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ERROR BOUNDS FOR COMPUTING THE
EXPECTATION BY MARKOV CHAIN MONTE CARLO

DANIEL RUDOLF

ABSTRACT. We study the error of reversible Markov chain Monte
Carlo methods for approximating the expectation of a function.
Explicit error bounds with respect to the fo-, £4- and {.-norm of
the function are proven. By the estimation the well known asymp-
totical limit of the error is attained, i.e. our bounds are correct to
first order as n — oco. We discuss the dependence of the error on a
burn-in of the Markov chain. Furthermore we suggest and justify
a specific burn-in for optimizing the algorithm.

1. INTRODUCTION

We start with a probability distribution 7 on a finite set D and a
function f : D — R. The goal is to compute the expectation denoted
by

S(f) =) fa)n(a).
xeD

Let the cardinality of D be very large such that an exact computa-
tion of the sum is practically impossible. Furthermore suppose that
the desired distribution is not explicitly given, i.e. we have no ran-
dom number generator for 7 available. Such kind of problems arise in
statistical physics, in statistics, and in financial mathematics (see for
instance [GRS96| [Liu08]). The idea of approximating S(f) via Markov
chain Monte Carlo (MCMC) is the following: Run a Markov chain on
D to simulate the distribution 7 and compute the time average over
the last n steps. Let Xi,..., X,4+n, be the chain, then we obtain as
approximation

1 n
Sn,no(f) = E Z f(XH—no)
=1

By ng the so called burn-in is given, loosely spoken this is the num-
ber of time steps taken to warm up. Afterwards the distribution of the
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generated Markov chain is (hopefully) close to the stationary one.

A Markov chain is identified with its initial distribution v and its
transition matrix P. We restrict ourself to reversible chains which are
ergodic, i.e. the second largest absolute value [ of the eigenvalues of
P is smaller than one. It is well known that the distribution of these
chains reaches stationarity exponentially (see [Bré99, RRI7, LPW09)]).

The error of S, ,,, for f € RP is measured by

2\1/2
eu(Sn,noa f) = (EV,P |Sn,no(f) - S(.f)| ) 5
where E, p denotes the expectation of the Markov chain. The asymp-
totic behavior of the integration error can be written in terms of the
eigenvalues and eigenfunctions of P. It holds true that

. 1+ 61 2
2
) < f
nhm n - ey (Snng, )7 < = 1 £115

where (; is the second largest eigenvalue (see [Sok97, [Mat99]). The con-
stant }J_rgi is optimal but this statement does not give an error bound
for finite n and also does not include anything concerning the choice of
ng. How does an explicit error bound of the MCMC method look like

where the asymptotic behavior is attained?

Let us give an outline of the structure and the main results. Section 2]
contains the used notation and presents some relevant statements con-
cerning Markov chains. Section [3] contains the new results. The explicit
error bound is developed with respect to the fo-, £4- and /o -norm of

the function f. For [|f||, < 1 and C' = 2y/[|% - 1|| _ we obtain the
following. The error obeys

2 20 M0
(=) (-
For details and estimates concerning £y and ¢, we refer to Theorem [I]
in Section 3.3l In Section Ml it turns out that ny = max { Lig%@;‘ ,0}
is a reasonable choice for the burn-in. Then the error bound simplifies
to

eV(Sn,nm .f)2 S n

2 2
T 2°
(1=75) n*(1-p)
For an interpretation let us consider the case where 5 = (3;. Then the
cost n + ng which are needed for an optimal algorithm to approximate

eV(Sn,nm .f)2 S n
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S(f) within an error of € can be bounded by

a7 | [oate |

Hence C' can be astronomically large, for instance depending polyno-
mially on the cardinality of the state space, because it comes in loga-
rithmically.

In many examples a good estimate for § can be achieved, see for
instance [MR02, BD0G, BLO7|. Therefore it is straightforward to apply
the explicit error bound.

2. PRELIMINARIES

The Markov chain X, X,,... is a stochastic process with state
space D. It is given by initial distribution v and transition matrix
P = (p(x,y))syep and denoted by (v, P). For z,y € D the entry
p(z,y) presents the probability of jumping from state = to state y in
one step of the chain.

By Pf(x) = > ,cpp(x,y)f(y) we obtain the expectation of the

value of f € RP after one step of the chain starting from z € D.
The expectation after k steps of the Markov chain from z is given
by P*f(x) = 32 cpp*(2,y)f(y), where P* = (p"(2,y))syen denotes
the k-th power of P. Similarly we consider the application of P to
a distribution v, i.e. vP(x) = > ., v(y)p(y, ). This is the distribu-
tion which arises after one step where the initial state was chosen by
v. The distribution which arises after k steps is given by vPk(x) =

> yen VWP (y, @)

The expectation E, p of the Markov chain Xj, ..., X, ,, is taken
with respect to the probability measure
Wo.p(T1, . Tngng) = v(@1)p(T1, 22) = P(Tning—1, Tntng )y M50 €N,

on D™ Using this for ¢ < j we obtain a characterization by the
transition matrix

(1) E,p(f(X)f(X;)) =Y _ P(fP7 f)(@)v(x).

2.1. Reversibility and spectral structure. We call the Markov
chain with transition matrix P, or simply P, reversible with respect
to a probability measure 7 if the detailed balance condition

m(z)p(z,y) = 7(y)p(y, x)
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holds true for z,y € D. If P is reversible, then 7 is called stationary
distribution of the Markov chain, i.e. 7P(z) = 7(x). Note that, if P is
reversible then P is also reversible. Let us define the weighted scalar-
product

(fr9). =Y fl@)g(@)m(@),

zeD

for functions f,g € RP. Then let ||f]l, = (f, f)ir/z. By considering
the scalar-product it is easy to show, that reversibility is equivalent to
P being self-adjoint. Furthermore suppose that the underlying Markov
chain is irreducible and aperiodic, this is also called ergodic. For details
of these conditions we refer to the literature, for instance [Hag02], Bré99,
LPWO09]. It is a well known fact that this implies the uniqueness of the
stationary distribution. Applying the spectral theorem of self-adjoint
stochastic matrices and ergodicity we obtain that P has real eigenvalues

1=03y>p=2pr=-2Bp-1>-1

with a basis of orthogonal eigenfunctions u; for i € {0,...,|D| — 1},
le.

1 i=j
0 i+#j.

Additionally one can see that ug(z) =1 and S(u;) = 0 for ¢ > 0.

Pu; = By, <ui7uj>7r = 52‘;‘ = {

2.2. Convergence of the chain. The speed of convergence of the
Markov chain to stationarity is measured by the so called y2-contrast.
Let v, u be distributions on D then

= 3 ) = pa))?

= ()

The x2-contrast is not symmetric and therefore no distance. For arbi-
trary distributions it can be very large, i.e.

— —1].

X (v, p) < ()

K—IH ,  where HZ—IH = max v(z) ‘
M . M zeD

From [Bré99, Theorem 3.3 p. 209] we have

(2) (WP, ) < B P (v, 7),
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where [ = max { b1, } Bip|-1 }} denotes the second largest absolute value
of the eigenvalues. Let us turn to another presentation of the conver-
gence property. We have

vPHa) — () = 3 2 gy o)y — (o)

=)

= y; Z_(—‘Z;pk(l’, y)m(x) — m(x)

- %pwx )~ % %ﬂy)w(w
y; <y§ — n(y))r(a).

The second equality follows by the reversibility of the Markov chain.
For simplicity let

such that altogether

.

1%
(3) iy = VIEOPET) < 84 ]| =1

Since [ < 1 we have an exponential decay of the norm with k£ — oo.
We define the weighted sequence spaces for 1 < p < oo by

0, = 4,(D,7) = {feRD 112 =37 1) }

zeD

It is clear that ¢, = R, since the state space has finite cardinality.

Remark 1. As we have seen the y2-contrast corresponds to the /-
norm of the function dj. Other tools for measuring the speed of con-
vergence induce similar relations. For instance

— -1

Pk
dill, =2 P —x],, and il = [ H

The total variation corresponds to the ¢;-norm of d; and the ¢,.-norm
to the supremum-distance.

Remark 2. The constant [ plays a crucial role in estimating the speed
of convergence of the Markov chain to stationarity. In general it is not
easy to handle ; or 3, but there are different auxiliary tools, e.g.
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canonical path technique, conductance (see [JS89] and [DS91]), log-
Sobolev inequalities and path coupling. For a small survey see [Ran06].

2.3. Norm of the transition matrix. Let us consider P and S as
operators acting on £,. Then the functional S’ maps arbitrary functions
to constant functions. Let

0 :=0(D,m)={g€l,:S(g) =0} for 2<p< oo

The norm of P as operator on £3 and (9 is essential in the analysis.
We state and show some results which are implied by the Theorem of
Riesz-Thorin. For a proof and an introduction we refer to [BS8S].

Proposition 1 (Theorem of Riesz-Thorin). Let 1 < p,q1,q2 < oc.
Further let 8 € (0,1) and

1 1-6 40
2_9 - Uil g
and
T: 0, — L, with HT||zq1—>£q1 < My,
T:ly, =l with ||T||eq2—>éq2 < Ms.
Then
1T [lg, g, < 207" M.

Note that the factor two in the last inequality comes from the fact
that we consider real valued functions f. In the following we show a
relation between P, P — S and [.

Lemma 2. Let P be a reversible transition matrix with respect to m
and n € N. Then

(4) 1P = Sllypsy = 1Pl g = 6™
Furthermore if 2 < p < oo then
(5) 1P gy < 1P = Sl <2

Proof. The self-adjointness of P implies || P|| @y = Max {81,
B, such that ||P”H£g—>zg = [". By

12" = Sllgyse, = sup [[(P" = S)flly = sup [[P"(f = S(f))ll,
Ill<1 <1

< sup sup 1P"gll, = ||PnH£g

[fllo<1 [lglly <1, S(g)=0

Bij-1]} =

0
—b
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and
1P lgyeg = sup  [[P"gll,=  sup  [[P"g—=S(g)ll,
lgll, <1, 5(g)=0 lgll, <1, 5(g)=0
< sup [[(P" = S)f[l, = 1P" = Sll, s,
111,51

claim () and the first part of (B) is shown. Finally, by applying the
triangle inequality of the norm
1P =Sl sup [[P"f = Sfl, < 1P,

fll,<1

=2

—lp

—lp e, T HSH@,

U

The next statement adds the result about the matrix norm which is
used in the proof of the error bound.

Lemma 3. Let P be a reversible transition matrix with respect to m
and n € N. Then

(6) 1Pl < 2V2 572,
Proof. By Lemma 2] we have
|1P" = Slyp, =B" and ||P" =S5, _, <2

Then the result is an application of Proposition [I, where T'= P" — S
andq1:2,q2:oo,p:4thus9:%. O

3. ERROR BOUNDS

In this section we mainly follow two steps to develop the error bound.
At first a special case of method S, ,,, is considered. The initial distri-
bution is the stationary one, thus it is not necessary to do a burn-in,
i.e. ng = 0. Secondly we relate the result of the first step to the general
case where the chain is initialized by a distribution v. The techniques
which we will use are similar as in [Rud09].

3.1. Starting from stationarity. This is also called starting in equi-
librium, i.e. the distribution of the Markov chain does not change, it
is already balanced. In the following we will always denote S, o as S,.
Let us start with stating and discussing a result from [BD06, Prop. 2.1
p.3], which is similar to [LS93, Theorem 1.9, p. 375].

Proposition 4. Let f € RP. Let X;,...,X,, be a reversible Markov
chain with respect to 7, given by (P, ). Then
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|D|-1

(7) (S )P = = Z Jaxl* W (n

n(l —B7) — 281 — 5k)

(1= Bk)?
Proof. Let us consider g := f — S(f) € RP. Because of the orthogonal
basis the presentation g(x) = Z‘kD‘l— "apup(z) is given. The error obeys

— Zg ZQ(X
- % ZEW,PQ( Z > Enrg(X;)g(Xi).

ar = (fyug), and W(n,B) =

(Snaf 7rP

= _2E7T,P
n

7j=11i=75+1
For 5 <7,
|D|-1|D|-1
Erpg(X = > Z aray Bx pug(Xi)u (X;)
k=1 =1
|D|-1|D|-1
Z Z ara <Uk7P ]Ul>
k=1 =1
|D|-1|D|-1 |D|-1
Z Z aray B (up, w), = Z ai, By 7,
k=1 =1 k=1

where the equality of the second line is due to the fact that the initial
step is chosen from the stationary distribution. The last two equali-
ties follow from the orthonormality of the basis of the eigenvectors.
Altogether we have

Dl _
k= j=11i=j4+1
g i (n—1)8, —nB2 + gyt
; e (1= Bk)? }
1 |D|—
== |ak| W (n, B).

k=1
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Let us consider W (n, 5x) to simplify and interpret Proposition 4l
Lemma 5. Foralln € N and k € {1,...,|D| — 1} we have

(8) W(n,Br) < W(n, p1) <

Proof. Let x € [—1,1), then we are going to show that W(n,z) is
monotone increasing, i.e. W(n, B;) < W(n, ;). Fori € {0,...,n—1}
it is true that

"<l = (1-2) 2" <1 -0 = "4t <1+
Therefore
T T T < 2(1 + 2™,

and

n—1
gt + a2 2 < (1 4 2™).
0

1=

l\DI»—t

n—1
(14 x) Zm“
=0

Now

dWwW B (1+2) 30 2 —n(l+a")
%(n,x)——Q TEE >0

and the first inequality is shown. By

nIEn2mm e [<1,0] _ 2n

—x ? <
Win,2) < {g +2) re(01) S 1-z

the claim is proven. O

An explicit formula of the error if the initial state is chosen by the
stationary distribution is established. Let us discuss the worst case
error of S,,.

Proposition 6. Let Xq,..., X, be a reversible Markov chain with re-
spect to w, given by (P, ). Then

1+ 51 26,(1 - B8t) 2

2 _ _
OF e, e ) = S8y T =B S - B
Proof. The individual error of f is
507 = &S Wi ) < 1L W(n, )
ex(Sh, @—Z a n, By > e max  Win. By
o ||f|| 1+ B 26,(1 - B7) 2
(ﬁ) n22W( 51) (1 ) ||f||2 m ||f||2a
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where ay is chosen as in Proposition dl and therefore Z‘ - 1|0L |
I]l5. From the preceding analysis of the individual error we have an
upper error bound. Now we consider f = wuy, where obviously ||u;]|, =1
and get by applying (7)) that

L+p 2601 -87)
n(l—p5) n2(1—p61)2
Thus the error bound is attained for u; and by () everything is shown.
O

Finally an explicit presentation for the worst case error on the class
of bounded functions with respect to ||-||, is shown. Notice, that (@) is
an equality, which means that the integration error is completely known
if we start with the stationary distribution. In some artificial cases this
method even beats direct simulation, e.g. if one specific ; < 0 and
the goal is to approximate S(u;) or if all eigenvalues are smaller than
zero. In [FHY92| Remark 3, p.617] the authors state a simple transition
matrix where §; = for all 7. Now one could think to construct

ew(Sm U1)2 -

\D\ 1
a transition matrix where (i is close to —1 and therefore damp the
integration error. But it is well known that this is not possible for large
D, since 41 > —

1
|D|-1"

In the next subsection we link the results to a more general frame-
work, where the unrealistic assumption that the initial distribution is
the stationary one is abandoned.

3.2. Starting from somewhere else. In the next statement a rela-
tion between the error of starting by 7 and the error of starting not by
the invariant distribution is established.

Proposition 7. Let f € RP and g := f — S(f). Let X1,..., Xpin, be
a reversible Markov chain with respect to w, given by (P,v). Then
(10)

n —1 n
1 2
eu(Sn,nov f)2 = ew(Sna f)2 + ﬁ Z Lj-l—no n_ Z Z Lj-l—no Pk J )
7=1 =1 k=j+1
where

= dix)h(z)r(@) =S Z ), — 7 (y)h(z)m(z).

xeD zeD yeD y

Remark 3. The proof of this identity is similar as in [Rud09], except
for the fact that we study a finite state space and therefore integrals
become sums.
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Proof. 1t is easy to see, that

EI/,P |S(f) - Sn,no n2 Z Z EVP no+j (Xno-i-i))

7j=1 =1
n n—1 n
1 " 2 I s
= S PHR@ v+ 30 S0 ST PR (P ) ) ().
j=1xz€D j=1 k=j+12€D

For every function h € R? and i € N under applying the reversibility
the following transformation holds true

S (PR ve) = 3 3 i) o) 2 )

xeD zeD yeD
y
B S RN
" zeD yeD y
(v)
=Y h(z)w(z) + ) Z —7(y)) h(z) w(z)
zeD zeD yeD y
(y)
=S +ZZ(— (@.9) = (4) hla) 7(2).
" zeD zeDyeD
Using this in the setting above, formula (I0) is shown. O

Equation (I0) is still an error characterization where equality holds.
We will estimate Lg(h) to derive an upper bound. This depends very
much on the speed of convergence from the chain to stationarity.

Lemma 8. Let h € RP, let again 3 = max {ﬁl, ‘6|D\—1‘}- Then

1
™

1) Lm)] < 8" |==1|_ e ken.

™

o0

12 L®l <= -1 -ial, ke

Proof. Let us consider Ly(h) = (d, h) .. After applying Cauchy-Schwarz
inequality we obtain

| L ()| < Il [P, -

By applying (B) we showed (I2). Inequality (IZ) and [|A[|, < /||| ||h||1
imply ().
The ingredients for getting an explicit error bound for S, ,, are

gathered together. Mainly the last Lemma ensures an exponential decay
of Ly (h) which is used in the next Proposition.
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Proposition 9. Let X;,..., X, 1,, be a reversible Markov chain with
respect to w, given by (P,v). Let f € RP, g := f — S(f) and

DNAD 3

j=1 k= ]—1—1
25]4‘4\[2 Z BT
Jj=1 k=j+1
(i) Then for g € {3 we have
V(ﬁ n) 1 14 2
2 2 ’ no _ - —
colSum 1) < ex(S0, 17+ =5 |2 ]S =] ol

ii) Then for g € £ we have
(ii) 1

us,n) ., v
oS 1) < xS, 12+ TE g 17| .
(iii) Then for g € £°, we have
V(g,n) ,, v
S 1 < xSy 12+ LT o 17| g2,

Proof. As we have seen in ([I0) the error obeys
(13)

1< 2 <
6V(Sn,n0> .f)2 = ew(Sm .f)2 + E Z Lj-i-no (g n_
j=1

HMH

Z ]+7L09ij)

Then by (), Cauchy-Schwarz inequality and ||P¥~7||,_ , = B¥7 we
2 2

get
1 v i
15 =1 a3
T | o ™ 00

1 v n

3 Y YRy P

Tl oo ™ 0

‘Lj-i-no (g

|Ljin (9P g)| <
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Putting this in the sums of equation (I3]) and let gy = \/H 1 HOO\/H% - 1”005”0
we obtain

n n—1 n
Z ‘Lj+no(g2)‘ + 22 Z ‘Lj+no(gpk_jg)‘
j_

j=1 k=j+1
<o llgl3 Zﬁj+€o||g|| Z Z 28"
j=1 k=j+1
ool (zﬁuz S wk) -l
Jj=1 k=j+1

Thus claim (i) is shown. Now we use (I2)) and
9P g1, < gl [P gll, < gl 1P|y, < llglZ 8

to obtain

v i
Litno(e))] < /|2 =187 llgl

—q v n
[Liena(gP* )] < [||= =1 s gl

Exactly the same steps as in the proof of (i) follow, except for a different
€0 = 4/ H% — 1”005”0 and the supremum norm, i.e. assertion (i) is

proven. Let us turn to (). Again we use (I2]) and estimate

l9P*gll, < llglla [1P*gll, < [1P*7 ]l o0 9l 5 2V gl 575
Thus

Lyinal9?)] < /|

v .
_Z _1H j+no 2’
o I

LrloP )| <22 [ 2 1] g gl



14 DANIEL RUDOLF

For eg = H% — 1Hooﬁ"° we obtain

n n—1 n
S Lo ()] +4V23° S [Lying(gPFg)]
j_

J=1 k=j+1

<50||9||4Zﬁj+50 ||9||4Z Z W2p +

j=1 k=j+1

= eollgll} (Zﬁjﬂf >y ﬁ) ) o gl

J=1 k=j+1

Finally by substituting this in equation (I3]) everything is shown. [

In the last Proposition we introduced V(5,n) and U(S,n). These
functions are bounded if § < 1. By applying the infinite geometric
series several times the following is proven.

Lemma 10. Forn € N and z € [0,1) we have

2 442
(14) V(z,n) < A= U(z,n) < =00 —va

This implies that the asymptotic optimality is reached.

3.3. Main Theorem. The following is the main result.

Theorem 11. Let Xi,..., X, 1n, be a reversible Markov chain with
respect to m, given by (P,v). Let f € RY and ay = (f,ux),. Then

|D|-1

1
Hm 7 - e,(Spng, £)? = lm n - e (S, f)? Z | k|2 +5k

n—o0 n—o0

(i) If we consider f € ly then

2,/ v
i+ \/HWH;E{HE f

S
G IF1l5-

eSnoo f) S S5

(ii) If we consider f € {y then
2 16v2 /][5 =1

ev(Snngs [)° < n(1= By £+ n2(1— B)(1— v/B)

||f||4
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(i1i) If we consider f € ly then

) 2 . AIlE-1 s
ev(Sn.ngs f) SmeHooJr 21— 3) 1£11%

Proof. By ([I0) and the fact that the remaining terms are going qua-
dratic to zero as m goes to infinity, we see that the asymptotic result
holds true. For f € £y we have || f —S(f)[[, < [ f|l, and furthermore if
p # 2 then

LF =S, < FI, + 1SWOT< AL, + 111l < 2071, -

Thus, via Proposition @, Proposition [0l and Lemma [I10] everything is
shown. ]

Notice, that from the estimate of Proposition [ it follows immedi-
ately that

1
Hm - e, (Spngs £)? < Hm - ex(Spng, f)? < + 5

n—o00 n—o00 1 — 61

1£13-

Thus there is no gap between the estimate and the asymptotical be-
havior. Also notice, that the upper bounds are continuous in the sense
that if the initial distribution v is m then we obtain the bound of
Proposition [6l The dependence of the bounds of (i) and (@) in The-
orem [I1] on the initial distribution is encouraging for an extension to
general state spaces. (For MCMC on general state spaces we refer to
[RR04], MNO7, Rud09].) But the dependence of the initial distribution
on the estimate in the /5-case is disillusioning because of the additional
factor of H%HOO

In [Rud09, Theorem 8, p.10] a similar ¢,.-bound of S,, ,,, for general
state spaces is developed. This result holds for lazy, reversible Markov
chains and may also be applied in the present setting, i.e. if the state
space is finite. In [Rud09] the asymptotic error limit is not attained.
Thus we could improve the error bound and weaken the laziness con-
dition, i.e. it is enough that g, = £. In [LPW09, Thm. 12.19, p.165]
the authors obtained for another error term a comparable bound where
the chain starts deterministically. Very recently in [NP09] a similar re-
sult concerning the integration error for f € /., was shown where the
Markov chain is not necessarily reversible.

4. BURN-IN

Let us assume that computer resources for the MCMC method for
N time steps are available, i.e. N = n + ny. We want to choose the
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burn-in ng and the number of n such that the error bound is as small
as possible. The burn-in ny should be large but this implies that n is
possibly quite small depending on how much resources we have. On the
other hand n should be large which again implies that ng is possibly
small. There is obviously a trade-off between choosing the parameters.
In the next statement we consider the error for an explicitly given
burn-in, where for simplicity §; = 5.

Corollary 12. Let f € RY be given and let

e[ )

(i) Let C = /| L[| /11 = 1], then

2 2
v Snnoa 2 >~ .
H?Huzzle (S, )7 < n(l - B) * n?(1— )2
(ii) Let C = 16v/2,/]|% = 1||.. then
2 1
v Snnm 2 S .
e elSan IV S S Y A Ha = V)
(iii) Let C =2, /||% = 1|, then
) 2 2
e S FY < Sy B

Note, that in the /.- and fy-case the error bound is the same. Just
the constant C' which comes in by the density is different. This sugges-
tion of the burn-in is justified in the following.

4.1. Numerical experiments. Suppose C' (very large), 5 (close to
one) and resources N are given. The worst case error for || f||, < 1 or
| fllo. <1 is bounded by

. 2 20 gm0
and if we consider || f||, <1 it is bounded by
. 2 Cpno
il )= \/ W05 - A0V

Since N = n + ng we can compute with a numerical procedure (here

using Maple) the optimal choice of the burn-in denoted by nﬁpt, Nopt
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to minimize the upper error bounds. (This is a simple one dimensional
minimization problem with different parameters.)

N | B Mopt nope | Mo = [log(C)/log(871)]
(by Maple) | (by Maple) (suggested above)

10* | 0.9 656 656 656

10° | 0.9 656 656 656

10* | 0.99 6867 6867 6873

10° | 0.99 6873 6873 6873

10% | 0.999 8001 8001 69043

105 | 0.999 68977 68977 69043

TABLE 1. For C = 10%* where n!,, minimizes b;(N —
Nopts Mopt)> © = 4, 00.

Table [ gives a collection of typical results. It turned out that the
above suggested lower bound is close to the optimal choice. The com-
puted value ng and ng, is almost the same as ng = [log(C)/log(57")].
In the case N = 10* and 8 = 0.999 Theorem [I1] gives for no choice of
n and ng an error smaller than one.

For different ng we plotted in Figure [II

L+6 26,(1—8Y)
(I=p1) N2(1-p50)%

Roughly spoken one may see in Figure [Il that if the burn-in is chosen
too small a vertical shifting takes place and if the burn-in is chosen to
large a horizontal shifting takes place. The asymptotic behavior is the
same, i.e. for the long run the error of S, ,, converges to the error of
Sp. If f and C' are given we chose the burn-in as suggested above. If
there is an estimate of log(C')/log(3~!) one should ensure that it is not
smaller than the real ratio. As seen in Figure [1 if it is slightly smaller
there is already strong influence. By choosing the burn-in too large the
influence is less heavy.

Finally if there is no estimation or computation of the parameters
£ or C' a simple but very efficient strategy is given by choosing n =
ng = & (for even N). In Figure @ we see by(F, %), bs(N — ng,ng) and
ex(Sn,u1). In the asymptotic behavior we pay the price of a factor
of /2, i.e. the asymptotic error is v/2 times larger than e,(Sy,u:)
where we started in equilibrium. This strategy works well and reaches

by(N —ng,ng) and  ex(Sn,u1) = \/N
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107 ot
_ _log
"0 = Tog(p—1)
_ log(C)
-~ nNg = 088W
_ o _log(C)
0= Shog(ry
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=
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<~ ]
— -
o
o
—
=]
/ -
Lo
-7 /r}
0 T
10 <
10" 10°

N=ny+n

FIGURE 1. For 8 =0.99 and C = 10%.

the same convergence rate as choosing the burn-in as suggested above,
which is seen in Figure 2
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