
An O(n2) bound for the relaxation time of a Markov chain oncladogramsby Jason SchweinsbergTechnical Report No. 572Department of StatisticsUniversity of California367 Evans Hall # 3860Berkeley, CA 94720-3860March 1, 2000AbstractA cladogram is an unrooted tree with labeled leaves and unlabeled internal branchpointsof degree 3. Aldous has studied a Markov chain on the set of n-leaf cladograms in whicheach transition consists of removing a random leaf and its incident edge from the tree andthen reattaching the leaf to a random edge of the remaining tree. Using coupling methods,Aldous has shown that a mixing-time parameter for this chain known as the relaxation timeis O(n3). Here, we use a Poincar�e inequality to prove an O(n2) bound for the relaxation time,establishing a conjecture of Aldous.Keywords: mixing times, Markov chains, cladograms, continuum random tree, Poincar�e inequalities.1 IntroductionAn n-leaf cladogram, as de�ned in [2], is an unrooted tree with n leaves and internal branchpointsof degree 3. The leaves are labeled, usually by the integers 1, : : : , n, but the internal branchpointsare unlabeled. We denote the set of n-leaf cladograms by Tn. Each n-leaf cladogram contains2n� 3 edges. Also, as noted in [2], the cardinality of Tn, which we denote by cn, is given bycn = (2n� 5)(2n� 7) : : :(3)(1) = (2n)!(2n� 1)(2n� 3)2nn! : (1)1



Figure 1 below shows an example of a 7-leaf cladogram.@@ ���� @@ ��@@7 24 3 6 51Figure 1: a 7-leaf cladogramAs mentioned in the introduction to [2], n-leaf cladograms are used in biology to representthe evolutionary relationship among n species. Since Markov chain Monte Carlo methods havebeen used to reconstruct cladograms from DNA data, it is of interest to study Markov chains onTn. Here we will focus on a simple chain that was introduced in [2]. We �rst de�ne the followingtwo operations on cladograms:(1) To remove a leaf i means to remove the edge from the leaf i to its branchpoint b, andthen remove the branchpoint b to collapse two edges into one (see Figure 2).(2) To add a leaf i to the edge g means to create a new branchpoint b in the interior of gand then add a new edge connecting b to the leaf i (see Figure 3).@@�� ��@@ .............. ............. ��@@�� @@ib Figure 2: removing the leaf i��@@�� @@ ............. ............. @@ ��@@��g b iFigure 3: adding the leaf i to the edge gWe now de�ne a Markov chain (Xt)1t=0 with state space Tn. To de�ne this chain, we constructXt+1 from Xt by removing a leaf chosen uniformly at random from Xt and then adding this leaf2



to an edge chosen uniformly at random from the remaining tree. For trees x and y in Tn, wewrite y � x if x 6= y and y can be obtained from x by removing one leaf of x and then addingit to an edge of the remaining tree. As observed in [2], the transition probabilities for this chainare given by P (Xt+1 = yjXt = x) = 1=n(2n� 5) if y � x= 1=(2n� 5) if y = x (2)because there are n leaves that can be removed and 2n � 5 edges to which the leaf can bereattached. It follows that this chain has a symmetric transition matrix and therefore is reversiblewith a uniform stationary distribution.As stated in [2], the chain (Xt)1t=0 is also irreducible and aperiodic. Therefore, the distributionof Xt converges to the uniform stationary distribution as t ! 1. For designing Markov chainMonte Carlo algorithms, it is useful to know how long it takes for the chain to converge to thestationary distribution. There are di�erent ways of formalizing this idea of \mixing time." See[7] for a detailed comparision of several mixing-time parameters. In this paper, we will considerthe relaxation time �n for the Markov chain on Tn described above. The relaxation time isde�ned to be the reciprocal of the spectral gap, which means �n = 1=(1� �n;2), where �n;2 is thesecond-largest eigenvalue of the transition matrix for the chain.A general discussion of the relaxation time for a reversible Markov chain and methods forbounding it is given in chapter 4 of [3]. In [2], Aldous used a coupling argument to show that forthe Markov chain on n-leaf cladograms de�ned above, we have �n = O(n3). He also conjecturedthat �n = O(n2). In lectures given in a graduate course at U.C. Berkeley in the fall of 1999,Aldous outlined an alternative approach to bounding �n using a \distinguished paths" method.This approach did not yield a bound of O(n2), but we show in this paper that a variation of the\distinguished paths" method does give an O(n2) bound for �n. We state this result below.Theorem 1 Let �n be the relaxation time of the Markov chain (Xt)1t=0 on n-leaf cladogramsde�ned above. Then �n = O(n2).Theorem 1.1 of [2] shows that �n = 
(n2), so it follows from Theorem 1 that �n = �(n2).In section 2, we introduce the modi�cation of the \distinguished paths" method that we willuse to prove Theorem 1. We then prove Theorem 1 in section 3.2 A modi�ed distinguished paths methodA well-known method for upper-bounding the relaxation time of a reversible Markov chain is themethod of distinguished paths, which is based on Poincar�e inequalities. Diaconis and Stroockintroduced this method in [4] and applied it to several examples. The method was further3



developed in [9] and [6], and the bounds were compared to bounds based on Cheeger's inequalityin [5]. In this section, we present a variation that is useful for studying the Markov chain de�nedin the introduction.Let (Zt)1t=0 be an irreducible, aperiodic, reversible Markov chain with �nite state space V andstationary distribution �. De�ne the transition probabilities by pxy = P (Zt+1 = yjZt = x). LetG be a graph with vertex set V and edge set E such that G has a directed edge from x to y ifand only if pxy > 0. For an edge e from x to y, de�ne Q(e) = �xpxy. Let � denote the relaxationtime of the chain (Zt)1t=0.The following theorem follows from the proof of Theorem 2 in [6] and the �rst two sentencesof the proof of Theorem 6 in [6], which show that the arguments used to prove Theorem 2 stillhold when the paths between vertices are random.Theorem 2 Suppose, for all x and y in V , that 
xy is a path in G, possibly random, from x toy such that no edge is traversed more than once. Let l be any function from E to (0;1). Then,� � maxe2E 1l(e)Q(e)Xx2V Xy2V �x�yE[j
xyjl]P (e 2 
xy);where the path length j
xyjl is de�ned by j
xyjl = Pe2
xy l(e). In particular, if E[j
xyjl] � L forall x; y 2 V , then � � Lmaxe2E 1l(e)Q(e)Xx2V Xy2V �x�yP (e 2 
xy):To analyze the Markov chain de�ned in the introduction, we will need the following corollaryof Theorem 2, which can be useful if one can only easily describe a short path 
xy when y is insome subset B of V . We say that a length function from E to (0;1) is symmetric if the lengthof a directed edge does not depend on the direction in which the edge is traversed.Corollary 3 Let B be a subset of V , and let l : E ! (0;1) be a symmetric length function.Suppose, for all x 2 V and y 2 B, that 
xy is a path in G, possibly random, from x to y suchthat E[j
xyjl] � L. Then,� � 4L�(B) maxe2E 1l(e)Q(e)Xx2V Xy2B �x�yP (e 2 
xy):Proof. For all x and z in V , de�ne a path ~
xz by choosing a random vertex Y in B such thatP (Y = y) = �y=�(B) and then concatenating the paths 
xY and 
rzY , where 
rzY is the path fromz to Y traversed in the opposite direction. Denote by er the directed edge connecting the same4



two vertices as e but in the reverse direction. Then, using Theorem 1 for the �rst inequality, wehave � � maxe2E 1l(e)Q(e)Xx2V Xz2V �x�zE[j~
xzjl]P (e 2 ~
xz)� maxe2E 1l(e)Q(e)Xx2V Xz2V �x�zE[j
xY jl + j
zY jl](P (e 2 
xY ) + P (er 2 
zY ))� 2Lmaxe2E 1l(e)Q(e)Xx2V Xz2V �x�z(P (e 2 
xY ) + P (er 2 
zY ))= 2Lmaxe2E 1l(e)Q(e)�Xx2V �xP (e 2 
xY )�Xz2V �z�+Xz2V �zP (er 2 
zY )�Xx2V �x��� 2Lmaxe2E 1l(e)Q(e)Xx2V �xP (e 2 
xY ) + 2Lmaxe2E 1l(e)Q(e)Xz2V �zP (er 2 
zY ):For all e 2 E, we have l(e) = l(er) since l is symmetric and Q(e) = Q(er) since the chain isreversible. Therefore,� � 4Lmaxe2E 1l(e)Q(e)Xx2V �xP (e 2 
xY )= 4Lmaxe2E 1l(e)Q(e)Xx2V �x�Xy2B �y�(B)P (e 2 
xy)�= 4L�(B) maxe2E 1l(e)Q(e)Xx2V Xy2B �x�yP (e 2 
xy); (3)as claimed.3 Proof of the O(n2) boundIn this section, we prove Theorem 1. We �rst establish Lemmas 4 and 5, which give generalresults about uniform random cladograms. The natural inductive proof of formula (1) for thecardinality of Tn establishes that a uniform random cladogram can be built by inductively addingleaves to uniform random edges. Lemma 4 below emphasizes that this construction works forany ordering of leaves.Lemma 4 Let � be a permutation of f1; : : : ; ng. Let x3 be the unique 3-leaf cladogram with leaveslabeled �(1), �(2), and �(3). For 4 � k � n, inductively de�ne xk by adding a leaf labeled �(k)to an edge chosen uniformly at random from the edges of xk�1. Then xn is a uniform randomn-leaf cladogram with leaves labeled f1; : : : ; ng. 5



Proof. We proceed by induction. Clearly x3 is a uniform random 3-leaf cladogram with leaveslabeled �(1), �(2), and �(3). Suppose, for some k � 4, that xk�1 is a uniform random (k�1)-leafcladogram with leaves labeled �(1), : : : , �(k � 1). Let x be any k-leaf cladogram with leaveslabeled �(1); : : : ; �(k). Let y be the (k� 1)-leaf cladogram obtained by removing the leaf labeled�(k) from x. Then there is an edge e of y such that x is obtained when a leaf labeled �(k)is added to the edge e. Furthermore, one can check that if xk�1 6= y or if xk�1 = y and xkis obtained from xk�1 by attaching a leaf labeled �(k) to any edge other than e, then xk 6= x.Therefore, using the induction hypothesis and the fact that xk�1 has 2k � 5 edges, we obtainP (xk = x) = 1=(2k � 5)ck�1 = 1=ck. It follows that xk is a uniform random k-leaf cladogramwith leaves labeled �(1); : : : ; �(k). Hence, xn is a uniform random n-leaf cladogram with leaveslabeled 1; : : : ; n.Given a subset U of f1; : : : ; ng and a cladogram x 2 Tn, we de�ne the U -spanning tree ofx to be the tree obtained by successively removing from x all leaves whose labels are not in U .Note that the tree xk in the construction of Lemma 4 is the f�(1); : : : ; �(k)g-spanning tree ofxn. Therefore, it follows from Lemma 4 that if U is a k-element subset of f1; : : : ; ng, then theU -spanning tree of a uniform random n-leaf cladogram is a uniform random k-leaf cladogram.If x 2 Tn, then any two leaves in x are connected by a unique path. Let d(x) denote thediameter of x, which is the maximum number of edges in the path between any two leaves of x.Lemma 5 below states that the diameter of a typical n-leaf cladogram is O(n1=2).Lemma 5 There exists a constant A1 < 1, not depending on n, such that if � denotes theuniform distribution on Tn and B = fx 2 Tn : d(x) � A1n1=2g, then �(B) � 1=2.Proof. Let xn be a uniform random n-leaf cladogram. Following [2], we de�ne a tree yn byassigning random lengths to the 2n�3 edges of xn such that the joint density of the edge lengthsis given by g(l1; : : : ; l2n�3) = se�s2=2; where s = 2n�3Xi=1 li: (4)Note that the edge lengths are exchangeable and are independent of the shape of the tree. In theproof of Lemma 21 of [1], Aldous constructs a tree whose shape and edge lengths have the samedistribution as yn from the times C1 < C2 < : : : of a nonhomogeneous Poisson process on (0;1)with rate r(t) = t. It follows from this construction that the sum of the lengths of the edges of ynhas the same distribution as Cn�1. This fact and the exchangeability of the edge lengths implythat there exists A2 > 0 such that the expected length of any edge of yn is at least A2n�1=2 forall n.Let v and w be leaves of xn such that the number of edges on the path from v to w equalsthe diameter d(xn). Then the expected length, conditional on xn, of the path in yn from v to6



w is at least A2n�1=2d(xn). Therefore, the expected length of the longest path between any twoleaves of yn is at least A2n�1=2E[d(xn)].Next, let (T1; �) be the Brownian continuum random tree, as de�ned in section 4.3 of of [1].We may assume that T1 is constructed from the continuous function f(t) = 2Bt as described inTheorem 13 of [1], where (Bt)0�t�1 is a normalized Brownian excursion. Let Tn be the subtreeof T1 spanned by n � 1 leaves chosen at random from T1 according to the probability measure�. Regard the root of Tn as a leaf, so Tn becomes an unrooted n-leaf tree. By Theorem 3 andCorollary 22 of [1], Tn has the same distribution as yn. By Theorem 13 of [1], the length ofany path between two vertices of Tn is at most 2maxt2[0;1] f(t) = 4M1, where M1 = maxt2[0;1]Bt.Therefore, E[d(xn)] � 4A�12 E[M1]n1=2. Since E[M1] <1, as shown, for example, in [8], it followsfrom Markov's inequality that the conclusion of Lemma 5 holds with A1 = 8A�12 E[M1].Now, we work towards using Corollary 3 to obtain an O(n2) bound for the relaxation time�n of the Markov chain on cladograms de�ned in the introduction. We use the notation fromsection 2, so in this case V = Tn, the stationary distribution � is uniform on Tn, and G is thegraph with vertex set V such that there is an edge in G from x to y if and only if y � x.For all x; y 2 V , we now construct a random path 
xy in G from x to y. First, let � be auniform random permutation of f1; : : : ; ng. Let x1 = x. De�ne x2 to be the cladogram that weobtain by removing the leaf labeled �(2) from x1 and then adding it to the edge incident to �(1).Let S2 denote the rooted subtree of x2 whose root is a branchpoint of x2 and whose only leavesare �(1) and �(2). Let S 02 be the unrooted tree obtained by regarding the root of S2 as a leafand labeling it �(n). Note that S 02 is the f�(1); �(2); �(n)g-spanning tree of y because there isonly one 3-leaf cladogram. Figure 4 below gives an example..��@@ @@��... @@ ���� @@ @@����@@@@���(5)�(2) �(8)�(6)�(1) �(4) �(3) �(7) �(4) �(7)�(3)�(5) �(6) �(8) root�(2)�(1) �(8)�(1)�(2)x = S02 =S2 =�(2)�(1)x2 =Figure 4: an example of x, x2, S2, and S02Suppose, for some k 2 f2; 3; : : : ; n � 2g, that we have de�ned cladograms x2; : : : ; xk and xkhas a rooted subtree Sk with leaves �(1); : : : ; �(k) such that if we de�ne S 0k by regarding the7



root of Sk as a leaf and labeling it �(n), then S 0k equals the f�(1); : : : ; �(k); �(n)g-spanning treeof y. Then, we can de�ne xk+1 by removing the leaf �(k + 1) from xk and adding it to theunique edge of Sk such that, after the leaf is added, the new subtree Sk+1 has the propertythat when the root is labeled �(n) and regarded as a leaf, the new unrooted tree S 0k+1 is thef�(1); : : : ; �(k + 1); �(n)g-spanning tree of y. See Figure 5 below, which shows the trees x3and x4 de�ned when constructing the path from x to y, where x is the same tree as in Figure4. Note that in going from x3 to x4, the leaf �(4) is removed and then added to the edgeincident to �(2). Also, note that the f�(1); �(2); �(3); �(8)g-spanning tree of x3 is the same asthe f�(1); �(2); �(3); �(8)g-spanning tree of y and the f�(1); �(2); �(3); �(4); �(8)g-spanning treeof x4 is the same as the f�(1); �(2); �(3); �(4); �(8)g-spanning tree of y.
@@�� @@���� @@ @@�� ��@@@@����@@@@�� @@ ��@@

�(6) �(8)�(4)�(1)�(3) �(5)�(2) �(7) �(8)�(5) �(7)�(1)�(3)�(2) �(4)
�(6)

�(2) �(5)�(1)�(4)�(3) �(7) �(8)y =
x4 =x3 =

�(6)
Figure 5: the trees x3 and x4Note that when x1; : : : ; xn�1 are de�ned by this process, the tree Sn�1 is just xn�1 with �(n)regarded as the root, so xn�1 = S 0n�1 = y. Thus, we have inductively de�ned random cladogramsx1; : : : ; xn�1 such that x1 = x, xn�1 = y, and, for 1 � k � n � 2, either xk = xk+1 or xk+1 � xk.We now de�ne 
xy to be the path consisting of all edges e that connect xk to xk+1 for some k. Ife is the edge from xk to xk+1, then we say e 2 
xy at step k.8



Let l(e) = 1 for each edge e 2 E. Then j
xyjl � n � 2 for all x; y 2 V . Thus, Corollary 3implies that �n � 4(n� 2)�(B) maxe2E 1Q(e) Xx2V Xy2B �x�yP (e 2 
xy);where B = fx 2 Tn : d(x) � A1n1=2g as de�ned in Lemma 5. By Lemma 5, �(B) � 1=2. Since �is uniform on V , we have �x = c�1n for all x 2 V . By (2), we have pxy = 1=n(2n � 5) whenevery � x. Thus, for all edges e in G, we have Q(e) = �xpxy = 1=cnn(2n� 5). It follows that�n � 8(n� 2)maxe2E cnn(2n� 5)Xx2V Xy2B �x�yP (e 2 
xy)� 16n3cnmaxe2E Xx2V Xy2B �x�yP (e 2 
xy): (5)For all e 2 E, de�ne K(e) = fk : P (e 2 
xy at step k) > 0 for some x 2 V; y 2 Bg. Now, �xan edge e. Let v and w be the cladograms such that e is the edge from v to w, and let i and gbe the leaf and edge respectively in v such that w is obtained from v by removing the leaf i andthen adding it to the edge g. Let p be the unique path in v that begins by traversing the edgeincident to i and ends by traversing the edge g. If e 2 
xy at step k, then v = xk and w = xk+1.Also, v has a rooted tree Sk, as de�ned above in the description of the construction of 
xy, whichcontains k leaves and the edge g. Note that the root r of Sk must be one of the branchpoints onthe path p (see Figure 6).'& $%@@ ���� @@............. ............. ............. ............. ��@@�� @@ ��@@r gv = w =i irSkFigure 6: arrows mark the path p; the subtree Sk is circled.If y 2 B, then y has diameter at most A1n1=2. Since S 0k is the f�(1); : : : ; �(k); �(n)g-spanningtree of y and S 0k contains g, the portion of the path p that starts at r and ends after traversing ghas length at most A1n1=2. Also, there is at most one subtree rooted at a given branchpoint onthe path p that could be Sk. Therefore, the number of integers in K(e) is at most A1n1=2. Thus,�n � 16n3cnmaxe2E Xx2V Xy2B �x�y� Xk2K(e)P (e 2 
xy at step k)�� 16A1n7=2cnmaxe2E maxk2K(e)Xx2V Xy2V �x�yP (e 2 
xy at step k): (6)9



Note that Xx2V Xy2V �x�yP (e 2 
xy at step k) (7)is the probability that e 2 
xy at step k when x and y are chosen uniformly at random from Tn.We now assume x and y are uniform random n-leaf cladograms and bound the expression in (7)for �xed e 2 E and k 2 K(e). De�ne v, w, i, p, and g as in the previous paragraph. We haveseen that, since k 2 K(e), the tree v must have a rooted subtree Sk with k leaves which containsthe edge g and has its root on the path p. Also, for any �xed k, v has only one such subtree.Now construct a random path 
xy as described earlier. We have e 2 
xy at step k if and only ifxk = v and xk+1 = w, where xk and xk+1 are as de�ned in the construction of 
xy. Let � be therandom permutation of f1; : : : ; ng required for the construction of 
xy. We claim that if xk = vand xk+1 = w, then the following three events must occur:(a) The leaves of Sk are �(1); : : : ; �(k), and �(k+ 1) = i.(b) The f�(1); �(k+ 1); : : : ; �(n)g-spanning tree of x is the same as thef�(1); �(k+ 1); : : : ; �(n)g-spanning tree of v.(c) The f�(1); : : : ; �(k+ 1); �(n)g-spanning tree of y is the same as thef�(1); : : : ; �(k+ 1); �(n)g-spanning tree of w.Event (a) must occur because, to obtain xk+1 from xk, the leaf �(k+1) is removed and then addedto an edge in a subtree of xk whose k leaves are �(1); : : : ; �(k). Event (b) must occur becausenone of the leaves �(1); �(k+ 1); : : : ; �(n) is moved in the �rst k� 1 steps in the construction of
xy, so the f�(1); �(k+1); : : : ; �(n)g-spanning tree of x is the f�(1); �(k+1); : : : ; �(n)g-spanningtree of xk. Also, event (c) must occur because the leaves �(1); : : : ; �(k+ 1); �(n) are not movedagain after the kth step in the construction, so the f�(1); : : : ; �(k+ 1); �(n)g-spanning tree of yis the same as the f�(1); �(k+ 1); : : : ; �(n)g-spanning tree of xk+1.Since � is a uniform random permutation of f1; : : : ; ng, we have that �(1); : : : ; �(k) arethe leaves of Sk with probability 1=�nk �, and conditional on the event that �(1); : : : ; �(k) arethe leaves of Sk, we have �(k + 1) = i with probability 1=(n � k). By Lemma 4, since xis chosen uniformly at random from Tn, the f�(1); �(k+ 1); : : : ; �(n)g-spanning tree of x is auniform random element of Tn�k+1. Therefore, the probability of event (b) is 1=cn�k+1. Likewise,the f�(1); : : : ; �(k + 1); �(n)g-spanning tree of y is a uniform random element of Tk+2, so theprobability of event (c) is 1=ck+2. Therefore, if k 2 K(e), thenXx2V Xy2V �x�yP (e 2 
xy at step k) � 1�nk � (n� k)ck+2cn�k+1= 1�nk � (n� k)(2k� 1)(2k� 3)(2(n� k)� 3)ckcn�k (8)10



because ck+2 = (2k � 1)(2k� 3)ck and cn�k+1 = (2(n � k) � 3)cn�k by (1). Combining (6) and(8), we get�n � 16A1n7=2maxe2E maxk2K(e) cn�nk � (n� k)(2k � 1)(2k� 3)(2(n� k)� 3)ckcn�k : (9)By Stirling's formula, we have(2n)!n! � p2�(2n)2n+1=2e�2np2�nn+1=2e�n = 22n+1=2nne�n;where � means that the ratio of two sides is bounded away from zero and in�nity as n varies.Therefore, using (1), we havecn = (2n)!(2n� 1)(2n� 3)2nn! � 22n+1=2nne�n(2n� 1)(2n� 3)2n � 2n�3=2nn�2e�n:Also, we have�nk � = n!k!(n� k)! � p2�nn+1=2e�n(p2�kk+1=2e�k)(p2�(n� k)n�k+1=2e�(n�k)) = nn+1=2p2�kk+1=2(n� k)n�k+1=2 ;where here � means that the ratio of the two sides is bounded away from zero and in�nity as nand k vary. Thus, there exists a constant A3 > 0 such that for all n 2 N and k 2 f1; : : : ; n� 1g,we have cn�nk � (n� k)(2k � 1)(2k� 3)(2(n� k)� 3)ckcn�k� A3k2(n� k)2 kk+1=2(n� k)n�k+1=2nn+1=2 2n�3=2nn�2e�n(2k�3=2kk�2e�k)(2n�k�3=2(n� k)n�k�2e�(n�k))= 2p2A3k2(n� k)2�k(n� k)n �5=2 = 2p2A3n�5=2(k(n� k))1=2 � 2p2A3n�3=2 (10)for all e and all k 2 K(e). Thus, from (9) and (10), we have �n � 32p2A1A3n2. Hence,�n = O(n2), as claimed.AcknowledgmentsThe author would like to thank David Aldous for suggesting this problem, giving a preliminaryoutline of the argument used to prove the main result, and commenting on earlier drafts of thispaper. 11
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