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Abstract

A cladogram is an unrooted tree with labeled leaves and unlabeled internal branchpoints
of degree 3. Aldous has studied a Markov chain on the set of n-leaf cladograms in which
each transition consists of removing a random leaf and its incident edge from the tree and
then reattaching the leaf to a random edge of the remaining tree. Using coupling methods,
Aldous has shown that a mixing-time parameter for this chain known as the relaxation time
is O(n®). Here, we use a Poincaré inequality to prove an O(n?) bound for the relaxation time,
establishing a conjecture of Aldous.
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1 Introduction

An n-leaf cladogram, as defined in [2], is an unrooted tree with n leaves and internal branchpoints
of degree 3. The leaves are labeled, usually by the integers 1, ..., n, but the internal branchpoints
are unlabeled. We denote the set of n-leaf cladograms by T,. Each n-leaf cladogram contains
2n — 3 edges. Also, as noted in [2], the cardinality of T,,, which we denote by ¢,, is given by

(2n)!
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Figure 1 below shows an example of a 7-leaf cladogram.
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Figure 1: a 7-leaf cladogram

As mentioned in the introduction to [2], n-leaf cladograms are used in biology to represent
the evolutionary relationship among n species. Since Markov chain Monte Carlo methods have
been used to reconstruct cladograms from DNA data, it is of interest to study Markov chains on

T,. Here we will focus on a simple chain that was introduced in [2]. We first define the following
two operations on cladograms:

(1) To remove a leaf i means to remove the edge from the leaf ¢ to its branchpoint b, and
then remove the branchpoint b to collapse two edges into one (see Figure 2).

(2) To add a leaf i to the edge g means to create a new branchpoint b in the interior of ¢
and then add a new edge connecting b to the leaf ¢ (see Figure 3).
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Figure 2: removing the leaf ¢
X

Figure 3: adding the leaf ¢ to the edge ¢

We now define a Markov chain (X;);2, with state space 1,,. To define this chain, we construct
X1 from X, by removing a leaf chosen uniformly at random from X, and then adding this leaf



to an edge chosen uniformly at random from the remaining tree. For trees z and y in 7, we
write y ~ 2 if  # y and y can be obtained from z by removing one leaf of 2 and then adding
it to an edge of the remaining tree. As observed in [2], the transition probabilities for this chain
are given by

P(X;p=ylXi=2) = 1/n(2n-5) ify~ua
= 1/(2n—-5) ity== (2)

because there are n leaves that can be removed and 2n — 5 edges to which the leaf can be
reattached. It follows that this chain has a symmetric transition matrix and therefore is reversible
with a uniform stationary distribution.

As stated in [2], the chain (X;)$2, is also irreducible and aperiodic. Therefore, the distribution
of X; converges to the uniform stationary distribution as ¢ — oo. For designing Markov chain
Monte Carlo algorithms, it is useful to know how long it takes for the chain to converge to the
stationary distribution. There are different ways of formalizing this idea of “mixing time.” See
[7] for a detailed comparision of several mixing-time parameters. In this paper, we will consider
the relazation time 7, for the Markov chain on T, described above. The relaxation time is
defined to be the reciprocal of the spectral gap, which means 7,, = 1/(1 — A, »), where A, 5 is the
second-largest eigenvalue of the transition matrix for the chain.

A general discussion of the relaxation time for a reversible Markov chain and methods for
bounding it is given in chapter 4 of [3]. In [2], Aldous used a coupling argument to show that for
the Markov chain on n-leaf cladograms defined above, we have 7, = O(n?). He also conjectured
that 7, = O(n?). In lectures given in a graduate course at U.C. Berkeley in the fall of 1999,
Aldous outlined an alternative approach to bounding 7, using a “distinguished paths” method.
This approach did not yield a bound of O(n?), but we show in this paper that a variation of the
“distinguished paths” method does give an O(n?) bound for ,. We state this result below.

Theorem 1 Let 7, be the relaxation time of the Markov chain (X,;);2, on n-leaf cladograms

defined above. Then 1, = O(n?).

Theorem 1.1 of [2] shows that 7, = Q(n?), so it follows from Theorem 1 that 7, = ©(n?).
In section 2, we introduce the modification of the “distinguished paths” method that we will
use to prove Theorem 1. We then prove Theorem 1 in section 3.

2 A modified distinguished paths method

A well-known method for upper-bounding the relaxation time of a reversible Markov chain is the
method of distinguished paths, which is based on Poincaré inequalities. Diaconis and Stroock
introduced this method in [4] and applied it to several examples. The method was further



developed in [9] and [6], and the bounds were compared to bounds based on Cheeger’s inequality
in [5]. In this section, we present a variation that is useful for studying the Markov chain defined
in the introduction.

Let (Z,);2, be an irreducible, aperiodic, reversible Markov chain with finite state space V" and
stationary distribution 7. Define the transition probabilities by p,, = P(Ziy1 = y|Z; = z). Let
G be a graph with vertex set V and edge set IV such that GG has a directed edge from « to y if
and only if p,, > 0. For an edge e from z to y, define Q(e) = 7, p,,. Let 7 denote the relaxation
time of the chain (7;)2,.

The following theorem follows from the proof of Theorem 2 in [6] and the first two sentences
of the proof of Theorem 6 in [6], which show that the arguments used to prove Theorem 2 still
hold when the paths between vertices are random.

Theorem 2 Suppose, for all x and y iV, that 7., is a path in G, possibly random, from x to
y such that no edge is traversed more than once. Let | be any function from E to (0,00). Then,

T<max ——— ( Z Z ﬂ-xﬂ-y |7xy| (6 € 7xy)7

E
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where the path length |y, | is defined by |y, = 3., Ue). In particular, if E{|ye,|i] < L for
allz,y € V, then

7 < L'max TeTy P(€ € Yuy)-
S T S 2 e €

To analyze the Markov chain defined in the introduction, we will need the following corollary
of Theorem 2, which can be useful if one can only easily describe a short path 7., when y is in
some subset B of V. We say that a length function from E to (0, 00) is symmetric if the length
of a directed edge does not depend on the direction in which the edge is traversed.

Corollary 3 Let B be a subset of V, and let | : ' — (0,00) be a symmetric length function.
Suppose, for all x € V and y € B, that v,, is a path in G, possibly random, from x to y such
that El|v.li] < L. Then,

4L
TS 7T(B) I<£lEaEXl Zzﬂxﬂy €€7xy)

xEV yERB

Proof. For all x and 2z in V, define a path 4,, by choosing a random vertex Y in B such that
P(Y =y)=m,/n(B) and then concatenating the paths v,y and 77y, where 77y is the path from
z to Y traversed in the opposite direction. Denote by e” the directed edge connecting the same



two vertices as e but in the reverse direction. Then, using Theorem 1 for the first inequality, we
have

T < maX Z Z To T B[V l1] P(€ € a2

€l xEV 2€V
< max ———~ Z Z T Bl vy + ey i ]( (6 S FVxY) + P(er < FVZY))
e€lb ( Q( )xEV 2€V
< 2Lmaxl ZZ%D (e €Yoy )+ Ple" €72v))
€l xEV 2€V
= 2Lmax {Zm eE%Y)<Z7rz)—|—Z7TZP(6’”€%Y)<Z%)}
cell reV zeV zEV reV
< QLI?EZ}EX l;/ﬂ-x €€ Yey) —I—QLI?E&}EXZ ;/ﬂz e € vy).

For all e € I, we have [(e) = I(¢") since [ is symmetric and Q(e) = Q(€") since the chain is
reversible. Therefore,

7 < 4L max ——— T P(e € 7,
- eEEl x;/ 7Y

1 m
= 4LI&%XW§/F£<£ 7T(B) (6 € ny))

= ﬂg)f?&ﬁ( @()ZZwy (€ € 7ay), (3)

zeV yeB

as claimed. W

3 Proof of the O(n? bound

In this section, we prove Theorem 1. We first establish Lemmas 4 and 5, which give general
results about uniform random cladograms. The natural inductive proof of formula (1) for the
cardinality of T, establishes that a uniform random cladogram can be built by inductively adding
leaves to uniform random edges. Lemma 4 below emphasizes that this construction works for
any ordering of leaves.

Lemma 4 Let o be a permutation of {1,...,n}. Let x3 be the unique 3-leaf cladogram with leaves
labeled o(1), 0(2), and o(3). For 4 < k < n, inductively define z by adding a leaf labeled o(k)
to an edge chosen uniformly at random from the edges of x,_1. Then x, is a uniform random
n-leaf cladogram with leaves labeled {1,...,n}.



Proof. We proceed by induction. Clearly z3 is a uniform random 3-leaf cladogram with leaves
labeled (1), 6(2), and ¢(3). Suppose, for some k > 4, that 2;_; is a uniform random (k — 1)-leaf
cladogram with leaves labeled o(1), ..., o(k — 1). Let a be any k-leaf cladogram with leaves
labeled o(1),...,0(k). Let y be the (k — 1)-leaf cladogram obtained by removing the leaf labeled
o(k) from z. Then there is an edge e of y such that z is obtained when a leaf labeled o(k)
is added to the edge e. Furthermore, one can check that if z,_; # y or if z;,_; = y and z;
is obtained from z;_, by attaching a leaf labeled o(k) to any edge other than e, then z, # z.
Therefore, using the induction hypothesis and the fact that z,_; has 2k — 5 edges, we obtain
Plzy = 2) = 1/(2k — 5)ex—1 = 1/¢g. It follows that z is a uniform random k-leaf cladogram
with leaves labeled o(1),...,0(k). Hence, z, is a uniform random n-leaf cladogram with leaves
labeled 1,...,n. A

Given a subset U of {1,...,n} and a cladogram z € T,, we define the U-spanning tree of
x to be the tree obtained by successively removing from z all leaves whose labels are not in U.
Note that the tree z; in the construction of Lemma 4 is the {o(1),...,0(k)}-spanning tree of
z,. Therefore, it follows from Lemma 4 that if U is a k-element subset of {1,...,n}, then the
U-spanning tree of a uniform random n-leaf cladogram is a uniform random k-leaf cladogram.

If # € T,, then any two leaves in & are connected by a unique path. Let d(z) denote the
diameter of x, which is the maximum number of edges in the path between any two leaves of z.
Lemma 5 below states that the diameter of a typical n-leaf cladogram is O(n'/?).

Lemma 5 There exists a constant A; < oo, not depending on n, such that if = denotes the
uniform distribution on T, and B = {x € T, : d(z) < A;n*/?}, then n(B) > 1/2.

Proof. Let z, be a uniform random n-leaf cladogram. Following [2], we define a tree y, by
assigning random lengths to the 2n — 3 edges of z,, such that the joint density of the edge lengths

is given by
2n—3

g(ly, .. lon_s) = 86_52/2, where s = Z l;. (4)
i1

Note that the edge lengths are exchangeable and are independent of the shape of the tree. In the
proof of Lemma 21 of [1], Aldous constructs a tree whose shape and edge lengths have the same
distribution as y, from the times C'; < Cy < ... of a nonhomogeneous Poisson process on (0, c0)
with rate r(¢) = ¢. It follows from this construction that the sum of the lengths of the edges of y,
has the same distribution as C),_;. This fact and the exchangeability of the edge lengths imply
that there exists A, > 0 such that the expected length of any edge of y, is at least A,n~'/? for
all n.

Let » and w be leaves of x,, such that the number of edges on the path from v to w equals
the diameter d(xz,). Then the expected length, conditional on z,, of the path in y, from v to



w is at least Ayn~'/2d(x,). Therefore, the expected length of the longest path between any two
leaves of y, is at least A,n~Y2E[d(z,)].

Next, let (7., ) be the Brownian continuum random tree, as defined in section 4.3 of of [1].
We may assume that 7, is constructed from the continuous function f(¢) = 2B; as described in
Theorem 13 of [1], where (B,)o<i<1 is a normalized Brownian excursion. Let 7, be the subtree
of 7., spanned by n — 1 leaves chosen at random from 7., according to the probability measure
i. Regard the root of 7, as a leaf, so 7,, becomes an unrooted n-leaf tree. By Theorem 3 and
Corollary 22 of [1], 7, has the same distribution as y,. By Theorem 13 of [1], the length of
any path between two vertices of 7, is at most 2maxepp 17 f(t) = 4M;, where M; = maxep 1] B:.
Therefore, E[d(z,)] < 4A5'E[M;]n'/?. Since E[M;] < oo, as shown, for example, in [8], it follows
from Markov’s inequality that the conclusion of Lemma 5 holds with A, = 8A;'E[M,]. B

Now, we work towards using Corollary 3 to obtain an O(n?) bound for the relaxation time
7, of the Markov chain on cladograms defined in the introduction. We use the notation from
section 2, so in this case V = T, the stationary distribution 7 is uniform on 7T, and G is the
graph with vertex set V' such that there is an edge in G from z to y if and only if y ~ z.

For all z,y € V, we now construct a random path 7., in G from z to y. First, let o be a
uniform random permutation of {1,...,n}. Let 2; = z. Define z, to be the cladogram that we
obtain by removing the leaf labeled ¢(2) from z; and then adding it to the edge incident to o(1).
Let 5, denote the rooted subtree of x5, whose root is a branchpoint of x5 and whose only leaves
are o(1) and o(2). Let 5} be the unrooted tree obtained by regarding the root of S5 as a leaf
and labeling it o(n). Note that 5% is the {o(1),0(2),0(n)}-spanning tree of y because there is
only one 3-leaf cladogram. Figure 4 below gives an example.

a(1)
4 3 4 3
o(4)  o(3) o(1) 0(‘ ) 0(‘ ) g = } root
1 a(7) a(7)
a(1) o(2)
a(2)
xr =
oo (1)
a(2) a(8) a(8)
a(b)
a(5)  o(6) a(6)
a(2)
Figure 4: an example of @, 2, Sa, and 5}
Suppose, for some k € {2,3,...,n — 2}, that we have defined cladograms z.,...,2; and z;

has a rooted subtree S) with leaves o(1),...,0(k) such that if we define S} by regarding the



root of S, as a leaf and labeling it o(n), then S} equals the {o(1),...,0(k), o(n)}-spanning tree
of y. Then, we can define x;,, by removing the leaf o(k 4+ 1) from 2, and adding it to the
unique edge of S, such that, after the leaf is added, the new subtree S;,; has the property
that when the root is labeled o(n) and regarded as a leaf, the new unrooted tree S5}, is the
{c(1),...,0(k + 1),0(n)}-spanning tree of y. See Figure 5 below, which shows the trees 3
and z4 defined when constructing the path from 2z to y, where z is the same tree as in Figure
4. Note that in going from z3 to x4, the leaf o(4) is removed and then added to the edge
incident to o(2). Also, note that the {o(1),0(2),0(3),o(8)}-spanning tree of x5 is the same as
the {o(1),0(2),0(3),0(8)}-spanning tree of y and the {o(1),0(2),0(3),0(4),0(8)}-spanning tree
of 4 is the same as the {o(1),0(2),0(3),0(4),0(8)}-spanning tree of y.

a(6)
0'(3) 0'(8)
a(7)
o(l)  o(4)
a(7)
r3 = 0o(2) Ty =
o(3
(3) o(8)
a(5)
a(6)
Figure 5: the trees z3 and z4
Note that when y,...,2,_; are defined by this process, the tree S, _; is just z,_; with o(n)

regarded as the root, so z,,_y = 5/ _; = y. Thus, we have inductively defined random cladograms
T1,...,L,_1 such that 2, =2, 2, 1 =y, and, for 1 < k < n — 2, either z;, = 241 OF 2441 ~ 2.
We now define v,, to be the path consisting of all edges e that connect zj, to x4, for some £. If
e is the edge from ) to 244, then we say e € v,, at step £.



Let {(e) = 1 for each edge e € . Then |v,,|; < n —2 for all z,y € V. Thus, Corollary 3
implies that

4(n —2) 1
) g 2 ST

z€eV yeB

where B = {z € T, : d(x) < A;n'/?} as defined in Lemma 5. By Lemma 5, 7(B) > 1/2. Since 7
is uniform on V', we have m, = ¢;* for all € V. By (2), we have p,, = 1/n(2n — 5) whenever
y ~ x. Thus, for all edges e in &, we have Q(e) = T,p,y = 1/c,n(2n — 5). It follows that

T, < 8(n-—2) I&&}Excnn@n -5) Z Z Ty P(e € Yuy)

zeV yeB
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16n%¢, max Ty P(€ € Yyy ). 5
s 3 3 e Fle € 1) (5)

For all e € I, define K(e) = {k : P(e € v,, at step k) > 0 for some 2 € V,y € B}. Now, fix
an edge e. Let v and w be the cladograms such that e is the edge from v to w, and let ¢ and ¢
be the leaf and edge respectively in v such that w is obtained from v by removing the leaf 7 and
then adding it to the edge g. Let p be the unique path in » that begins by traversing the edge
incident to ¢ and ends by traversing the edge ¢. If e € 7,, at step k, then v = 2, and w = 444
Also, v has a rooted tree Sy, as defined above in the description of the construction of v,,, which
contains k leaves and the edge g. Note that the root r of 5, must be one of the branchpoints on
the path p (see Figure 6).

Figure 6: arrows mark the path p; the subtree S is circled.

If y € B, then y has diameter at most A;n'/2. Since S is the {o(1),...,0(k),o(n)}-spanning
tree of y and 5}, contains g, the portion of the path p that starts at r and ends after traversing ¢
has length at most A;n'/?. Also, there is at most one subtree rooted at a given branchpoint on
the path p that could be S}. Therefore, the number of integers in K (e) is at most A;n'/?. Thus,

7, < 16nc, max Z Z 7rx7ry< Z P(e € v, at step k))
eE eV jen keK(e)
< 164,07, me%kalgg) Z Z Ty P(e € v, at step k). (6)
e cK(e
z€eV yev



Note that
>N mem, Ple € vy at step k) (7)
zEV yev
is the probability that e € v,, at step £ when z and y are chosen uniformly at random from 7,,.
We now assume 2 and y are uniform random n-leaf cladograms and bound the expression in (7)
for fixed e € F and k € K(e). Define v, w, ¢, p, and ¢ as in the previous paragraph. We have
seen that, since k € K'(e), the tree v must have a rooted subtree ), with k leaves which contains
the edge ¢ and has its root on the path p. Also, for any fixed k, v has only one such subtree.
Now construct a random path v,, as described earlier. We have e € v,, at step k if and only if
zy = v and x4 = w, where z;, and 4, are as defined in the construction of 7,,. Let o be the
random permutation of {1,...,n} required for the construction of v,,. We claim that if 2, = v
and .1 = w, then the following three events must occur:

(a) The leaves of S, are o(1),...,0(k), and o(k+ 1) = 1.

(b) The {o(1),0(k+1),...,0(n)}-spanning tree of z is the same as the
{o(1),0(k+1),...,0(n)}-spanning tree of v.

(¢) The {o(1),...,0(k+ 1),0(n)}-spanning tree of y is the same as the
{o(1),...,0(k +1),0(n)}-spanning tree of w.

Event (a) must occur because, to obtain #y, from x;, the leaf o(k+1) is removed and then added
to an edge in a subtree of 2, whose k leaves are o(1),...,0(k). Event (b) must occur because
none of the leaves o(1),0(k+1),...,0(n)is moved in the first £ — 1 steps in the construction of
Yoy, 50 the {o(1),0(k+1),...,0(n)}-spanning tree of z is the {o(1),0(k+1),...,0(n)}-spanning
tree of x. Also, event (c) must occur because the leaves o(1),...,0(k + 1),0(n) are not moved
again after the kth step in the construction, so the {o(1),...,0(k+ 1),0(n)}-spanning tree of y
is the same as the {¢(1),0(k+ 1),...,0(n)}-spanning tree of zj4;.

Since ¢ is a uniform random permutation of {1,...,n}, we have that o(1),...,0(k) are

the leaves of S}, with probability 1/ (Z), and conditional on the event that o(1),...,0(k) are
the leaves of S, we have o(k + 1) = ¢ with probability 1/(n — k). By Lemma 4, since z

is chosen uniformly at random from T, the {o(1),0(k+ 1),...,0(n)}-spanning tree of z is a
uniform random element of 7,,_;,,. Therefore, the probability of event (b)is 1/¢,_j41. Likewise,
the {o(1),...,0(k 4+ 1),0(n)}-spanning tree of y is a uniform random element of T} 4, so the
probability of event (c) is 1/¢xy2. Therefore, if k € K(e), then

Z Z T, Ty P(e € v,y at step k) < - !

zeV yev (k) (n— k)Ck+2Cn—k+1

1

(Z) (n — k)(2k — 1)(2k — 3)(2(n — k) — 3)eenmy

(8)

10



because ¢z = (2k — 1)(2k — 3)cr, and ¢_py1 = (2(n — k) — 3)c,—g by (1). Combining (6) and
(8), we get

Cn

7, < 164,77/ max max

“€F keK(e) (Z) (n—k)(2k — 1)(2k — 3)(2(n — k) — 3)0k0n—k'

(9)

By Stirling’s formula, we have

(271)! _V 27T(2n)2n+1/2€_2n — 92n+1/2,n —n

n! V2rnnti/ze—n ’

where ~ means that the ratio of two sides is bounded away from zero and infinity as n varies.
Therefore, using (1), we have

(2n)! N Qn+1/2pn p—n
(2n —1)(2n —3)270! = (2n — 1)(2n — 3)27

~ 2n—3/2nn—26—n

c, =

Also, we have

n nl 27Tnn+1/26—n nn+1/2
(k) o k!(n — k)! ~ (\/ﬂkkﬂ/ze—k)(\/ﬂ(n _ k)n—k+1/2e—(n—k)) o \/ﬂkml/z(n _ k)n—k+1/27

where here &~ means that the ratio of the two sides is bounded away from zero and infinity as n
and k vary. Thus, there exists a constant Az > 0 such that for all n € Nand k € {1,...,n— 1},
we have

Cn

(Z) (n — k)(2k — 1)(2k — 3)(2(n — k) — 3)cpen_r
AS kk+1/2(n _ k)n—k+1/2 2n—3/2nn—26—n

< kz(n _ k)2 pnt+1/2 (2k—3/2kk—26—k)(2n—k—3/2(n _ k)n—k—Ze—(n—k))

— k22(;z/§—Alj)2 (k(nn_ k))S/z = 2V2A5n7 % (k(n — k))l/z < 2V245n 730 (10)

for all e and all k € K(e). Thus, from (9) and (10), we have 7, < 32v/2A4,A43n%. Hence,
T, = O(n?), as claimed.
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