IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 28, NO. 5, JUNE 2010 677

Random-Walk Based Approach to Detect Clone
Attacks in Wireless Sensor Networks

Yingpei Zeng, Jiannong Cao, Senior Member, IEEE, Shigeng Zhang, Shanqing Guo and Li Xie

Abstract— Wireless sensor networks (WSNs) deployed in hos-
tile environments are vulnerable to clone attacks. In such attack,
an adversary compromises a few nodes, replicates them, and
inserts arbitrary number of replicas into the network. Conse-
quently, the adversary can carry out many internal attacks. Pre-
vious solutions on detecting clone attacks have several drawbacks.
First, some of them require a central control, which introduces
several inherent limits. Second, some of them are deterministic
and vulnerable to simple witness compromising attacks. Third,
in some solutions the adversary can easily learn the critical
witness nodes to start smart attacks and protect replicas from
being detected. In this paper, we first show that in order to
avoid existing drawbacks, replica-detection protocols must be
non-deterministic and fully distributed (NDFD), and fulfill three
security requirements on witness selection. To our knowledge,
only one existing protocol, Randomized Multicast, is NDFD and
fulfills the requirements, but it has very high communication
overhead. Then, based on random walk, we propose two new
NDFD protocols, RAndom WalLk (RAWL) and Table-assisted
RAndom WalLk (TRAWL), which fulfill the requirements while
having only moderate communication and memory overheads.
The random walk strategy outperforms previous strategies be-
cause it distributes a core step, the witness selection, to every
passed node of random walks, and then the adversary cannot
easily find out the critical witness nodes. We theoretically analyze
the required number of walk steps for ensuring detection.
Our simulation results show that our protocols outperform an
existing NDFD protocol with the lowest overheads in witness
selection, and TRAWL even has lower memory overhead than
that protocol. The communication overheads of our protocols are
higher but are affordable considering their security benefits.

Index Terms—Wireless sensor networks, computer network
security, clone attacks, node replication, random walk.

I. INTRODUCTION

IRELESS sensor networks (WSNs) have been used
in various applications, e.g., military, environmental,
and health applications [1]. When WSNs are deployed in
hostile scenarios, such as surveillance on the battlefield, they
must confront the threats from attackers (e.g., enemies on the
battlefield). This is because the attackers may intend to learn

Manuscript received 3 April 2009; revised 7 November 2009. This work is
supported in part by Hong Kong RGC GRF under Grant PolyU5102/08E,
Hong Kong PolyU under Grant 1-BB6¢, China 973 Project under Grant
2009CB320702, the National Natural Science Foundation of China (NSFC)
under Grant 60673154, and the Natural Science Foundation of Jiangsu
Province under Grant BK2009465.

Y. Zeng, S. Zhang and L. Xie are with the State Key Laboratory for
Novel Software Technology, Nanjing University, Nanjing, P.R. China. (e-mail:
{zyp.zsg} @dislab.nju.edu.cn, xieli@nju.edu.cn).

J. Cao is with the Department of Computing, Hong Kong Polytechnic Uni-
versity, Hung Hom, Kowloon, Hong Kong. (e-mail: csjcao@comp.polyu.edu
.hk).

S. Guo is with the School of Computer Science and Technology, Shandong
University, Jinan, P.R. China. (e-mail: guoshanqing@sdu.edu.cn).

Digital Object Identifier 10.1109/JSAC.2010.100606.

information from the WSNs or disable the functions of the
WSNs. For example, on the battlefield, the enemies would
hope to learn the private locations of soldiers from, or inject
wrong commands into the sensor network. So it is critical to
ensure the security of sensor networks in such scenarios.

Clone attack [2] (also called node replication attack) is a
severe attack in WSNs. In this attack, an adversary captures
only a few of nodes, replicates them and then deploys arbitrary
number of replicas throughout the network. The capture of
nodes is plausible [3], [4] because sensor nodes are usually
unprotected by physical shielding due to cost considerations
[2], and are often left unattended after deployment. If we do
not detect these replicas, the network will be vulnerable to a
large class of internal attacks [5]. For example, the adversary
now can overhear the traffic passing the replicas (which may
contain the aforementioned locations of soldiers), inject false
data into the network (which may be false commands), defame
other nodes and even revoke legitimate nodes [2]. Existing
authentication techniques [6], [7], [8] cannot detect such
attacks, because all the replicas hold legitimate keys.

Various approaches have been proposed to detect clone
attacks [2], [9], [10], [11], [12], [13]. They essentially try to
detect the abnormal symptoms caused by replicas (e.g., a node
ID is associated with two different locations). However, exist-
ing approaches may be deterministic, or cannot defend against
smart attacks, or need a central control. Firstly, deterministic
means that which nodes detect the abnormal symptoms of
a given node is fixed (usually these nodes are called the
witness nodes of the given node). In this case, if the adversary
compromises all the witness nodes of a captured node, he
can then safely deploy any number of replicas of that node.
Secondly, the adversary may protect his replicas by starting
a special witness compromising attack, the smart attack. In
this attack the adversary finds out the witness nodes that will
detect the replicas (we call them critical witness nodes), and
only compromises these witness nodes to avoid detection.
Finally, as pointed out in [2], the detection protocols involving
a central control have inherent limits such as a single point
of failure. Table I shows the classification of some existing
approaches.

In this paper, firstly, we show that in order to avoid the
drawbacks of existing approaches, replica-detection protocols
must be NDFD and fulfill three security requirements on
witness selection. To our knowledge, Randomized Multicast
[2] is the only existing protocol fulfilling the requirements,
but it has very high communication overhead (i.e., O(n)
per node). Secondly, based on random walk, we propose
two new NDFD protocols fulfilling the requirements, while

0733-8716/10/$25.00 (© 2010 IEEE

678 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 28, NO. 5, JUNE 2010

TABLE I
SECURITY AND COST COMPARISONS OF DIFFERENT PROTOCOLS

Protocols Non- Resilient Communi- Memory

determin-| to Smart | cation

istic Attack
Deterministic || No No O(v/n)! O(1)
Multicast [2]
Randomized Yes Yes O(n) O(y/n)
Multicast [2]
LSM [2] Yes No O(y/n) O(y/n)
RED [9] Yes No O(y/n) O(1)
SDC [10] No Yes O(y/n) O(1)
RAWL Yes Yes O(y/nlogn)| O(y/nlogn)
TRAWL Yes Yes O(v/nlogn)| O(1) 2

I'n is the number of nodes in the network

2 without counting the trace table

having only moderate communication and memory overheads.
Our random walk strategy outperforms previous strategies
because it naturally distributes the responsibility of witness
node selection to every passed node of random walks, and
then adversaries cannot easily find out the critical witness
nodes. The first protocol, RAndom WalLk (RAWL), starts
several random walks randomly in the network for each node
a, and then selects the passed nodes as the witness nodes of
node a. Our analysis shows that O(y/nlogn) walk steps are
sufficient to detect clone attacks with high probability. The
second protocol, Table-assisted RAndom WaLk (TRAWL), is
based on RAWL and adds a trace table at each node to reduce
memory cost. Usually the memory cost is due to the storage
of location claims; in TRAWL each node only stores O(1)
location claims now (although the size of the trace table is
still O(y/nlogn), the size of a table entry is much smaller
than the size of a location claim). Our simulation results show
that our protocols outperform the best existing NDFD protocol
LSM [2] (having the lowest overheads) in witness selection,
and TRAWL even has lower memory overhead than LSM.
The communication overheads of our protocols are higher than
LSM, but are affordable considering the security benefits.

The rest of the paper is organized as follows. In Section
IT we review related work. Then in Section III we discuss
the design principles of replica-detection protocols. In Section
IV, we describe the network and the adversary models. After
discussing some preliminary approaches which address some
of the existing drawbacks listed in Section V, we present
and analyze our two primary protocols, RAWL and TRAWL,
in Sections VI and VII respectively. Theoretical analysis,
simulation results, and discussions of our protocols are given
in Sections VIII, IX, and X respectively. Finally we conclude
this paper in Section XI.

II. RELATED WORK

Some methods can prevent clone attacks, however only in
certain circumstances. For example, we can bind each node’s
deployment location with its ID then replicas cannot be placed
at other locations; however we need to know the location
of each node in advance. We can also erase the primary
key in each node after the node establishes pairwise keys
with its neighbors [7]; however this method only works when

the adversary does not launch clone attacks during such key
establishment phase, and we will not deploy any new node.

We thus focus on the approaches applicable in general
conditions. We roughly classify existing approaches into two
categories: central control involved and fully distributed. Ap-
proaches in the first category usually need a central control,
e.g., the base station (BS), in some critical steps. Approaches
in the second category do not need any central control.

A. Central Control Involved Approaches

Finding conflicting location claims is a common method to
detect replicas. In [2] Parno et al. presented a straightforward
centralized detection approach. In this approach, each node
sends a list of its neighbors and their location claims to the
BS. Since there is a common assumption that the replicas
cannot have different IDs (we will describe the reason later
in Section IV-A), the BS can easily find and revoke nodes
with the same ID but with different location claims. In [9]
Conti et al. proposed RED, which is similar to Deterministic
Multicast [2] (we will introduce it in next subsection), except
that who are the witness nodes of a node is determined by
a random value distributed by the BS in each execution of
the protocol. In the above two protocols, the communication
and memory costs per node are O(y/n) and O(1) respectively.
Both protocols suffer from the inherent drawbacks we list later
in Section III-A.

Finding other abnormalities is also used to detect replicas
in the literature. Choi et al. [12] proposed SET to detect
the abnormality that an ID appears in different exclusive
subgroups. The network is partitioned into clusters based
on a random value broadcasted by the BS, and trees are
formed to check whether subgroups have IDs in common.
SET may have false detections when insidious leaders in the
trees forge IDs not in their clusters. Brook et al. [11] proposed
to detect the abnormality that some keys are used too often in
communications. The BS collects the times keys are used in
each node, judges the abnormal keys and tells each node to
terminate the links using these keys. This approach is designed
for special key distribution schemes in [6]; it is not clear
whether it works well with other schemes. Xing et al. [13]
proposed to detect the abnormality that a node has different
fingerprints. Fingerprint is generated from node’s neighbor
list, and the BS detects the replicas if it receives different
fingerprints for the same ID. This scheme requires each node
to periodically communicate with the BS.

B. Fully Distributed Approaches

All existing approaches in this category detect replicas
based on finding conflicting location claims. In [2] Parno
et al. proposed four approaches. The first one is Node-To-
Network Broadcasting. When executing the protocol, each
node broadcasts its location claim to the whole network, and
all nodes store the location claims of their neighbors only.
Then if a node receives two conflicting claims of some node
ID, it can revoke that node by flooding the network with the
two claims. The second approach is Deterministic Multicast.
A fixed mapping function is used to map each node ID to g

ZENG et al.: RANDOM-WALK BASED APPROACH TO DETECT CLONE ATTACKS IN WIRELESS SENSOR NETWORKS 679

nodes (witness nodes), and then each node’s neighbors will
forward the node’s location claim to these g nodes.

Another two approaches proposed in [2] by Parno et al are
Randomized Multicast and Line-Selected Multicast (LSM). In
Randomized Multicast the neighbors of each node randomly
select y/n nodes as that node’s witnesses. Then if a node is
replicated, according to the birthday paradox problem, at least
one witness will receive two conflicting location claims with
high probability. LSM improved on Randomized Multicast. In
LSM the nodes in the paths from a node’s neighbors to the
randomly selected witnesses are used; these nodes become the
node’s witnesses too. Such change reduces the communication
cost per node from O(n) to O(y/n).

Zhu et al. [10] divided the network into cells, and proposed
two approaches: SDC and P-MPC. In SDC, each node ID
is mapped to one cell, and the location claim of each node
is forwarded to the mapped cell and broadcasted within the
cell. Nodes in the cell store the claim and become that node’s
witnesses with some probability. P-MPC is different from SDC
in that each node ID is mapped to multiple cells with different
probabilities, however, the set of possible mapped cells is still
deterministic.

Melchor et al. [14] proposed an active detection approach,
in which witness nodes actively obtain location claims. Each
node first randomly chooses several nodes and becomes their
witness node. Then if a node is node a’s witness node, it
will send location-claim request through several relay nodes
to node a. These relay nodes are randomly chosen by the
witness node for a. Thus if @ has a replica, the replica will
have high probability to receive the request as well, and reply
a conflicting location claim to the witness node.

Our protocols also belong to this category. We would like
to delay the analysis of these approaches to the next section.

II1. DESIGN PRINCIPLES

In this section we discuss why replica-detection protocols
must be NDFD and fulfill the three security requirements
identified here.

A. Protocol Type Selection

Central control involved vs. fully distributed. Usually, a
central control (e.g., the BS) can reduce the complexity of
protocols; however, centralized system has some inherent
drawbacks compared with distributed system [15], and the
specific drawbacks of BS-involved schemes in replica detec-
tion were identified by Parno et al. in [2], e.g., making the
BS become a single point of failure, aggravating the energy
depletion of nodes surrounding the BS, and failing to work in
no-BS networks. We specially note here that the absent of a BS
may be due not only to cost issues, but also to security issues.
For example, a fully distributed network without BS usually
is more suitable in the battlefield application; otherwise the
BS will be an attractive target for the enemies.

Deterministic vs. non-deterministic. It is more difficult for
an adversary to successfully launch clone attacks in non-
deterministic protocols. In deterministic protocols, e.g., Deter-
ministic Multicast [2] and SDC [10], the witnesses of a node
are fixed in each execution of the protocol (detection protocols

may be scheduled to run periodically to prevent an adversary
from inserting replicas after protocol execution [2]). Note that
here we consider the deterministic property between different
executions of the protocol. In deterministic protocols, if an
adversary captures and replicates a node, and compromises
that node’s witness nodes, he can then safely deploy any
number of replicas. Repeating the execution of such detection
protocols has no effect. We note here that the adversary can
succeed because the number of witness nodes of each node
is usually a relatively small value', then the adversary can
keep on compromising them during the whole lifetime of
the network and succeed. In contrast, in non-deterministic
protocols [2], the witnesses of a node are different in each
execution of the protocol; the adversary now cannot keep on
compromising a node’s witnesses by compromising a subset
of nodes in the network.

However, if a NDFD protocol is not properly designed,
it will still be vulnerable to witness compromising attacks.
For example, if a subset of nodes are always more likely
to be node a’s witnesses, then the adversary can use this
knowledge to compromise a’s witnesses faster. We thus further
analyze the requirements NDFD protocols need to fulfill to
resist adversaries.

B. Security Requirement of Equally Being Witness of a Node

Suppose an adversary wants to compromise a given node’s
witnesses, then to prevent him from using any knowledge to
assist his compromising, during the lifetime of a network
all the nodes’ should have the same probability to be the
witnesses of that node. So the following requirement must
be fulfilled:

Requirement 1: During the lifetime of the network, for any
given node, all the nodes have equal probability to be its
witness nodes.

An existing protocol that violates this requirement is LSM
[2]. In LSM, nodes near a given node have higher probabilities
to be passed by paths (lines) from the node and thus become
the node’s witnesses with higher probabilities. We will show
this phenomenon by simulation in Section IX-A.

C. Security Requirement of Resistance to Smart Attacks

Since only a few witness nodes (i.e., the critical witness
nodes) will actually detect the abnormality in each execution
of detection protocol in the whole network (next we call one
execution one round), an adversary may protect his replicas by
starting smart attack, a special witness compromising attack.
In this attack, a smart adversary finds out and disables (i.e.,
compromises or jams) only the critical witness nodes. Take
LSM protocol [2] for example. Fig.1 shows that two nodes
(i.e., the cloned node and the replica) have the same ID. If
the adversary learns the destinations of paths®, he calculates

I1.e., the number is far less than n, otherwise both the communication and
memory costs of such protocol will be O(n), which are only affordable in
small networks.

2In this paper nodes are identified by their invariant attributes such as IDs
and locations.

3When the network is protected by TinySec [8], the adversary can learn the
paths because he can decrypt the overheard messages using the key obtained
from the cloned node. Or he can just compromise the neighbors forwarding
the claims.

680 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 28, NO. 5, JUNE 2010

o
Cloned 80d@ o

Fig. 1. In LSM [2] the adversary can protect the replica by jamming or
compromising the intersection node.

whether the paths will intersect and guesses the intersection
nodes. If he finds an intersection node (i.e., a critical witness
node), he will directly move to there and disable the node.
Then the replica will escape from detection.

Note that as we will show in Section IV-B, we make an
assumption that the number of nodes (k) an adversary can
disable for one replica is limited, i.e., k < \/7_1

To make an adversary unable to learn the critical witness
nodes in each round, we can easily get an ideal requirement
that replica-detection protocols should satisfy (recall that we
call one execution of detection protocol one round):

Requirement 2 (Ideal): In each round, for any given node
a, all the nodes have equal probability to be its witness nodes.
Also, even if the adversary compromises a limited number of
nodes, he cannot learn anything about the rest of the nodes
which are or have higher probability to be a’s witness nodes.

Requirement 2 is a strong requirement (if a protocol fulfills
requirement 2, it is easy to deduce that the protocol also fulfills
requirement 1). This ideal requirement is costly to fulfill (the
protocol we will present in Section V-A currently is the only
protocol that fulfills this requirement). Thus we relax the ideal
requirement to the below practical one:

Requirement 3 (Practical): In each round, for any given
node a, nodes may have different probabilities to be a’s
witness nodes. However the adversary cannot disable O(k)
nodes to disable the majority of a’s critical witness nodes.

D. Security Requirement of Equally Being Witness

When the adversary wants to blindly disable all the nodes’
witnesses, if some nodes are more likely to be witnesses, they
will be chosen by the adversary as targets to disable witnesses
more efficiently. Also, if a node serves as the witness of too
many nodes, it will quickly use up its memory and energy and
break down [9]. So we have such requirement:

Requirement 4: In each round, all the nodes have equal
probability to be witness nodes.

Note that requirement 4 is different from requirement 1
because it is about the probability for just being witness
(any node’s witness) in one round. LSM [2] violates this
requirement, because in each round, LSM tends to select the

nodes in the central area as witness nodes. Conti et al. first
noticed this phenomenon in [9]. Our simulation in Section
IX-A also confirms their discovery.

E. Discussion

To avoid the known drawbacks, replica-detection protocols
must be NDFD, and fulfill the three security requirements:
1, 3 (or 2), and 4. The fully distributed property guarantees
that a protocol does not have the inherent limits caused by
the central control. The non-deterministic property and three
requirements guarantee that a protocol can resist the witness
compromising attack (also its special type, the smart attack)
discussed above.

Existing approaches are not satisfactory. The approaches
in Section II-A all need a central control. Among the fully
distributed approaches in Section II-B, both SDC [10] and
Deterministic Multicast [2] are deterministic, active detection
[14] violates requirement 3, and LSM [2] violates require-
ments 1, 3, and 4. Randomized Multicast [2] is NDFD protocol
and satisfies all the three requirements (1, 3, and 4); however
its communication and memory overheads are O(n) and
O(y/n) respectively, which are too high for large networks.

IV. NETWORK AND ADVERSARY MODELS
A. Network Model

We assume nodes uniformly distribute in the deployment
field. We assume nodes know their own locations; many
proposed localization algorithms [16], [17] can be used. We
assume nodes are stationary, at least during the execution of
replica-detection protocol. Each node a has a private key K, !
and can use the private key to sign its location claim. Other
nodes are also able to verify the signature. Now several public-
key libraries for sensor networks are available [18], [19], [20].
We also assume the communications between any two nodes
are protected by pairwise keys. Same as previous works [2],
[9], [10], [12], [13], we assume that the adversary cannot
create new IDs for replicas. Some key management schemes
already provide such property [6], [7], and other measures
[21] can also be introduced into key management schemes to
enforce such property (e.g., mapping ID to the indices of keys
with a one-way function).

B. Adversary Model

The adversary can launch a clone attack: he compromises
a few nodes [4], uses the cryptographic information obtained
from the compromised nodes to produce replicas, and then
inserts the replicas into the network. The compromised nodes
and replicas are fully controlled by the adversary and can
communicate with each other at any time. Also, same as
previous protocols [2], [10], we assume nodes controlled by
the adversary still follow the replica-detection protocol, since
the adversary always wants to keep him unnoticed to others.
We will further discuss this assumption in Section X.

The adversary will try to protect its replicas. This is because
if any replicas are detected, besides starting a revoke process to
revoke the replicas, the network may start a sweeping process
to sweep the compromised nodes out [22] and may draw

ZENG et al.: RANDOM-WALK BASED APPROACH TO DETECT CLONE ATTACKS IN WIRELESS SENSOR NETWORKS 681

TABLE II
NOTATION
n Number of nodes in the network
c,c1,C2 Constant values
d Average degree of each node
p Probability a neighbor will forward location claim
g Number of nodes selected by each neighbor
la Location node a claims to occupy
Kq a’s public key
Ko ! a’s private key
{M} - a’s signature on M
H(M) Hash of M
MACK (M) | Message authentication code of M with key K
T Number of random walks for each node
t Number of walk steps

human attention. We assume during the execution of replica-
detection protocol, the adversary can select a limited number
of nodes to disable (i.e., compromise [4] or jam [23]) for
protecting his replicas. He is able to do that because the time
taken by the execution of protocol may be long enough (e.g.,
the delay caused by synchronization error, processing delay
in each hop, and sleep schedule of the network). Also, since
jamming a node is more quickly than compromising it, the
adversary can jam a node first and compromise it later. We
give a general assumption that the adversary can disable a
small number of nodes k (k < /n) for protecting one replica.
We make such assumption because /7 is usually the number
of witnesses of one node [2].

C. Notation

For clarity, we list the notation used in this paper in Table
IL.

V. PRELIMINARY APPROACHES

We discuss two possible NDFD solutions which are easy to
figure out. Although both of them have some flaws, we discuss
them to provide background for our two primary protocols,
RAWL and TRAWL, introduced later in Sections VI and
VII respectively. Similar to existing protocols like LSM [2]
and RED [9], our four protocols all can be scheduled to run
periodically. Then if an adversary deploys replicas after one
round of clone detection, the replicas will be detected in the
next round.

A. Broadcasting with Random Witness Selection

In this approach, each node signs its location claim and
broadcasts the claim to its neighbors, and then its neighbors
flood the claim in the network. Each node stores the claim
with probability -=. If a node receives a claim conflicting with
another claim in its memory (i.e., a collision), it revokes the
corresponding node. The difference between this approach and
the Node-To-Network Broadcasting approach [2] is that here
the witness nodes of a given node are not the neighbors of
that node but randomly scattered in the network.

We give a brief analysis to show the ;- probability is enough
for clone detection. Suppose two nodes a, b have the same ID.
If P,y is the probability that a node fails to detect the collision
and P; is the probability that at least one node in the network
detects the collision, we have Py = 1 — (P,f)". Next we

[®) ®. O
Replica

Cloned node
o o o

Fig. 2. The DRBased approach.

compute P, r. For any node, if we denote the probability that
a’s claim arrives at the node earlier than b’s claim by p, then
the probability that the node fails to detect the collision is
equal to the probability that it does not store the claim of a:
1— . The case that the claim of b arrives first (with probability
1 — p) is similar. So we have P,y = p(1 — £) 4+ (1 — p)(1 —
£) = (1 — £). Combining the two equations and using the

approximatign 1-47~L wehave P,=1—-(1-£)"~
1 — L. So the probability < is sufficient.

The communication and memory costs per node are O(n)
and O(1) respectively. It is easy to see that this approach
fulfills all the security requirements in Section III. However,
the communication cost may be affordable in small networks,

but it is too high for large networks.

B. Double Ruling Based Detection

The collision finding problem is similar to the read/write
quorum problem in distributed file systems [15], and the
storage/query problem in sensor networks [24]. All of them
try to form two sets which share common elements (i.e., the
witness node sets of the cloned node/the replica, the read/write
quorums, and the storage nodes of a datum/the queried nodes
by a user). Inspired by Double Ruling [24] for querying in
sensor networks (the rectilinear case), we propose a DRBased
approach. Similarly to LSMJ[2], every node broadcasts its
location claim, and each of its neighbors, with probability p,
forwards the claim to g random nodes. Then as shown in Fig.2,
each of these random nodes starts to broadcast the claim in
a horizontal line and a vertical line (forming a cross). There
are total » = p - d - g such crosses.

Considering two nodes with the same ID, when at least
one cross is formed for each node, a collision will always be
detected. Both the communication and memory costs per node
are O(y/n). The costs are moderate; however, the protocol
does not fulfill requirement 3. The attacker can learn the
crosses, calculate the critical witness nodes, and disable them.
Also it only works in rectangular deployment fields.

VI. RANDOM WALK BASED DETECTION (RAWL)

We may get an intuition from the DRBased approach that
among all the requirements, requirement 3 may be most

682 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 28, NO. 5, JUNE 2010

o o o
Cloned ngde ™ o o

Fig. 3. The RAWL protocol.

difficult to be fulfilled with moderate costs. However, in this
section, we propose a new protocol RAWL based on random
walk to fulfill the requirement, with only moderate costs.

A. Protocol Description

At a high level, RAWL works with following steps in each
execution (recall that our four protocols all can be scheduled to
run periodically). (1) Each node broadcasts a signed location
claim. (2) Each of the node’s neighbors probabilistically
forwards the claim to some randomly selected nodes. (3) Each
randomly selected node sends a message containing the claim
to start a random walk in the network, and the passed nodes
are selected as witness nodes and will store the claim. (4) If
any witness receives different location claims for a same node
ID, it can use these claims to revoke the replicated node. An
example is shown in Fig.3.

We here describe the protocol more specifically. Each node
a broadcasts a signed location claim to its neighbors. The
claim has such a format: (IDg,la, {H(IDqal|la)} jc-1), where
lo is a’s location (e.g., location (x,y) in 2D) and || is the
concatenation. When hearing the claim, each neighbor verifies
the signature and checks the plausibility of [, (e.g., the
distance between two neighbors cannot be bigger than the
transmission range). Then with probability p, each neighbor
randomly selects g nodes (or g locations*) and uses geographic
routing (e.g., GPSR [25]) to forward the claim to the g nodes
(or nodes closest to the chosen g locations).

Each chosen node that receives the claim of a, first verifies
the signature. Then it stores the claim and becomes a witness
node of a. Also, it will start a f-step random walk in the
network (¢ is a system parameter, and we will analyze its value
in Section VIII-A), by sending the location claim together
with a counter of walked steps (s.) initiated to 1, to a random
neighbor. The neighbor will also become a witness node of a.
It adds counter s. by one and continues to forward the message
to a random neighbor, unless counter s. reaches ¢t. When a
node finds a collision (two different location claims with a
same node ID), the node will broadcast the two conflicting

“In [9] the authors claimed that choosing location is better than choosing
node ID since the available node IDs in the network may be dynamic.

claims as evidence to revoke the replicas. Each node receiving
the two claims independently verifies the signatures. If the two
signatures are valid, it terminates the links with replicas.

B. Security Analysis

The number of walk steps () is closely related to the
detection ability of this protocol. Intuitively, the longer the
random walks, the higher the probability that the random
walks for replicas intersect. However, longer random walks
will result in more communication and memory (storage)
overloads. So determining the required number of walk steps
is critical to the protocol. We will show in Section VIII-A that
O(y/nlogn) steps is sufficient for high detection probability.

RAWL apparently does not have a central control in all the
steps. Also, it is a non-deterministic protocol since the witness
nodes of each node are different in each round. We further
explain here that RAWL satisfies security requirements 1 and
4 (defined in Section III-B). For any given node, random walks
are started from a random node, and each node in a torus (we
model the network as a torus in Section VIII-A) has the same
geographic property, so all the nodes have equal probability
to be walked and become that node’s witnesses. Also all the
nodes obviously have equal probability to be witnesses if we
consider the network as a torus. We will confirm that RAWL
fulfills the two requirements in Section IX-A by simulations.

RAWL satisfies security requirement 3, because the smart
adversary cannot find out the critical witness nodes and move
to disable them now. Firstly, we show that even sometimes a
physical node may be selected more than once by a random
walk; the number of physical nodes that are selected as
witnesses is still on the same order of ¢ in general settings. The
detailed analysis is in Section VIII-B. Secondly, we discuss
two possible cases for the adversary to find out the critical
witness nodes. In the first case, the adversary can learn the
next walked node when he has compromised the previous
walked node (e.g., by finding packet history in memory). He
still has to sequentially compromise all the following witness
nodes from the starting node, to discover the critical witness
nodes. Then the number of nodes needed to be compromised
is on the same order of ¢ (i.e., O(y/nlogn)) and is beyond
the ability of the adversary.

In the second case, the adversary cannot learn the next
walked node when he has compromised the previous walked
node (e.g., the packet history is erased). Then he will have
to carry out a brute force attack by compromising all the
neighbors around the current walked node. So the number
of nodes needed to be compromised is more than the number
in the first case, and is also beyond the adversary’s ability.
The resistance of RAWL can be intuitively explained by that
it dispatches the witness-node-selection responsibility to every
passed node of random walks, not only several nodes.

VII. TABLE-ASSISTED RANDOM WALK BASED
DETECTION (TRAWL)

We want to find a method to reduce the memory cost of
RAWL protocol, because sensor nodes usually have limited
size of memory, e.g., on the order of a few kilobytes [26],
which is also a precious resource. In this section, based on

ZENG et al.: RANDOM-WALK BASED APPROACH TO DETECT CLONE ATTACKS IN WIRELESS SENSOR NETWORKS 683

the previous protocol RAWL, we propose TRAWL. Our basic
idea is to employ a trace table at each node to record the traces
(represented by “digests”) of random walks.

A. Protocol Outline

Our new protocol is modified from RAWL. When a ran-
domly chosen node starts a random walk, all the passed nodes
will still become witness nodes. However, now they do not
definitely store the location claim, instead, they store the
location claim independently with probability ﬁ, where
co 1s a constant. Also, each witness node will create a new
entry in its trace table (we will describe the table later) for
recording the pass of a location claim. We describe the details
on the trace table and the process of detection below.

We first describe a critical component, the trace table
maintained by each node. Every entry of the table corresponds
to the pass of a random walk (with a location claim). The table
has the two columns: NodelD, ClaimDigest. The NodelD is
the I D field of a claim (see Section VI-A). The ClaimDigest is
a truncated message authentication code (MAC) of the whole
location claim. An 8-bit claimDigest can be computed by

claimDigest = { M ACyana(Claim)}moaqzse)y, (1)

where rand is a random value generated by each node itself
to prevent the adversary from generating a false claim with
the same digest value, and M AC,.q,q(Claim) is a message
authentication code of location claim.

Then we describe the process of detection. When receiving
a location claim, a node will first find the entries which have
the same node ID as the claim in its trace table. Then if
any entry is found, the node will compute the digest of the
claim using equation 1 and compare the digest with the digest
in the entry. When the two digests are different, the node
detects a clone attack. If the node stored the location claim
of the entry, it will flood the network with the two location
claims to revoke replicas. Otherwise it will flood a HELPREV
request with only one location claim. Any node receiving
the HELPREV message will check locally that if it stored
a location claim conflicting with the received one. If such a
location claim is found, it will flood the stored location claim
into the network as evidence. In such revocation process an
algorithm for duplicate message suppression can be employed.

B. Security Analysis and Efficiency Analysis

TRAWL has nearly the same detection ability as RAWL;
only two issues will potentially degrade the detection ability.
The first issue is that the claimDigests may be the same
when two different location claims with a same node ID
pass a witness node (i.e., false negative). However such case
occurs with low probability when we use a perfect MAC
function (i.e., the claimDigest of a claim uniformly distributed
within [0, 255]): the two claimDigests will be the same
with probability only ﬁ. That means two different location
claims with a same node ID will still result in collision with
probability over 0.996. (We note here that using claimDigest
does not lead to false positive detection. This is because when
receiving a location claim, a witness node will compare the
claim’s nodelD in its trace table at first. Thus even if two

nodes’ location claims passing the witness node have the same
claimDigest, given that the two nodes have different node IDs,
they will not be falsely detected as a clone attack.) The second
issue is now the location claim of a random walk is not stored
in all the nodes passed by the random walk. Similar to the
analysis in Section V-A, we can deduce that there is a high
probability that at least one witness stores the location claim.
Considering a c;+/n log n-step random walk, and in each step
node will store location claim with probability nclf)gn (both
c; and co are constant values), then the probability (P one)
that the location claim is not stored in all the steps is given by
Poone = (1— m)c“/ﬁlog "R 601102- Thus the probability
(Ps) that at least one witness node stores the location claim
is given by Ps =1 — Ppope =1 — el%

We analyze the costs of TRAWL. The communication cost
of TRAWL is apparently y/nlogn, the same as RAWL. The
memory cost of TRAWL is smaller, because now most of the
nodes in a random walk only store a table entry but not the
location claim. They store the location claim independently
with probability m, so the memory cost per node is
O(cica - Claim + c1y/nlogn - Entry). Here the size of a
location claim is about 46 bytes: ID (2 bytes), location (4
bytes), signature (at least 40 bytes, e.g., ECDSA [20], [27]).
However, the size of a table entry is just 3 bytes: nodeID
(2 bytes), claimDigest (1 byte). Then theoretically TRAWL
reduces the memory cost of RAWL (whose memory cost is
c1y/nlog n-Claim) more than 10 times when /n logn — oc.

VIII. ANALYSIS

In this section, we analyze an important parameter (¢) of
our protocols, and the number of physical nodes selected as
witnesses by our protocols (we used the analysis results here
to support the security analysis in Section VI-B).

A. The Required Number of Walk Steps for Detecting Replicas

We would like to study the relation between the probability
of detection and the number of walk steps ¢. First, we consider
the simplest case that two replicas each have one random walk.
Then we give formula on that L replicas each have r random
walks. The first case is equal to the problem that two random
walks (which start from the stationary distribution, i.e., start
from each node with probability 1/n here) have at least one
intersection. We assume that both the two random walks have
t steps, t < cnlogn. We consider the network as a torus (i.e.
a grid graph that is wrapped in both the north-south and the
east-west directions) [28], [29] to simplify the analysis.

Next we will prove that ¢ should be on the order of
O(y/nlogn) for high detection probability. We notice that the
result that O(y/nlogn) steps are sufficient for two random
walks to collide in fast mixing networks is available (e.g., in
[30], the proof is based on the general birthday paradox prob-
lem). However the torus is not fast mixing. Another closely
related work is Rumor Routing [31] in sensor networks, where
the authors used random walks for both the event distribution
and query. However they found the needed number of walk
steps only by simulations, without giving theoretic analysis on
such number.

684 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 28, NO. 5, JUNE 2010

First, we consider the hitting time H; for a node 7. The
hitting time H; is the steps needed to hit the node 7 when
a random walk starts from the stationary distribution (which
is a distribution satisfying the balance equations [29]). The
stationary distribution of a torus is 1/n, so the random walk
starts from all the nodes with the same probability 1/n.
Generally, in a torus the hitting time H; for node ¢ satisfies

[28], [29]
—x
). @)

cnlogn

P(H; > z) =~ exp (

where ¢ is a constant, and O(nlogn) is the average hitting
time of a torus [29]. Then the probability (F,) that a t-step
random walk (which starts from the stationary distribution)
hits a node is given by

Ph:1—P(Hi>t). 3)

For each node in the network, the probability that the two
random walks have intersection at it is given by

P = (Py)? = (1 — P(H; > t))>. 4)

Then the probability that the two random walks do not have
any intersections in the network (i.e., at all nodes) is given by

Pnone = (1 - Ph2)n- (5)

If Ps is the probability that at least one collision is detected,
then we have

P =1—Pone. (6)
Combing the above equations, we have
Py = 1—(1—PFpo)"
- 1- (1 —(1-P(H; > t))2)n
- 1—(1—(1—eﬁén)2)n. %)
Let M = (1 — e#17)2, then P, can be written as
Py=1-(1-M)" (8)

It is easy to see that M = 0 since we assumed ¢t < cnlogn.
We know that the Binomial theorem allows us to approximate
(1 —z)¥ as (1 — zy) when z is small. So we have

Poml—(1—M-n)=M-n=(1—emmem)’n. (9

. _t ~
Also since t < cnlogn and enlogn ~ 0, then we can use the

standard approximation e” ~ 1 + x. So we have
2

P, ~ (1 ~(1+ (10)

— 2

)
cnlogn cnlog“n
Then if we want P; to be a given value P, using equation 10,
we can calculate that

t = ev/Py/nlogn. (11)

From equation 11, we can see that for any given detection
probability, the needed number of steps is on the order of
O(y/nlogn).

We can further calculate the detection probability (Fsr)
when there are L replicas and for each node there are r
random walks (r = p - d - g). Considering two replicas each
with r random walks, if there is no collision between the two

groups of random walks, then it means that any two random
walks from them do not result in a collision. So the probability
(Ppone2) that two replicas do not result in a collision is given
by

2

Pronez = (1= Ps)" . (12)

Then the probability (Ps2) that there is at least one collision
with two replicas is given by

2

P52:1_Pnon62:1_(1_Ps)r- (13)

Similarly, when there are L replicas and each with r ran-

dom walks, if there is still no collision, then it means any

combination of these L replicas does not have a collision. So

the probability (P,oner) that these replicas do not result in a

collision is given by

2 L(L—1)
T Pl

PnoneL = (1 - PS) (14)

Then the probability (Ps,) that there is at least one collision
with L replicas is given by

2 L(L—1)

= (15

T

PSLzl_PnoneL:]-_(l_Ps)

Our above results all are based on modeling the network as
a torus (a d-regular graphs, d = 4), whose average hitting time
is O(nlogn) [29]. Another related graph is Hypercube (a d-
regular graph, d = logn), whose average hitting time is O(n)
[29]. We can also consider the sensor network as a graph that
lies between the two types of graphs as in [32], then following
above analysis we can deduce that the required ¢ is between

O(y/n) and O(y/nlogn).

B. The Number of Physical Nodes Selected as Witness

We analyze how many physical nodes are selected by a t-
step random walk. As we mentioned in Section VI-B, since
each node selects the next hop randomly, a ¢-step random walk
may actually select only a small number of physic nodes.

Next we show that in general settings (e.g., d = 4,¢ < 30
and d = 12,t < 400), the number of physical nodes selected
by a t-step random walk as witnesses is no less than ¢/2, still
on the same order of ¢. It is easy to see that the physical node
of the starting node has the biggest walked times in a ¢-step
random walk. If the walked times of this node is still less than
2, then the walked times of all the other visited physical nodes
are also less than 2, and the number of selected physical nodes
by a random walk must be no less than ¢/2. When analyzing
the walked times of the starting node, we find it is hard to
use general concepts in random walk, such as hitting time and
commute time. Fortunately, we can transform the discrete-time
random walk on an unweighted graph to be a Markov chain
with transition matrix (P) [29] by

_ | Yd
po={

where d, is the degree of vertex v. Then with an initial
distribution p, the distribution after ¢ steps can be obtained
by P [33]. Thus we then can compute the walked times of

if (v, x) is an edge
if not

)

ZENG et al.: RANDOM-WALK BASED APPROACH TO DETECT CLONE ATTACKS IN WIRELESS SENSOR NETWORKS 685

Walked Times
N

S
T
i

0 5 10 15 20 25 30
Number of Walk Steps

Fig. 4. The walked times of the starting node with different ¢s in a torus.

each node (includes the starting node) in all the ¢ steps by the
formula:
t—1
Dy=Y pP'.
i=0

We assume the random walk starts from an arbitrary node a.
Then initial distribution s is set to v, where v is a vector:

T
10

We apply the above method to a torus and a d-regular
(d = 12) graph. Fig.4 shows in a torus the times the starting
node are walked. We can see that when ¢ < 30 (later in
Section IX-B, we show that ¢ = 18 is enough when r = 9),
the walked times of the starting node are less than 2. When
the node degree of a network (d) increases, we can image
that the random walk will go away from the starting node
more quickly, so the walked times of the starting node will be
smaller. Then we repeat the test in a d-regular (d = 12) graph,
a denser network topology. We find that even ¢ = 400, the
walked times of the starting node is only 1.75, still less than
2. So according to previous discussions, we can conclude that
a t-step random walk selects no less than ¢/2 physical nodes
as witnesses in general network settings.

(16)

ifi=a
if not

IX. SIMULATIONS

In this section we evaluate our protocols by simulations. We
illustrate the witness distribution of our protocols, verify our
theoretical analysis about the needed number of walk steps,
and also study the communication and memory overheads. We
will use LSM [2] for performance comparisons, since it is the
existing NDFD protocol with the lowest communication and
memory overheads.

In our simulations, we randomly deploy 4000 nodes within
a 1000mx 1000m square. The transmission range is set to 50m.
Also we test our protocols in a variety of irregular network
topologies in Section IX-B. We assume all the packets of
replica-detection protocols can successfully reach their next
hops; we assume occasional packet losses can be solved by
retransmission mechanisms in lower layer protocols. Simula-
tion result is the average of 20 executions if we do not state
explicitly. The performance metrics used in our simulations
are listed here:

e Probability of detection (Ps). Similar to the simulation in

[2], we focus on a single node replication (one replica).
We repeat the following process for given times (200

in our simulations): randomly insert a replica into the

network and then start the detection protocol. Then we

#successful detection times
calculate P, as Frepeat Times .

o Communication overhead. We use the average number
of messages each node broadcasts as a measure of
communication overhead.

o Memory overhead. We use the average number of bytes
each node stores as a measure of memory overhead.

A. Witness Distribution

We simulate two kinds of witness distributions here. The
first one is the distribution of all nodes’ witnesses in a
round (for checking requirement 4 in Section III), and the
second one is the distribution of one given node’s witnesses
in many rounds (for checking requirement 1). In fact, we check
whether both kinds of witness distributions are uniform in the
deployment area (which is also called area-obliviousness in
[9])°. To show the distribution, the whole deployment area is
divided into 50 x 50 grids. Then we record how many times
the nodes in each grid are selected as witness nodes. Since
RAWL and TRAWL have exactly the same witness selection,
we only present the witness distribution of RAWL.

Fig.5 and Fig.6 report the witness distributions of RAWL
and LSM in a round respectively. Here we execute both the
two protocols one time in the same 10 randomly generated
topologies. From Fig.5, we can see that the witness distribution
of RAWL is nearly uniform in the divided grids, except the
grids at the boundary. These grids suffer from the lower
connectivity at the boundary (i.e., the boundary effect). Fig.6
shows that the witness distribution of LSM is not uniform,
same as the observation by Conti et al. in [9]. The grids in
the center area have much higher probabilities to accommodate
witness nodes. From the boundary to the center, we can clearly
see the number of witnesses is increasing. Some grids in the
center even have more than ten times witnesses than grids at
the boundary. So we can conclude that LSM does not fulfill
requirement 4, but RAWL does if we ignore the boundary
effect.

Fig.7 and Fig.8 show the witness distributions of RAWL and
LSM for a randomly selected node respectively. We randomly
generate a topology, and execute the two protocols for a
randomly selected node 50000 times to get the average values.
In our experiment, the randomly selected node lies at location
(916,813). It is not surprise to see that the witness distribution
of RAWL still is nearly uniform if we ignore the boundary
effect, which indicates that RAWL fulfills requirement 1. On
the other side, in LSM, grids near the grid the node lies in are
more likely to accommodate witness nodes, because in LSM
the paths to the random destinations always need to travel
through these grids. Thus LSM fails to fulfill requirement 1.

B. Probability of Detection

In Section VIII-A, we have analyzed that the needed number
of walk steps (¢) is on the order of O(y/nlogn). Next we
simulate our protocols to confirm that indeed not many steps

SWe do not study the witness distribution in node ID space, because it is
obvious that in our protocol (also other replica detection protocols like LSM)
the witness distribution in the node ID space is uniform.

686 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 28, NO. 5, JUNE 2010

1000

Fig. 5. Witness distribution of RAWL.

600

W
(=3
(=]

5

Times of Being Witness Node
353 {953
S &
ISR

1000

Fig. 6. Witness distribution of LSM.

are needed for replica detection. Our simulation in this section
is carried out in 6 different network topologies, examples of
which are shown in Fig.9. They represent both isotropic and
anisotropic networks in real world deployments.

Fig.10 shows the probability of detection (Fs) values with
different numbers of walk steps under different topologies. Ps
is simulated using the method defined at the beginning of this
section. We repeat the process for simulating P, 20 times to
get P,’s average value. Here the number of random walks for
each location claim (r) is 9 (we will try other values later),
and the number of walk steps (¢) varies from 3 to 48. We
set parameter co of TRAWL to 4. From Fig.10, first, we can
see that TRAWL has nearly the same probability of detection
with RAWL (with less than 0.01 differences). We find that the
small difference is mainly due to that two conflicting location
claims have the same claimDigest value at intersection nodes.
Second, the probability of detection grows rapidly with ¢ in
all the topologies. When the number of walk steps ¢ is 18, Pss
of the six topologies all are greater than 0.95 (they are 0.95,
0.96, 0.96, 0.97, 0.98, and 0.97 respectively). So a relatively
small ¢ is indeed sufficient for detection.

Table III shows the probability of detection (FP;) values
of RAWL with different numbers of random walks (r). We
take the Standard topology as the simulation topology here.

154
n

I
=

4
w

<
¥

e

Times of Being Witness Node

0
1200
1000

Fig. 7. Witness distribution of RAWL for a node at location (916,813).

Times of Being Witness Node

0
1200
1000

400

Y 0 X

Fig. 8. Witness distribution of LSM for a node at location (916,813).

Several typical values of r are set, and the table only shows
the Pss around 0.95. We know that in RAWL one walk step
corresponds to a witness node, and then the smaller number
of walk steps, the less communication and memory overheads
a random walk results in.

Next we explain how to choose a suitable . We here want
to guarantee P; > 0.95. r should result in the minimum
communication overhead, because communication consumes
more energy than other operations [26]. We know RAWL
needs to start random walks from random distant nodes. Then
besides the cost of random walks, whenever we add r by one,
we should also add the cost of a path to a random node. Fig.11
shows the average lengths of such paths in different network
topologies. In the Standard topology, the length is 15.26. Then
r = 10 means about 15.26 x 10 = 152.6 communications
need to be added to the total communication overhead (total
communication overhead thus is 152.6 + 10 x 15 = 302.6,
since t is 15 for guaranteeing Ps > 0.95). Similarly, we can
calculate that when » = 9 and » = 8 the communication
overheads are 299.34 and 314.08 respectively. So we choose
r =9 for the following simulations.

ZENG et al.: RANDOM-WALK BASED APPROACH TO DETECT CLONE ATTACKS IN WIRELESS SENSOR NETWORKS 687

(a) Standard

LA AR

(d) C shape

Fig. 9. Different network topologies for simulation.

C. Communication Overhead and Memory Overhead

Fig.12 shows the communication overhead of different
protocols. We just select the Standard-shape topology for
simulation, since the performances of our protocols in different
topologies are similar. Here in LSM we vary the number of
line segments from 1 to 10 in steps of 0.5 to get different
detection probabilities. In both RAWL and TRAWL, we fix
the to be 9 (note that as we explained » = 9 is only optimal
for Ps > 0.95, we actually should use a smaller r to reduce
the communication overhead for a smaller Ps) and vary the
number of walk steps (¢) from 3 to 30 in steps of 3. In Double
Ruling based (DRBased) protocol, we vary the number of
crosses from 0.2 to 1 in steps of 0.05. From the figure we can
see that to achieve the same detection probability, DRBased
protocol consumes the least communication overhead. This is
because it uses the ability that one broadcast can be simul-
taneously received by many neighbors. The communication
overloads of RAWL and TRAWL are the same but RAWL
has a bit higher detection probability as mentioned in the
previous subsection. Also, to make P, achieve 0.95, RAWL
and TRAWL require more than twice the communication
overhead of LSM (i.e., 332 vs. 122). Actually, RAWL and
TRAWL trade increased communication overhead for stronger
security properties.

Fig.13 shows the memory overheads of different protocols.
This experiment follows the same setting with the previous
one. We assume the size of a location claim is 40 bytes, and
the size of a trace table entry is 3 bytes. We can see that
RAWL requires about 1.4 times of the memory of LSM for
0.95 probability of detection, while TRAWL requires less than
1/2 of the memory of LSM for 0.95 probability of detection.
DRBased protocol also uses less memory than LSM. The
memory overheads can be easier to understand if we refer
to Fig.14. The figure shows the average numbers of witness
nodes of one node in different protocols. DRBased protocol
has the least witness number so it is not surprising its memory
overhead is low. TRAWL has the same number of witness
nodes with RAWL, however many witnesses only store small
table entries now. So the memory overhead is lower than
RAWL and LSM.

TABLE 111
PROBABILITY OF DETECTION (Ps) VALUES WITH DIFFERENT NUMBERS
OF RANDOM WALKS (7) AND DIFFERENT NUMBERS OF WALK STEPS (t) IN
THE STANDARD TOPOLOGY

t 40 45 50 55 60 65 70
r=5 | 0.887 | 0.919 | 0.940 | 0.965 | 0.967 | 0.976 | 0.979
t 30 35 40 45 50 55 60
r=6 | 0.907 | 0.936 | 0.966 | 0.973 | 0.980 | 0.990 | 0.989
t 20 25 30 35 40 45 50
r=7 | 0.866 | 0.930 | 0.957 | 0.979 | 0.987 | 0.993 | 0.994
t 15 18 21 24 27 30 33
r=8 | 0.839 | 0.903 | 0.942 | 0.964 | 0.974 | 0.987 | 0.989
t 12 15 18 21 24 27 30
r=9 | 0.840 | 0.900 | 0.952 | 0.973 | 0.985 | 0.990 | 0.995
t 12 15 18 21 24 27 30
r=10 | 0.890 | 0.948 | 0.976 | 0.988 | 0.996 | 0.995 | 0.997

In Fig.15 we draw the number of bytes each node stores
in its memory, to evaluate the used memory distribution of
nodes. For a fair comparison, we set the parameters of each
protocol to ensure each P; is about 0.95: r = 9,¢t = 18 in
RAWL and TRAWL, r = 8.5 in LSM, and » = 0.95 in
DRBased. We repeat each protocol in the same 20 randomly
generated Standard-shape topologies. We can see that LSM
has a long tail in the distribution. It is the only protocol
that has nodes using more than 20kB memory (about 0.93%
of the total nodes). The used memory of RAWL is between
1.1kB and 12.4kB. The used memory of TRAWL is between
0.3kB and 3.7kB. Both of them seem to follow the normal
distribution. In DRBased protocol, many nodes only need less
than 2kB memory (about 60.3% of the total nodes), and the
used memory is between OkB and 15kB.

X. DISCUSSION

The resistance of our protocols to smart adversary relies
on that the adversary cannot find out the critical witness
nodes. But if the adversary has the strong ability to globally
monitor and analyze traffic of the whole network, he can
succeed in discovering the whole paths of random walks, even
if the communication between each node pair is encrypted.
Then he can also find out the critical witness nodes at the
intersections of paths. This kind of attack can be prevented by
the techniques for unobservability [34], [35]. Generally such
technique is to mix dummy messages with real messages and
reschedule the transmission. During the execution of replica-
detection protocol, each node will forward many packets,
which may be naturally employed as dummy messages to
reduce the communication overhead caused by additional
dummy messages.

An adversary may compromise all the neighbors of a replica
a to protect a. Then a does not need to send out any location
claims during the execution of detection protocol, and thus
can escape from detection. In [2] Parno et al. proposed a
simple pseudo-neighbor method to thwart this attack. In their
method each node maintains a list of nodes from which it
has seen the most traffic, i.e., acting as their pseudo neighbor.
Then, for example, as a’s pseudo neighbor, node b can directly

688 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 28, NO. 5, JUNE 2010

0.8

0.6

—S—RAWL

Average Probability of Detection

0.2r 1
* - TRAWL
O L L L L L
0 10 20 30 40 50
Number of Walk Steps
(a) Standard
= 1 S8
S
8
5 0.81 1
[a]
k)
2061 1
E
<
E 0.41 1
e —6—RAWL
20.2f 1
4 * TRAWL
< 0 ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50
Number of Walk Steps
(c) S shape
= 1 9 ¢ ¢ @
S
8
5 0.81 1
[a]
k)
2061 1
E
<
E 0.41 1
5} —6—RAWL
%‘3‘0‘2* 1
4 * TRAWL
< 0 ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50
Number of Walk Steps

(e) Cross

—_

@ v
%

=
g
3 0.8F i
3 0.
[a)
bS]
20.6f]
2{_"%
S 0.4f]
&
2 —6—RAWL
2 0.2F]
i’ * TRAWL
0 L L L L L
0 10 20 30 40 50
Number of Walk Steps
(b) Hole
o 1 889 @—
g
3
< 0.81]
[a)
bS]
20.6f]
2{_"%
S 0.4f]
&
2 —6—RAWL
2 0.2F]
i’ * TRAWL
0 L L L L L
0 10 20 30 40 50
Number of Walk Steps
(d) C shape
= 1 688 S——&—
g
8
5 0.81 1
[a)
B
2061 1
E
2 0.4f]
-
e —6—RAWL
20.2f 1
;ﬁ * TRAWL
0 L L L L L
0 10 20 30 40 50
Number of Walk Steps

(f) H-shape hole

Fig. 10. The probability of detecting the replica in different network topologies, where the number of random walks () is 9.

request location claims from a. If a refuses to reply, b will
stop forwarding traffic from a. Otherwise, b behaves the same
as a common neighbor in the detection protocol.

Same as previous protocols [2], [10], we assume the smart
adversary operates in a stealthy manner to avoid detection.
Thus the nodes controlled by the smart adversary will still
follow the replica-detection protocol. This is because other-
wise any detection of misbehavior could make the network
administrator start an automated protocol (e.g., SWATT [22])
to sweep the network and remove all the compromised nodes,
or remove compromised nodes manually [2]. In [2], the
authors proposed to use the sampling method [36] to relax
this assumption. We also consider how to detect misbehaving
nodes as our future work.

We here discuss the plausible implementations of our proto-
cols. We choose ECDSA signature as the signature of location

Average Hops To A Random Node

Standard Hole S shapeC shape Cross H hole

Fig. 11. The average number of hops of the shortest path between two
random nodes in the network.

ZENG et al.

e o @
N » b

o
=N

Average Probability of Detection
©c o o o o
—) w S n

(=)

Fig. 12.

O v
9 o o -

o
=N

Average Probability of Detection
e o @
w ~ n

S
S}

e
=

Average Number of Packets Sent

Comparison of the communication overhead.

¢ . o RAWL 1
% ¢ % TRAWL |
i SO -LSM

i -~ & - DRBased

0 | | | | |
0 2000 4000 6000 8000 10000 12000

Fig. 13.

R v 4
o N » o =

Average Probability of Detection
(=)
W

Average Number of Bytes Stored (bytes)

Comparison of the memory overhead.

0.4 1
03 ¢ 1
oal jﬁ ' —©—RAWL.TRAWL |
gj - -LSM

0.1/ 1

ui - & - DRBased

0 I I I I I
0 50 100 150 200 250 300
Average Number of Witness Nodes
Fig. 14. The average number of witness nodes for each node.

: RANDOM-WALK BASED APPROACH TO DETECT CLONE ATTACKS IN WIRELESS SENSOR NETWORKS 689
v 40
g "
¢ 235¢]
m
L i =
é> 230}]
L I] Qo
i B
L E{ﬁ 1 E 250 1
! 2
b g | .
L [4
. | = 207, :
i A
D] 2.]
;15 g
=i EP, / —o&— RAWL 7 2 —o— RAWL
b i %* TRAWL | 3 + TRAWL |
P B z
B LSM | z - -0 -LSM i
h -© - DRBased — ¢ — DRBased
L L L L L L L L i \;
0 50 100 150 200 250 300 350 400 450 e 3 x 6 ot 2

Number of Bytf;s Stored (bytes) X1 o

Fig. 15. Used memory distribution.

claim, because of its fast computation. ECDSA is also adopted
by IEEE STD. 1609.2 [37] for using in Wireless Access in
Vehicular Environments (WAVE). Signature generation and
verification in sensor nodes can employ the TinyECC library
[20], with which the optimal signature generation and verifica-
tion on MICAz node need only 2.0s and 2.4s respectively. To
reduce code size, we can use a block cipher (e.g., RC5, AES,
Skipjack [38], [8]), in Matyas-Meyer-Oseas mode to construct
the hash function, and in cipher block chaining (CBC) mode
to construct the encryption and MAC functions.

XI. CONCLUSION

In this paper we designed several new replica-detection
protocols. We found that existing solutions have several draw-
backs which greatly limit their usages, and then we explained
that to avoid the drawbacks, replica-detection protocols must
be non-deterministic and fully distributed (NDFD), and fulfill
three security requirements on witness selection. Previously,
only one NDFD protocol, Randomized Multicast, fulfills the
requirements; however it has very high communication over-
head which is only affordable in small networks. Another
NDEFD protocol LSM has the lowest communication and mem-
ory overheads, but it does not fulfill the security requirements.
Our final protocols, RAWL and TRAWL, which are based
on random walk, fulfill the requirements and have higher but
comparable communication overhead than LSM. We believe
they provide a better trade-off between the communication
overhead and security properties than previous protocols. We
also gave theoretical analysis on the required number of
random walk steps. Finally, we note here that we think the
mechanism TRAWL used to reduce the memory overhead of
RAWL (i.e., using a table to cache the digests of location
claims), could also be applied to other protocols like LSM.

REFERENCES

[1] 1. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Computer Networks, vol. 38, no. 4, pp. 393—
422, 2002.

690

[2]

[3]

[4]

[3]
[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 28, NO. 5, JUNE 2010

B. Parno, A. Perrig, and V. Gligor, “Distributed detection of node
replication attacks in sensor networks,” in Proc. IEEE Symp. Security
and Privacy (S&P ’05), 2005, pp. 49-63.

R. Anderson and M. Kuhn, “Tamper resistance: a cautionary note,” in
Proc. Second USENIX Workshop Electronic Commerce (WOEC ’96),
1996, pp. 1-11.

A. Becher, Z. Benenson, and M. Dornseif, “Tampering with motes: Real-
world physical attacks on wireless sensor networks,” in Proc. Third Int.
Conf. Security Pervasive Computing (SPC ’06), 2006, pp. 104-118.

F. Liu, X. Cheng, and D. Chen, “Insider attacker detection in wireless
sensor networks,” in Proc. IEEE INFOCOM, May 2007, pp. 1937-1945.
H. Chan, A. Perrig, and D. Song, “Random key predistribution schemes
for sensor networks,” in Proc. IEEE Symp. Security and Privacy (S&P
’03), May 2003, pp. 197-213.

S. Zhu, S. Setia, and S. Jajodia, “LEAP: efficient security mechanisms
for large-scale distributed sensor networks,” in Proc. 10th ACM Conf. on
Computer and Communications Security (CCS ’03), 2003, pp. 62-72.
C. Karlof, N. Sastry, and D. Wagner, “TinySec: a link layer security
architecture for wireless sensor networks,” in Proc. Second ACM Conf.
Embedded Networked Sensor Systems (SenSys '04), 2004, pp. 162-175.
M. Conti, R. D. Pietro, L. V. Mancini, and A. Mei, “A randomized,
efficient, and distributed protocol for the detection of node replication
attacks in wireless sensor networks,” in Proc. ACM MobiHoc, 2007, pp.
80-89.

B. Zhu, V. Addada, S. Setia, S. Jajodia, and S. Roy, “Efficient distributed
detection of node replication attacks in sensor networks,” in Proc. 23rd
Ann. Computer Security Applications Conference (ACSAC ’'07), Dec.
2007, pp. 257-267.

R. Brooks, P. Govindaraju, M. Pirretti, N. Vijaykrishnan, and M. Kan-
demir, “On the detection of clones in sensor networks using random key
predistribution,” IEEE Trans. Syst., Man, Cybern. C, vol. 37, no. 6, pp.
1246-1258, Nov. 2007.

H. Choi, S. Zhu, and T. F. La Porta, “SET: Detecting node clones in
sensor networks,” in Proc. Third Int. Conf. Security and Privacy in
Communications Networks and the Workshops (SecureComm ’07), Sept.
2007, pp. 341-350.

K. Xing, F. Liu, X. Cheng, and D. H.-C. Du, “Realtime detection of
clone attacks in wireless sensor networks,” in Proc. 28th Int. Conf.
Distributed Computing Systems (ICDCS '08), June 2008, pp. 3-10.

C. A. Melchor, B. Ait-Salem, P. Gaborit, and K. Tamine, “Active
detection of node replication attacks,” Int. J. of Computer Science and
Network Security, vol. 9, no. 2, pp. 13-21, 2009.

A. S. Tanenbaum and M. V. Steen, Distributed Systems: Principles and
Paradigms. Prentice Hall, 2001.

A. Savvides, C.-C. Han, and M. Srivastava, “Dynamic fine-grained
localization in ad-hoc networks of sensors,” in Proc. ACM MobiCom,
2001, pp. 166-179.

S. Capkun and J. P. Hubaux, “Secure positioning in wireless networks,”
IEEE J. Sel. Areas Commun., vol. 24, no. 2, pp. 221-232, Feb. 2006.
D. J. Malan, M. Welsh, and M. D. Smith, “Implementing public-key
infrastructure for sensor networks,” ACM Trans. Sen. Netw., vol. 4, no. 4,
pp. 1-23, 2008.

H. Wang, B. Sheng, C. C. Tan, and Q. Li, “WM-ECC: an Elliptic
Curve Cryptography Suite on Sensor Motes,” College of William and
Mary, Computer Science, Williamsburg, VA, Tech. Rep. WM-CS-2007-
11, 2007.

A. Liu and P. Ning, “TinyECC: A configurable library for elliptic curve
cryptography in wireless sensor networks,” in Proc. Seventh Int. Conf.
Information Processing in Sensor Networks (IPSN ’08), 2008, pp. 245—
256.

J. Newsome, E. Shi, D. Song, and A. Perrig, “The sybil attack in sensor
networks: analysis & defenses,” in Proc. Third Int. Symp. Information
Processing in Sensor Networks (IPSN "04), April 2004, pp. 259-268.
A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla, “SWATT: software-
based attestation for embedded devices,” in Proc. IEEE Symp. Security
and Privacy (S&P '04), May 2004, pp. 272-282.

W. Xu, W. Trappe, Y. Zhang, and T. Wood, “The feasibility of launching
and detecting jamming attacks in wireless networks,” in Proc. ACM
MobiHoc, 2005, pp. 46-57.

R. Sarkar, X. Zhu, and J. Gao, “Double rulings for information brokerage
in sensor networks,” in Proc. ACM MobiCom, 2006, pp. 286-297.

B. Karp and H. T. Kung, “GPSR: greedy perimeter stateless routing for
wireless networks,” in Proc. ACM MobiCom, 2000, pp. 243-254.

D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next century
challenges: scalable coordination in sensor networks,” in Proc. ACM
MobiCom, 1999, pp. 263-270.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

P. Ning, A. Liu, and W. Du, “Mitigating dos attacks against broadcast
authentication in wireless sensor networks,” ACM Trans. Sen. Netw.,
vol. 4, no. 1, pp. 1-35, 2008.

R. C. Shah, S. Roy, S. Jain, and W. Brunette, “Data MULEs: modeling
and analysis of a three-tier architecture for sparse sensor networks,” Ad
Hoc Networks, vol. 1, no. 2-3, pp. 215 — 233, 2003.

D. Aldous and J. A. Fill, Reversible Markov Chains and Random Walks
on Graphs. Manuscript under preparation, 2001. [Online]. Available:
http://stat-www.berkeley.edu/users/aldous/RWG/book.html

H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman, “SybilGuard: de-
fending against sybil attacks via social networks,” in Proc. SIGCOMM,
2006, pp. 267-278.

D. Braginsky and D. Estrin, “Rumor routing algorthim for sensor net-
works,” in Proc. First ACM Int. Workshop on Wireless sensor networks
and applications (WSNA °02), 2002, pp. 22-31.

C. Avin and C. Brito, “Efficient and robust query processing in dynamic
environments using random walk techniques,” in Proc. Third Int. Symp.
Information Processing in Sensor Networks (IPSN '04), 2004, pp. 277—
286.

S. Meyn and R. Tweedie, Markov chains and stochastic stability.
Springer-Verlag, 1993.

M. Shao, Y. Yang, S. Zhu, and G. Cao, “Towards statistically strong
source anonymity for sensor networks,” in Proc. IEEE INFOCOM, April
2008, pp. 51-55.

Y. Yang, M. Shao, S. Zhu, B. Urgaonkar, and G. Cao, “Towards
event source unobservability with minimum network traffic in sensor
networks,” in Proc. First ACM Conf. Wireless Network Security (WiSec
’08), 2008, pp. 77-88.

J. McCune, E. Shi, A. Perrig, and M. Reiter, “Detection of denial-of-
message attacks on sensor network broadcasts,” in Proc. IEEE Symp.
Security and Privacy (S&P ’05), May 2005, pp. 64-78.

“IEEE std 1609.2, IEEE trial-use standard for wireless access in vehic-
ular environments - security services for applications and management
messages,” Intelligent Transportation Systems Committee, 2006.

Y. W. Law, J. Doumen, and P. Hartel, “Survey and benchmark of block
ciphers for wireless sensor networks,” ACM Trans. Sen. Netw., vol. 2,
no. 1, pp. 65-93, 2006.

Yingpei Zeng received the B.Sc. degree in com-
puter science from Nanjing University, P.R.China,
in 2004. Currently he is a Ph.D. student in the
Department of Computer Science and Technology
at Nanjing University, under the supervision of Prof.
Li Xie. He participated in several research projects
in Nandasoft Co.,Ltd as an intern. Also he worked
as a research assistant in the Department of Com-
puting at Hong Kong Polytechnic University for one
year with Prof. Jiannong Cao. His research interests
include security in wireless networks and security

management.

ZENG et al.: RANDOM-WALK BASED APPROACH TO DETECT CLONE ATTACKS IN WIRELESS SENSOR NETWORKS 691

Jiannong Cao received the B.Sc degree in computer
science from Nanjing University, Nanjing, China,
and the M.Sc and the Ph.D degrees in computer
science from Washington State University, Pullman,
WA, USA. He is currently a professor and associate
head in the Department of Computing at Hong Kong
Polytechnic University. He is also the director of
the Internet and Mobile Computing Lab in the de-
. partment. His research interests include mobile and
\ ’|I,f pervasive computing, computer networking, parallel
and distributed computing, and fault tolerance. He
has published over 250 technical papers in the above areas. His recent research
has focused on wireless networks and mobile and pervasive computing
systems, developing test-bed, protocols, middleware and applications. Dr. Cao
is a senior member of China Computer Federation, a senior member of the
IEEE, IEEE Computer Society, and the IEEE Communication Society, and a
member of ACM. He is the Coordinator in Asia of the Technical Committee
on Distributed Computing (TPDC) of IEEE Computer Society. Dr. Cao has
served as an associate editor and a member of editorial boards of several
international journals, including Pervasive and Mobile Computing Journal,
Wireless Communications and Mobile Computing, Peer-to-Peer Networking
and Applications, and Journal of Computer Science and Technology. He has
also served as a chair and member of organizing / program committees for
many international conferences, including PERCOM, ICDCS, IPDPS, ICPP,
RTSS, SRDS, MASS, PRDC, ICC, GLOBECOM, and WCNC.

Shigeng Zhang received his B.Sc. degree in com-
puter science from Nanjing University, P.R.China,
in 2004. In the same year, he joined the Department
of Computer Science and Technology of Nanjing
University as a Ph.D. student under the supervision
of Prof. Daoxu Chen. He worked as a research
assistant in the Department of Computing at Hong
Kong Polytechnic University from August 2007
to December 2008 under the supervision of Prof.
Jiannong Cao. His current research interests include
wireless sensor networks, vehicular ad hoc networks
and distributed computing.

Shanqing Guo received the Ph.D. degree in com-
puter science from Nanjing University, P.R.China,
in 2006. Currently, he is an associate professor in
the School of Computer Science and Technology at
Shandong University, P.R. China. His research inter-
ests include network security and software security.
He is a member of China Computer Federation and
Chinese Association for Cryptologic Research. He
has published more than 20 papers in journals and
conferences.

Li Xie is a professor in the Department of Computer
Science and Technology at Nanjing University, and
now he is also the President of Jiangsu Nanda-
soft Co.,Ltd. He graduated from the Department
of Mathematics of Nanjing University majored in
mathematical logic in 1964. He had been the visiting
scholar of the Department of Computer Science at
New York State University at Albany from 1980 to
1982. He taught in the Department of Mathematics
and Department of Computer Science at Nanjing
University and had served successively as Deputy
Director of the Computer Software Research Institute, Assistant to the
University President, Deputy Dean of Studies, Dean of the Department of
Computer Science, Director of the Computer Application Research Institute
in Nanjing University, and the Vice President of Nanjing University. He has
engaged in the research of computer software over a long period of time.
With his research achievements, he won 12 awards, including 4 national
class awards, and 2 provincial or ministry class special awards, in fields like
operating system, distributed computing, parallel processing, and advanced
operating system. He has published 4 monographs such as “the course of
operating system” and “distributed data processing” as well as more than 220
academic papers.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

