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Summary: We consider a …nancial market driven by a continuous time ho-
mogeneous Markov chain. Conditions for absence of arbitrage and for com-
pleteness are spelled out, non-arbitrage pricing of derivatives is discussed,
and details are worked out for a number of cases. Closed form expressions
are obtained for interest rate derivatives. Computations typically amount
to solving a set of …rst order partial di¤erential equations. With a view to
insurance applications, an excursion is made into risk minimization in the
incomplete case.
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1 Introduction

A. Prospectus.
The theory of di¤usion processes, with its wealth of powerful theorems and
model variations, is an indispensable toolkit in modern …nancial mathemat-
ics. The seminal papers of Black and Scholes [3] and Merton [13] were
crafted with Brownian motion, and so were most of the almost countless
papers on arbitrage pricing theory and its bifurcations that followed over
the past quarter of a century.

A main course of current research, initiated by the martingale approach
to arbitrage pricing ([10] and [11]), aims at generalization and uni…cation.
Today the core of the matter is well understood in a general semimartingale
setting, see e.g. [5]. Another course of research investigates special mod-
els, in particular various Levy motion alternatives to the Brownian driving
process, see e.g. [6] and [17]. Pure jump processes have been widely used
in …nance, ranging from plain Poisson processes introduced in [14] to quite
general marked point processes, see e.g. [1]. And, as a pedagogical exercise,
the market driven by a binomial process has been intensively studied since
it was launched in [4].

The present paper undertakes to study a …nancial market driven by a
continuous time homogeneous Markov chain. The idea was launched in [16]
and reappeared in [7], the context being limited to modelling of the spot rate
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of interest. The purpose of the present study is two-fold: In the …rst place, it
is instructive to see how well established theory turns out in the framework
of a general Markov chain market. In the second place, it is worthwhile
investigating the feasibility of the model from a theoretical as well as from a
practical point of view. Poisson driven markets are accommodated as special
cases.

B. Contents of the paper.
We set out in Section 2 by recapitulating basic de…nitions and results for
the continuous time homogeneous Markov chain. Then we present a market
featuring this process as the driving mechanism and spell out conditions
for absence of arbitrage and for completeness. Section 3 carries through
the program of arbitrage pricing of derivatives in the Markov chain mar-
ket and works out the details for a number of cases. Special attention is
devoted to interest rate derivatives, for which closed form expressions are
obtained. Section 4 touches computational aspects. A simulation procedure
is sketched. Focus is on numerical procedures for solving the set of …rst
order partial di¤erential equations that typically arise, a slightly complicat-
ing circumstance being that they involve function values at di¤erent states.
Section 5 addresses the Föllmer-Sondermann-Schweizer theory of risk mini-
mization in the incomplete case. Its particulars for the Markov chain market
are worked out, and an application to unit-linked life insurance is sketched.
Risk minimization is pursued in Section 6 where “degrees of completeness”
of …nite bond markets is discussed in connection with pricing and hedging
of interest rate derivatives under constrained investment opportunities. The
theory is applied to an interest rate guarantee product in life insurance.

C. Preliminaries: Notation and some useful results.
Vectors and matrices are denoted by in bold letters, lower and upper case,
respectively. They may be equipped with topscripts indicating dimensions,
e.g. An£m has n rows and m columns. We may write A = (ajk)k2Kj2J to
emphasize the ranges of the row index j and the column index k. The
transpose of A is denoted by A0. Vectors are invariably taken to be of
column type, hence row vectors appear as transposed. The identity matrix
is denoted by I, the vector with all entries equal to 1 is denoted by 1, and
the vector with all entries equal to 0 is denoted by 0. By Dj=1;:::;n(aj), or
just D(a), is meant the diagonal matrix with the entries of a = (a1; : : : ; an)0

down the principal diagonal. The n-dimensional Euclidean space is denoted
by Rn, and the linear subspace spanned by the columns of An£m is denoted
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by R(A).
A diagonalizable square matrix An£n can be represented as

A = ©Dj=1;:::;n(½j)©¡1 =
nX

j=1

½jÁjÃ
0
j ; (1.1)

where the Áj are the columns of ©n£n and the Ã0
j are the rows of ©¡1. The

½j are the eigenvalues of A, and Áj and Ã0
j are the corresponding right and

left eigenvectors, respectively. Eigenvectors (right or left) corresponding to
eigenvalues that are distinguishable and non-null are mutually orthogonal.
These results can be looked up in e.g. [12].

The exponential function of An£n is the n £ n matrix de…ned by

exp(A) =
1X

p=0

1
p!

Ap = ©Dj=1;:::;n(e½j)©¡1 =
nX

j=1

e½jÁjÃ
0
j ; (1.2)

where the last two expressions follow from (1.1). The matrix exp(A) has
full rank.

If ¤n£n is positive de…nite symmetric, then h³1; ³2i¤ = ³01¤³2 de…nes
an inner product on Rn. The corresponding norm is given by k³k¤ =

h³; ³i1=2
¤

. If Fn£m has full rank m (· n), then the h ¢ ; ¢ i¤-projection of ³
onto R(F) is

³F = PF³ ; (1.3)

where the projection matrix (or projector) PF is

PF = F(F0¤F)¡1F0¤ : (1.4)

The projection of ³ onto the orthogonal complement R(F)? is

³F? = ³ ¡ ³F = (I ¡ PF)³ :

Its squared length, which is the squared h ¢ ; ¢ i¤-distance from ³ to R(F), is

k³F?k2
¤

= k³k2
¤

¡ k³Fk2
¤

= ³0¤(I ¡ PF)³ : (1.5)

The cardinality of a set Y is denoted by jYj. For a …nite set it is just its
number of elements.
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2 The Markov chain market

A. The continuous time Markov chain.
At the base of everything (although slumbering in the background) is some
probability space (­;F ;P).

Let fYtgt¸0 be a continuous time Markov chain with …nite state space
Y = f1; : : : ; ng. We assume that it is time homogeneous so that the transi-
tion probabilities

pjkt = P[Ys+t = k j Ys = j]

depend only on the length of the transition period. This implies that the
transition intensities

¸jk = lim
t&0

pjkt
t

; (2.1)

j 6= k, exist and are constant. To avoid repetitious reminders of the type
“j; k 2 Y”, we reserve the indices j and k for states in Y throughout. We
will frequently refer to

Yj = fk;¸jk > 0g ;

the set of states that are directly accessible from state j, and denote the
number of such states by

nj = jYjj :
Put

¸jj = ¡¸j¢ = ¡
X

k;k2Yj
¸jk

(minus the total intensity of transition out of state j). We assume that
all states intercommunicate so that pjkt > 0 for all j; k (and t > 0). This
implies that nj > 0 for all j (no absorbing states). The matrix of transition
probabilities,

Pt = (pjkt ) ;

and the in…nitesimal matrix,

¤ = (¸jk) ;

are related by (2.1), which in matrix form reads ¤ = limt&0
1
t (Pt ¡ I), and

by the backward and forward Kolmogorov di¤erential equations,

d
dt

Pt = Pt¤ = ¤Pt : (2.2)
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Under the side condition P0 = I, (2.2) integrates to

Pt = exp(¤t) : (2.3)

In the representation (1.2),

Pt = ©Dj=1;:::;n(e½jt)©¡1 =
nX

j=1

e½jtÁjÃ
0
j ; (2.4)

the …rst (say) eigenvalue is ½1 = 0, and corresponding eigenvectors are Á1 =
1 and Ã0

1 = (p1; : : : ; pn) = limt%1(pj1t ; : : : ; pjnt ), the stationary distribution
of Y . The remaining eigenvalues, ½2; : : : ; ½n, are all strictly negative so that,
by (2.4), the transition probabilities converge exponentially to the stationary
distribution as t increases.

Introduce
Ijt = 1[Yt = j] ; (2.5)

the indicator of the event that Y is in state j at time t, and

N jkt = jfs; 0 < s · t; Ys¡ = j ; Ys = kgj ; (2.6)

the number of direct transitions of Y from state j to state k 2 Yj in the
time interval (0; t]. For k =2 Yj we de…ne N jkt ´ 0. Taking Y to be right-
continuous, the same goes for the indicator processes Ij and the counting
processes N jk. As is seen from (2.5), (2.6), and the obvious relationships

Yt =
X

j

jIjt ; Ijt = Ij0 +
X

k;k 6=j
(Nkjt ¡ N jkt ) ;

the state process, the indicator processes, and the counting processes carry
the same information, which at any time t is represented by the sigma-
algebra FYt = ¾fYs; 0 · s · tg. The corresponding …ltration, denoted by
FY = fFYt gt¸0, is taken to satisfy the usual conditions of right-continuity
(Ft = \u>tFu) and completeness (F0 contains all subsets of P-nullsets), and
F0 is assumed to be the trivial (;; ­). This means, essentially, that Y is
right-continuous (hence the same goes for the Ij and the N jk) and that Y0
deterministic.

The compensated counting processes M jk, j 6= k, de…ned by

dM jk
t = dN jkt ¡ Ijt ¸

jk dt (2.7)

and M jk
0 = 0, are zero mean, square integrable, mutually orthogonal mar-

tingales w.r.t. (FY ;P).
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We now turn to the subject matter of our study and, referring to intro-
ductory texts like [2] and [19], take basic notions and results from arbitrage
pricing theory as prerequisites.

B. The continuous time Markov chain market.
We consider a …nancial market driven by the Markov chain described above.
Thus, Yt represents the state of the economy at time t, FYt represents the in-
formation available about the economic history by time t, and FY represents
the ‡ow of such information over time.

In the market there are m+1 basic assets, which can be traded freely and
frictionlessly (short sales are allowed, and there are no transaction costs).
A special role is played by asset No. 0, which is a “locally risk-free” bank
account with state-dependent interest rate

rt = rYt =
X

j

Ijt r
j ;

where the state-wise interest rates rj , j = 1; : : : ; n, are constants. Thus, its
price process is

Bt = exp
µZ t

0
rs ds

¶
= exp

0
@X

j

rj
Z t

0
Ijs ds

1
A ;

with dynamics
dBt = Bt rt dt = Bt

X

j

rjIjt dt :

(Setting B0 = 1 a just a matter of convention.)
The remaining m assets, henceforth referred to as stocks, are risky, with

price processes of the form

Sit = exp

0
@X

j

®ij
Z t

0
Ijs ds +

X

j

X

k2Yj
¯ijkN jkt

1
A ; (2.8)

i = 1; : : : ; m, where the ®ij and ¯ijk are constants and, for each i, at least
one of the ¯ijk is non-null. Thus, in addition to yielding state-dependent
returns of the same form as the bank account, stock No. i makes a price
jump of relative size

°ijk = exp
³
¯ijk

´
¡ 1
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upon any transition of the economy from state j to state k. By the general
Itô’s formula, its dynamics is given by

dSit = Sit¡

0
@X

j

®ijIjt dt +
X

j

X

k2Yj
°ijkdN jkt

1
A : (2.9)

Taking the bank account as numeraire, we introduce the discounted stock
prices ~Sit = Sit=Bt, i = 0; : : : ;m. (The discounted price of the bank account
is ~Bt ´ 1, which is certainly a martingale under any measure). The dis-
counted stock prices are

~Sit = exp

0
@X

j

(®ij ¡ rj)
Z t

0
Ijs ds +

X

j

X

k2Yj
¯ijkN jkt

1
A ; (2.10)

with dynamics

d ~Sit = ~Sit¡

0
@X

j

(®ij ¡ rj)Ijt dt +
X

j

X

k2Yj
°ijkdN jkt

1
A ; (2.11)

i = 1; : : : ;m.

C. Portfolios.
A dynamic portfolio or investment strategy is an m+1-dimensional stochastic
process

µ0t = (´t; »0t) ;

where ´t represents the number of units of the bank account held at time t,
and the i-th entry in

»t = (»1t ; : : : ; »
m
t )0

represents the number of units of stock No. i held at time t. (As it will
turn out, the bank account and the stocks will appear to play di¤erent parts
in the show, the latter being the more visible. It is, therefore, convenient
to costume the two types of assets and their corresponding portfolio entries
accordingly.) The portfolio µ is adapted to FY , and the shares of stocks, »,
must also be FY -predictable.

The value of the portfolio at time t is

V µt = ´tBt + »0tSt = ´tBt +
mX

i=0

»itS
i
t :
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where
~St = ( ~S1

t ; : : : ; ~Smt )0 :

Henceforth we will mainly work with discounted prices and values and,
in accordance with (2.10), equip their symbols with a tilde. The discounted
value of the portfolio at time t is

~V µt = ´t + »0t ~St : (2.12)

The strategy µ is self-…nancing (SF) if dV µt = ´t dBt+ »0t dSt or, equiva-
lently,

d~V µt = »0t d~St =
mX

i=1

»it d ~Sit : (2.13)

D. Absence of arbitrage.
Let

~¤ = (~̧jk)

be an in…nitesimal matrix that is equivalent to ¤ in the sense that ~̧jk = 0
if and only if ¸jk = 0. By Girsanov’s theorem, there exists a measure ~P,
equivalent to P, under which Y is a Markov chain with in…nitesimal matrix
~¤. Consequently, the processes ~M jk, j = 1; : : : ; n, k 2 Yj, de…ned by

d ~M jk
t = dN jkt ¡ Ijt ~̧

jk dt ; (2.14)

and ~M jk
0 = 0, are zero mean, mutually orthogonal martingales w.r.t. (FY ; ~P).

Rewrite (2.11) as

d ~Sit = ~Sit¡

2
4X

j

0
@®ij ¡ rj +

X

k2Yj
°ijk ~̧jk

1
A Ijt dt +

X

j

X

k2Yj
°ijkd ~M jk

t

3
5 ;

(2.15)

i = 1; : : : ;m. The discounted stock prices are martingales w.r.t. (FY ; ~P) if
and only if the drift terms on the right vanish, that is,

®ij ¡ rj +
X

k2Yj
°ijk ~̧jk = 0 ; (2.16)

j = 1; : : : ; n, i = 1; : : : ; m. From general theory it is known that the exis-
tence of such an equivalent martingale measure ~P implies absence of arbi-
trage.
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The relation (2.16) can be cast in matrix form as

rj1 ¡ ®j = ¡j ~̧
j
; (2.17)

j = 1; : : : ; n, where 1 is m £ 1 and

®j =
¡
®ij

¢
i=1;:::;m ; ¡j =

³
°ijk

´k2Yj
i=1;:::;m

; ~̧j =
³
~̧jk

´
k2Yj

:

The existence of an equivalent martingale measure is equivalent to the exis-
tence of a solution ~̧j to (2.17) with all entries strictly positive. Thus, the
market is arbitrage-free if (and we can show only if) for each j, rj1 ¡ ®j is
in the interior of the convex cone of the columns of ¡j .

Assume henceforth that the market is arbitrage-free so that (2.15) re-
duces to

d ~Sit = ~Sit¡
X

j

X

k2Yj
°ijkd ~M jk

t ; (2.18)

where the ~M jk de…ned by (2.14) are martingales w.r.t. (FY ; ~P) for some
measure ~P that is equivalent to P.

Inserting (2.18) into (2.13), we …nd that µ is SF if and only if

d~V µt =
X

j

X

k2Yj

mX

i=1

»it ~S
i
t¡°ijkd ~M jk

t ; (2.19)

implying that ~V µ is a martingale w.r.t. (FY ; ~P) and, in particular,

~V µt = ~E[ ~V µT j Ft] : (2.20)

Here ~E denotes expectation under ~P. (Note that the tilde, which in the …rst
place was introduced to distinguish discounted values from the nominal ones,
is also attached to the equivalent martingale measure and certain related
entities. This usage is motivated by the fact that the martingale measure
arises from the discounted basic price processes, roughly speaking.)

E. Attainability.
A T -claim is a contractual payment due at time T . Formally, it is an FYT -
measurable random variable H with …nite expected value. The claim is
attainable if it can be perfectly duplicated by some SF portfolio µ, that is,

~V µT = ~H : (2.21)
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If an attainable claim should be traded in the market, then its price must
at any time be equal to the value of the duplicating portfolio in order to
avoid arbitrage. Thus, denoting the price process by ¼t and, recalling (2.20)
and (2.21), we have

~¼t = ~V µt = ~E[ ~H j Ft] ; (2.22)

or
¼t = ~E

h
e¡

R T
t rH

¯̄
¯ Ft

i
: (2.23)

(We use the short-hand e¡
R T
t r for exp

³
¡

R T
t ru du

´
.)

By (2.22) and (2.19), the dynamics of the discounted price process of an
attainable claim is

d~¼t =
X

j

X

k2Yj

mX

i=1

»it ~S
i
t¡°ijkd ~M jk

t : (2.24)

F. Completeness.
Any T -claim H as de…ned above can be represented as

~H = ~E[ ~H] +
Z T

0

X

j

X

k2Yj
³jkt d ~M jk

t ; (2.25)

where the ³jkt are FY -predictable and integrable processes. Conversely, any
random variable of the form (2.25) is, of course, a T -claim. By virtue of
(2.21), and (2.19), attainability of H means that

~H = ~V µ0 +
Z T

0
d ~V µt

= ~V µ0 +
Z T

0

X

j

X

k2Yj

X

i

»it ~S
i
t¡°ijkd ~M jk

t : (2.26)

Comparing (2.25) and (2.26), we see that H is attainable i¤ there exist
predictable processes »1t ; : : : ; »mt such that

mX

i=1

»it ~S
i
t¡°ijk = ³jkt ;

for all j and k 2 Yj. This means that the nj-vector

³jt = (³jkt )k2Yj
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is in R(¡j 0).
The market is complete if every T -claim is attainable, that is, if every

nj-vector is in R(¡j 0). This is the case if and only if rank(¡j) = nj , which
can be ful…lled for each j only if m ¸ maxj nj .

3 Arbitrage-pricing of derivatives in a complete
market

A. Di¤erential equations for the arbitrage-free price.
Assume that the market is arbitrage-free and complete so that prices of
T -claims are uniquely given by (2.22) or (2.23).

Let us for the time being consider a T -claim of the form

H = h(YT ; S`T ) : (3.1)

Examples are a European call option on stock No. ` de…ned by H = (S`T ¡
K)+, a caplet de…ned by H = (rT ¡ g)+ = (rYT ¡ g)+, and a zero coupon
T -bond de…ned by H = 1.

For any claim of the form (3.1) the relevant state variables involved in
the conditional expectation (2.23) are t; Yt; S`t , hence ¼t is of the form

¼t =
nX

j=1

Ijt f
j(t; S`t ) ; (3.2)

where the
f j(t; s) = ~E

h
e¡

R T
t rH

¯̄
¯ Yt = j; S`t = s

i
(3.3)

are the state-wise price functions.
The discounted price (2.22) is a martingale w.r.t. (FY ; ~P). Assume that

the functions f j(t; s) are continuously diferentiable. Using Itô on

~¼t = e¡
R t
0 r

nX

j=1

Ijt f
j(t; S`t ) ; (3.4)

we …nd

d~¼t = e¡
R t
0 r

X

j

Ijt

µ
¡rj f j(t; S`t ) +

@
@t

f j(t; S`t ) +
@
@s

f j(t; S`t )S
`
t®
`j

¶
dt

+e¡
R t
0 r

X

j

X

k2Yj

³
fk(t; S`t¡(1 + °`jk)) ¡ f j(t; S`t¡)

´
dNjkt

11



= e¡
R t
0 r

X

j

Ijt
³
¡rj f j(t; S`t ) +

@
@t

f j(t; S`t ) +
@
@s

f j(t; S`t )S
`
t®
`j

+
X

k2Yj
ffk(t; S`t¡(1 + °`jk)) ¡ f j(t; S`t¡)g~̧jk

´
dt

+e¡
R t
0 r

X

j

X

k2Yj

³
fk(t; S`t¡(1 + °`jk)) ¡ f j(t; S`t¡)

´
d ~M jk
t : (3.5)

By the martingale property, the drift term must vanish, and we arrive at
the non-stochastic partial di¤erential equations

¡rj f j(t; s) +
@
@t

f j(t; s) +
@
@s

f j(t; s)s®`j

+
X

k2Yj

³
fk(t; s(1 + °`jk)) ¡ f j(t; s)

´
~̧jk = 0 ; (3.6)

j = 1; : : : ; n, which are to be solved subject to the side conditions

f j(T; s) = h(j; s) ; (3.7)

j = 1; : : : ; n.
In matrix form, with

R = Dj=1;:::;n(rj) ; A` = Dj=1;:::;n(®`j) ;

and other symbols (hopefully) self-explaining, the di¤erential equations and
the side conditions are

¡Rf(t; s) +
@
@t

f(t; s) + sA`
@
@s

f(t; s) + ~¤f(t; s(1 + °)) = 0 ; (3.8)

f(T; s) = h(s) : (3.9)

B. Identifying the strategy.
Once we have determined the solution f j(t; s), j = 1; : : : ; n, the price process
is known and given by (3.2).

The duplicating SF strategy can be obtained as follows. Setting the drift
term to 0 in (3.5), we …nd the dynamics of the discounted price;

d~¼t = e¡
R t
0 r

X

j

X

k2Yj

³
fk(t; S`t¡(1 + °`jk)) ¡ f j(t; S`t¡)

´
d ~M jk
t : (3.10)
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Identifying the coe¢cients in (3.10) with those in (2.24), we obtain, for each
state j, the equations

mX

i=1

»itS
i
t¡°ijk = fk(t; S`t¡(1 + °`jk)) ¡ f j(t; S`t¡) ; (3.11)

k 2 Yj. The solution »jt = (»i;jt )0i=1;:::;m (say) certainly exists since rank(¡j) ·
m, and it is unique i¤ rank(¡j) = m. Furthermore, it is a function of t and
St¡ and is thus predictable. This simplistic argument works on the open
intervals between the jumps of the process Y , where d ~M jk

t = ¡Ijt ~̧
jk dt.

For the dynamics (3.10) and (2.24) to be the same also at jump times, the
coe¢cients must clearly be left-continuous. We conclude that

»t =
nX

j=1

Ijt¡»t ;

which is predictable.
Finally, ´ is determined upon combining (2.12), (2.22), and (3.4):

´t = e¡
R t
0 r

nX

j=1

Ã
Ijt f
j(t; S`t ) ¡ Ijt¡

mX

i=1

»i;jt Sit

!
:

C. The Asian option.
As an example of a path-dependent claim, let us consider an Asian option,

which essentially is a T -claim of the form H =
³R T

0 S`¿ d¿ ¡ K
´+

, where
K ¸ 0. The price process is

¼t = ~E
"

e¡
R T
t r

µZ T

0
S`¿ d¿ ¡ K

¶+
¯̄
¯̄
¯F
Y
t

#

=
nX

j=1

Ijt f
j
µ

t; S`t ;
Z t

0
S`¿ d¿

¶
;

where

f j(t; s; u) = ~E
"

e¡
R T
t r

µZ T

t
S`¿ + u ¡ K

¶+
¯̄
¯̄
¯ Yt = j; S`t = s

#
:

The discounted price process is

~¼t = e¡
R t
0 r

nX

j=1

Ijt f j
µ

t; S`t ;
Z t

0
S`s

¶
:
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We obtain partial di¤erential equations in three variables.
The special case K = 0 is simpler, with only two state variables.

D. Interest rate derivatives.
A particularly simple, but still important, class of claims are those of the
form H = h(YT ). Interest rate derivatives of the form H = h(rT ) are
included since rT = rYT . For such claims the only relevant state variables
are t and Yt, so that the function in (3.3) depends only on t and j. The
equation (3.6) reduces to

d
dt

f jt = rjf jt ¡
X

k2Yj
(fkt ¡ f jt )~̧

jk ; (3.12)

and the side condition is (put h(j) = hj)

f jT = hj : (3.13)

In matrix form,
d
dt

ft = ( ~R ¡ ~¤)ft ;

subject to
fT = h :

The solution is
ft = expf( ~¤ ¡ R)(T ¡ t)gh : (3.14)

It depends on t and T only through T ¡ t.
In particular, the zero coupon bond with maturity T corresponds to

h = 1. We will henceforth refer to it as the T -bond in short and denote
its price process by p(t; T ) and its state-wise price functions by p(t; T ) =
(pj(t; T ))j=1;:::;n;

p(t; T ) = expf( ~¤ ¡ R)(T ¡ t)g1 : (3.15)

For a call option on a U-bond, exercised at time T (< U) with price K,
h has entries hj = (pj(T;U) ¡ K)+.

In (3.14) – (3.15) it may be useful to employ the representation shown
in (1.2),

expf( ~¤ ¡ R)(T ¡ t)g = ~©Dj=1;:::;n(e~½j(T¡t)) ~©¡1 ; (3.16)

say.
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4 Numerical procedures

A. Simulation.
The homogeneous Markov process fYtgt2[0;T ] is simulated as follows: Let
K be the number of transitions between states in [0; T ], and let T1; : : : ; TK
be the successive times of transition. The sequence f(Tn; YTn)gn=0;:::;K is
generated recursively, starting from the initial state Y0 at time T0 = 0,
as follows. Having arrived at Tn and YTn , generate the next waiting time
Tn+1¡Tn as an exponential variate with parameter ¸Yn¢ (e.g. ¡ ln(Un)=¸Yn¢,
where Un has a uniform distribution over [0; 1]), and let the new state YTn+1

be k with probability ¸Ynk=¸Yn¢. Continue in this manner K +1 times until
TK < T · TK+1.

B. Numerical solution of di¤erential equations.
Alternatively, the di¤erential equations must be solved numerically. For
interest rate derivatives, which involve only ordinary …rst order di¤erential
equations, a Runge Kutta will do. For stock derivatives, which involve
partial …rst order di¤erential equations, one must employ a suitable …nite
di¤erence method, see e.g. [20].

5 Risk minimization in incomplete markets

A. Incompleteness.
The notion of incompleteness pertains to situations where a contingent claim
cannot be duplicated by an SF portfolio and, consequently, does not receive
a unique price from the no arbitrage postulate alone.

In Paragraph 2F we were dealing implicitly with incompleteness arising
from a scarcity of traded assets, that is, the discounted basic price pro-
cesses are incapable of spanning the space of all martingales w.r.t. (FY ; ~P)
and, in particular, reproducing the value (2.25) of every …nancial derivative
(function of the basic asset prices).

Incompleteness also arises when the contingent claim is not a purely
…nancial derivative, that is, its value depends also on circumstances external
to the …nancial market. We have in mind insurance claims that are caused
by events like death or …re and whose claim amounts are e.g. in‡ation
adjusted or linked to the value of some investment portfolio.

In the latter case we need to work in an extended model specifying
a basic probability space with a …ltration F = fFtgt¸0 containing FY and
satisfying the usual conditions. Typically it will be the natural …ltration of Y

15



and some other process that generates the insurance events. The de…nitions
and conditions laid down in Paragraphs 2C-E are modi…ed accordingly, so
that adaptedness of ´ and predictability of » are taken to be w.r.t. (F;P)
(keeping the symbol P for the basic probability measure), a T -claim H is
FT measurable, etc.

B. Risk minimization.
Throughout the remainder of the paper we will mainly be working with
discounted prices and values without any other mention than the notational
tilde. The reason is that the theory of risk minimization rests on certain
martingale representation results that apply to discounted prices under a
martingale measure. We will be content to give just a sketchy review of
some main concepts and results from the seminal paper of Föllmer and
Sondermann [8].

Let ~H be a T -claim that is not attainable. This means that an admissible
portfolio µ satisfying

~V µT = ~H

cannot be SF. The cost, ~Cµt , of the portfolio by time t is de…ned as that part
of the value that has not been gained from trading:

~Cµt = ~V µt ¡
Z t

0
»0¿d~S¿ :

The risk at time t is de…ned as the mean squared outstanding cost,

~Rt = ~E
h
( ~CµT ¡ ~Cµt )

2
¯̄
¯ Ft

i
: (5.1)

By de…nition, the risk of an admissible portfolio µ is

~Rµt = ~E
·
( ~H ¡ ~V µt ¡

Z T

t
»0¿d~S¿ )2

¯̄
¯̄ Ft

¸
;

which is a measure of how well the current value of the portfolio plus future
trading gains approximates the claim. The theory of risk minimization takes
this entity as its object function and proves the existence of an optimal
admissible portfolio that minimizes the risk (5.1) for all t 2 [0; T ]. The
proof is constructive and provides a recipe for how to actually determine
the optimal portfolio.

One sets out by de…ning the intrinsic value of ~H at time t as

~V Ht = ~E
h

~H j Ft
i

:
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Thus, the intrinsic value process is the martingale that represents the natural
current forecast of the claim under the chosen martingale measure. By the
Galchouk-Kunita-Watanabe representation, it decomposes uniquely as

~V Ht = ~E[ ~H] +
Z t

0
»H

0
t d~St + LHt ;

where LH is a martingale w.r.t. (F; ~P) which is orthogonal to ~S. The
portfolio µH de…ned by this decomposition minimizes the risk process among
all admissible strategies. The minimum risk is

~RHt = ~E
·Z T

t
dhLHi¿

¯̄
¯̄ Ft

¸
:

C. Unit-linked insurance.
As the name suggests, a life insurance product is said to be unit-linked if the
bene…t is a certain predetermined number of units of an asset (or portfolio)
into which the premiums are currently invested. If the contract stipulates
a minimum value of the bene…t, disconnected from the asset price, then
one speaks of unit-linked insurance with guarantee. A risk minimization
approach to pricing and hedging of unit-linked insurance claims was …rst
taken by Møller [15], who worked with the Black-Scholes-Merton …nancial
market. We will here sketch how the analysis goes in our Markov chain
market, which conforms well with the life history process in that they both
are intensity-driven.

Let Tx be the remaining life time of an x years old who purchases an
insurance at time 0, say. The conditional probability of survival to age x+u,
given survival to age x + t (0 · t < u), is

u¡tpx+t = P[Tx > u jTx > t] = e¡
R u
t ¹x+s ds ; (5.2)

where ¹y is the mortality intensity at age y. We have

d u¡tpx+t = u¡tpx+t ¹x+t dt : (5.3)

Introduce the indicator of survival to age x + t,

It = 1[Tx > t] ;

and the indicator of death before time t,

Nt = 1[Tx · t] = 1 ¡ It :
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The process Nt is a (very simple) counting process with intensity It ¹x+t,
that is, M given by

dMt = dNt ¡ It ¹x+t dt (5.4)

is a martingale w.r.t. (F; P). Assume that the life time Tx is independent of
the economy Y . We will work with the martingale measure ~P obtained by
replacing the intensity matrix ¤ of Y with the martingalizing ~¤ and leaving
the rest of the model unaltered.

Consider a unit-linked pure endowment bene…t payable at a …xed time
T , contingent on survival of the insured, with sum insured equal to one unit
of stock No. `, but guaranteed no less than a …xed amount g. This bene…t
is a contingent T -claim,

H = (S`T _ g) IT :

The single premium payable as a lump sum at time 0 is to be determined.
Let us assume that the …nancial market is complete so that every purely

…nancial derivative has a unique price process. Then the intrinsic value of
H at time t is

~V Ht = ~¼t It T¡tpx+t ;

where ~¼t is the discounted price process of the derivative S`T _ g.
Using Itô and inserting (5.4), we …nd

d~V Ht = d~¼t It¡ T¡tpx+t + ~¼t It¡ T¡tpx+t ¹x+t dt + (0 ¡ ~¼t¡ T¡tpx+t) dNt
= d~¼t It¡ T¡tpx+t ¡ ~¼t¡ T¡tpx+t dMt :

It is seen that the optimal trading strategy is that of the price process of the
sum insured multiplied with the conditional probability that the sum will
be paid out, and that

dLHt = ¡T¡tpx+t ~¼t¡ dMt :

Consequently,

~RHt =
Z T

t
T¡sp2x+s ~E

£
~¼2
s
¯̄
Ft

¤
s¡tpx+t ¹x+s ds

= T¡tpx+t
Z T

t

~E
£
~¼2
s
¯̄
Ft

¤
T¡spx+s ¹x+s ds : (5.5)
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6 Trading with bonds: How much can be hedged?

A. A …nite zero coupon bond market.
Suppose an agent faces a contingent T -claim and is allowed to invest only in
the bank account and a …nite number m of zero coupon bonds with matu-
rities Ti, i = 1; : : : ;m, all post time T . For instance, regulatory constraints
may be imposed on the investment strategies of an insurance company. The
question is, to what extent can the claim be hedged by self-…nanced trading
in these available assets?

An allowed SF portfolio has discounted value process ~V µt of the form

d~V µt =
mX

i=1

»it
X

j

X

k2Yj
(~pk(t; Ti) ¡ ~pj(t; Ti))d ~M jk

t =
X

j

d( ~Mj
t)
0Fjt»t ;

where » is predictable, ~Mj 0
t = ( ~M jk

t )k2Yj is the nj-dimensional row vector
comprising the non-null entries in the j-th row of ~Mt = ( ~M jk

t ), and

Fjt = YjFt

where
Ft = (~pj(t; Ti))

i=1;:::;m
j=1;:::;n = (~p(t; T1); ¢ ¢ ¢ ; ~p(t; Tm)) ; (6.1)

and Yj is the nj £ n matrix which maps Ft to (~pk(t; Ti) ¡ ~pj(t; Ti))
i=1;:::;m
k2Yj .

If e.g. Yn = f1; : : : ; pg, then Yn = (Ip£p ; 0p£(n¡p¡1) ; ¡1p£1).
The sub-market consisting of the bank account and the m zero coupon

bonds is complete in respect of T -claims i¤ the discounted bond prices span
the space of all martingales w.r.t. (FY ; ~P) over the time interval [0; T ]. This
is the case i¤, for each j, rank(Fjt ) = nj. Now, since Yj obviously has full
rank nj , the rank of Fjt is determined by the rank of Ft in (6.1). We will
argue that, typically, Ft has full rank. Thus, suppose c = (c1; : : : ; cm)0 is
such that

Ftc = 0n£1 :

Recalling (3.15), this is the same as
mX

i=1

ci expf( ~¤ ¡ R)Tig1 = 0 ;

or, by (3.16) and since ~© has full rank,

Dj=1;:::;n(
mX

i=1

cie~½
jTi) ~©¡11 = 0 : (6.2)
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Since ~©¡1 has full rank, the entries of the vector ~©¡11 cannot be all null.
Typically all entries are non-null, and we assume this is the case. Then (6.2)
is equivalent to

mX

i=1

cie~½
jTi = 0 ; j = 1; : : : ; n: (6.3)

Using the fact that the generalized Vandermonde matrix has full rank, we
know that (6.3) has a non-null solution c if and only if the number of distinct
eigenvalues ~½j is less than m (see [9] and [18]).

In the case where rank(Fjt) < nj for some j we would like to determine
the Galchouk-Kunita-Watanabe decomposition for a given FYT -claim. The
intrinsic value process has dynamics

d ~Ht =
X

j

X

k2Yj
³jkt d ~M jk

t =
X

j

d( ~Mj
t )
0³jt : (6.4)

We seek a decomposition of the form

d~Vt =
X

i

»it d~p(t; Ti) +
X

j

X

k2Yj
Ãjkt d ~M jk

t

=
X

j

X

j2Yj

X

i

»it (~p
k(t; Ti) ¡ ~pj(t; Ti))d ~M jk

t +
X

j

X

k2Yj
Ãjkt d ~M jk

t

=
X

j

d( ~Mj
t)
0Fjt»

j
t +

X

j

d( ~Mj
t )
0Ãjt ;

such that the two martingales on the right hand side are orthogonal, that
is, X

j

Ijt¡
X

k2Yj
(Fjt»

j
t)
0 ~¤jÃjt = 0 ;

where ~¤
j
= D(~̧

j
). This means that, for each j, the vector ³jt in (6.4) is to be

decomposed into its h ; i ~¤
j projections onto R(Fjt) and its orthocomplement.

From (1.3) and (1.4) we obtain

Fjt»
j
t = Pjt³

j
t ;

where
Pjt = Fjt(F

j
t
0 ~¤jFjt)

¡1Fjt
0 ~¤j ;

hence
»jt = (Fjt

0 ~¤jFjt )
¡1Fjt

0 ~¤j³jt : (6.5)
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Furthermore,
Ãjt = (I ¡ Pjt )³

j
t ; (6.6)

and the risk is Z T

t

X

j

pYtjs¡t
X

k2Yj
¸jk(Ãjks )2 ds : (6.7)

The computation goes as follows: The coe¢cients ³jk involved in the in-
trinsic value process (6.4) and the state-wise prices pj(t; Ti) of the Ti-bonds
are obtained by simultaneously solving (3.6) and (3.12), starting from (3.9)
and (3.12), respectively, and at each step computing the optimal trading
strategy » by (6.5) and the Ã from (6.6), and adding the step-wise contri-
bution to the variance (6.7) (the step-length times the current value of the
integrand).

B. First example: The ‡oorlet.
For a simple example, consider a ’‡oorlet’ H = (r¤ ¡ rT )+, where T <
mini Ti. The motivation could be that at time T the insurance company
will ascribe interest to the insured’s account at current interest rate, but
not less than a pre…xed guaranteed rate r¤. Then H is the amount that
must be provided per unit on deposit and per time unit at time T .

Computation goes by the scheme described above, with the ³jkt = ~fkt ¡ ~f jt
obtained from (3.12) subject to (3.13) with hj = (r¤ ¡ rj)+.

C. Second example: The interest guarantee in insurance.
A more practically relevant example is an interest rate guarantee on a life
insurance policy. Premiums and reserves are calculated on the basis of
a prudent so-called …rst order assumption, stating that the interest rate
will be at some …xed (low) level r¤ throughout the term of the insurance
contract. Denote the corresponding …rst order reserve at time t by V ¤

t . The
(portfolio-wide) mean surplus created by the …rst order assumption in the
time interval [t; t+dt) is (r¤¡rt)+tp¤xV ¤

t dt. This surplus is currently credited
to the account of the insured as dividend, and the total amount of dividends
is paid out to the insured at the term of the contracts at time T . Negative
dividends are not permitted, however, so at time T the insurer must cover

H =
Z T

0
e
R T
s r(r¤ ¡ rs)+sp¤xV

¤
s ds :
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The intrinsic value of this claim is

~Ht = ~E
·Z T

0
e¡

R s
0 r(r¤ ¡ rs)+ sp¤xV

¤
s ds

¯̄
¯̄Ft

¸

=
Z t

0
e¡

R s
0 r(r¤ ¡ rs)+ sp¤xV

¤
s ds + e¡

R t
0 r

X

j

Ijt f
j
t ;

where the f jt are the state-wise expected values of future guarantees, dis-
counted at time t,

f jt = ~E
·Z T

t
e¡

R s
t r(r¤ ¡ rs)+ sp¤xV

¤
s ds

¯̄
¯̄ Yt = j

¸
:

Working along the lines of Section 3, we determine the f jt by solving

d
dt

f jt = ¡(r¤ ¡ rj)+ tp¤xV
¤
t + rjf jt ¡

X

k2Yj
(fkt ¡ f jt )~̧

jk ;

subject to
f jT = 0 : (6.8)

The intrinsic value has dynamics (6.4) with ³jkt = ~fkt ¡ ~f jt .
From here we proceed as described in Paragraph A.

D. Computing the risk.
Constructive di¤erential equations may be put up for the risk. As a simple
example, for an interest rate derivative the state-wise risk is

~Rjt =
Z T

t

X

g
pjg¿¡t

X

k;k 6=g
¸gk

³
Ãgk¿

´2
d¿ :

Di¤erentiating this equation, we …nd

d
dt

~Rjt = ¡
X

k;k 6=j
¸jk

³
Ãjkt

´2
+

Z T

t

X

g

d
dt

pjg¿¡t
X

k;k 6=g

³
Ãgk¿

´2
d¿ ;

and, using the backward version of (2.2),

dt p
jg
s¡t = ¡

X

h;h6=j
¸jhphgs¡t + ¸j¢pjgs¡t ;
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we arrive at

d
dt

~Rjt = ¡
X

k;k 6=j
¸jk

³
Ãjkt

´2
¡

X

k;k 6=j
¸jk ~Rkt + ¸j¢ ~Rjt :
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