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1. Introduction

Consider a graph on the set of triangulations of a convex polygon with n

sides, wherein two triangulations are considered adjacent if (and only if) one

can be obtained from the other by \
ipping" an internal diagonal { note that

each internal diagonal in a triangulation is in a unique quadrilateral, and by

\
ipping" we mean replacing one diagonal by the other diagonal of the same

quadrilateral. A random walk can be easily de�ned on this graph with the

property that, eventually, the probability of being at any given triangulation

is independent of the choice of triangulation. This gives a Monte Carlo

method of generating a triangulation of a convex n-gon uniformly at random.

However, the e�ciency of such a scheme depends crucially on the rate of

approach to stationarity of the random walk. Although there are other ways

of obtaining randomly such a triangulation in an e�cient way, the analysis

of this particular scheme has remained open.

The main objective in this paper is to show that O(n5 log(n=�)) steps are

su�cient to get close (i.e. within � in variation distance) to the stationary

distribution, which happens to be uniform over the set of triangulations.

Independently, Molloy et al. [12] have recently shown that at least 
(n3=2)

steps are necessary and also that O(n23 log(n=�)) steps are su�cient. While

our upper bound is much more reasonable and our proof much simpler, we

believe the truth to be closer to their lower bound.

The idea in [12] in getting an upper bound on the mixing time was to

bound the so-called conductance of the Markov chain, a technique �rst in-

troduced by Jerrum and Sinclair. Here we use the comparison technique

due to Diaconis and Salo�-Coste [3]. Recently this technique has also been

used to analyze the mixing time of certain Markov chains on tilings in [13].

Before describing our idea further, we need to de�ne some other Catalan
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structures { a term we use to denote any of the possible combinatorial struc-

tures whose counting sequence is the sequence of Catalan numbers, given by

cn =

�
2n
n

�
=(n + 1), for n � 1, and c0 = 1. Some other examples of Catalan

structures include the set of binary trees on n internal nodes and the set of

Dyck paths (also called mountain-valley diagrams) of length 2n. (See Fig. 1

for illustrations and Section 2 for precise de�nitions.) Each such Catalan

structure o�ers an interchange graph in a natural way, with an appropriate

de�nition of a local move or a local interchange similar to the move de-

scribed above for the graph on triangulations of convex n-gon. (See Fig. 2

for illustration.)

Our strategy can now be summarized as follows. We use the fact that

the interchange graph on triangulations of a convex n-gon is isomorphic to

the interchange graph on binary trees with n � 2 internal nodes; this fact

was established in [15]. We then compare, �a la Diaconis{Salo�-Coste, the

chain on binary trees with the chain on Dyck paths. That is, we use the

upper bound on the mixing time of the chain on Dyck paths as established

by [17] (see also [11]) to get an upper bound on the mixing time of the chain

on binary trees (equivalently, the chain on triangulations).

Dobrow and Fill ([5], [6]) analyzed a Markov chain on the state space

of all binary trees on n nodes, wherein the transitions between states were

de�ned in terms of a certain move-to-front rule. However, the Markov chain

described in [5] does not yield the uniform distribution as the stationary dis-

tribution. Although in principle one can generate a binary tree uniformly at

random using a more direct approach (as done in [9], [1],...), it is conceivable

that there exists a faster method via the generation of an equivalent Catalan

structure. Note that each Catalan structure o�ers its own Markov chain {

the interchange graphs corresponding to di�erent Catalan structures need

not be (and typically are not) isomorphic; hence the corresponding random

walks on the interchange graphs can behave in signi�cantly di�erent ways.

Finally, uniform random generation of triangulations of non-convex polygons

is apparently of su�cient interest to the community of computer graphics

and computational geometry, because so far for these problems, there are no

known rigorous ways of e�cient random generation. It remains to be seen

whether Monte Carlo Markov chain techniques will help in the non-convex

case, and in the more general case of triangulations using n points (in gen-

eral position) in the plane. A particularly appealing feature of the Markov

chain approach to the problem of random generation is that it uses much

less space, and typically much smaller (random/pseudo-random) numbers

in the simulation.

In a di�erent spirit, the nature of the present study is akin to the re-

search which arose out of the analysis of Markov chains based on various

card-shu�ing schemes. Several researchers (most notably P. Diaconis) have

succeeded in obtaining sharp estimates on the rates of mixing of chains based

on such schemes. In fact, the comparison technique (see [2], [3]) was a re-

sult of such investigations. There does not seem to be analogous work on
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Markov chains on Catalan structures, and we view the present contribution

as the beginning of a systematic study.

The following presentation is organized as follows. In Section 2 we de-

scribe the background material on Catalan structures and Markov chains

relevant to our work. In Section 3 we present the proof of the bound on

the mixing time of the Markov chain(s) in question. In the �nal section, we

conclude with some remarks on further work in progress.

2. Preliminaries

In this section we �rst give a brief description of some Catalan struc-

tures, and associated interchange graphs on them. We then describe relevant

results from the literature on rapidly mixing Markov chains which we need

in the next section to analyze the chain on binary trees on n internal nodes.

2.1. Catalan structures. The nth Catalan number, cn, satis�es the

following recurrence relation (see [8]).

cn = c0cn�1 + c1cn�2 + � � � + cn�1c0;

where c0 = 1, and c1 = 1. Also recall that for n � 1, we have

cn =

�
2n
n

�
=(n + 1). There are several interesting survey papers (see e.g.

[7], [8]) on Catalan sequences which describe various combinatorial inter-

pretations of these sequences. Perhaps the best source is a list of 60 or so

interpretations in [16]. We shall henceforth use the term Catalan struc-

tures to mean any of the possible combinatorial structures whose counting

sequence satis�es the recurrence relation describing the Catalan sequence.

Some examples include the following (see Fig. 1 for n = 3).

Consider a convex polygon K, with n+2 vertices, labeled 1; 2; : : : ; n+2,

clockwise. A triangulation of K is a dissection of K into n triangles, using

nonintersecting diagonals of K. The number of such triangulations is cn.

For the purpose of this article, a binary tree of size n is a rooted tree

with n internal nodes (those with two descendants) and n+1 external nodes

or leaves (those with no descendants). It is well known that there are cn
such binary trees with n internal nodes.

A Dyck path from (0; 0) to (2n; 0) is a lattice path with steps (1; 1) and

(1;�1) never falling below the x-axis.

Finally, label 2n equally spaced points around the circumference of a

circle; join the points in pairs by n nonintersecting chords. The number of

such Dyck paths and such chord diagrams is also cn. We recommend that

the reader refers to a lovely exposition of some of the Catalan structures by

Martin Gardner [7], who also describes interesting bijections between these

structures.

Each Catalan structure o�ers its own interchange graph in a natural

way. The Markov chains which we will study are all random walks on these

interchange graphs. The principle behind the de�nition of each interchange

graph is the same:
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Nonintersecting chords

Triangulations

Binary  trees

Dyck Paths (mountains & valleys)

Figure 1. Examples of Catalan structures for c3 = 5

Figure 2. Local moves de�ning interchange graphs

The vertices of the graph are labeled with the elements of a

particular Catalan structure (of size n), and two vertices are

adjacent in the graph if a natural (local) operation transforms

the element corresponding to one of the vertices into that of

the other.

Examples of such local operations/moves are illustrated in Figs. 2 and 4.

Suppose the structure is the set of triangulations of a convex (n + 2)-gon.

The set of triangulations forms the vertex set of the interchange graph,
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and two triangulations are adjacent if one can be obtained from the other

by a diagonal 
ip, as described in [15]. Every diagonal in a triangulation

of a convex polygon de�nes a quadrilateral. A diagonal 
ip replaces that

diagonal with the other diagonal of the same quadrilateral. Sleator et al.

[15] obtained, inter alia, tight upper and lower bounds (of 2n � 6) on the

diameter of this interchange graph and other results on triangulations of the

sphere (see [10] for a simpler proof).

Two binary trees with n internal nodes are adjacent if one can be trans-

formed into the other by applying the rotation operation. A rotation at a

node is de�ned as shown in Fig. 4. Sleator et al. also showed that this graph

is isomorphic to the previous one on triangulations of a convex (n+2)-gon.

Similarly, in the collection of Dyck paths of length 2n, two elements are

adjacent if one may be changed into the other by 
ipping a peak into a

valley (that is, changing (1; 1); (1;�1) to (1;�1); (1; 1)) or a valley into a

peak (that is, changing (1;�1); (1; 1) to (1; 1); (1;�1)). It is easy to see that

the diameter of this graph is precisely n(n� 1)=2.

For the set of nonintersecting chords in a circle, a valid way to de�ne

interchanges is to pick a pair of chords and to replace them with two new

chords obtained by matching the endpoints of the original chords, if and

only if such an exchange results in a valid nonintersecting chord diagram.

It is easy to show that this yields a connected undirected graph, and in

fact (although less obvious) a straightforward proof by induction on n can

be given to show that the diameter of such an interchange graph is n � 1,

where n is the number of chords. (Also see the remarks in Conclusions.)

2.2. Comparison of mixing times of Markov chains. Let (
; P; �)

denote an ergodic (that is, irreducible and aperiodic) Markov chain, with

�nite state space 
, transition probability matrix P , and stationary distri-

bution �. We assume that P is reversible, that is, for all x; y 2 
,

�(x)P (x; y) = �(y)P (y; x)

We will also assume that we are considering discrete-time Markov chains.

Then, for x; y 2 
, t 2 Z+, P t
(x; y) denotes the t-step probability of going

from x to y. The time the Markov chain takes to be close to the station-

ary distribution, starting from state x, can be measured by the variation

distance,

�x(t) =
1

2

X
y2


jP t
(x; y)� �(y)j:

The variation distance from the worst state is denoted by

�(t) = max

x2

�x(t):
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For � > 0 (usually 0 < � < 1), the mixing time from state x is de�ned by

�x(�) = minft : �x(t
0
) � �;8t0 � tg:

The mixing time of the Markov chain is the mixing time from the worst

state,

�(�) = max

x2

�x(�):

In the following, the mixing time of a Markov chain will always refer to the

mixing time from a worst state.

Let 1 = �0 > �1 � �2 � � � � � �j
j�1 > �1 denote the eigenvalues of

P . The following result (see [14]) shows the relationship between mixing

time and maximum eigenvalue. Strictly speaking �1 should be replaced by

�max = max(�1; �j
j�1), but in the Markov chains we will be describing we

ensure that �1 > �j
j�1 > 0 by adding self-loops of probability at least 1/2.

Theorem 1 (Sinclair). For � > 0,

(i)

8x 2 
; �x(�) �
1

1� �1
log

�
1

�(x)�

�
;

(ii)

�(�) = max

x2

�x(�) �

�1

2(1� �1)
:

Let P , ~P denote two reversible Markov chains on the same state space 
,

with the same stationary distribution �. Diaconis and Salo�-Coste [3] pro-

vide the following geometric bound between �1(P ), �1( ~P ). In fact the result

compares Dirichlet forms associated with P and ~P , so the result applies to

all non-trivial eigenvalues, not just �1, and also to the log-Sobolev constants

of P and ~P . Also, as stated in [3], the two chains need not share the same

stationary distribution, it su�ces if they have comparable distributions.

Let ~P denote the Markov chain with known eigenvalues (or known mix-

ing time), and let P denote the chain whose mixing time we would like to

bound, by comparison with ~P .

Let E(P ) = f(x; y) : P (x; y) > 0g and E( ~P ) = f(x; y) : ~P (x; y) > 0g

denote the sets of edges of the two chains, viewed as directed graphs.

For each (x; y) with ~P (x; y) > 0, de�ne a path 
xy using a �xed sequence

of states, x = x0; x1; : : : ; xk�1; xk = y, with P (xi; xi+1) > 0. The length of

such a path is denoted by j
xyj and j
xyj = k.

Further let �(z; w) = f(x; y) 2 E( ~P ) : (z; w) 2 
xyg denote the set of

paths (in P ) which use the edge (z; w).

Proposition 2 (Diaconis{Salo�-Coste). With the above notation we have

1� �1(P ) �
1

A(�)
(1� �1( ~P ));
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where

A(�) = max

(z;w)2E(P )

8<
:

1

�(z)P (z; w)

X
�(z;w)

j
xyj�(x) ~P (x; y)

9=
; :

Crucially, note that A(�) depends on our choice of paths � = f
xyg,

and that we need de�ne these paths only between pairs of states which are

adjacent in the known chain.

The strategy used in comparing mixing times based on the above propo-

sition is described in [13]. First begin with a bound on the known mixing

time of a chain. Part (ii) of Theorem 1 allows us to lower bound the spectral

gap of such a chain. Then Proposition 2 is used to lower bound the spectral

gap of an unknown chain by bounding the parameter A(�), for a carefully

chosen �. This then gives a bound on the mixing time of the unknown chain

via part (i) of Theorem 1. The technique is summarized in the following

proposition.

Proposition 3 (Randall{Tetali). Let ~�(�), �(�) denote the mixing times

of ~P and P respectively, and let �� = minx2
 �(x). Then with A(�) de�ned

as in Proposition 2: for 0 < � < 1,

�(�) �
4 log

�
1
���

�
log

�
1
2�

� A(�)~� (�):

3. An upper bound on the mixing time of binary trees

Sleator et al. [15] gave a bijection between the set of triangulations of

a convex (n + 2)-gon and binary trees with n internal nodes so that if two

triangulations di�er by a diagonal 
ip, the corresponding binary trees di�er

by a rotation operation. This correspondence shows that the two interchange

graphs are isomorphic. In turn it allows us to study the random walk on the

interchange graph on binary trees on n internal nodes, which we will denote

(following [15]) RG(n) and from this deduce the result for triangulations.

The transition probabilities of the Markov chain on RG(n) are de�ned

as follows. For two distinct binary trees z and w,

P (z; w) = 1=[2(n � 1)]; if (z; w) 2 E(RG(n))

P (z; z) = 1=2:

The transition probabilities of the Markov chain on DG(n), the inter-

change graph for Dyck paths of length 2n, are de�ned as follows. For two

distinct Dyck paths x and y,

~P (x; y) = 1=[2(2n � 3)] if (x; y) 2 E(DG(n))
~P (x; x) = 1�

P
y�x P (x; y) � 1=2

It is easy to verify that the two Markov chains as de�ned above do indeed

satisfy the reversibility (i.e. detailed-balance) condition and also that they
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share the uniform distribution as the stationary distribution �. So for x 2 ~


and z 2 
, we have ~�(x) = �(z) = 1=cn.

Let �(�) and ~�(�) denote the mixing times of the Markov chains on

RG(n) and DG(n) respectively. First we may deduce from [17] that the

Markov chain on DG(n) has mixing time

~�(�) = O(n3(log n+ log 1=�)) , 0 < � < 1

Let our known chain, ~P , is the chain with the set of Dyck paths of length

2n as the state space, denoted ~
; our unknown chain, P , is the chain with

the set of binary trees with n internal nodes as the state space, denoted 
.

We would like to use Proposition 3 to get a bound on the mixing time �(�).

First note that Proposition 3 (and 2) require the state spaces ~
 and 
 of ~P

and P , respectively, to be the same. In the present case, although they are

not the same, the propositions are still applicable in view of the fact that

we are able to de�ne a bijection f : ~
! 
 between them.

� Bijection via binary strings. The bijection is easiest to describe

through a bijection from each to another Catalan structure { the set of

binary strings of length 2n with equal number of 1's and 0's, wherein the

number of 1's in each string is always greater than or equal to the number

of 0's as we count from left to right in the string. The bijection is illustrated

in Fig. 3.

Given a Dyck path of length 2n, a segment of slope +1 corresponds to a

1 and a segment of slope �1 corresponds to a 0. Given a binary string on n

internal nodes, label the left edges (edges leading to left descendants) with

a 1 and the right edges with a 0. Now the corresponding binary string is

the one obtained by reading the labels as the tree is traversed, recursively,

starting from the root, �rst visiting the left subtree and then the right

subtree. Note that this provides a binary string with the above mentioned

property, since every node (in the binary tree) which has a right descendant

also has a left descendant. It is also easy to see that to each binary string

with the above property, there is a unique Dyck path and a unique binary

tree which corresponds to it.

The canonical path 
xy of the comparison technique, is now a path in P ,

which can be described as a sequence of states, f(x) = z0; z1; : : : ; zk�1; zk =

f(y), for (x; y) 2 E(DG(n)). The description of the paths will be simpli�ed

by using the above binary string representation of Dyck paths from now on.

Following [15], we will state some de�nitions. A subtree of a binary

tree is either a single node or a binary tree with at least one internal node.

Subtrees will be denoted by Ti, and this will stand both for the subtree

and the binary string representation of Ti. The depth of a node in a binary

tree is the length of the shortest path from the root to that node. It is

convenient to view these binary trees as binary search trees with labels on

the nodes, namely, with the property that the label of a node is bigger than

the labels of all the nodes in its left subtree, and smaller than the labels of
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root( T )
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Figure 3. Bijection via binary strings

T

T

TT

T

T1 2

3 1

2 3

X

Y X

Y
   rotation  at 

rotation  at   Y

X

Figure 4. Local moves on binary trees

the nodes in its right subtree. This gives a natural ordering on the nodes of a

tree. The rotation operation mentioned earlier preserves this node ordering,

not surprisingly, since the rotations were invented as a way of restructuring

binary search trees. Speci�cally, the rotation operation is de�ned as shown

in Fig. 4.

Rotations do not change the number of internal nodes, and for a tree

with n internal nodes, there are n�1 rotations possible at any time, one for

each internal node, except for the root. The rotation at a node brings the

node one step closer to the root, thus decreasing the depth of that node by

exactly one. Although a rotation changes the local structure of the tree, it

leaves the rest of the tree intact.

Referring to Fig. 4 above, a rotation at X decreases the depth of nodes

in subtree T1 by 1, increases the depth of nodes in subtree T3 by 1, and

leaves the depth of all other nodes the same. In the same way, a rotation

at Y decreases the depth of nodes in subtree T3 by 1, increases the depth of

nodes in subtree T1 by 1, and leaves the depth of all other nodes the same.

We call each rotation either an X-rotation or a Y -rotation depending on

whether it is of the form of a rotation at X in Fig. 4 above or of the form

of a rotation at Y respectively.

� Canonical paths �. We need to de�ne � = f
xyg, for (x; y) 2 E( ~P ).

This can be done in a natural way, once we analyze a transition from x to
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Tree
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x

y

Figure 5. Canonical path from x to y, di�ering in a 01{10 
ip

y in DG(n), according to whether it is a 01! 10 
ip or a 10 ! 01 
ip, and

interpret the 
ip in terms of the corresponding binary trees, f(x) and f(y).

The easy case is if f(x) and f(y) di�er by a single rotation { if

f(x) � f(y) in P , then 
xy is simply the edge (f(x); f(y)) 2 E(P ). But in

general, (x; y) 2 E( ~P ) does not imply (f(x); f(y)) 2 E(P ). See for example,

Fig. 5, our �nal illustration which characterizes the di�erences in two binary

trees, which have adjacent representations as Dyck paths. In such a case, we

will de�ne a unique sequence of rotations which transforms f(x) into f(y),

and the corresponding sequence of edges in P which forms the corresponding

canonical path 
xy. We shall do this for the case when x! y is a 01 ! 10


ip, and in the other case the path is just the reverse of the path in this case;

we are justi�ed in doing this since the interchange graphs can be viewed as

undirected graphs.

To simplify the discussion, we will now introduce some new terms which

are illustrated in Fig. 3. The root of a subtree Ti, root(Ti), is the top vertex

of that subtree. The end of a subtree Ti, end(Ti), is the rightmost vertex

of Ti, or equivalently, the node with the largest label when the tree Ti is

viewed as a binary search tree. (A sure way to �nd the end(T ), starting

from the root(T ) for any tree T , is to keep taking the right branch for as

long as possible!)

The following observation is key to understanding � and to bounding

A(�). A 01! 10 
ip moves a particular left subtree (T3 in Fig. 5) hanging

from the right child of some node N to being the rightmost subtree of the
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left child of N . This is easy to verify by considering the binary strings

corresponding to x and y, which di�er in a 01 ! 10 
ip, and then by

constructing f(x) and f(y). We call such a subtree the characteristic subtree

of that particular 01! 10 
ip. In Fig. 5, T3 is the characteristic subtree of

the 
ip which takes x to y. Note that such a subtree can also be a single node.

(For the 10 ! 01 
ip, just the opposite happens, de�ning a characteristic

subtree in a similar way.) Thus an edge (x; y) 2 E( ~P ) is characterized by a

unique subtree of the binary trees represented by f(x) and f(y).

The canonical path 
xy is the unique sequence of rotations which trans-

forms the binary tree f(x) into f(y) { the �rst rotation is performed at the

parent of the root of the characteristic subtree, and then every subsequent

rotation is at the sibling of the root of the characteristic subtree. (In Fig. 5

the black nodes denote the nodes at which rotations are performed; also for

convenience, the trees are called x and y, rather than f(x) and f(y).)

� Bounding A(�). We will show that A(�) is at most O(n), by arguing

that the length of a canonical path is at most n, and that each rotation in

a binary tree is used by at most one canonical path 
xy, where x ! y is a

01! 10 
ip, and by at most one canonical path corresponding to a 10! 01


ip.

First notice that in a path corresponding to a 01 ! 10 
ip, the depth

of the root of the characteristic subtree remains the same after the �rst

rotation, but increases by exactly one with every subsequent rotation. At

most n � 2 internal nodes can participate (by being siblings of the root of

the characteristic subtree) in increasing the depth { the grandparent of the

characteristic subtree and any nodes in the right subtree of the right child

of the grandparent are the nodes where a rotation is not performed in such

a canonical path. This shows that the length of a canonical path can be at

most n� 1. (The argument for a 10! 01 
ip is analogous.)

Secondly, consider an arbitrary rotation (z; w) 2 E(P ). Whether it is an

X-rotation or a Y -rotation, there are always at most two choices for a subtree

to play the role of a characteristic subtree. Referring to Fig. 4, if (z; w) is

an X-rotation, then either T3 is the characteristic subtree of a 01! 10 
ip

or T2 is the characteristic subtree of a 10 ! 01 
ip. The rotation (z; w) and

the choice of either T2 or T3 as the characteristic subtree, uniquely identi�es

the pair (x; y) such that (z; w) 2 
xy. Referring once again to Fig. 4, if

(z; w) is an X-rotation, then T3 will eventually end up as the right subtree

of end(T2), giving us y. Knowing y and the fact that T3 is the characteristic

subtree uniquely determines x. If on the other hand, T2 were to be the

characteristic subtree, then w is in fact y, and x can be uniquely determined

given that x! y is now a 10! 01 
ip.

Thus, for a �xed �(z; w), j�(z; w)j � 2, and when (z; w) 2 
xy, j
xyj � n.
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We have �(x) = �(z) = (n + 1)=
�
2n
n

�
. Also, P (z; w) = 1=(2n � 2), for all

(z; w) 2 E(P ), and ~P (x; y) = 1=(4n � 6), for all (x; y) 2 E( ~P ). Thus,

A(�) = max

(z;w)2E(P )

8<
:

1

�(z)P (z; w)

X
�(z;w)

j
xyj�(x) ~P (x; y)

9=
;

�
2n� 3

n� 1

2n = O(n):

Applying Proposition 3, with the known bound on the mixing time of ~P , we

can now bound the mixing time of P , the Markov chain on binary trees:

�(�) �

4 log

�
1
���

�
log

�
1
2�

� n(n3(log n+ log 1=�))

=

4 (log(1=�) + log(cn))n
4
(logn+ log 1=�)

log(1=2) + log(1=�)

= O

�
n5 log n

log(1=�)
+ n4 logn+ n5 + n5 log n

�

= O(n5((log n+ log 1=�));

thus establishing the following theorem.

Theorem 4. The mixing time of the Markov chain on triangulations of

a convex (n + 2)-gon (equivalently, on binary trees with n internal nodes)

satis�es, for 0 < � < 1,

�(�) = O
�
n5 log(n=�)

�
:

4. Conclusions

It is to be noted that, while Wilson showed his (upper) bound is tight

up to a multiplicative constant, we do not believe our bound to be tight for

the chain on triangulations. To get a better estimate we believe that one

either needs a direct argument (say, via coupling) or a better comparison

{ comparison with a faster Catalan structure. Our present candidate for

such a potentially faster chain is the one on the set of nonintersecting chord

diagrams with 2n equally spaced points on a circle. It can be shown, with a

proof by induction on n, that the diameter of this graph is n�1, whereas the

diameter of DG(n) is �(n2). It can also be shown, with a suitable bijection,

that DG(n) is a proper subgraph of this graph, for n � 3. This is part of

the rationale for our belief that the graph on nonintersecting chord diagrams

is a better comparison candidate. Work is in progress on this problem. Of

course, by comparison with DG(n), we can always get some bound on the

mixing time of this candidate problem: for example, by choosing our paths

in the obvious way | it can be checked that adjacency in DG(n) gives
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adjacency in the chord interchange graph, making each path a path of length

one | we get A(�) is O(1), and so, using Proposition 3, an upper bound

for the mixing time of the Markov chain on the chord interchange graph is

O(n5(log n+ log 1=�)). (Also to be noted here is that the positive transition

probabilities in the chord interchange graph are lower bounded by 
(1=n2).)

But surely, a much better bound is the truth!

We also intend to make a systematic study of several other Catalan

structures, with the hope of obtaining tight bounds on the diameters, the

eigenvalues, and the rates of mixing of Markov chains on the associated

interchange graphs.
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