x and x′. In defining a cell, we may safely ignore what happens at the
boundary: if a point may be claimed by several particles, we may assign it at
random to any one of them.)

In yet another description of this random tessellation, we keep the points
z = (w, t) ∈ P themselves, grow them in the space R3 (rather than the
plane), and then slice this tessellation with the plane R2 ⊂ R3. To spell this
out, define the Johnson–Mehl norm || · ||JM as the `1-sum of the `2-norms on
R2 and R:

||(x1, x2, t)||JM =
√

x2
1 + x2

2 + |t| = ||(x1, x2)||2 + |t|,

and write d = dJM for the corresponding distance. Then the crystal Vz =
V (w, t) of the nucleation centre w that arrived at time t is
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Vz =
{

x ∈ R2 : d
(
(x, 0), z

)
= inf

z′∈P
d
(
(x, 0), z′

) }
. (2)

Putting it in this way, we see that Johnson–Mehl tessellations of R2 corre-
spond to two-dimensional slices of Voronoi tessellations of R3 with respect to
the somewhat unusual sum-metric dJM.

Fig. 3 Part of a random Johnson–Mehl tessellation of R2. The dots are the projections
onto R2 of those points z of a Poisson process in R2 × [0,∞) for which the corresponding
cell Vz is non-empty. Figure taken from [21].

To define percolation on a random Johnson–Mehl tessellation, we proceed
as in the case of Voronoi tessellations: we assign black and white (or open
and closed) states to the cells, and look for an unbounded component in the
union of black cells.

By adapting their proof of Theorem 11 to the case of random Johnson–
Mehl tessellations, Bollobás and Riordan [21] determined the critical proba-
bility in this case as well.

Theorem 12. The critical probability for random Johnson–Mehl percolation
in the plane is 1/2.

Once again, this result is not too surprising, but what is surprising is that
although the Johnson–Mehl model is more complicated than the Voronoi
model, the proof of this result is actually simpler than that of Theorem 11.
This seeming contradiction is explained by the fact that in proving Theo-
rem 12 we can make use of the third dimension in the last representation.
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5 Outlook

In this brief review we have seen that although in the past fifty years much
work has been done on properties of random geometric graphs, including
percolation on them, the subject is still in its infancy. We very much hope that
the host of beautiful open problems in the area will attract some beautiful
solutions.
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34. O. Häggström and R. Meester, Nearest neighbor and hard sphere models in continuum
percolation, Random Structures and Algorithms 9 (1996), 295–315.

35. P. Hall, On the coverage of k-dimensional space by k-dimensional spheres, Annals of
Probability 13 (1985), 991–1002.

36. P. Hall, On continuum percolation, Annals of Probability 13 (1985), 1250–1266.
37. T.E. Harris, A lower bound for the critical probability in a certain percolation process,

Proc. Cam. Philos. Soc. 56 (1960), 13–20.
38. S. Janson, Random coverings in several dimensions, Acta Mathematica 156 (1986),

83–118.
39. G.R. Jerauld, J.C. Hatfield, L.E. Scriven and H.T. Davis, Percolation and conduction

on Voronoi and triangular networks: a case study in topological disorder, J. Physics
C: Solid State Physics 17 (1984), 1519–1529.

40. G.R. Jerauld, L.E. Scriven and H.T. Davis, Percolation and conduction on the 3D
Voronoi and regular networks: a second case study in topological disorder, J. Physics
C: Solid State Physics 17 (1984), 3429–3439.

41. H. Kesten, The critical probability of bond percolation on the square lattice equals
1/2, Comm. Math. Phys. 74 (1980), 41–59.

42. R. Langlands, P. Pouliot and Y. Saint-Aubin, Conformal invariance in two-dimensional
percolation, Bull. Amer. Math. Soc. 30 (1994), 1–61.

43. R. Meester and R. Roy, Continuum Percolation, Cambridge University Press, 1996.
44. G.L. Miller, S.H. Teng and S.A. Vavasis, An unified geometric approach to graph

separators, in IEEE 32nd Annual Symposium on Foundations of Computer Science,
1991, 538–547.
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