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ERROR BOUNDS FOR COMPUTING THE

EXPECTATION BY MARKOV CHAIN MONTE CARLO

DANIEL RUDOLF

Abstract. We study the error of reversible Markov chain Monte
Carlo methods for approximating the expectation of a function.
Explicit error bounds with respect to the ℓ2-, ℓ4- and ℓ∞-norm of
the function are proven. By the estimation the well known asymp-
totical limit of the error is attained, i.e. our bounds are correct to
first order as n → ∞. We discuss the dependence of the error on a
burn-in of the Markov chain. Furthermore we suggest and justify
a specific burn-in for optimizing the algorithm.

1. Introduction

We start with a probability distribution π on a finite set D and a
function f : D → R. The goal is to compute the expectation denoted
by

S(f) =
∑

x∈D

f(x)π(x).

Let the cardinality of D be very large such that an exact computa-
tion of the sum is practically impossible. Furthermore suppose that
the desired distribution is not explicitly given, i.e. we have no ran-
dom number generator for π available. Such kind of problems arise in
statistical physics, in statistics, and in financial mathematics (see for
instance [GRS96, Liu08]). The idea of approximating S(f) via Markov
chain Monte Carlo (MCMC) is the following: Run a Markov chain on
D to simulate the distribution π and compute the time average over
the last n steps. Let X1, . . . , Xn+n0

be the chain, then we obtain as
approximation

Sn,n0
(f) =

1

n

n
∑

i=1

f(Xi+n0
).

By n0 the so called burn-in is given, loosely spoken this is the num-
ber of time steps taken to warm up. Afterwards the distribution of the
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generated Markov chain is (hopefully) close to the stationary one.

A Markov chain is identified with its initial distribution ν and its
transition matrix P . We restrict ourself to reversible chains which are
ergodic, i.e. the second largest absolute value β of the eigenvalues of
P is smaller than one. It is well known that the distribution of these
chains reaches stationarity exponentially (see [Bré99, RR97, LPW09]).

The error of Sn,n0
for f ∈ R

D is measured by

eν(Sn,n0
, f) =

(

Eν,P |Sn,n0
(f)− S(f)|2

)1/2
,

where Eν,P denotes the expectation of the Markov chain. The asymp-
totic behavior of the integration error can be written in terms of the
eigenvalues and eigenfunctions of P . It holds true that

lim
n→∞

n · eν(Sn,n0
, f)2 ≤ 1 + β1

1− β1
‖f‖22 ,

where β1 is the second largest eigenvalue (see [Sok97, Mat99]). The con-
stant 1+β1

1−β1
is optimal but this statement does not give an error bound

for finite n and also does not include anything concerning the choice of
n0. How does an explicit error bound of the MCMC method look like
where the asymptotic behavior is attained?

Let us give an outline of the structure and the main results. Section 2
contains the used notation and presents some relevant statements con-
cerning Markov chains. Section 3 contains the new results. The explicit
error bound is developed with respect to the ℓ2-, ℓ4- and ℓ∞-norm of

the function f . For ‖f‖∞ ≤ 1 and C = 2
√

∥

∥

ν
π
− 1
∥

∥

∞
we obtain the

following. The error obeys

eν(Sn,n0
, f)2 ≤ 2

n(1− β1)
+

2Cβn0

n2(1− β)2
.

For details and estimates concerning ℓ2 and ℓ4 we refer to Theorem 11

in Section 3.3. In Section 4 it turns out that n0 = max
{⌈

log(C)
log(β−1)

⌉

, 0
}

is a reasonable choice for the burn-in. Then the error bound simplifies
to

eν(Sn,n0
, f)2 ≤ 2

n(1− β1)
+

2

n2(1− β)2
.

For an interpretation let us consider the case where β = β1. Then the
cost n+ n0 which are needed for an optimal algorithm to approximate
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S(f) within an error of ε can be bounded by
⌈

4

ε2(1− β)

⌉

+

⌈

log(C)

log(β−1)

⌉

.

Hence C can be astronomically large, for instance depending polyno-
mially on the cardinality of the state space, because it comes in loga-
rithmically.

In many examples a good estimate for β can be achieved, see for
instance [MR02, BD06, BL07]. Therefore it is straightforward to apply
the explicit error bound.

2. Preliminaries

The Markov chain X1, X2, . . . is a stochastic process with state
space D. It is given by initial distribution ν and transition matrix
P = (p(x, y))x,y∈D and denoted by (ν, P ). For x, y ∈ D the entry
p(x, y) presents the probability of jumping from state x to state y in
one step of the chain.

By Pf(x) =
∑

y∈D p(x, y)f(y) we obtain the expectation of the

value of f ∈ R
D after one step of the chain starting from x ∈ D.

The expectation after k steps of the Markov chain from x is given
by P kf(x) =

∑

y∈D pk(x, y)f(y), where P k = (pk(x, y))x,y∈D denotes
the k-th power of P . Similarly we consider the application of P to
a distribution ν, i.e. νP (x) =

∑

y∈D ν(y)p(y, x). This is the distribu-
tion which arises after one step where the initial state was chosen by
ν. The distribution which arises after k steps is given by νP k(x) =
∑

y∈D ν(y)pk(y, x).

The expectation Eν,P of the Markov chain X1, . . . , Xn+n0
is taken

with respect to the probability measure

Wν,P (x1, . . . , xn+n0
) = ν(x1)p(x1, x2)·· · ··p(xn+n0−1, xn+n0

), n, n0 ∈ N,

on Dn+n0. Using this for i ≤ j we obtain a characterization by the
transition matrix

(1) Eν,P (f(Xi)f(Xj)) =
∑

x∈D

P i(fP j−if)(x)ν(x).

2.1. Reversibility and spectral structure. We call the Markov
chain with transition matrix P , or simply P , reversible with respect
to a probability measure π if the detailed balance condition

π(x)p(x, y) = π(y)p(y, x)
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holds true for x, y ∈ D. If P is reversible, then π is called stationary
distribution of the Markov chain, i.e. πP (x) = π(x). Note that, if P is
reversible then P k is also reversible. Let us define the weighted scalar-
product

〈f, g〉π =
∑

x∈D

f(x)g(x)π(x),

for functions f, g ∈ R
D. Then let ‖f‖2 = 〈f, f〉1/2π . By considering

the scalar-product it is easy to show, that reversibility is equivalent to
P being self-adjoint. Furthermore suppose that the underlying Markov
chain is irreducible and aperiodic, this is also called ergodic. For details
of these conditions we refer to the literature, for instance [Häg02, Bré99,
LPW09]. It is a well known fact that this implies the uniqueness of the
stationary distribution. Applying the spectral theorem of self-adjoint
stochastic matrices and ergodicity we obtain that P has real eigenvalues

1 = β0 > β1 ≥ β2 ≥ · · · ≥ β|D|−1 > −1

with a basis of orthogonal eigenfunctions ui for i ∈ {0, . . . , |D| − 1},
i.e.

Pui = βiui, 〈ui, uj〉π = δij =

{

1 i = j

0 i 6= j.

Additionally one can see that u0(x) = 1 and S(ui) = 0 for i > 0.

2.2. Convergence of the chain. The speed of convergence of the
Markov chain to stationarity is measured by the so called χ2-contrast.
Let ν, µ be distributions on D then

χ2(ν, µ) =
∑

x∈D

(ν(x)− µ(x))2

µ(x)
.

The χ2-contrast is not symmetric and therefore no distance. For arbi-
trary distributions it can be very large, i.e.

χ2(ν, µ) ≤
∥

∥

∥

∥

ν

µ
− 1

∥

∥

∥

∥

∞

, where

∥

∥

∥

∥

ν

µ
− 1

∥

∥

∥

∥

∞

= max
x∈D

∣

∣

∣

∣

ν(x)

µ(x)
− 1

∣

∣

∣

∣

.

From [Bré99, Theorem 3.3 p. 209] we have

(2) χ2(νP k, π) ≤ β2k χ2(ν, π),
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where β = max
{

β1,
∣

∣β|D|−1

∣

∣

}

denotes the second largest absolute value
of the eigenvalues. Let us turn to another presentation of the conver-
gence property. We have

νP k(x)− π(x) =
∑

y∈D

ν(y)

π(y)
pk(y, x)π(y)− π(x)

=
rev.

∑

y∈D

ν(y)

π(y)
pk(x, y)π(x)− π(x)

=
∑

y∈D

ν(y)

π(y)
pk(x, y)π(x)−

∑

y∈D

ν(y)

π(y)
π(y)π(x)

=
∑

y∈D

ν(y)

π(y)
(pk(x, y)− π(y))π(x).

The second equality follows by the reversibility of the Markov chain.
For simplicity let

dk(x) :=
∑

y∈D

ν(y)

π(y)
(pk(x, y)− π(y)),

such that altogether

‖dk‖2 =
√

χ2(νP k, π) ≤
(2)

βk

√

∥

∥

∥

ν

π
− 1
∥

∥

∥

∞
.(3)

Since β < 1 we have an exponential decay of the norm with k → ∞.
We define the weighted sequence spaces for 1 ≤ p ≤ ∞ by

ℓp = ℓp(D, π) :=

{

f ∈ R
D : ‖f‖pp =

∑

x∈D

|f(x)|p π(x) < ∞
}

.

It is clear that ℓp = R
D, since the state space has finite cardinality.

Remark 1. As we have seen the χ2-contrast corresponds to the ℓ2-
norm of the function dk. Other tools for measuring the speed of con-
vergence induce similar relations. For instance

‖dk‖1 = 2
∥

∥νP k − π
∥

∥

tv
and ‖dk‖∞ =

∥

∥

∥

∥

νP k

π
− 1

∥

∥

∥

∥

∞

.

The total variation corresponds to the ℓ1-norm of dk and the ℓ∞-norm
to the supremum-distance.

Remark 2. The constant β plays a crucial role in estimating the speed
of convergence of the Markov chain to stationarity. In general it is not
easy to handle β1 or β, but there are different auxiliary tools, e.g.
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canonical path technique, conductance (see [JS89] and [DS91]), log-
Sobolev inequalities and path coupling. For a small survey see [Ran06].

2.3. Norm of the transition matrix. Let us consider P and S as
operators acting on ℓp. Then the functional S maps arbitrary functions
to constant functions. Let

ℓ0p := ℓ0p(D, π) = {g ∈ ℓp : S(g) = 0} for 2 ≤ p ≤ ∞.

The norm of P as operator on ℓ02 and ℓ04 is essential in the analysis.
We state and show some results which are implied by the Theorem of
Riesz-Thorin. For a proof and an introduction we refer to [BS88].

Proposition 1 (Theorem of Riesz-Thorin). Let 1 ≤ p, q1, q2 ≤ ∞.
Further let θ ∈ (0, 1) and

1

p
:=

1− θ

q1
+

θ

q2

and

T : ℓq1 → ℓq1 with ‖T‖ℓq1→ℓq1
≤ M1,

T : ℓq2 → ℓq2 with ‖T‖ℓq2→ℓq2
≤ M2.

Then

‖T‖ℓp→ℓp
≤ 2M1−θ

1 Mθ
2 .

Note that the factor two in the last inequality comes from the fact
that we consider real valued functions f . In the following we show a
relation between P , P − S and β.

Lemma 2. Let P be a reversible transition matrix with respect to π
and n ∈ N. Then

(4) ‖P n − S‖ℓ2→ℓ2
= ‖P n‖ℓ0

2
→ℓ0

2
= βn.

Furthermore if 2 ≤ p ≤ ∞ then

(5) ‖P n‖ℓ0p→ℓ0p
≤ ‖P n − S‖ℓp→ℓp

≤ 2.

Proof. The self-adjointness of P implies ‖P‖ℓ0
2
→ℓ0

2
= max

{

β1,
∣

∣β|D|−1

∣

∣

}

=

β, such that ‖P n‖ℓ0
2
→ℓ0

2
= βn. By

‖P n − S‖ℓ2→ℓ2
= sup

‖f‖
2
≤1

‖(P n − S)f‖2 = sup
‖f‖

2
≤1

‖P n(f − S(f))‖2

≤ sup
‖f‖

2
≤1

sup
‖g‖

2
≤1, S(g)=0

‖P ng‖2 = ‖P n‖ℓ0
2
→ℓ0

2
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and

‖P n‖ℓ0p→ℓ0p
= sup

‖g‖p≤1, S(g)=0

‖P ng‖p = sup
‖g‖p≤1, S(g)=0

‖P ng − S(g)‖p

≤ sup
‖f‖p≤1

‖(P n − S)f‖p = ‖P n − S‖ℓp→ℓp

claim (4) and the first part of (5) is shown. Finally, by applying the
triangle inequality of the norm

‖P n − S‖ℓp→ℓp
= sup

‖f‖p≤1

‖P nf − Sf‖p ≤ ‖P n‖ℓp→ℓp
+ ‖S‖ℓp→ℓp

= 2.

�

The next statement adds the result about the matrix norm which is
used in the proof of the error bound.

Lemma 3. Let P be a reversible transition matrix with respect to π
and n ∈ N. Then

(6) ‖P n‖ℓ0
4
→ℓ0

4

≤ 2
√
2 βn/2.

Proof. By Lemma 2 we have

‖P n − S‖ℓ2→ℓ2
= βn and ‖P n − S‖ℓ∞→ℓ∞

≤ 2.

Then the result is an application of Proposition 1, where T = P n − S
and q1 = 2, q2 = ∞, p = 4 thus θ = 1

2
. �

3. Error bounds

In this section we mainly follow two steps to develop the error bound.
At first a special case of method Sn,n0

is considered. The initial distri-
bution is the stationary one, thus it is not necessary to do a burn-in,
i.e. n0 = 0. Secondly we relate the result of the first step to the general
case where the chain is initialized by a distribution ν. The techniques
which we will use are similar as in [Rud09].

3.1. Starting from stationarity. This is also called starting in equi-
librium, i.e. the distribution of the Markov chain does not change, it
is already balanced. In the following we will always denote Sn,0 as Sn.
Let us start with stating and discussing a result from [BD06, Prop. 2.1
p.3], which is similar to [LS93, Theorem 1.9, p. 375].

Proposition 4. Let f ∈ R
D. Let X1, . . . , Xn be a reversible Markov

chain with respect to π, given by (P, π). Then



8 DANIEL RUDOLF

(7) eπ(Sn, f)
2 =

1

n2

|D|−1
∑

k=1

|ak|2W (n, βk),

where

ak = 〈f, uk〉π and W (n, βk) :=
n(1− β2

k)− 2βk(1− βn
k )

(1− βk)2
.

Proof. Let us consider g := f − S(f) ∈ R
D. Because of the orthogonal

basis the presentation g(x) =
∑|D|−1

k=1 akuk(x) is given. The error obeys

eπ(Sn, f)
2 = Eπ,P

∣

∣

∣

∣

∣

1

n

n
∑

j=1

g(Xj)

∣

∣

∣

∣

∣

2

=
1

n2
Eπ,P

∣

∣

∣

∣

∣

n
∑

j=1

g(Xj)

∣

∣

∣

∣

∣

2

=
1

n2

n
∑

j=1

Eπ,P g(Xj)
2 +

2

n2

n−1
∑

j=1

n
∑

i=j+1

Eπ,P g(Xj)g(Xi).

For j ≤ i,

Eπ,P g(Xi)g(Xj) =

|D|−1
∑

k=1

|D|−1
∑

l=1

akal Eπ,P uk(Xi)ul(Xj)

=
(1)

|D|−1
∑

k=1

|D|−1
∑

l=1

akal
〈

uk, P
i−jul

〉

π

=

|D|−1
∑

k=1

|D|−1
∑

l=1

akal β
i−j
l 〈uk, ul〉π =

|D|−1
∑

k=1

a2k βi−j
k ,

where the equality of the second line is due to the fact that the initial
step is chosen from the stationary distribution. The last two equali-
ties follow from the orthonormality of the basis of the eigenvectors.
Altogether we have

eπ(Sn, f)
2 =

1

n2

|D|−1
∑

k=1

a2k

[

n + 2

n−1
∑

j=1

n
∑

i=j+1

βi−j
k

]

=
1

n2

|D|−1
∑

k=1

a2k

[

n+ 2
(n− 1)βk − nβ2

k + βn+1
k

(1− βk)2

]

=
1

n2

|D|−1
∑

k=1

|ak|2W (n, βk).

�
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Let us consider W (n, βk) to simplify and interpret Proposition 4.

Lemma 5. For all n ∈ N and k ∈ {1, . . . , |D| − 1} we have

W (n, βk) ≤ W (n, β1) ≤
2n

1− β1
.(8)

Proof. Let x ∈ [−1, 1), then we are going to show that W (n, x) is
monotone increasing, i.e. W (n, βk) ≤ W (n, β1). For i ∈ {0, . . . , n− 1}
it is true that

xn−i ≤ 1 ⇐⇒ (1− xi) xn−i ≤ 1− xi ⇐⇒ xn−i + xi ≤ 1 + xn.

Therefore

xi + xi+1 + xn−i−1 + xn−i ≤ 2(1 + xn),

and

(1 + x)
n−1
∑

i=0

xi =
1

2

n−1
∑

i=0

xi + xi+1 + xn−i−1 + xn−i ≤ n(1 + xn).

Now
dW

dx
(n, x) = −2

(1 + x)
∑n−1

i=0 xi − n(1 + xn)

(1− x)2
≥ 0

and the first inequality is shown. By

W (n, x) ≤
{

n(1+x)−2xn
1−x

x ∈ [−1, 0]
n(1+x)
1−x

x ∈ (0, 1)
≤ 2n

1− x

the claim is proven. �

An explicit formula of the error if the initial state is chosen by the
stationary distribution is established. Let us discuss the worst case
error of Sn.

Proposition 6. Let X1, . . . , Xn be a reversible Markov chain with re-
spect to π, given by (P, π). Then

(9) sup
‖f‖2≤1

eπ(Sn, f)
2 =

1 + β1

n(1 − β1)
− 2β1(1− βn

1 )

n2(1− β1)2
≤ 2

n(1− β1)
.

Proof. The individual error of f is

eπ(Sn, f)
2 =

(7)

1

n2

|D|−1
∑

k=1

|ak|2W (n, βk) ≤
‖f‖22
n2

max
k=1,...,|D|−1

W (n, βk)

=
(8)

‖f‖22
n2

W (n, β1) =
1 + β1

n(1− β1)
‖f‖22 −

2β1(1− βn
1 )

n2(1− β1)2
‖f‖22 ,
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where ak is chosen as in Proposition 4 and therefore
∑|D|−1

k=1 |ak|2 ≤
‖f‖22. From the preceding analysis of the individual error we have an
upper error bound. Now we consider f = u1, where obviously ‖u1‖2 = 1
and get by applying (7) that

eπ(Sn, u1)
2 =

1 + β1

n(1− β1)
− 2β1(1− βn

1 )

n2(1− β1)2
.

Thus the error bound is attained for u1 and by (8) everything is shown.
�

Finally an explicit presentation for the worst case error on the class
of bounded functions with respect to ‖·‖2 is shown. Notice, that (9) is
an equality, which means that the integration error is completely known
if we start with the stationary distribution. In some artificial cases this
method even beats direct simulation, e.g. if one specific βi < 0 and
the goal is to approximate S(ui) or if all eigenvalues are smaller than
zero. In [FHY92, Remark 3, p.617] the authors state a simple transition
matrix where βi = − 1

|D|−1
for all i. Now one could think to construct

a transition matrix where β1 is close to −1 and therefore damp the
integration error. But it is well known that this is not possible for large
|D|, since β1 ≥ − 1

|D|−1
.

In the next subsection we link the results to a more general frame-
work, where the unrealistic assumption that the initial distribution is
the stationary one is abandoned.

3.2. Starting from somewhere else. In the next statement a rela-
tion between the error of starting by π and the error of starting not by
the invariant distribution is established.

Proposition 7. Let f ∈ R
D and g := f − S(f). Let X1, . . . , Xn+n0

be
a reversible Markov chain with respect to π, given by (P, ν). Then

eν(Sn,n0
, f)2 = eπ(Sn, f)

2 +
1

n2

n
∑

j=1

Lj+n0
(g2) +

2

n2

n−1
∑

j=1

n
∑

k=j+1

Lj+n0
(gP k−jg),

(10)

where

Li(h) =
∑

x∈D

di(x)h(x)π(x) =
∑

x∈D

∑

y∈D

ν(y)

π(y)
(pi(x, y)− π(y))h(x)π(x).

Remark 3. The proof of this identity is similar as in [Rud09], except
for the fact that we study a finite state space and therefore integrals
become sums.
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Proof. It is easy to see, that

Eν,P |S(f)− Sn,n0
(f)|2 = 1

n2

n
∑

j=1

n
∑

i=1

Eν,P (g(Xn0+j)g(Xn0+i))

=
1

n2

n
∑

j=1

∑

x∈D

P n0+jg2(x) ν(x) +
2

n2

n−1
∑

j=1

n
∑

k=j+1

∑

x∈D

P n0+j(gP k−jg)(x) ν(x).

For every function h ∈ R
D and i ∈ N under applying the reversibility

the following transformation holds true
∑

x∈D

(P ih)(x) ν(x) =
∑

x∈D

∑

y∈D

h(y) pi(x, y)
ν(x)

π(x)
π(x)

=
rev.

∑

x∈D

∑

y∈D

ν(y)

π(y)
pi(x, y) h(x) π(x)

=
∑

x∈D

h(x) π(x) +
∑

x∈D

∑

y∈D

ν(y)

π(y)

(

pi(x, y)− π(y)
)

h(x) π(x)

=
rev.

∑

x∈D

(P ih)(x)π(x) +
∑

x∈D

∑

y∈D

ν(y)

π(y)

(

pi(x, y)− π(y)
)

h(x) π(x).

Using this in the setting above, formula (10) is shown. �

Equation (10) is still an error characterization where equality holds.
We will estimate Lk(h) to derive an upper bound. This depends very
much on the speed of convergence from the chain to stationarity.

Lemma 8. Let h ∈ R
D, let again β = max

{

β1,
∣

∣β|D|−1

∣

∣

}

. Then

|Lk(h)| ≤ βk

√

∥

∥

∥

∥

1

π

∥

∥

∥

∥

∞

√

∥

∥

∥

ν

π
− 1
∥

∥

∥

∞
· ‖h‖1 , k ∈ N,(11)

|Lk(h)| ≤ βk

√

∥

∥

∥

ν

π
− 1
∥

∥

∥

∞
· ‖h‖2 , k ∈ N.(12)

Proof. Let us consider Lk(h) = 〈dk, h〉π. After applying Cauchy-Schwarz
inequality we obtain

|Lk(h)| ≤ ‖dk‖2 ‖h‖2 .

By applying (3) we showed (12). Inequality (12) and ‖h‖2 ≤
√

∥

∥

1
π

∥

∥

∞
‖h‖1

imply (11). �

The ingredients for getting an explicit error bound for Sn,n0
are

gathered together. Mainly the last Lemma ensures an exponential decay
of Lk(h) which is used in the next Proposition.
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Proposition 9. Let X1, . . . , Xn+n0
be a reversible Markov chain with

respect to π, given by (P, ν). Let f ∈ R
D, g := f − S(f) and

V (β, n) =

n
∑

j=1

βj + 2

n−1
∑

j=1

n
∑

k=j+1

βk,

U(β, n) =

n
∑

j=1

βj + 4
√
2

n−1
∑

j=1

n
∑

k=j+1

β
k+j

2 .

(i) Then for g ∈ ℓ02 we have

eν(Sn,n0
, f)2 ≤ eπ(Sn, f)

2 +
V (β, n)

n2
βn0

√

∥

∥

∥

∥

1

π

∥

∥

∥

∥

∞

√

∥

∥

∥

ν

π
− 1
∥

∥

∥

∞
‖g‖22 .

(ii) Then for g ∈ ℓ04 we have

eν(Sn,n0
, f)2 ≤ eπ(Sn, f)

2 +
U(β, n)

n2
βn0

√

∥

∥

∥

ν

π
− 1
∥

∥

∥

∞
‖g‖24 .

(iii) Then for g ∈ ℓ0∞ we have

eν(Sn,n0
, f)2 ≤ eπ(Sn, f)

2 +
V (β, n)

n2
βn0

√

∥

∥

∥

ν

π
− 1
∥

∥

∥

∞
‖g‖2∞ .

Proof. As we have seen in (10) the error obeys

eν(Sn,n0
, f)2 = eπ(Sn, f)

2 +
1

n2

n
∑

j=1

Lj+n0
(g2) +

2

n2

n−1
∑

j=1

n
∑

k=j+1

Lj+n0
(gP k−jg).

(13)

Then by (11), Cauchy-Schwarz inequality and
∥

∥P k−j
∥

∥

ℓ0
2
→ℓ0

2

= βk−j we

get

∣

∣Lj+n0
(g2)

∣

∣ ≤
√

∥

∥

∥

∥

1

π

∥

∥

∥

∥

∞

√

∥

∥

∥

ν

π
− 1
∥

∥

∥

∞
βj+n0 ‖g‖22 ,

∣

∣Lj+n0
(gP k−jg)

∣

∣ ≤
√

∥

∥

∥

∥

1

π

∥

∥

∥

∥

∞

√

∥

∥

∥

ν

π
− 1
∥

∥

∥

∞
βk+n0 ‖g‖22 .
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Putting this in the sums of equation (13) and let ε0 =
√

∥

∥

1
π

∥

∥

∞

√

∥

∥

ν
π
− 1
∥

∥

∞
βn0

we obtain

n
∑

j=1

∣

∣Lj+n0
(g2)

∣

∣ + 2
n−1
∑

j=1

n
∑

k=j+1

∣

∣Lj+n0
(gP k−jg)

∣

∣

≤ ε0 ‖g‖22
n
∑

j=1

βj + ε0 ‖g‖22
n−1
∑

j=1

n
∑

k=j+1

2βk

= ε0 ‖g‖22

(

n
∑

j=1

βj +
n−1
∑

j=1

n
∑

k=j+1

2βk

)

= V (β, n) · ε0 ‖g‖22 .

Thus claim (i) is shown. Now we use (12) and

∥

∥gP k−jg
∥

∥

2
≤ ‖g‖∞

∥

∥P k−jg
∥

∥

2
≤ ‖g‖2∞

∥

∥P k−j
∥

∥

ℓ0
2
→ℓ0

2

≤ ‖g‖2∞ βk−j

to obtain

∣

∣Lj+n0
(g2)

∣

∣ ≤
√

∥

∥

∥

ν

π
− 1
∥

∥

∥

∞
βj+n0 ‖g‖2∞ ,

∣

∣Lj+n0
(gP k−jg)

∣

∣ ≤
√

∥

∥

∥

ν

π
− 1
∥

∥

∥

∞
βk+n0 ‖g‖2∞ .

Exactly the same steps as in the proof of (i) follow, except for a different

ε0 =
√

∥

∥

ν
π
− 1
∥

∥

∞
βn0 and the supremum norm, i.e. assertion (iii) is

proven. Let us turn to (ii). Again we use (12) and estimate

∥

∥gP k−jg
∥

∥

2
≤ ‖g‖4

∥

∥P k−jg
∥

∥

4
≤
∥

∥P k−j
∥

∥

ℓ0
4
→ℓ0

4

‖g‖24 ≤
(6)

2
√
2 ‖g‖24 β

k−j

2 .

Thus

∣

∣Lj+n0
(g2)

∣

∣ ≤
√

∥

∥

∥

ν

π
− 1
∥

∥

∥

∞
βj+n0 ‖g‖24 ,

∣

∣Lj+n0
(gP k−jg)

∣

∣ ≤ 2
√
2

√

∥

∥

∥

ν

π
− 1
∥

∥

∥

∞
β

k+j

2
+n0 ‖g‖24 .
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For ε0 =
√

∥

∥

ν
π
− 1
∥

∥

∞
βn0 we obtain

n
∑

j=1

∣

∣Lj+n0
(g2)

∣

∣+ 4
√
2

n−1
∑

j=1

n
∑

k=j+1

∣

∣Lj+n0
(gP k−jg)

∣

∣

≤ ε0 ‖g‖24
n
∑

j=1

βj + ε0 ‖g‖24
n−1
∑

j=1

n
∑

k=j+1

4
√
2β

k+j

2

= ε0 ‖g‖24

(

n
∑

j=1

βj + 4
√
2

n−1
∑

j=1

n
∑

k=j+1

β
k+j

2

)

= U(β, n) · ε0 ‖g‖24 .

Finally by substituting this in equation (13) everything is shown. �

In the last Proposition we introduced V (β, n) and U(β, n). These
functions are bounded if β < 1. By applying the infinite geometric
series several times the following is proven.

Lemma 10. For n ∈ N and x ∈ [0, 1) we have

V (x, n) ≤ 2

(1− x)2
, U(x, n) ≤ 4

√
2

(1− x)(1−√
x)

.(14)

This implies that the asymptotic optimality is reached.

3.3. Main Theorem. The following is the main result.

Theorem 11. Let X1, . . . , Xn+n0
be a reversible Markov chain with

respect to π, given by (P, ν). Let f ∈ R
D and ak = 〈f, uk〉π. Then

lim
n→∞

n · eν(Sn,n0
, f)2 = lim

n→∞
n · eπ(Sn, f)

2 =

|D|−1
∑

k=1

|ak|2
1 + βk

1− βk
.

(i) If we consider f ∈ ℓ2 then

eν(Sn,n0
, f)2 ≤ 2

n(1− β1)
‖f‖22 +

2
√

∥

∥

1
π

∥

∥

∞

√

∥

∥

ν
π
− 1
∥

∥

∞
βn0

n2(1− β)2
‖f‖22 .

(ii) If we consider f ∈ ℓ4 then

eν(Sn,n0
, f)2 ≤ 2

n(1− β1)
‖f‖24 +

16
√
2
√

∥

∥

ν
π
− 1
∥

∥

∞
βn0

n2(1− β)(1−
√
β)

‖f‖24 .
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(iii) If we consider f ∈ ℓ∞ then

eν(Sn,n0
, f)2 ≤ 2

n(1− β1)
‖f‖2∞ +

4
√

∥

∥

ν
π
− 1
∥

∥

∞
βn0

n2(1− β)2
‖f‖2∞

Proof. By (10) and the fact that the remaining terms are going qua-
dratic to zero as n goes to infinity, we see that the asymptotic result
holds true. For f ∈ ℓ2 we have ‖f − S(f)‖2 ≤ ‖f‖2 and furthermore if
p 6= 2 then

‖f − S(f)‖p ≤ ‖f‖p + |S(f)| ≤ ‖f‖p + ‖f‖1 ≤ 2 ‖f‖p .
Thus, via Proposition 9, Proposition 6 and Lemma 10 everything is
shown. �

Notice, that from the estimate of Proposition 9 it follows immedi-
ately that

lim
n→∞

n · eν(Sn,n0
, f)2 ≤ lim

n→∞
n · eπ(Sn,n0

, f)2 ≤ 1 + β1

1− β1
‖f‖22 .

Thus there is no gap between the estimate and the asymptotical be-
havior. Also notice, that the upper bounds are continuous in the sense
that if the initial distribution ν is π then we obtain the bound of
Proposition 6. The dependence of the bounds of (ii) and (iii) in The-
orem 11 on the initial distribution is encouraging for an extension to
general state spaces. (For MCMC on general state spaces we refer to
[RR04, MN07, Rud09].) But the dependence of the initial distribution
on the estimate in the ℓ2-case is disillusioning because of the additional
factor of

∥

∥

1
π

∥

∥

∞
.

In [Rud09, Theorem 8, p.10] a similar ℓ∞-bound of Sn,n0
for general

state spaces is developed. This result holds for lazy, reversible Markov
chains and may also be applied in the present setting, i.e. if the state
space is finite. In [Rud09] the asymptotic error limit is not attained.
Thus we could improve the error bound and weaken the laziness con-
dition, i.e. it is enough that β1 = β. In [LPW09, Thm. 12.19, p.165]
the authors obtained for another error term a comparable bound where
the chain starts deterministically. Very recently in [NP09] a similar re-
sult concerning the integration error for f ∈ ℓ∞ was shown where the
Markov chain is not necessarily reversible.

4. Burn-in

Let us assume that computer resources for the MCMC method for
N time steps are available, i.e. N = n + n0. We want to choose the
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burn-in n0 and the number of n such that the error bound is as small
as possible. The burn-in n0 should be large but this implies that n is
possibly quite small depending on how much resources we have. On the
other hand n should be large which again implies that n0 is possibly
small. There is obviously a trade-off between choosing the parameters.
In the next statement we consider the error for an explicitly given
burn-in, where for simplicity β1 = β.

Corollary 12. Let f ∈ R
D be given and let

n0 = max

{⌈

log(C)

log(β−1)

⌉

, 0

}

.

(i) Let C =
√

∥

∥

1
π

∥

∥

∞

√

∥

∥

ν
π
− 1
∥

∥

∞
, then

sup
‖f‖2≤1

eν(Sn,n0
, f)2 ≤ 2

n(1− β)
+

2

n2(1− β)2
.

(ii) Let C = 16
√
2
√

∥

∥

ν
π
− 1
∥

∥

∞
, then

sup
‖f‖

4
≤1

eν(Sn,n0
, f)2 ≤ 2

n(1 − β)
+

1

n2(1− β)(1−
√
β)

.

(iii) Let C = 2
√

∥

∥

ν
π
− 1
∥

∥

∞
, then

sup
‖f‖

∞
≤1

eν(Sn,n0
, f)2 ≤ 2

n(1− β)
+

2

n2(1− β)2
.

Note, that in the ℓ∞- and ℓ2-case the error bound is the same. Just
the constant C which comes in by the density is different. This sugges-
tion of the burn-in is justified in the following.

4.1. Numerical experiments. Suppose C (very large), β (close to
one) and resources N are given. The worst case error for ‖f‖2 ≤ 1 or
‖f‖∞ ≤ 1 is bounded by

b∞(n, n0) :=

√

2

n(1− β)
+

2Cβn0

n(1− β)2

and if we consider ‖f‖4 ≤ 1 it is bounded by

b4(n, n0) :=

√

2

n(1− β)
+

Cβn0

n(1− β)(1−
√
β)

.

Since N = n + n0 we can compute with a numerical procedure (here
using Maple) the optimal choice of the burn-in denoted by n4

opt, n
∞
opt
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to minimize the upper error bounds. (This is a simple one dimensional
minimization problem with different parameters.)

N β n4
opt n∞

opt n0 = ⌈log(C)/ log(β−1)⌉
(by Maple) (by Maple) (suggested above)

104 0.9 656 656 656
105 0.9 656 656 656
104 0.99 6867 6867 6873
105 0.99 6873 6873 6873
104 0.999 8001 8001 69043
105 0.999 68977 68977 69043

Table 1. For C = 1030 where ni
opt minimizes bi(N −

ni
opt, n

i
opt), i = 4,∞.

Table 1 gives a collection of typical results. It turned out that the
above suggested lower bound is close to the optimal choice. The com-
puted value n4

opt and n∞
opt is almost the same as n0 = ⌈log(C)/ log(β−1)⌉.

In the case N = 104 and β = 0.999 Theorem 11 gives for no choice of
n and n0 an error smaller than one.

For different n0 we plotted in Figure 1

b4(N − n0, n0) and eπ(SN , u1) =

√

1 + β1

N(1− β1)
− 2β1(1− βN

1 )

N2(1− β1)2
.

Roughly spoken one may see in Figure 1 that if the burn-in is chosen
too small a vertical shifting takes place and if the burn-in is chosen to
large a horizontal shifting takes place. The asymptotic behavior is the
same, i.e. for the long run the error of Sn,n0

converges to the error of
Sn. If β and C are given we chose the burn-in as suggested above. If
there is an estimate of log(C)/ log(β−1) one should ensure that it is not
smaller than the real ratio. As seen in Figure 1 if it is slightly smaller
there is already strong influence. By choosing the burn-in too large the
influence is less heavy.

Finally if there is no estimation or computation of the parameters
β or C a simple but very efficient strategy is given by choosing n =
n0 =

N
2
(for even N). In Figure 2 we see b4(

N
2
, N

2
), b4(N − n0, n0) and

eπ(SN , u1). In the asymptotic behavior we pay the price of a factor
of

√
2, i.e. the asymptotic error is

√
2 times larger than eπ(SN , u1)

where we started in equilibrium. This strategy works well and reaches
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log(C)

log(β−1)

n0 = 0.88
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log(β−1)

n0 = 0, init by π

Figure 1. For β = 0.99 and C = 1030.

the same convergence rate as choosing the burn-in as suggested above,
which is seen in Figure 2.
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