
Exact Sampling with Coupled Markov Chainsand Applications to Statistical Mechanics �James Gary Propppropp@math.mit.edu David Bruce Wilsondbwilson@mit.eduDepartment of MathematicsMassachusetts Institute of TechnologyCambridge, Massachusetts 02139July 16, 1996AbstractFor many applications it is useful to sample from a �nite set of objects in accordance withsome particular distribution. One approach is to run an ergodic (i.e., irreducible aperiodic)Markov chain whose stationary distribution is the desired distribution on this set; after theMarkov chain has run forM steps, withM su�ciently large, the distribution governing the stateof the chain approximates the desired distribution. Unfortunately it can be di�cult to determinehow large M needs to be. We describe a simple variant of this method that determines on itsown when to stop, and that outputs samples in exact accordance with the desired distribution.The method uses couplings, which have also played a role in other sampling schemes; however,rather than running the coupled chains from the present into the future, one runs from a distantpoint in the past up until the present, where the distance into the past that one needs to gois determined during the running of the algorithm itself. If the state space has a partial orderthat is preserved under the moves of the Markov chain, then the coupling is often particularlye�cient. Using our approach one can sample from the Gibbs distributions associated withvarious statistical mechanics models (including Ising, random-cluster, ice, and dimer) or chooseuniformly at random from the elements of a �nite distributive lattice.1. IntroductionThere are a number of reasons why one might want a procedure for generating a combinatorialobject \randomly"; for instance, one might wish to determine statistical properties of the class asa whole, with a view towards designing statistical tests of signi�cance for experiments that giverise to objects in that class, or one might wish to determine the generic properties of members of alarge �nite class of structures. One instance of the �rst sort of motivation is the work of Diaconisand Sturmfels on design of chi-squared tests for arrays of non-negative integers with �xed row-and column-sums [21]; instances of the second sort of motivation are seen in the work of the �rstauthor and others on domino tilings [35] [45] and in the vast literature on Monte Carlo simulationsin physics (Sokal gives a survey [51]).In many of these cases, it is possible to devise an ergodic (i.e., irreducible and aperiodic) Markovchain (e.g., the Metropolis-Hastings Markov chain) on the set of objects being studied, such thatthe steady-state distribution of the chain is precisely the distribution � that one wishes to samplefrom (this is sometimes called \Markov chain Monte Carlo"). Given such a Markov chain, one can�During the conduct of the research that led to this article, the �rst author was supported by NSA grant MDA904-92-H-3060 and NSF grant DMS 9206374, and the second author was supported in part by an ONR-NDSEG fellowship.1



start from any particular probability distribution �, even one that is concentrated on a single state(that is, a single object in the set), and approach the desired distribution arbitrarily closely, simplyby running the chain for a su�ciently long time (say for M steps), obtaining a new probabilitydistribution �M . The residual initialization bias after one has run the chain for M steps is de�nedas the total variation distance k�M��k, i.e., as 12Pi j�M(i)��(i)j, or equivalently as the maximumof j�M(E)��(E)j over all measurable events E; for more background on this and other basic factsabout Markov chains, see [18] or [5]. Even if one is willing to settle for a small amount of biasin the sample, there is a hidden di�culty in the Markov chain Monte Carlo method: there is nosimple way to determine a priori how big M must be to achieve k�M � �k < " for some speci�ed" > 0. Recently there has been much work at analyzing the rates of convergence of Markov chains[18] [34] [20] [43] [50] [19] [48] but this remains an arduous undertaking. Thus, an experimenterwho is using such random walk methods faces the risk that the Markov chain has not yet had timeto equilibrate, and that it is exhibiting metastable behavior rather than true equilibrium behavior.In section 2 we present an alternative approach, applicable in a wide variety of contexts, inwhich many Monte Carlo algorithms (some of them already in use) can be run in such a manneras to remove all initialization bias. Our scheme in e�ect uses the Markov chain in order to getan estimate of its own mixing time (cf. the work of Besag and Cli�ord [10], who use a Markovchain to assess whether or not a given state was sampled from �, while requiring and obtainingno knowledge of the Markov chain's mixing time). Our main tools are couplings, and the mainideas that we apply to them are simulation from the past and monotonicity. A coupled Markovchain has states that are ordered pairs (or more generally k-tuples) of states of the original Markovchain, with the property that the dynamics on each separate component coincide with the originalMarkov dynamics. The versatility of the coupling method lies in the amount of freedom one has inchoosing the statistics of the coupling (see [42] for background on couplings).Our approach is to simulate the Markov chain by performing random moves until some prede-termined amount of time has elapsed, in the hope that all the states will \coalesce" in that time; ifthey do, we can output the resulting coalescent state as our sample. If the states have not coalesced,then we restart the chain further back in time, prepending new random moves to the old ones. Weshow that if enough moves are prepended, eventually the states will coalesce, and the result will bean unbiased random sample (subsection 2.1).When the number of states in the Markov chain is large, the preceding algorithm is not feasibleexactly as described. However, suppose (as is often the case) that we can impose a partial orderingon the state-space, and that not only do we have a Markov chain that preserves the probabilitydistribution that we are trying to sample from, but we also have a way of coupling this Markovchain with itself that respects the partial ordering of the state-space under time-evolution. Then thiscoupling enables us to ascertain that coalescence has occurred merely by verifying that coalescencehas occurred for the histories whose initial states were the maximal and minimal elements of thestate space (subsection 2.2). We call this the monotone Monte Carlo technique. Often there is aunique minimal element and a unique maximal element, so only two histories need to be simulated.(For a related approach, see [36].)In the case of �nite spin-systems, there are a �nite number of sites and each state is a con�gu-ration that assigns one of two spins (\up" or \down") to every site, and so there is a natural partialordering with unique maximal and minimal elements. When the distribution � on the state-spaceis attractive (a term we will de�ne precisely in subsection 3.1), then the heat bath algorithm onthe spin-system preserves the ordering (compare with section III.2 of [41]). In this situation, theidea of simulating from the past and the monotone Monte Carlo technique work together smoothlyand lead to a procedure for exact sampling. One o�shoot of this is that one can sample from theuniform distribution on the set of elements of any �nite distributive lattice (see subsection 3.2); this2



is in fact a more useful class of applications than one might at �rst suppose, since many interestingcombinatorial structures can be viewed as elements of a distributive lattice in a non-obvious way(see subsection 3.3 and [47]).Section 4 contains our main applications, in which the desired distribution � is the Gibbsdistribution for a statistical mechanics model. A virtue of our method is that its algorithmicimplementation is merely a variant of some approximate sampling algorithms that are already inuse, and typically involves very little extra computational overhead. A dramatic illustration ofour approach is given in subsection 4.2, where we show (using a clever trick due to Fortuin andKasteleyn) that one can sample from the Gibbs distribution (see [51] and below) on the set ofstates of a general ferromagnetic Ising model in any number of dimensions without being subjectto the \critical slowing down" that besets more straightforward approaches. Another strength ofour method is that it sometimes permits one to obtain \omnithermal samples" (see subsections 3.1and 4.2) that in turn may allow one to get estimates of critical exponents (see below).In section 5 we show how the expected running time of the algorithm can be bounded in termsof the mixing time of the chain (as measured in terms of total variation distance). Conversely,we show how data obtained by running the algorithm give estimates on the mixing time of thechain. Such estimates, being empirically derived, are subject to error, but one can make rigorouslyprovable statements about the unconditioned likelihood of one's estimates being wrong by morethan a speci�ed amount. A noteworthy feature of our analysis is that it demonstrates that anycoupling of the form we consider is in fact an e�cient coupling (in the sense of being nearly optimal).It has not escaped our notice that the method of coupling from the past can be applied to theproblem (also considered in [7], [1], [44], and [3]) of randomly sampling from the steady state of aMarkov chain whose transition-probabilities are unknown but whose transitions can be simulatedor observed. This problem will be treated in two companion papers [61], [60].2. General Theory2.1. Coupling from the pastSuppose that we have an ergodic (irreducible and aperiodic) Markov chain with n states, numbered1 through n, where the probability of going from state i to state j is pi;j . Ergodicity implies thatthere is a unique stationary probability distribution �, with the property that if we start the Markovchain in some state and run the chain for a long time, the probability that it ends up in state iconverges to �(i). We have access to a randomized subroutine Markov() which given some statei as input produces some state j as output, where the probability of observing Markov(i) = j isequal to pi;j ; we will assume that the outcome of a call to Markov() is independent of everythingthat precedes the call. This subroutine gives us a method for approximate sampling from theprobability distribution �, in which our Markov-transition oracle Markov() is iterated M times(with M large) and then the resulting state is output. For convenience, we assume that the startand �nish of the simulation are designated as time �M and time 0; of course this notion of time isinternal to the simulation being performed, and has nothing to do with the external time-frame inwhich the computations are taking place. To start the chain, we use an arbitrarily chosen initialstate i�: i�M  i� (start chain in state i� at time �M)for t = �M to �1it+1  Markov(it)return i0 3



We call this �xed-time forward simulation. Unfortunately, it can be di�cult to determine whatconstitutes a large enough M relative to any speci�ed �delity criterion. That is to say, if � denotesthe point-measure concentrated at state i�, so that �M denotes the probability measure governingi0, then it can be hard to assess how big M needs to be so as to guarantee that k�M � �k is small.We will describe a procedure for sampling with respect to � that does not require foreknowledgeof how large the cuto� M needs to be. We start by describing an approximate sampling procedurewhose output is governed by the same probability distribution �M as M -step forward simulation,but which starts at time 0 and moves into the past; this procedure takes fewer steps than �xed-timeforward simulation when M is large. Then, by removing the cuto� M | by e�ectively setting itequal to in�nity | we will see that one can make the simulation output state i with probabilityexactly �(i), and that the expected number of simulation steps will nonetheless be �nite. (Issuesof e�ciency will be dealt with in section 5 of our article, in the case where the Markov chain ismonotone; for an analysis of the general case, see our article [61], in which we improve on the naiveapproach just discussed.)To run �xed-time simulation backwards, we start by running the chain from time �1 to time0. Since the state of the chain at time �1 is determined by the history of the chain from time �Mto time �1, that state is unknown to us when we begin our backwards simulation; hence, we mustrun the chain from time �1 to time 0 not just once but n times, once for each of the n states of thechain that might occur at time �1. That is, we can de�ne a map f�1 from the state space to itself,by putting f�1(i) = Markov(i) for i = 1; : : : ; n. Similarly, for all times t with �M � t < �1, wecan de�ne a random map ft by putting ft(i) = Markov(i) (using separate calls to Markov() foreach time t); in fact, we can suppress the details of the construction of the ft's and imagine thateach successive ft is obtained by calling a randomized subroutine RandomMap() whose values areactually functions from the state space to itself. The output of �xed-time simulation is given byF 0�M (i�), where F t2t1 is de�ned as the composition ft2�1 � ft2�2 � � � � � ft1+1 � ft1 .If this were all there were to say about backward simulation, we would have incurred a substan-tial computational overhead (vis-a-vis forward simulation) for no good reason. Note, however, thatunder backward simulation there is no need to keep track of all the maps ft individually; rather, oneneed only keep track of the compositions F 0t , which can be updated via the rule F 0t = F 0t+1�ft. Moreto the point is the observation that if the map F 0t ever becomes a constant map, with F 0t (i) = F 0t (i0)for all i; i0, then this will remain true from that point onward (that is, for all earlier t's), and thevalue of F 0�M (i�) must equal the common value of F 0t (i) (1 � i � n); there is no need to go back totime �M once the composed map F 0t has become a constant map. When the map F 0t is a constantmap, we say coalescence occurs from time t to time 0, or more briey that coalescence occurs fromtime t. Backwards simulation is the procedure of working backward until �t is su�ciently largethat F 0t is a constant map, and then returning the unique value in the range of this constant map; ifM was chosen to be large, then values of t that occur during the backwards simulation will almostcertainly have magnitude much smaller than M .We shall see below that as t goes to �1, the probability that the map F 0t is a constant mapincreases to 1. Let us suppose that the pi;j 's are such that this typically happens with t � �1000. Asa consequence of this, backwards simulation with M equal to one million and backwards simulationwith M equal to one billion, which begin in exactly the same way, nearly always turn out toinvolve the exact same simulation steps (if one uses the same random numbers); the only di�erencebetween them is that in the unlikely event that F 0�1;000;000 is not a constant map, the formeralgorithm returns the sample F 0�1;000;000(i�) while the latter does more simulations and returns thesample F 0�1;000;000;000(i�).We now see that by removing the cut-o� M , and running the backwards simulation into thepast until F 0t is constant, we are achieving an output-distribution that is equal to the limit, as4



M goes to in�nity, of the output-distributions that govern �xed-time forward simulation for Msteps. However, this limit is equal to �. Hence backwards simulation, with no cut-o�, gives asample whose distribution is governed by the steady-state distribution of the Markov chain. Thisalgorithm may be stated as follows:t 0F 0t  the identity maprepeat t t� 1ft  RandomMap()F 0t  F 0t+1 � ftuntil F 0t (�) is constantreturn the unique value in the range of F 0t (�)We remark that the procedure above can be run with O(n) memory, where n is the number ofstates. The number of calls to Markov() may also be reduced, and in a companion paper [61] wewill show that the procedure can be modi�ed so that its expected running time is bounded by a�xed multiple of the so-called cover time of the Markov chain (for a de�nition see [44]).Theorem 1 With probability 1 the coupling-from-the-past protocol returns a value, and this valueis distributed according to the stationary distribution of the Markov chain.Proof: Since the chain is ergodic, there is an L such that for all states i and j, there is apositive chance of going from i to j in L steps. Hence for each t, F tt�L(�) has a positive chanceof being constant. Since each of the maps F 0�L(�); F�L�2L(�); : : : has some positive probability " > 0of being constant, and since these events are independent, it will happen with probability 1 thatone of these maps is constant, in which case F 0�M is constant for all su�ciently large M . Whenthe algorithm reaches back M steps into the past, it will terminate and return a value that we willcall F 0�1. Note that F 0�1 is obtained from F�1�1 by running the Markov chain one step, and thatF 0�1 and F�1�1 have the same probability distribution. Together these last two assertions implythat the output F 0�1 is distributed according to the unique stationary distribution �. �In essence, to pick a random element with respect to the stationary distribution, we run theMarkov chain from the inde�nite past until the present, where the distance into the past we haveto look is determined dynamically, and more particularly, is determined by how long it takes for nruns of the Markov chain (starting in each of the n possible states, at increasingly remote earliertimes) to coalesce.In this set-up, the idea of simulating from the past up to the present is crucial; indeed, if wewere to change the procedure and run the chain from time 0 into the future, �nding the smallestM such that the value of FM0 (x) is independent of x and then outputting that value, we wouldobtain biased samples. To see this, imagine a Markov chain in which some states have a uniquepredecessor; it is easy to see such states can never occur at the exact instant when all n historiescoalesce.It is sometimes desirable to view the process as an iterative one, in which one successively startsup n copies of the chain at times �1, �2, etc., until one has gone su�ciently far back in the pastto allow the di�erent histories to coalesce by time 0. However, when one adopts this point of view5



(and we will want to do this in the next subsection), it is important to bear in mind that therandom bits that one uses in going from time t to time t+1 must be the same for the many sweepsone might make through this time-step. If one ignores this requirement, then there will in generalbe bias in the samples that one generates. The curious reader may verify this by considering theMarkov chain whose states are 0, 1, and 2, and in which transitions are implemented using a faircoin, by the rule that one moves from state i to state min(i+ 1; 2) if the coin comes up heads andto state max(i� 1; 0) otherwise. It is simple to check that if one runs an incorrect version of ourscheme in which entirely new random bits are used every time the chain gets restarted further intothe past, the samples one gets will be biased in favor of the extreme states 0 and 2.We now address the issue of independence of successive calls to Markov() (implicit in ourcalls to the procedure RandomMap()). Independence was assumed in the proof of Theorem 1 intwo places: �rst, in the proof that the procedure eventually terminates, and second, in the proofthat the distribution governing the output of the procedure is the steady-state distribution of thechain. The use of independence is certainly inessential in the former setting, since it is clear thatthere are better ways to couple Markov chains than independently, if one's goal is to achieve rapidcoalescence. The second use of independence can also be relaxed; what matters is that the randomdecisions made in updating the coupled chain from time t to time t are independent of the state ofthe chain at time t. This will be guaranteed if the random decisions made in updating from timet to time t + 1 are independent of the random decisions made at all other times. Dependenciesamong the decisions made at a �xed time are perfectly legitimate, and do not interfere with thispart of the proof. To treat possible dependencies, we adopt the point of view that ft(i), ratherthan being given by Markov(i), is given by �(i; Ut) where �(�; �) is a deterministic function and Utis a random variable associated with time t. We assume that the random variables : : : ; U�2; U�1are i.i.d., and we take the point of view that the random process given by the Ut's is the sourceof all the randomness used by our algorithm, since the other random variables are deterministicfunctions of the Ut's. Note that this framework includes the case of full independence discussedearlier, since for example one could let the Ut's be i.i.d. variables taking their values in the n-cube[0; 1]n with uniform distribution, and let �(i; u) be the smallest j such that pi;1 + pi;2 + � � �+ pi;jexceeds the ith component of the vector u.Theorem 2 Let : : : ; U�3; U�2; U�1 be i.i.d. random variables and �(�; �) be a deterministic functionwith the property that for all i, Prob[�(i; U�1) = j] = pi;j. De�ne ft(i) = �(i; Ut) and F 0t = f�1 �f�2 � � � ��ft. Assume that with probability 1, there exists t for which the map F 0t is constant, with aconstant value that we may denote by �(: : : ; U�2; U�1). Then the random variable �(: : : ; U�2; U�1),which is de�ned with probability 1, has distribution governed by �.Rather than give a proof of the preceding result, we proceed to state and prove a more generalresult, whose extra generality, although not signi�cant mathematically, makes it much closer toprocedures that are useful in practice. The point of view here is that one might have severaldi�erent Markovian update-rules on a state-space, and one might cycle among them. As long aseach one of them preserves the distribution �, then the same claim holds.Theorem 3 Let : : : ; U�3; U�2; U�1 be i.i.d. random variables and let �t(�; �) (t < 0) be a sequenceof deterministic functions with the property that for all t and j,Xi �(i)Prob[�t(i; Ut) = j] = �(j):De�ne ft(i) = �t(i; Ut) and F 0t = f�1�f�2�� � ��ft. Assume that with probability 1, there exists t forwhich the map F 0t is constant, with a constant value that we may denote by �(: : : ; U�2; U�1). Then6



the random variable �(: : : ; U�2; U�1), which is de�ned with probability 1, has distribution governedby �.Proof: Let X be a random variable on the state-space of the Markov chain governed by thesteady-state distribution �, and for all t � 0 let Yt be the random variable F 0t (X). Each Yt hasdistribution �, and the sequence Y�1; Y�2; Y�3; : : : converges almost surely to some state Y�1,which must also have distribution �. Put �(: : : ; U�2; U�1) = Y�1 . �We conclude this section by discussing two related ideas that appear in the published literature,and that were brought to our attention during the writing of this article.The �rst is the method for generating random spanning trees of �nite graphs due to Broder [15]and Aldous [4] in conversations with Persi Diaconis. In this method one does a primary randomwalk on the graph and \shadows" it with a secondary random walk on the set of spanning trees.The secondary walk is coalescent in the sense that if the primary walk visits all vertices of the graph,then the �nal state of the secondary walk is independent of its initial state. Thus we can applycoupling-from-the-past to get a random spanning tree, while following only a single history ratherthan the usual two histories in the monotone version of the method. The Broder-Aldous algorithmuses the fact that the simple random walk on a graph is reversible, and terminates in �nite timewith a random tree. Using the coupling-from-the-past approach rather than time-reversal, we cangeneralize this algorithm to yield random trees in a directed and weighted graph. Details will begiven in [61]. (It is worth mentioning that for purposes of generating random trees, one can nowdo better than the Broder-Aldous algorithm; see [60].)Time reversal also shows up in the theory of coalescent duality for interacting particle systems. Astandard example of this duality is the relationship between the coalescing random walk model andthe voter model generalized to weighted directed graphs (see [32], [27], [41]). Given a continuous-time Markov chain on n states, in which transitions from state i to state j occur at rate pi;j , onede�nes a \coalescing random walk" by placing a particle on each state and decreeing that particlesmust move according to the Markov chain statistics; particles must move independently unless theycollide, at which point they must stick together. The original Markov chain also determines a votermodel, in which each of n voters starts by wanting to be be the leader, but in which voter i decidesto adopt the current choice of voter j at rate pi;j , until all voters eventually come into agreementon their choice of a leader. These two models are dual to one another, in the sense that each canbe obtained from the other by simply reversing the direction of time (see [5]). As a corollary of thework above, the probability that voter i ends up as the leader is just the steady-state probabilityof state i in the original Markov chain.2.2. Monotone Monte CarloSuppose now that the (possibly huge) state space S of our Markov chain admits a natural partialordering �, and that our update rule � has the property that x � y implies �(x; U0) � �(y; U0)almost surely with respect to U0. Then we say that our Markov chain gives a monotone MonteCarlo algorithm for approximating �. We will suppose henceforth that S has elements 0̂, 1̂ with0̂ � x � 1̂ for all x 2 S.De�ne �t2t1(x; u) = �t2�1(�t2�2(: : : (�t1(x; ut1); ut1+1); : : : ; ut2�2); ut2�1), where u is short for(: : : ; u�1; u0). If u�T ; u�T+1; : : : ; u�2; u�1 have the property that �0�T (0̂; u) = �0�T (1̂; u), then themonotonicity property assures us that �0�T (x; u) takes on their common value for all x 2 S. Thisfrees us from the need to consider trajectories starting in all jSj possible states; two states willsu�ce. Indeed, the smallest T for which �0�T (�; u) is constant is equal to the smallest T for which�0�T (0̂; u) = �0�T (1̂; u). 7



Let T� denote this smallest value of T . It would be possible to determine T� exactly by a bisectiontechnique, but this would be a waste of time: an overestimate for T� is as good as the correct value,for the purpose of obtaining an unbiased sample. Hence, we successively try T = 1; 2; 4; 8; : : : untilwe �nd a T of the form 2k for which �0�T (0̂; u) = �0�T (1̂; u). The number of simulation-stepsinvolved is 2(1 + 2 + 4 + � � �+ 2k) < 2k+2, where the factor of 2 in front comes from the fact thatwe are simulating two copies of the chain (one from 0̂ and one from 1̂). However, this is close tooptimal, since T� must exceed 2k�1 (otherwise we would not have needed to go on to try T = 2k);that is, the number of simulation steps required merely to verify that �0�T�(0̂; u) = �0�T�(1̂; u) isgreater than 2 �2k�1 = 2k. Hence our double-until-you-overshoot procedure comes within a factor of4 of what could be achieved by a clairvoyant version of the algorithm in which one avoids overshoot.Here is the pseudocode for our procedure.T  1repeat upper 1̂lower 0̂for t = �T to �1upper �t(upper; ut)lower �t(lower; ut)T  2Tuntil upper = lowerreturn upperImplicit in this pseudocode is the random generation of the ut's. Note that when the randommapping �t(�; ut) is used in one iteration of the repeat loop, for any particular value of t, it isessential that the same mapping be used in all subsequent iterations of the loop. We may accomplishthis by storing the ut's; alternatively, if (as is typically the case) our ut's are given by some pseudo-random number generator, we may simply suitably reset the random number generator to somespeci�ed seed seed(i) each time t equals �2i.In the context of monotone Monte Carlo, a hybrid between �xed-time forward simulation andcoupling-from-the-past is a kind of adaptive forward simulation, in which the monotone couplingallows one to check that the �xed timeM that has been adopted is indeed large enough to guaranteemixing. This approach was foreshadowed by the work of Valen Johnson [36], and it has been usedby Kim, Shor, and Winkler [38] in their work on random independent subsets of certain graphs;see subsection 3.3. Indeed, if one chooses M large enough, the bias in one's sample can be made assmall as one wishes. However, it is worth pointing out that for a small extra price in computationtime (or even perhaps a saving in computation time, if the M one chose was a very conservativeestimate of the mixing time), one can use coupling-from-the-past to eliminate the initialization biasentirely.In what sense does our algorithm solve the dilemma of the Monte Carlo simulator who is notsure how to balance his need to get a reasonably large number of samples and his need to getunbiased samples? We will see below that the expected run time of the algorithm is not muchlarger than the mixing time of the Markov chain (which makes it fairly close to optimal), and thatthe tail distribution of the run time decays exponentially quickly. If one is willing to wait for thealgorithm to return an answer, then the result will be an unbiased sample. More generally, if onewants to generate several samples, then as long as one completes every run that gets started, all8



of the samples will be unbiased as well as independent of one another. Therefore, we consider ourapproach to be a practical solution to the Monte Carlo simulator's problem of not knowing howlong to run the Markov chain.We emphasize that the experimenter must not simply interrupt the current run of the procedureand discard its results, retaining only those samples obtained during earlier runs; the experimentermust either allow the run to terminate or else regard the �nal sample as indeterminate (or onlypartly determined) | or resign himself to contaminating his set of samples with bias. To reducethe likelihood of ending up in this dilemma, the experimenter can use the techniques of section 5.1to estimate in advance the average number of Markov chain steps that will be required for eachsample.Recently Jim Fill has found an interruptible exact sampling protocol. Such a protocol, whenallowed to run to completion, returns a sample distributed according to �, just as coupling-from-the-past does. Additionally, if an impatient user interrupts some runs, then rather than regardingthe samples as indeterminate, the experimenter can actually throw them out without introducingbias. This is because the run time of an interruptible exact sampling procedure is independent ofthe sample returned, and therefore independent of whether or not the user became impatient andaborted the run.As of yet there remain a number of practical issues that need to be resolved before a trulyinterruptible exact sampling program can be written. We expect that Fill and others will discussthese issues more thoroughly in future articles.3. Spin Systems and Distributive Lattices3.1. Attractive spin systemsDe�ne a spin system on a vertex set V as the set of all ways of assigning a spin �(i) (\up" or\down") to each of the vertices i 2 V , together with a probability distribution � on the set of suchassignments �(�). We order the set of con�gurations by putting � � � i� �(i) � �(i) for all i 2 V(where ">#), and we say that � is attractive if the conditional probability of the event �(i) =" is amonotone increasing function of the values of �(j) for j 6= i. (In the case of the Ising model, thiscorresponds to the ferromagnetic situation.)More formally, given i 2 V and con�gurations �; � with �(j) � �(j) for all j 6= i, de�necon�gurations �", �#, �", and �# by putting �"(i) =", �"(j) = �(j) for all j 6= i, and so on. We say� is monotone i� �(�#)=�(�") � �(�#)=�(�"), or rather, if �(�#)�(�") � �(�")�(�#), for all � � �and all i 2 V .A heat bath algorithm on a spin-system is a procedure whereby one cycles through the verticesi (using any mixture of randomness and determinacy that guarantees that each i almost surelygets chosen in�nitely often) and updates the value at site i in accordance with the conditionalprobability for �. One may concretely realize this update rule by puttingft(�; ut) = (�# if ut < �(�#)=(�(�#) + �(�"))�" if ut � �(�#)=(�(�#) + �(�"))where t is the time, ut is some random variable distributed uniformly in [0; 1] (with all the ut'sindependent of each other), and � is some con�guration of the system. If � is attractive, then thisrealization of � gives rise to a coupling-scheme that preserves the ordering (just use the same ut'sin all copies of the chain). To see why this is true, notice that if � < � , then the ut-threshold for �is higher than for � , so that the event ft(�; ut)(i) =", ft(�; ut)(i) =# is impossible.We now may conclude: 9



Theorem 4 If one runs the heat bath for an attractive spin-system under the coupling-from-the-past protocol, one will generate states of the system that are exactly governed by the target distri-bution �.In certain cases this method is slow (for instance, if one is sampling from the Gibbs distributionfor the Ising model below at the critical temperature), but in practice we �nd that it works fairlyquickly for many attractive spin-systems of interest. In any case, section 5 will show that in acertain sense the coupling-from-the-past version of the heat bath is no slower than heat bath.We point out that, like the standard heat bath algorithm, ours can be accelerated if one updatesmany sites in parallel, provided that these updates are independent of one another. For instance,in the case of the Ising model on a square lattice, one can color the sites so that black sites haveonly white neighbors and vice versa, and it then becomes possible to alternate between updatingall the white sites and updating all the black sites. In e�ect, one is decomposing the con�guration� as a pair of con�gurations �white and �black, and one alternates between randomizing one of themin accordance with the conditional distribution determined by the other one.We also point out that in many cases, one is studying a one-parameter family of spin systemsin which some quantity such as temperature or the strength of an external �eld is varying. If someparameter (say the temperature T ) a�ects the ratio �(�") : �(�#) in a monotone (say increasing)way, then it is possible to make an \omnithermal" heat bath Markov chain, one that in e�ectgenerates simultaneous random samples for all values of the temperature. An omnithermal state �assigns to each vertex i the set c(i) of temperatures for which site i is spin-down. The sets c(i) are\monotone" in the sense that if a temperature is in c(i), so is every lower temperature; that is, whenthe temperature is raised, spin-down sites may become spin-up, but not vice versa. Given a site i ofcon�guration � and a random number u between 0 and 1, the heat bath update rule updates c(i) tobe the set of T for which u < �T (�T;#)=(�T (�T;#) + �T (�T;")), where �T denotes � at temperatureT . For each T this update rule is just the ordinary heat bath, and monotonicity ensures that thenew set c(i) is monotone in the aforementioned sense. The omnithermal heat bath Markov chainis monotone with a maximum and minimum state, so monotone coupling-from-the-past may beapplied.In the case where all the spin sites are independent of one another, the trick of simultaneouslysampling for all values of a parameter has been used for some time in the theory of random graphs[6, chapter 10] and percolation [28]. Holley [31] used an omnithermal Markov chain with twotemperatures to give an alternate proof of the FKG inequality [24] governing attractive spin systems.More recently Grimmett has given a monotone omnithermal Markov chain for the bond-correlatedpercolation model [29] (another name for the random cluster model described in subsection 4.2) andused it to derive a number of properties about these systems. Interestingly, Grimmett's Markovchain is di�erent from the omnithermal heat bath chain. See subsection 4.2 for further discussionof omnithermal sampling and its uses.3.2. Order ideals and antichainsLet P be a �nite partially ordered set, and call a subset I of P an order ideal if for all x 2 I andy � x, we have y 2 I . The set of order ideals of P is denoted by J(P ); it is a distributive latticeunder the operations of union and intersection, and it is a standard theorem (see [52]) that every�nite distributive lattice is of the form J(P ) for some �nite partially ordered set P .To turn J(P ) into a spin-system, we let V be the set of elements of P , and we associate the orderideal I with the spin-con�guration � in which �(i) is " or # according to whether i 2 I or i 62 I .Let us give each spin-con�guration that arises in this fashion equal probability �(�) = 1=jJ(P )j,and give the rest probability 0. Then it is easy to check that the ratio �(�")=�(�#) is 1=0, 0=1, or10



1=1, according to whether � nfig is not an order ideal, �[fig is not an order ideal, or both sets areorder ideals. Indeed, it is not much harder to see that � is attractive, so that by running the heatbath algorithm in a coupling-from-the-past framework, we can generate a uniform random elementof J(P ).We remind the reader that there is a one-to-one correspondence between order ideals of P andantichains of P (sets of pairwise-incomparable elements of P ); speci�cally, for every order idealI of P , the set of maximal elements of I forms an antichain, and every antichain determines aunique order ideal I . Hence, sampling uniformly from the elements of a �nite distributive latticeis equivalent to sampling uniformly from the set of order ideals of a general �nite poset, which isin turn equivalent to sampling uniformly from the set of antichains of a general �nite poset.We also point out that the heat bath procedure can often be done in parallel for many i 2 P atonce. Suppose we color the elements of P so that no element covers another element of the samecolor. (If P is graded, then its Hasse diagram is bipartite and two colors su�ce.) We use thesevertex-colors to assign colors to the edges of the Hasse diagram G of J(P ). For de�niteness, let usfocus on one color, called \red". If I is an order ideal, and K is the set of all red elements of Pwhose adjunction to or removal from I yields an order ideal, then a \red move" is the operationof replacing I by the union of I nK with a random subset of K. If one alternates red moves withblue moves and so on, then one will converge to the uniform distribution on J(P ).Cautionary note: While in many cases of interest this procedure will quickly �nd a randomorder ideal of a poset, it is not di�cult to construct examples where the run time is very large.For instance, let P be the poset of 2n elements numbered 1; : : : ; 2n, such that x < y if and onlyif x � n < y in the standard order on the integers. Then the Hasse diagram G of J(P ) will betwo hypercubes joined at a single vertex, and the time for the upper and lower order ideals tocoalesce will be exponential in n. Note however, that because of the bottleneck in this graph, the(uncoupled) random walk on this graph also takes exponential time to get close to random.3.3. Combinatorial applicationsIn this section, we describe a few examples of combinatorial objects that can be sampled by meansof the techniques developed in this section. In the �rst two examples, there are other methods thatcan be applied, but it is still interesting to see how versatile our basic approach is.Lattice paths. First, consider the set of all lattice-paths of length a+ b from the point (a; 0)to the point (0; b). There are �a+ba � such paths, and there are a number of elementary techniquesthat one can use in order to generate a path at random. However, let us de�ne the number ofinversions in such a path as the number of times that an upward step is followed (not necessarilyimmediately) by a leftward step, so that the path from (a; 0) to (a; b) to (0; b) has ab inversions, andlet us decree that each lattice-path should have probability proportional to q to the power of thenumber of inversions, for some q � 0. It so happens in this case that one can work out exactly whatthe constant of proportionality is, because one can sum q# of inversions over all lattice-paths with two�xed endpoints (these are the coe�cients of the so-called \Gaussian binomial coe�cients" [52]),and as a result of this there exists an e�cient bounded-time procedure for generating a randomq-weighted lattice-path. However, one also has the option of making use of coupling-from-the-past,as we now explain.If we order the set of the unit squares inside the rectangle with corners (0; 0); (a; 0); (0; b); (a; b)by decreeing that the square with lower-left corner (i0; j 0) is less than or equal to the square withlower-left corner (i; j) if and only if i0 � i and j 0 � j, then we see that the unit squares that liebelow and to the left of a lattice-path that joins (a; 0) and (0; b) form an order ideal, and that there11



is indeed a one-to-one-correspondence between the lattice-paths and the order ideals. Moreover,the number of inversions in a lattice path corresponds to the cardinality of the order ideal, so theorder ideal I has probability proportional to qjIj. It is not hard to show for any �nite distributivelattice, a probability distribution of this form is always attractive. Therefore, the method applies.When q = 1, roughly n3 log n steps on average are needed in order to generate an unbiased sample,where a � b � n; details will appear in [59].Permutations. For certain statistical applications, it is useful to sample permutations � 2 Snon n items such that the probability of � is proportional to qinv(�); this is sometimes called \Mallows'phi model through Kendall's tau". For background see [37] and [18] and the references containedtherein. Recall that inv(�) denotes the number of inversions of �, that is, the number of pairs (i; j)such that i < j and �(i) > �(j). We represent the permutation � by the n-tuple [�(1); : : : ; �(n)].Consider the following Markov chain whose steady-state distribution is the aforementioneddistribution. Pick a random pair of adjacent items. With probability 1=(q + 1) put the two inascending order, i.e. \sort them", and with probability q=(q+1) put them in descending order, i.e.\un-sort" them. It is clear that this Markov chain is ergodic and preserves the desired probabilitydistribution.De�ne a partial order on Sn by � < � if and only if � can be obtained from � by sortingadjacent elements (this is called the weak Bruhat order [13]). The bottom element is the identitypermutation 0̂ : i 7! i and the top element is the totally reversing permutation 1̂ : i 7! n + 1� i.The above Markov chain is a random walk on the Hasse diagram of this partial order. (See [52] forbackground on partially ordered sets.) This Markov chain, coupled with itself in the obvious way,does not preserve the partial order, even on S3. However, it is still true that when the top andbottom states coalesce, all states have coalesced, as we will show below. In symbols, the claim isthat F t2t1 (0̂) = F t2t1 (1̂) implies that F t2t1 (�) is constant. Therefore the technique of coupling from thepast can be applied to this Markov chain.The reason that the top and bottom states determine whether or not all states get mapped tothe same place is that suitable projections of the Markov chain are monotone. Given a permutation�, let �k(�) be an associated threshold function. That is, �k(�) is a sequence of 0's and 1's, with a1 at location i if and only �(i) > k. Just as the Markov chain sorts or un-sorts adjacent sites in apermutation, it sorts or un-sorts adjacent sites in the 0-1 sequence. Indeed, these sequences of 0'sand 1's correspond to lattice-paths of the kind considered in the �rst example.A sequence s1 of 0's and 1's dominates another such sequence s2 if the partial sums of s1 are atleast as large as the partial sums of s2, i.e.,PIi=1 s1(i) �PIi=1 s2(i) for all 0 � I � n. The Markovchain preserves dominance in sequences of 0's and 1's. This may be checked by case-analysis. Foreach k, we have that if �k(F t2t1 (0̂)) = �k(F t2t1 (1̂)), then �k(F t2t1 (�)) is constant. But note that iftwo permutations di�er, then they must di�er in some threshold function. Hence these thresholdfunctions determine the permutation, and F t2t1 (�) must be constant if it maps 0̂ and 1̂ to the sameplace.Recently Felsner and Wernisch reported having generalized this monotone Markov chain tosublattices of the weak Bruhat lattice. Given two permutations �1 and �2 with �1 � �2, therandom walk is restricted to those permutations � such that �1 � � � �2. This Markov chain canbe used to sample random linear extensions of a two-dimensional partially ordered set [22].Independent sets. A natural way to try to apply the heat bath approach to generate arandom independent set in a graph G (that is, a subset no two of whose vertices are joined by anedge) is �rst to color the vertices so that no two adjacent vertices are the same color, and then,cycling through the color classes, replace the current independent set I by the union of I nK withsome random subset of K, where K is the set of vertices of a particular color that are not joinedby an edge to any vertex in I . It is simple to show that for any �xed color, this update operation12



preserves the uniform distribution on the set of independent sets, since it is nothing more than arandom step in an edge-subgraph whose components are all degree-regular graphs (hypercubes, infact). Since the composite mapping obtained by cycling through all the vertices gives an ergodicMarkov chain, there is at most one stationary distribution, and the uniform distribution must beit. Unfortunately, we do not know of any rigorous estimates for the rate at which the precedingalgorithm gives convergence to the uniform distribution, nor do we know of a way to use coupling-ideas to get empirical estimates of the mixing time. However, in the case where G is bipartite, apretty trick of Kim, Shor, and Winkler [38] permits us to apply our methods. Speci�cally, let ussuppose that the vertices of G have been classi�ed as white and black, so that every edge joinsvertices of opposite color. If we write the independent set I as Iwhite [ Iblack, then the set ofindependent sets becomes a distributive lattice if one de�nes the meet of I and I 0 as (Iwhite \I 0white) [ (Iblack [ I 0black) and their join as (Iwhite [ I 0white) [ (Iblack \ I 0black). Hence one can samplefrom the uniform distribution on the set of independent sets in any �nite bipartite graph.This Markov chain may be slowly mixing for some graphs; for instance, in the case of thecomplete bipartite graph on n + n vertices, the Markov chain is isomorphic to the slowly-mixingMarkov chain mentioned in our earlier cautionary note. Kim, Shor, and Winkler consider a variantin which the di�erent independent sets I need not have equal probability, but have probabilitiesproportional to qjIj. For values of q below a certain critical threshold, they found that rapid couplingtakes place; our methods would be applicable to the generation of random independent sets in thesub-critical regime.4. Applications to Statistical MechanicsWhen a physical system is in thermodynamic equilibrium, the probability that the system is ina given state � is proportional to e�E�=kT where E� is the energy of state �, T is the absolutetemperature, and k is Boltzmann's constant. This probability distribution is known as the Gibbsdistribution. In e�ect, kT is the standard unit of energy; when kT is large, the energies of thestates are not signi�cant, and all states are approximately equally likely, but when kT is small, thesystem is likely to be in a low-energy state. In some cases, a very small change in some parameter(such as the temperature) causes a signi�cant change in the physical system. This phenomenonis called a phase transition. If changing the temperature caused the phase transition, then thetemperature at the phase transition is called the critical temperature.In the study of phase transitions, physicists often consider idealized models of substances.Phase-transition phenomena are thought to fall into certain universality classes, so that if a sub-stance and a model belong to the same universality class, the global properties of the model corre-spond well to those of the real-world substance. For example, carbon dioxide, xenon, and brass arethought to belong to the same universality class as the three-dimensional Ising model (see [8] and[12] and references contained therein). Other models that have received much attention include thePotts model [63] (which generalizes the Ising model) and the related random cluster model [23].In Monte Carlo studies of phase transitions, it is essential to generate many random samples ofthe state of a system. Sampling methods include the Metropolis algorithm and multi-grid versionsof it. However, even after the Markov chain has run for a long time, it is not possible to tell by mereinspection whether the system has converged to a steady-state distribution or whether it has merelyreached some metastable state. In many cases, we can use the method of coupled Markov chainsto eliminate this problem and provide samples precisely according to the steady-state distribution.In subsection 4.1 we review the de�nition of the Ising model and describe a simple algorithmfor obtaining unbiased Ising samples that works well if the system is above (and not too close to)13



the critical temperature. We also de�ne the Potts model, which generalizes the Ising model to thesituation in which there are more than two possible spins.In subsection 4.2 we consider the random cluster model. This model turns out to be very useful,in large part because random Ising and Potts states can be derived from random-cluster states. Inmany cases the best way to get Ising or Potts states is via the random cluster model. We show howto apply the method of monotone coupling-from-the-past to get unbiased samples, and include apicture of a perfectly equilibrated Ising state obtained by this method (Figure 1).Finally, in subsection 4.3 we show how to apply our methods to the square ice model and thedimer model on the square and honeycomb grids.We also mention that interest in these models is not restricted to physicists. For instance, inimage processing, to undo the e�ects of blurring and noise one may place a Gibbs distribution onthe set of possible images. The energy of a possible image depends on the observed pixel values, andnearby pixels tend to have similar values. Sampling from this Gibbs distribution can be e�ectivein reducing noise. See [26] and [9] for more information.4.1. The Ising modelHere we introduce the Ising model and the single-site heat bath algorithm for sampling from it.The e�ciency of the heat bath algorithm has been the object of much study [56] [53] [25] [33] [49][46]. To summarize, it runs quickly at temperatures above the critical temperature, but below thistemperature it takes an enormously long time to randomize. (In subsection 4.2 we will describe adi�erent algorithm which does not su�er from this \critical slowing down"; however, that algorithmdoes not apply when di�erent parts of the substance are subjected to magnetic �elds of di�erentpolarity, which makes that algorithm less suitable for some applications, such as image processing.)The Ising model was introduced to model ferromagnetic substances; it is also equivalent toa lattice gas model [8]. An Ising system consists of a collection of n small interacting magnets,possibly in the presence of an external magnetic �eld. Each magnet may be aligned up or down.(In general there are more directions that a magnet may point, but in crystals such as FeCl2 andFeCO3 there are in fact just two directions [8].) Magnets that are close to each other prefer to bealigned in the same direction, and all magnets prefer to be aligned with the external magnetic �eld(which sometimes varies from site to site, but is often constant). These preferences are quanti�edin the total energy E of the systemE = �Xi<j �i;j�i�j �Xi Bi�i;where Bi is the strength of the external �eld as measured at site i, �i is 1 if magnet i is alignedup and �1 if magnet i is aligned down, and �i;j � 0 represents the interaction strength betweenmagnets i and j.Often the n magnets are arranged in a 2D or 3D lattice, and �i;j is 1 if magnets i and j areadjacent in the lattice, and 0 otherwise.Characterizing what the system looks like at a given temperature is useful in the study offerromagnetism. To study the system, we may sample a random state from the Gibbs distributionwith a Markov chain. The single-site heat bath algorithm, also known as Glauber dynamics, iteratesthe following operation: Pick a magnet, either in sequence or at random, and then randomize itsalignment, holding all of the remaining magnets �xed. There are two possible choices for the nextstate, denoted by �" and �#, with energies E" andE#. We have Prob[�"]=Prob[�#] = e�(E"�E#)=kT =e�(�E)=kT . Thus a single update is simple to perform, and it is easy to check that this de�nes anergodic Markov chain for the Gibbs distribution.14



Figure 1: An equilibrated Ising state at the critical temperature on a 4200� 4200 toroidal grid.15



To get an exact sample, we make the following observation: If we have two spin-con�gurations� and � with the property that each spin-up site in � is also spin-up in � , then we may evolve bothcon�gurations simultaneously according to the single-site heat bath algorithm, and this propertyis maintained. The all-spins-up state is \maximal", and the all-spins-down state is \minimal", sowe have a monotone Markov chain to which we can apply the method of coupling from the past.Indeed, this is just a special case of our general algorithm for attractive spin-systems.It is crucial that the �i;j 's be non-negative; if this were not the case, the system would not beattractive, and our method would not apply. (A few special cases, such as a paramagnetic systemon a bipartite lattice, reduce to the attractive case.) However, there are no additional constraintson the �i;j 's and the Bi's; once the system is known to be attractive, we can be sure that ourmethod applies, at least in a theoretical sense.Also note that we can update two spins in parallel if the corresponding sites are non-adjacent(i.e., if the associated �i;j vanishes), because the spin at one such site does not a�ect the conditionaldistribution for the spins at another. For instance, on a square grid, we can update half of thespins in parallel in a single step, and then update the other half at the next step. Despite thespeed-up available from parallelization, there is no guarantee that the heat bath Markov chain willbe a practical one. Indeed, it is well-known that it becomes disastrously slow near the criticaltemperature.An important generalization of the Ising model is the q-state Potts model, in which each sitemay have one of q di�erent \spins". Wu [63] gives a survey describing the physical signi�cance ofthe Potts model. In a Potts con�guration �, each site i has spin �i which is one of 1; 2; 3; : : : ; q.The energy of a Potts con�guration isE =Xi<j �i;j(1� ��i;�j) +Xi Bi(1� ��i;ei);where � is the Kronecker delta-function, equal to 1 if its subscripts are equal and 0 otherwise,�i;j � 0 is the interaction strength between sites i and j, Bi is the strength of the magnetic �eldat site i, and ei is the polarity of the magnetic �eld at site i. As before, adjacent sites prefer tohave the same spin. When q = 2, the Potts-model energy reduces to the Ising-model energy asidefrom an additive constant (which does not a�ect the Gibbs distribution) and a scaling factor of two(which corresponds to a factor of two in the temperature).4.2. Random cluster modelThe random cluster model was introduced by Fortuin and Kasteleyn [23] and generalizes the Isingand Potts models. The random cluster model is also closely related to the Tutte polynomial of agraph (see [11]). The Ising state shown in Figure 1 was generated with the methods described here.In the random cluster model we have an undirected graph G, and the states of the system aresubsets H of the edges of the graph. Often G is a two- or three-dimensional lattice. Each edgefi; jg has associated with it a number pij between 0 and 1 indicating how likely the edge is to bein the subgraph. There is a parameter q which indicates how favorable it is for the subgraph tohave many connected components. In particular, the probability of observing a particular subgraphH � G is proportional to 0@ Yfi;jg2H pij1A0@ Yfi;jg62H(1� pij)1A qC(H) ;where C(H) is the number of connected components of H (isolated vertices count as componentsof size 1). To derive a random q-spin Potts state from a random H , one assigns a common random16



spin to all the vertices lying in any given connected component (see Sokal's survey [51] for moreinformation on this).Sweeny [54] used the results of Fortuin and Kasteleyn to generate random q-spin Potts statesnear the critical temperature. He used the \single-bond heat bath" algorithm (i.e. Glauber dynam-ics) to sample from the random cluster model, and then converted these samples into Potts states.The single-bond heat bath algorithm for sampling from the random cluster model is a Markovchain which focuses on a single edge of G at a time and, conditioning on the rest of H , randomlydetermines whether or not to include this edge in the new state H 0. It turns out that the randomclusters are in some ways more directly informative than the Potts states themselves, since forinstance they can be used to obtain more precise information on spin correlations.Swendsen and Wang [55] proposed a di�erent Markov chain based on the relation betweenthe random cluster and Potts models. Given a random-cluster sample, they compute a randomPotts state consistent with the clusters. Given a Potts state, they compute a random subgraph ofG consistent with the Potts state. Their chain alternates between these two phases. In anothervariation due to Wol� [62], a single cluster is built from the spin states and then ipped. One majoradvantage of these approaches over the single-bond heat bath algorithm is that they obviate the needto determine connectivity for many pairs of vertices adjacent in V . Determining the connectivitycan be computationally expensive, so Sweeny gave an algorithm for dynamically keeping track ofwhich vertices remain connected each time an edge is added or deleted. The dynamic connectivityalgorithm is limited to planar graphs, but the Markov chain itself is general.We will now argue that the single-bond heat bath algorithm is monotone for q � 1, so thatthe method of monotone coupling-from-the-past applies to it. Here the states of the Markov chainare partially ordered by subgraph-inclusion, the top state is G, and the bottom state is the emptygraph. We claim that when q � 1, this partial order is preserved by the Markov chain. At each stepwe pick an edge (either randomly or in sequence) and do the heat bath to this particular edge. Ifthe two sites connected by this edge are in separate clusters in both states, or in the same cluster inboth states, then the probability of including the edge is the same, so the partial order is preserved.If in one state they are in the same cluster while in the second state they are in separate clusters,then 1) the �rst state is the larger state (in the partial order), and 2) the probability of putting abond there is larger for the �rsstate. Hence the partial order is preserved, and our approach canbe applied.We have been unable to �nd monotonicity in the Swendsen-Wang or Wol� algorithms. Re-cent developments in dynamic connectivity algorithms [30] may make the single-bond heat bathalgorithm a viable option, given that one can obtain exact samples at e�ectively all temperaturessimultaneously using the heat bath algorithm. (See the discussion at the end of subsection 3.1.)Our implementation of the monotone coupling-from-the-past version of the single-bond heatbath algorithm, in both single-temperature and omnithermal versions (see subsection 3.1), appearsto work well in practice, provided that q is not too large. For instance, when q = 2 on a 512� 512toroidal grid, at the critical temperature it is only necessary to start at around time �30 to getcoalescence by time 0. (Here one step, also called a sweep, consists of doing a single-bond heatbath step for each edge of the graph.) Using a naive connectivity algorithm, each sweep takesabout twenty seconds on a Sparcstation. Omnithermal sweeps (see subsection 3.1) take longer,in part because determining connectivity is somewhat more involved, but principally because inthe single-temperature case a large fraction of the heat bath steps do not require a connectivityquery, whereas in the omnithermal case they all do. Since nearly all of the computer's time is spentcomputing connectivity, the incentive for improving on current dynamic connectivity algorithms isclear.The preliminary omnithermal results are striking; in Figure 2 one can see quite clearly the17



critical point, and how the internal energy and spontaneous magnetization vary with temperatureon the three-dimensional grid when q = 2. Other macroscopically-de�ned quantities may also begraphed as a monotone function of p. This makes it possible to obtain estimates of the criticalexponents from just a single (omnithermal) sample, whereas other approaches require a large num-ber of samples at a number of di�erent values of p close to criticality. We are hopeful that exactomnithermal sampling will be of use with Monte Carlo studies of the Ising and Potts models.
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0 0.25 0.750.5 1Figure 2: The internal energy and spontaneous magnetization of an Ising system as a function ofp = 1� e��E=kT on the 100� 100� 100 grid with periodic boundary conditions. Data points aregiven for 232 distinct values of the temperature, and are the result of a single simulation.4.3. Ice and dimer modelsIn the square ice (or \six-vertex") model whose residual entropy was determined by Lieb [40],states are assignments of orientation to the edges of a square grid, such that at each internal vertexthere are equal numbers of incoming and outgoing edges (the \ice condition"). The six vertex-con�gurations correspond to the six ways in which a water molecule in an ice crystal can orientitself so that its two protons (hydrogen atoms) are pointing towards two of the four adjacent oxygenatoms, and the ice condition reects the fact that the protons from adjacent molecules will repeleach other. The assumption that the ice condition is satis�ed everywhere is tantamount to theassumption that the system is at temperature zero, so that in particular the Gibbs distribution isjust the uniform distribution on the set of minimum-energy con�gurations.Let us assume that our square grid is a �nite rectangle, where sites along the boundary haveedges that lead nowhere but nonetheless have a de�nite orientation. To turn ice-con�gurations onthis rectangle into elements of a distributive lattice, we �rst pass to the dual model by rotatingeach directed edge by 90 degrees about its midpoint. This gives a model on the dual square grid inwhich every internal square cell must be bounded by two clockwise edges and two counterclockwiseedges. One may think of such an orientation as a \discrete conservative vector �eld" on the set ofedges of the grid; here conservativity means that if one travels between two points in the grid, thenumber of forward-directed edges along which one travels, minus the number of backward-directededges, is independent of the path one takes between the two points.One can then introduce an integer-valued function on the vertices, called a height function,with the property that adjacent vertices have heights that di�er by 1, such that the edge betweenvertex i and vertex j points from i to j if and only if j is the higher of the two vertices. (If one18



pursues the analogue with �eld theory, one might think of this as a potential function associatedwith the discrete vector �eld.) Height functions for the six-vertex model were �rst introduced byvan Beijeren [58].The set of height functions with prescribed boundary conditions can be shown to form a dis-tributive lattice under the natural operations of taking the maximum or minimum of the heightsof two height functions at all the various points in the grid [47]. Hence one can sample from theuniform distribution on the set of such height functions, and thereby obtain a random sample fromthe set of ice-con�gurations.Note that this approach applies to models other than square ice; for instance, it also appliesto the \twenty-vertex" model on a triangular grid, in which each vertex has three incoming edgesand three outgoing edges. However, in all these applications it is important that the �nite graphthat one uses be planar. In particular, one cannot apply these ideas directly to the study of �nitemodels with free periodic boundary conditions (or equivalently graphs on a torus), because suchgraphs are not in general planar.Another class of models to which our methods apply are dimer models on bipartite planargraphs. A dimer con�guration on such a graph is a subset of the edges such that every vertex ofthe graph belongs to exactly one of the chosen edges. This model corresponds to adsorption ofdiatomic molecules on a crystal surface, and the assumption that every vertex belongs to an edgecorresponds to the assumption that the system is in a lowest-energy state, as will be the case atzero temperature.Here, as in the case of ice-models, one can introduce a height function that encodes the com-binatorial structure and makes it possible to view the states as elements of a distributive lattice.This approach can be traced back to Levitov [39] and Zheng and Sachdev [64] in the case of thesquare lattice, and to Bl�ote and Hilhorst [14] in the case of the hexagonal lattice. An independentdevelopment is due to Thurston [57], building on earlier work of Conway [17]. A generalization ofthis technique is described in [47].Thurston's article describes the construction not in terms of dimer models (or equivalentlyperfect matchings of graphs) but rather in terms of tilings. That is, a dimer con�guration on asquare or hexagonal grid corresponds to a tiling of a plane region by dominoes (unions of twoadjacent squares in the dual grid) or lozenges (unions of two adjacent equilateral triangles in thedual grid).Using the distributive lattice structure on the set of tilings, and applying coupling-from-the-past, one can generate random tilings of �nite regions. This permits us to study the e�ects thatthe imposition of boundary conditions can have even well away from the boundary. One suchphenomenon is the \arctic circle e�ect" described in [35]; using our random-generation procedurewe have been able to ascertain that such domain-wall e�ects are fairly general, albeit associatedwith boundary conditions that may be deemed non-physical.For instance, Figure 3 shows a particular �nite region and a tiling chosen uniformly at randomfrom the set of all domino-tilings of that region. To highlight the non-homogeneity of the statisticsof the tiling, we have shaded those horizontal dominoes whose left square is black, under thenatural black/white checkerboard coloring of the squares. The heterogeneity of the statistics is aconsequence of the \non-atness" of the height function on the boundary; this phenomenon is givena more detailed study in [16]. The tiling was generated using software written by the �rst author'sundergraduate research assistants, using the methods described in this article.Computer programs for generating random con�gurations of this kind can used as exploratorytools for the general problem of understanding the role played by boundary conditions in theseclasses of models. 19



Figure 3: A random tiling of a �nite region by dominoes.20



5. Running Time5.1. Time-to-coalescenceIn this section we bound the coupling time of a monotone Markov chain, i.e. a chain with partiallyordered state space whose moves preserve the partial order. These bounds directly relate to therunning time of our exact sampling procedure. We bound the expected run time, and the probabilitythat a run takes abnormally long, in terms of the mixing time of the Markov chain. If the underlyingmonotone Markov chain is rapidly mixing, then it is also rapidly coupling, so that there is essentiallyno reason not to apply coupling-from-the-past when it is possible to do so. If the mixing time isunknown, then in it may be estimated from the coupling times. We also bound the probabilitythat a run takes much longer than these estimates.Recall that the random variable T� is the smallest t such that F 0�t(0̂) = F 0�t(1̂). De�ne T �,the time to coalescence, to be the smallest t such that F t0(0̂) = F t0(1̂). Note that Pr[T� > t], theprobability that F 0�t(�) is not constant, equals the probability that F t0(�) is not constant, Pr[T � > t].The running time of the algorithm is linear in T�, but since T� and T � are governed by the sameprobability distribution, in this section we focus on the conceptually simpler T �.In order to relate the coupling time to the mixing time, we will consider three measures ofprogress towards the steady state distribution �: Exp[T �], Prob[T � > K] for particular or randomK, and d(k) = max�1;�2 k�k1 � �k2k for particular k, where �k is the distribution governing theMarkov chain at time k when started at time 0 in a random state governed by the distribution�. Let �0 and �1 be the distributions on the state space S that assign probability 1 to 0̂ and 1̂,respectively.Theorem 5 Let l be the length of the longest chain (totally ordered subset) in the partially orderedstate-space S. Then Prob[T � > k]l � d(k) � Prob[T � > k]:Proof: If x is an element of the ordered state-space S, let h(x) denote the length of the longestchain whose top element is x. Let the random variables Xk0 and Xk1 denote the states of (the twocopies of) the Markov chain after k steps when started in states 0̂ and 1̂, respectively. If Xk0 6= Xk1then h(Xk0 ) + 1 � h(Xk1 ) (and if Xk0 = Xk1 then h(Xk0 ) = h(Xk1 )). This yieldsProb[T � > k] = Prob[Xk0 6= Xk1 ]� E[h(Xk1)� h(Xk0 )]= ���E�k1 [h(X)]�E�k0 [h(X)]���� k�k1 � �k0k hmaxx h(x)�minx h(x)i� d(k) l;proving the �rst inequality. To prove the second, consider a coupling in which one copy of thechain starts in some distribution �1 and the other starts in distribution �2. By the monotonicity ofthe coupling, the probability that the two copies coalesce within k steps is at least Prob[T � � k].Hence our coupling achieves a joining of �k1 and �k2 such that the two states disagree only on anevent of probability at most Prob[T � > k]. It follows that the total variation distance between thetwo distributions is at most Prob[T � > k]. �Next we show that Prob[T � > k] is submultiplicative. At this point we will assume that thevalid moves at each time are the same. So for instance, if a random process operates on red verticesand then on blue vertices, these two operations together are considered one step.21



Theorem 6 Let K1 and K2 be nonnegative integer random variables (which might be constant).Then Prob[T � > K1 +K2] � Prob[T � > K1] � Prob[T � > K2]:Proof: The event that FK10 is constant and the event that FK1+K2K1 is constant are independent,and if either one is constant, then FK1+K20 is constant. �Next we estimate tail-probabilities for T � in terms of the expected value of T �, and vice versa.Lemma 7 kProb[T � > k] � Exp[T �] � k=Prob[T � � k]:Proof: The �rst inequality follows from the non-negativity of T �. To prove the second, notethat if we put " = Prob[T � > k], then by submultiplicativity, Prob[T � > ik] � "i. Hence Exp[T �] �k + k"+ k"2 + � � � = k=Prob[T � � k]. �Now we can say what we meant by \if the Markov chain is rapidly mixing then it is rapidlycoupling" in the �rst paragraph of this section. The mixing time threshold Tmix is de�ned to be thesmallest k for which d(k) � 1=e [5]. Let l be the length of the longest chain in the partially orderedstate space. Since d(k) is submultiplicative (see [2]), after k = Tmix(1 + ln l) steps, d(k) � 1=el, soProb[T � > k] � 1=e by Theorem 5, and by Lemma 7,Exp[T �] � k=(1� 1=e) < 2k = 2Tmix(1 + ln l):It has been noted [18] that many Markov chains exhibit a sharp threshold phenomenon: after(1� ")Tmix steps the state is very far from being random, but after (1 + ")Tmix steps the state isvery close to being random (i.e. d(k) is close to 0). In such chains the coupling time will be lessthan O(Tmix log l).In addition to being useful as a source of random samples, our method can also be used as away of estimating the mixing time of a random walk. One application to which this might be put isthe retrospective analysis of someone else's (or one's own) past simulations, which were undertakenwith only the experimenter's intuitive sense to guide the choice of how long the chain needed tobe run before the initialization bias would be acceptably small. Using our technique, one can nowassess whether the experimenter's intuitions were correct.For instance, suppose one takes ten independent samples of the coupling time random variableT �, and obtains 10Test = T1 + � � �+ T10 = 997. Then one can be fairly con�dent that if one wereto run the Markov chain from an arbitrary starting point for 1000 steps (or if someone had doneso in the past), the residual initialization bias would be less than 2�10. Assertions of this kindcan be made rigorous. Speci�cally, we can argue that if one treats Test as a random variable, thenthe initialization bias of the Markov chain when run for random time 10Test is at most 2�10. Bysymmetry we have Prob[T � > Ti] � 1=2, and then by submultiplicativity we getProb[T � > T1 + � � �+ T10] � 2�10:Since d(k) is bounded by Prob[T � > k], the initialization bias is at most 2�10. (We cannot makeany such rigorous assertion if we condition on the event 10Test = 997, nor should we expect to beable to do so in the absence of more detailed information about the nature of the Markov chain.)Another approach would be to consider the maximum coupling time of a number of runs.Theorem 8 Let T1; : : : ; Tm and T � be independent samples of the coupling time. ThenProb[T � > jmax(T1; : : : ; Tm)] � j!m!(j +m)! :22



Proof: Let Tmax denote max(T1; : : : ; Tm). We will construct coupling times S1; : : : ; Sj andT � such that T �; T1; : : : ; Tm are mutually independent and T1; : : : ; Tm; S1; : : : ; Sj are mutuallyindependent, but S1; : : : ; Sj and T � are dependent. Each coupling time is determined by therandom variables (earlier called Ut) that are used in simulating the Markov chain; call these randomvariables \moves". Let the �rst Tmax of the moves for the time Si be used for moves (i � 1)Tmaxthrough iTmax � 1 of time T �, and let the remaining random moves for Si be independent of theother random moves. If for any i we have Si � Tmax, then moves (i� 1)Tmax through iTmax � 1of time T � are coalescing, whence T � � jTmax. Thus, Prob[T � > jTmax] � Prob[Si > Tmax; i =1; : : : ; j] = Prob[Si > Tk; i = 1; : : : ; j; k = 1; : : : ; m]. But if we have j +m i.i.d. random variables,the probability that the last j are strictly larger than the �rst �rst m is at most 1=�j+mj �. �In the above example with m = 10, if we take j = 6 then Prob[T � > 6Tmax] � 1=8008. If thelongest of the ten runs takes 150 steps, then the randomized upper bound 6Tmax is 900. Calculationsof this sort clearly can help an experimenter determine when her initialization bias is likely to beacceptably small.5.2. Optimizing performanceAs we mentioned in subsection 2.2, when applying coupling-from-the-past in the context of mono-tone Monte Carlo algorithms, it would be grossly ine�cient to consider F 0�T for each positive integerT . We may restrict T to take on the values T0 < T1 < � � � . Earlier we recommended taking thesimulation start-times to be �Ti = �2i. We shall see that this choice is close to optimal.Let T� denote the minimum value of T for which F 0�T (0̂) = F 0�T (1̂). One natural choice is totake T1 = rT0, T2 = rT1, etc., for some initial trial value T0 and some ratio r. Then the number ofsimulation steps required to �nd the value of F 0�T�(0̂) = F 0�T�(1̂) is 2T0+2rT0+2r2T0+ � � �+2rkT0,where k is the least k such that rkT0 � T�. (The factor of 2 comes from the fact that we mustsimulate using both 0̂ and 1̂ as initial states.) The number of required steps isrk+1 � 1r � 1 2T0 < r2r� 1rk�12T0 � r2r � 12T�where in the second inequality we assumed T0 � T�. On the other hand, if one could magicallyguess T�, then computing F 0�T�(0̂) and F 0�T�(1̂) (and in so doing verifying that the value of T� isno greater than claimed) would take a full 2T� simulation steps. The ratio between the two |worst-case and best-case | is at most r2=(r � 1), which is minimized at r = 2, where it takes thevalue 4. Hence, if our goal is to minimize the worst-case number of steps, we should take r = 2.One might be concerned that it is better to minimize the expected number of steps, rather thanthe worst case. Indeed, we argue that to minimize the expected number of steps one should pickr = e (= 2:71828 � � �). Let u be the fractional part of logr(T0=T�). It is a reasonable heuristic tosuppose that u is approximately uniformly distributed. In fact, by randomizing the choice of T0,we can force this assumption to be true. In any case, the number of simulation steps needed to�nd the unbiased sample is2ruT� + 2ru�1T� + 2ru�2T� + � � � < 2 ru1� 1=rT�:The expected value of ru is (r � 1)= ln r, so the expected number of steps is bounded above by2T�r= ln r. To minimize r= ln r we set r = e, with the expected number of steps equal to 2eT� �2:72(2T�).In practice, we do not expect to make great savings in time from this randomization strategy.Indeed, using r = 2 we �nd that the expected number of steps required is approximately 2:89 times23
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