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Abstract

We give a large family of simple examples where a sharp analysis of the Gibbs sampler
can be proved by coupling. These examples involve standard statistical models — expo-
nential families with conjugate priors or location families with natural priors. Many of
them seem difficult to succesfully analyze using spectral or Harris recurrence techniques.

1 Introduction

The Gibbs sampler is an important tool in computational statistics. It gives a way to sample

from a multivariate density f(z1,xa,- -, x,), perhaps known only up to a normalizing constant,
using a sequence of one dimensional samples. From z = (21,22, -, x,) go to (2}, xa, -+, 1),
then (), x4, - - -, ), and so on until (2}, x4, - - -, 2}) = z’, where at the ;" stage the coordinate is

drawn from f with the other coordinates fixed. Iterating this gives a Markov chain x, 2/, 2", - - -
with f as stationary density under mild conditions [2, 36]. The running time analysis of the
Gibbs sampler (how many steps should the chain be run to be close to stationarity) is an active
area of research [13, 19, 20, 22, 24, 29, 30, 31, 32].

This paper considers two component examples of the form

f(@,0) = fo(z)m(0) (1)
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with fy(x) a standard family of probability densities and 7(6) a prior density. For these, use of
off the shelf tools can give unrealistic answers — in one example (fy(j) = (?’) ¢(1—-0)" 7(0) =
Uniform) the off the shelf tools involving Harris recurrence techniques suggest 1030 steps are
needed for n = 100, while simulation and later theory showed a few hundred steps suffice. We
previously developed theory that worked for a handful of cases (the six classical exponential
families with conjugate priors) but then broke down.

In this paper we show that many problems (eg. essentially all one dimensional exponential
families with conjugate priors) have a natural monotonicity property and one explicit eigen-
function which allows sharp analysis. Here is an example of our main results.

Ezample (Geometric/Beta) Let X = {0,1,...}, © = (0,1) and, for fixed a, 3 > 0, set

C(a+ B)

a—=1/1 _ pg\6-1
AR A

fo(4) =0(1—0), j=0,1,2,..; 7(0) =
The joint density is
I'(a+ Q)
[(e)T'(53)

The marginal (on j) and conditional (of 6 given j) densities are

f(,0) = 0 (1 —0)71,

() — Lt AT+ )0+ 1)
D @) et G+j+ 1)

f(@1]j)=Betala+1,56+7; 0).

The Gibbs sampler proceeds from (j,6) as usual
e Pick ¢ from f(0 ] j).
e Pick j/ from fg/(j/).

This gives a Markov chain K (7,0;4',0") with stationary density f(j,0). Measuring convergence
in total variation distance (see below), we show

Theorem 1.1 For the Geometric/Beta density with o > 1, 3 > 0, all starting states (j,0) and

all ¢, ,
nﬁﬁ—fmvs(j+—ﬁ—>(l). 2)

a—1 o

The theorem shows that order log,(j) steps suffice for convergence. For example, take o =
2,6 =1 (sow(@) =20,m(j) = m) with starting values j = 100, = 3. The right
side of (2) is smaller than 0.01 for £ = 14. Figure 1 shows a run of the j-component of the (7, 8)
chain starting at 5 = 100.

Comment We were unable to analyze this example in [13] because the marginal density m(j) has
all moments beyond the mean infinite (we used orthogonal polynomials). We further treat this
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Figure 1: Run of j-chain for Geometric/Beta starting at j = 100.

example below using Harris recurrence techniques. These show the chain is close to stationarity
after 1400 steps.

We conclude the section by giving needed background. Section 2 presents two new theorems
for monotone Markov chains. It also gives a needed extension of the second moment method
and Wilson’s lemma for proving lower bounds. Section 3 introduces total positivity — our main
tool for showing monotonicity. Section 4 treats general one dimensional exponential families
with conjugate priors. Section 5 treats location families. In many cases we are able to establish
sharp upper and lower bounds. In Section 6 similiar problems are treated directly (eg. without
using monotonicity) via probabilistic techniques — strong stationary times and coupling. The
examples include some queueing systems and some multivariate problems.

It is worth emphasizing that the present collection of examples are just illustrative. It is
easy to sample from any of our f(z,0) distributions directly (for example, sample 6 from 7 ()
and then sample z from fp(z)). Further, we do not see how to extend present techniques to
three or more component Gibbs samplers.

1.1 Notation and background

Let (X,F) and (O, G) be measurable spaces equipped with o-finite measures p and v respec-
tively. Let {fs(z)}sco be a family of probability densities on X with respect to p. Let 7(6) be
a probability density on © with respect to v. These determine a joint density

f(z,0) = fo(x)m(0) wrt. pux v (3)



The marginal density on X is

mia) = [ fola)n(Ow(as). ()
Throughout, we assume for simplicity that m(z) > 0 for all z. The conditional densities are

f(z,0)

m()

f(@ | 0) = fo(x) and f(0 | z) =

(5)

The Gibbs sampler is an algorithm for drawing samples from f(z, ) when it is easy to sample
from f(z | 0) and f(0 | z). This is how it proceeds:
From (x, )

e Draw 6 from f(¢' | z)
e Draw 2’ from f(2' | #').
This defines a Markov chain with transition density
K(z,0; 2,0 = f(0' | x)f(@' | 0) (6)

with respect to p(dx’) x v(df'). Under mild conditions always met in our examples, this Markov
chain is ergodic with stationary measure f(z,8)u(dz)v(d6).

For two component chains, the ‘z-chain’ (from x draw 6" from 7(¢’ | ) and then 2z’ from
for(2')) has transition kernel

k(x,2') = /@71‘(9 | ) fo(2z")m(dO) :L%W(dﬁ). (7)

Observe that [ k(z,2')u(dz’) = 1 so that k(x,2’) is a probability density with respect to .
Note further that m(z)k(z,2’) = m(2')k(2’, ) so that the z-chain has m(dx) as stationary
distribution. The total variation distance between two densities f and ¢ (with respect to a
o-finite measure p) is defined as

I£ = gllow = 5 [ 150 = g(@)ln(da)

If the z-chain is close to stationarity, so is the bivariate chain (6). Indeed, [13, Lemma 2.4]
gives

1K — ml|ry < ||f(alc9 — fllow <K =mley, Vo e X, G €O,

Figure 1.1 shows the total variation distance of the j-chain of the Geometric/Beta example as
a function of the number of steps.

An elaborate developement of these ideas with many further details and references is in [13,
Section 2].
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Figure 2: Total variation distance for Geometric/Beta j-chain with o = 2,3 = 1, starting at
J = 100.

The most widely used technique for bounding rates of convergence for the Gibbs sampler
are the Harris recurrence techniques of Meyn-Tweedie [26] and Rosenthal [29]. For a splendid
introduction and literature review see [19]. We illustrate by using a version specially tailored
to our two component Gibbs samplers [4].

Theorem 1.2 [/, Proposition 3] Let k(x,y) be the density of the x-chain (7). Suppose that k
is ergodic with m(x) as unique stationary distribution. Suppose

/k(x, 2 )p(a" ) u(da'") < a+ bp(z) for allx € X.

For some measurable function ¢ : X — [0,00) and constants a,b € (0,1). Fix d > fTab Define

A={z e X:¢(x) <d}. Suppose that sup,c, m(x) < oo,infaxp f(x,0) > 0 for some B € G
with [, 5 fo(x)m(d9)u(dx) > 0. Then, for allr € (0,1) and v € X

IkE —mllpy < (1— €)™+t (1 + ﬁ + (25(3;))

7(B)infaxp f and t — (142a+2bd)" (1+2a+bd)! "

with € = supy (14a)t-r

To use this, suitable choices of ¢,d, B must be found. This is a matter of art (and some
computer experimentation) at this writing.



Ezample (Geometric/Beta) In the setting of the theorem above, fo(j) = 6(1 — 0)7,7(0) =

20,m(j) = Wﬁw The j-chain has density

3+ +2)(j+3)
G+ +0D)G+7+2)+5+3)+5 +4)

k(5,5") =

For B = [0,,07],0 < 0,,0* <1, A={0,1,---,d+1}, sup,m(x) =m(0) =2, infa.p f(j,0) =
20.(1 — %)™ 1(B) = f;: 20 = (0*)? — (0.)?. The function j — 1 is an eigenvector for the
3 1

j-chain with eigenvalue % This gives a = 0,b = % Choosing d = 1,0, = %,0* =57 = 19
1—r

find € > 3((6%)% = (0.)%)20,(1 — )+ = 0.0293, t = (1+d)* ' (1+4%) " =0.8273. This
gives

we

1k — mlley < (0.9707)T0 + (0.8273)%) V¢ > 1.

When j = 100, this is smaller than 0.01 for ¢ > 1400, while our bounds show that 14 steps
suffice.

Remark Despite the disparity, we regard this as quite a useful conclusion. For the seemingly
similiar Binomial /Beta problem, the Harris recurrence bound gives 10° as the required number
of steps, while a more detailed analysis shows ¢ = 200 steps suffice.

2 Monotone Markov Chains

Let X be a subset of the real line R with its Borel sets. Let K(x,dy) be a Markov kernel on
X. We say K is stochastically monotone if x,2’ € X, x < 2/, then

K(z,(—00,y]) = K(a',(—o0,y]) for all y. (8)

Monotone Markov chains have been thoroughly studied and applied. See [17, 25, 35] and
the references there. They are currently in vogue because of ‘coupling from the past’. See
[38] for extensive references on this subject. There is a standard coupling technique available for
monotone Markov chains. Wilson [37] uses this coupling technique in the presence of an explicit
eigenfunction to bound rates of convergence of stochastically monotone Markov chains on finite
state spaces.In this section, this coupling argument is used to prove two general theorems about
convergence to stationarity of ergodic, monotone Markov chains with stationary distribution 7
in the presence of an eigenfunction. Sections 4 and 5 give examples where the conditions are
satisfied. Section 6 treats some of the examples by direct couplings.

2.1 Convergence of monotone chains: main statements

Theorem 2.1 Let (K,7) be an ergodic stochastically monotone Markov chain on X C R.
Suppose that there exist A € (0,1), n € R, and a monotone function f such that

Kf=M+n (9)

6



and

c=inf{f(y) — f(x)|z,ye X,z <y} >0. (10)

Then, for any starting state x,
IKL = ntlley < N E|f(Z) — f(2)], where Z ~ 7.

The proof is given below in Section 2.2. The next result replaces total variation by the L!
Wasserstein distance dy, defined by

dw(p,v) = XNLBQNVE|X—Y|

= sup{|u(¢) —v(@)] 1 ¢: X =R, |9(z) — o(y)| < |z —y[}.
See, e.g., [14].

Theorem 2.2 Let (K, ) be an ergodic stochastically monotone Markov chain on X C R.
Suppose that there exist A € (0,1), n € R and a monotone function f such that

Kf=M\+1 (11)

and
c=inf{%|x,y€é\?,x<y}>0. (12)

Then, for any starting state x,

dw (K., 7) < c ' AN E|f(Z) — f(x)|, where Z ~ 7.

Remarks 1. Theorem 2.1 is used for chains on the integers, often with f(x) = z. It does not
apply to continuous chains when the constant ¢ vanishes. Theorem 2.2 does apply to both
discrete and continuous chains.

2. By elementary manipulations with f = E.(f), the function f — f with f as in (9)-(11) is
an eigenfunction of the chain with eigenvalue \. It is instructive to compare the conclusions
of the theorems with standard spectral bounds when X is the second largest eigenvalue. For

a Markov chain on the integers, the usual spectral bound is ||K. — 7|y < W(l‘)_%Al. For the
Geometric/Beta z-chain with o = 2, the spectral bound and the bound given by Theorem 2.1
are essentially the same. For the z-chain of the Poisson/Exponential family (c.f. Section 4.2),
the stationary distribution is a geometric (7(z) = 27! for z = 0,1,2,...), A = 1/2. Theorem
2.1 gives an upper bound |K! — ||+ < 2271, The spectral bound ||K! — 7||+v < 2572 is
much weaker.

3. The bounds of theorems 2.1 and 2.2 are sharp surprisingly often — see the examples in
Sections 4, 5 and 6. Here is a natural example where they are slightly off. Consider the z-chain



for the Beta/Binomial with a uniform prior (c.f. [13, Section 2]). This is a Markov chain on
{0,1,2,...,n — 1,n} with transition density

n+1 (1)) 1
k(z,z') = Los o(x) =
2n+1 (zﬂ,) n+1
This is a monotone Markov chain with kf = (1— n%z) f for f(z) = x —n/2. As shown
below in Section 4.2, Theorem 2.1 shows ||k}, — 7[lxy < n(1— niﬁ)l The spectral bound

shows ||k} — 7o < VR +1(1— n%r?)l Both bounds yield that order nlogn steps suffice for
convergence. The analysis in [13, Proposition 1.1] shows that order n steps are necessary and
sufficient.

4. The techniques of this section break down for the Geomtric/Beta example when av = 5 = 1.

Then, m(j) = ~—— fails to have a mean. The j-chain with transition kernel k(j, ;') =

U+1D(E+2)
7 +12)((]j:1j),(i'2;2 773 has generalized eigenfunction fG) =4 (B} |j]=j+1), but we do

not know how to use this. Preliminary computations show that the operator k on L?*(m) has
continuous spectrum in [0, g]. We believe all of the Geometric/Beta chains have continuous
spectrum. In contrast, all of the examples treated in [13] have an z-chain with a compact
operator. For the Geometric/Uniform case, preliminary computations show that the z-chain
has a spectral gap.: spec(k) N (—1,1) C [—3*, %] for some 0 < §* < 1. Now, the standard
bound from Remark 2 gives || K% — m||ry < /(z + 1)(z + 2)(3%)", so order log z steps suffice.

2.2 Proof of Theorems 2.1 and 2.2

Proof of Theorem 2.1 The proof begins by the standard route of finding a monotone realization
of two copies of the Markov chain. The function f is then used to bound the coupling time.
Finally, a coupling bound for two arbitrary starting states is turned into a bound on distance
to stationarity.

Let F.(y) = K(x,(—o00,y]). Fix x < 2’ in Support(w). Define a bivariate Markov chain
{R,,Sn},—, as follows: Set Ry = x, Sy = 2’. Let Uy, Us, ... be independent uniform random
variables on (0,1). For i > 1, set

R = Fp' (Uy), S;=Fg' (U;) with F,'(u) = inf {y € Support(r) |u < Fy(y) } .

By construction, marginally R;, S; are both realizations of a Markov chain with kernel K.
Since K is stochastically monotone, z < 2’ entails F, !(u) < F,'(u) for u in (0,1). Hence
Ry = <12’ = Sy entails Ry = F;}(U;) < Fgl(Ul) = S;. Similarly R, < S, for all n. Further,
the construction ensures that if R,, = S,, then R, = 5, for all n > ny. This completes the
construction of the coupling.
We next bound the coupling time. For any n > 1,

P(Rn 7é Sn ’ RO =T, SO :33/) = E((SRn;zéSn | RO =T, SO :.Z'/)
< E{f(Sn)—f(Rn) | Ry—u, Sozx,}'

c

8



The last inequality uses S,, > R,,, the monotonicity of f and the hypothesis that f(y)— f(z) > ¢
if y > z. Next, for any k, one easily checks that

B [f(SK) = F(RK) | Bio1, Skoa] = A(f(Rer) — F(Sk1).

Hence, we obtain

P(R,# S, | Ry=x, Sy=1') < E[E[f(s”)_f(R”)\Rnl, we1| | Ro =, Sy =a'

_ %E[f(Snl) F(Ro_y) | Ro =2, Sy = 2]
= 20 - @)

Recall that the total variation distance between two probability measures can be realized as

H/"L_VHTV:X inf P(X#Y>

~p, Yov

For x < 2/, it follows that

K7 — Kol < M (f(@) = fla)A™
Thus, for all z, z’

167 = Koy < 7M@) = @)X
Averaging over all 2’ yields

162 =l < e ué/u ()
= ¢ 'N'E|f(Z) — f(x)| where Z ~ .

This completes the proof of Theorem 2.1. O

Proof of Theorem 2.2 Arguing as in the proof of Theorem 2.1, for = < a2/,
B[S, — Ry | Ro =z, Sy =2'] < (f(2) = f(z))\".
The coupling characterization of the Wasserstein distance and symmetry yield
dw (K3, K3i) < 7' f(x) — fa)|A"
Convexity now yields (dy is convex in each of its arguments)
dw /\f 2NN (d2') = ¢ 'Eq|f(Z) — f(z)|\", where Z ~ .

This finishes the proof of Theorem 2.2. O



2.3 Total variation lower bounds

Theorem 2.1 gives a total variation upper bound based on monotonicity and an eigenfunction.
This section gives total variation lower bounds for some of our chains using an eigenfunction
without requiring monotonicity. This theorem is based on the second moment method and is
an extension of Wilson’s lemma (see [37, Lemma 5] or [33, Theorem 4.13)).

Theorem 2.3 Let K be an ergodic Markov kernel with stationary probability measure w. Let
A€ (0,1) be an eigenvalue of K with associated real-valued eigenfunction ¢ € L*(x), such that
Ve e X,

[(66) = 6(a)*K (w,dy) < (1= 2?6(a) + Bola) + €

for some B,C' > 0. Let

. 4B N 1632 N 8C
M1 =N A2(1—A)2 11—\

1 +log e—log T*
Then fort < °g|¢(x)Lloogg/\6 =L

1K = 7l > 1 =€

Proof Let {X;}+>0 be a Markov chain with kernel K. Let E, denote the expectation conditioned
on Xy = x. Without loss of generality we assume ¢(z) > 0 or else we can repeat the whole
argument with —¢ instead of ¢. Under the given hypothesis,

E, [(¢(Xi41) — ¢(X))? | Xi] < ¢*(Xi) + Bo(Xy) + C
= E, [¢*(Xi11) | X{] §2¢<X )E, [¢(Xt+1)!Xt] (1= XN)?2¢*(Xy) — ¢*(Xy) + Bo(Xy) + C
= E, [¢°(X1)] < NE, [¢*(X))] + BE,[¢(X;)] + C
= E, [¢*(Xi1)] < NE, [¢*(Xy)] + BNz + C.

The above identity is true for all ¢t > 0. Using this inductively, we get

z:O
t BX C
> B [900)] < Xe@) + md)m T

BM! C

= Varg(¢(Xy)) < mqﬁ(x) te = R; (say).

10



Note that since 7K' =7 Vt > 0,
[o@nan = [Eado(xintan)
= /gb — 0 ast — oo.

Hence [ ¢(x)m(dx) = 0. Similarily,
/ Flar(d) = [ B, [¢(X0)] nldo)

< A2t/¢2(x)7r(d =) /¢ 1—)\2

Hence [ ¢*(x)m(dx) V>0, Ift < log‘z’(x)ﬂoif\ 981" then

No(z) > =

€

r

= E.[p(Xy)] =

= E?g[¢(Xt)] > % (A(lB_ A) E.[o(X)] + %)

B T
( The largest root of a® — 6)\(81 _a/\) — 6(18_6;\2) is less than ?)

5F,

= E.[6(Xy)] > .

Hence for ¢ < & ‘b(‘”)ﬂZi = loeT” it follows by Chebyshev’s inequality that

P, <¢(Xt) < % 8TRt> < P <|¢(Xt) — E.[o(X3)]| > 8Rt>

€

IN
l\D.I M

If Z ~ 7, then

8R, ) _ B 9(2))
- 2R,

11



Hence we get,

15 = ey = Sgp|Kt(A)—W(A)\

€ €
- 2 2
= 1—e

OJ

In Wilson’s lemma, the required condition is [(¢(y) — ¢(z))*K (z, dy) < C. This assumption is
stronger than ours. The Poisson/Exponential z-chain discussed in Section 4 is an example of
a Markov chain where this assumption is not satisfied, but the weaker assumption in Theorem
2.3 is satisfied. These lower bounds are still not well understood: For example, we are unable
to give a lower bound for the Geometric/Beta example using Theorem 2.3.

3 Total Positivity and Monotonicity

As in Section 1, let (X, F) and (6,G) be measurable spaces equipped with o-finite measures
p and v respectively. Let {fa(z)}sco be a family of probability densities on X' with respect
to p. Let m(f) be a probability density on © with respect to v. The joint, marginal and
conditional densities arising from this model are given by (3), (4) and (5) respectively. The
marginal z-chain of the corresponding Gibbs sampler has density (w.r.t. p)

bz, a') = / apcano (13)

In this section, we use the properties of totally positive functions of order 2 to derive a useful
condition for stochastic monotonicity of the xz-chain.

Definition 3.1 Let X, Y CR. A function L : X x Y — R7 is said to be totally positive
of order 2 (TPR,) if

L(x1,y1) (22, y2) > L(w1,y2) L(x2,91) for all x1 < x2, y1 < ya.
We state as a series of lemmas, some standard facts about T'P, functions.

Lemma 3.1 If L(z,y) is TP, and f(z), g(y) are non-negative functions, then L(z,y)f(x)g(y)
18 TPQ

Proof This follows immediately from the definition of T'P, functions. O

Lemma 3.2 If K : XxY —-R"and L : Y x Z — R" are TP, and v is a o-finite measure
on Y, then M(z,z) = [ K(z,y)L(y, z)dv(y) is TP;.

12



Proof See Karlin [21, Lemma 3.1.1 (a), pg 99]. O]

Lemma 3.3 Supposec k : X x X — R is a Markov kernel. If k is TP,, then the Markov
chain corresponding to k is stochastically monotone.

Proof See Karlin [21, Proposition 1.3.1, pg 22]. O

With these facts in mind, we now state and prove the main result.

Theorem 3.1 If fy(x) is TP, (as a function from X x © to R"), then the x-chain (13) is
stochastically monotone for any choice of m.

Proof By Lemma 3.1, f(0 | ) = fo(x)m(0)/m(z) is TP,. By Lemma 3.2,

Bz, a') = / £ 2)f (' | 0)du(6)

is T'P,. Since k is the transition density of the z-chain, the z-chain is stochastically monotone
by Lemma 3.3. 0J

The theory of totally positive functions has applications in various areas of mathematics and
statistics. A large collection of probability densities that arise in probability and statistics are
totally positive (of all orders and hence in particular T'P;). In addition to natural exponential
families, the scaled Beta and Non-central t, Non-central chi-square, Non-central F and stable
laws on (0, 00) with index %, k =1,2,3,... are totally positive. These and further examples
are derived in [21, pg 117-122]. This book contains further examples; for instance if X is
a symmetric random variable with density function f such that f(z — y) is totally positive,
then the density function of | X + u| is totally positive (with u as a parameter). See [21, pg
377-378] for more details. Other useful references about total positivity are [5, 34]. A different
application of Theorems 2.1, 3.1 to bounding rates of convergence of Markov chains in ‘carries’
and card shuffling is in [10].

4 Exponential Family Examples

In this section we specialize to natural exponential families and conjugate priors. Very generally,
these generate stochastically monotone Markov chains having x — 2y as an eigenfunction.

13



4.1 Exponential Families

Many standard families of probability measures can be represented as exponential families after
a reparametrization. For background, see [23] or the references in [13, Section 2]. Let p be a
o-finite measure on the Borel sets of R. Let © = {# € R : [e*u(dr) < co}. We assume O is
non-empty and open. The reference measure v on © is Lebesgue measure. Holder’s inequality
shows that © is convex. Let M (0) = log [ €™ p(dz) and define

fo(z) = fr—M ) (14)

For # € O, this is a family of probability densities with respect to p. Making allowable
differentiations, we get,

EMX%=/xﬁ@MM@=AT@)

Fix ny > 0 and z in the interior of the convex hull of the support of u. The family of
conjugate priors is defined by

7(0) = z(xo, no)e”OxOG’M(a). (15)

Here z(xg,ng) is a normalizing constant for the probability 7(f) with respect to the Lebesgue
measure df on ©, shown to be positive and finite in [7].
These ingredients produce a bivariate density given by

f(z,0) = fo(x)m(6) with respect to p(dzr) x db. (16)
The Gibbs sampler is based on the iterations: From (z,6),
e Draw ¢ from f(¢' | z)
e Draw 2’ from f(2' | 0').

Here, Bayes theorem shows that f(6 | ) is in the conjugate family, with parameters ny+ 1 and

%‘ The z-chain has transition density (with respect to )

k') = [ 6] 2)(" | ). (1)
By elementary calculations, the x-chain has stationary density, the marginal density
m(z) = / Fo(@)m(0)d6. (18)

For exponential families with conjugate priors, we now show that all of the hypotheses of
Theorems 2.1 (integer case) or 2.2 (general case) hold.

14



Proposition 4.1 For the ezponential family (14) with conjugate prior (15), the x-chain (17)

. B . . . . o
admits x — xo as an eigenfunction with eigenvalue ——g

Proof Let Xy = x and X; be the first two steps of a Markov chain governed by k of (17).
Then,

NeTo + T
E(X, | Xo=2)=EEX,|0) | Xo=2)=EM®) | Xo=1) = ;;Oﬁ (19)
0
The last equality follows from [7, Theorem 2] where it is shown to characterize conjugate priors
for families with infinite support. The claim of the theorem is a simple rewriting of (19). [

Remark While obvious in retrospect, the proposition shows us that the parameter z is the
mean of the marginal density m(z).

Example Consider the geometric density on X = {0,1,2,...} in the parametrization f,(j) =
p(1—p)’. To write this as an exponential family, set fy(j) = e’'°8(1=P)F18P  Set § = log(1—p) and
M(0) = —log(1 — ). We recognize an exponential family on X with u(j) =1, © = (—00,0)
and M (0) = —log(1 — ¢%). The conjugate prior on © has form

z(wo,no)enoxoa_”OM(e), no > 0, xy € (0, 00).

Using the map T'(f) = 1 — e~? from O to (0,1), we recognize a Beta(a, 3 ; p) density with
a =ng+ 1, B =nexry. The restriction ng > 0 is exactly what is needed so that the marginal
density has a finite mean.

Proposition 4.2 The x-chain for a natural exponential family (14) is stochastically monotone.
This remains true if any prior measure is used.

Proof Following Section 3, it is enough to show that the family fy(x) is totally positive of
order 2. Suppose 0,60, € O; x1, x5 € Support(p) have 6; < 65, x1 < xo. Then since

foo (1) fo, (12) < fo, (11) for (w2) = @0 mmm) < 1,
the family fy(x) is T'P, by Theorem 3.1. OJ
Combining the above results, we obtain the following result.

Theorem 4.1 For the exponential family (14) with conjugate prior (15) and marginal (18),
(a) If fo(x) is supported on the positive integers, then, for any starting state x and all 1 > 0,

[
n
Hki—mHTvS( ° )<|:cr+|xor>.

n0+1

(b) With general support, for any starting state x, alll > 0, the Wasserstein distance satisfies

rx—xor( 1o )lgdwwg,m)s( o )l<\x|+rmo\>.

n0+1 7’LO—|—1
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4.2 Examples

Geometric/Beta Theorem 1.1 treats this example. The translation in the natural parametriza-
tion is given above in Section 4.1 and Theorem 1.1 follows from Theorem 4.1. Here x —(3/(a—1)
is an eigenfunction with eigenvalue 1/a.

Poisson/Exponential Consider the Poisson distribution with a standard exponential prior. This
case was treated in [13, Section 4.2]. Here,
e 09” 1

f@(x) — o T = 07 1,2, cen W(@) = 6_9 0 c (0,00); m(a:) = W

The z-chain has kernel k(z,y) = 21372 7¥=1(**¥). The function = — 1 is an eigenfunction of
k with eigenvalue 1/2. From Corollary 4.1, for any starting state z,

1% = mllry < (2 +1)27",

This is essentially the same as results derived using the complete diagonalization of k. Those
results show that
kL — m|loy <2717 for I = logy(z + 1) 4+ ¢, ¢ > 0.

A matching lower bound showing that, starting from x, log, x steps are needed in total
variation follows from Theorem 2.3 applied to the eigenfunction f(z) = x — 1 with eigenvalue
A = 1/2. Elementary calculations show that

o fAz) 3

) B 3
:Jﬂw—f@Dk@w%— 1 +Zﬂ@+§-

Y

Applying Theorem 2.3 with B = 2 and C' = $ gives ||k{ — m|[+v > 1 — € if £ <log, |z — 1| +
log, € — log, 25.

Beta/Binomial The usual binomial distribution (;‘)]ﬂ (1 — p)»7 with Beta conjugate prior
Fr ()
sure u(j) = (7;) on {0,1,2,...,n — 1,n} and letting § = log(ﬁ). Under this transformation,
the conjugate prior (in form (15)) with parameters ng, xo corresponds to a Beta density with
parameters o = nozro, 3 = ng(n — xp). For example, the uniform prior with @ = 3 = 1 results
from choosing ng = %, 1o = 5. For this choice, part (a) of Corollary 4.1 gives, for any starting

state x .
n n
gL < (- ( _).
(L mHTV_(n—i—Q) 5’7"‘2

This is off by a factor of logn as discussed in Remark 3 following Theorem 2.2.

711 — x)P~1 is transformed to a natural exponential family by taking carrier mea-

Gamma/shape parameter Consider the Gamma family

0—1,-y -y
_ Y €7 glogy-logT(9) €

foly) = = YTV _ (0 <0, y< oo
I'(0) Y
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z(zo ,no)e"oxoe

T(6)™ for ng > 0, o € R. From Proposition

The conjugate prior for 6 has form 7(0) =
4.2 and Theorem 2.2, for any starting state x

dw (ky,m) < (

This result holds even though the normalizing constant z(xg,n0) is not generally available.
Note that the Gamma shape family is not one of the six families treated by Morris [27], [28]
and its analysis was not previously available.

l
o 1) (x + E(Z)), where Z ~ m.

Hyperbolic Cosine This family was identified in Morris as the sixth family with variance a
quadratic function of the mean. For the full parametrization and extensive references see [27,
Section 2.4] or [16]. In the parametrization by the mean 6, with shape parameter r = 1,

1 w2 1 iz

f@(l’) = Z—lextan_l eﬁ (5 + = 5 5 - ?) —00 < x <00, (20)

with respect to Lebesgue measure. The normalizing constant is z = 27(1 + 62)"/2. The Beta

function f(a,b) = % is real because I'(a) = I'(a). The conjugate prior is

€p6 tan—1 60

m(0) =z (p, 5)m

, —00 <0, ) <00, p>1. (21)

P _5h8i 4 i

The normalizing constant is 27 (p, d) = F(zpp(S >,,F (f+p5). When 6 = 0, the resulting density
r(5)r(s-3)ve

corresponds to %log |C'|, where C' is standard Cauchy.

From results in [27, Section 2.4], the marginal density m(z) has tails of the form Thus we

Jal? I"
must take p > 2 in order to have z — z( as an eigenfunction (p > 3 is required for (r — xg) €
L*(m)). Frorn [27, Theorem 3.1], for p > 2, x( is finite. So x — z is an eigenfunction with

eigenvalue 1+—p2 This yields the following result.

Theorem 4.2 For the x-chain corresponding to the hyperbolic cosine density (20) with prior
density (21), for any z,0,p € R and p > 2,

(i) < (1 ) (1ol + £25).

We were unable to treat this example in [13] because only finitely many moments of the marginal
density m exist.

Remark For five of the six families with quadratic variance structure and their usual conjugate
prior, order log|z| steps are necessary and sufficient for convergence of the full Gibbs sampler
starting at (z,0) (any #). When comparable, the present approach matches the approach
using the full spectrum. However, for continuous problems, the present approach only proves
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convergence in Wasserstein distance (while the chains converge in total variation). For the
binomial family, the full diagonalization shows order n steps are necessary and sufficient. See
Remark 3 in Section 2.1. The present analysis gives an upper bound of order nlogn for
convergence.

5 Location Families

In this section p is the Lebesgue measure on R or counting measure on the integers. We consider
X = 6+ ¢ with 0 having denstiy 7(#) and e having density g(z) (both with respect to p). This
can be written as

folw) = glx = 0), f(2,0) = gla — O)n(6) (w.r.t. plde) x u(d6)).

Hence,
()= [ gto = Om@)utan), 50| 7) = L0

In [13] a family of ‘conjugate priors’ for g was suggested. Let g be the density of the sum of r
independent and identically distributed copies of a random variable Z. Let 7 be the density of
s copies of Z, by elementary manipulations, if Z has a finite mean,

m(z)

S

E(Q‘X):r—ks

X.

Here s, r are positive integers. If Z is infinitely divisible, s, r may be any positive real numbers.
For further details and examples, see [13, Section 2.3.3, Section 5.
The z-chain for the Gibbs sampler proceeds as follows:

e From x draw 6 from f(6 | z).
e Then set 2’ = 0 + &’ with ¢’ drawn from g¢.

The z-chain has stationary density m(z), the convolution of 7 and g (thus m is the density of
r+ s copies of Z). We now proceed to give conditions which guarentee that both conditions of
Theorem 2.2 are valid.

Proposition 5.1 With notation as above, suppose that Z has finite mean z. Then the x-chain

has eigenvector (x — (r + s)z) with eigenvalue .

Proof Let Xy = x and X7 be two successive steps of the z-chain. Then,

T +rz.
r+s

Use this to solve for d in
s

E(Xi—d| Xo=1)= ——

(x —d).
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4501z =2 and d = (s + )z as claimed. O]

s — 8 g ds
Thuss+rx+7“z d—s+rx pared pr

Remark If E(X? | Xo = x) = ax? + bx + ¢ for some a, b, ¢, the density of Z belongs to one of
the six exponential families treated by Morris [27, 28]. Then, the x-chain has a complete set of
polynomial eigenfunctions; these cases are treated in [13].

Proposition 5.2 With notation as above, the x-chain is stochastically monotone if the density
g is such that —log(g) is conver.

Proof The equivalence of total positivity of order two for the family {g(z—6)} and —log(g(x))
convex is standard fare; see Lehmann and Romano [23, pg 323]. The result now follows from
the developements in Section 3. O

There is a large classical literature on such log concave densities. We give examples at the
end of Section 3 above. See [21], [23] for further examples and developements. We content
ourselves with a few examples below. For ease of reference we state the conclusions of this
section.

Corollary 5.1 For the x-chain for the location family Gibbs sampler, with densities g, m based
onr, s copies of the random variable Z respectively. Let z = K(Z). Suppose that —log(g) is
COMVEL.

(a) If g is supported on the integers, then, for every x and I,

1K = mlle < (2] + (r + 5)]2]) ( : )

s+r

(b) If g is absolutely continuous with respect to the Lebesque measure on R,

ot 9el (53) S awm) < el + o (52)

Each of the six exponential families treated in [13, Section 5] is log-concave. We treat two
cases.

Ezample (Binomial) For fixed p, 0 < p < 1, let 7 = Bin(n1,p), g = Bin(ng,p). Then
m = Bin(n; 4+ ne, p) and
() (%)
fOlz) = 1G]

is hypergeometric. The z-chain evolves as

Xn+1 - SXn + En+1
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with Sy, a hypergeometric with parameters ny, ns, X, and ¢, drawn form Bin(ns,p). We
verify that g is T'P, by checking

g(z' = 0)g(x — ') < g(x — O)g(a" — &) (22)

for integers = < z’ and 6 < €. Note that if x < ¢ then g(x — ¢) = 0. Similarly for 2’ — 6 > n.
In these cases, (22) holds trivially. Hence assume 6 < ' < x < 2’ and 2’ — 0 < n. Then, after
obvious simplifications, (22) is equivalent to
(x—0)(x—0—-1).(z—0+1)(n—(2"—6)n—(2'—0)+1)
< (@ =0)('—0-1)..(2" =0 +1)(n—(z—60)(n—(z—60)+1))

This last inequality holds because x < 2’ and n — 2’ < n — x. This yields the following result.

Theorem 5.1 For all ny,ny > 0, 0 < p < 1, the x-chain for the binomial location model
satisfies

l
! n

R R e B )
Remark In [13, Section 5.1] this example was treated by a full diagonalization. For the case
treated there, the starting state is x = 0 and the results are essentially the same for the full
range of choices of ny, ny, p. We note that the spectral approach requires bounding the
orthogonal polynomials (here Krawtchouck polynomials) at the starting state x. This can be a
difficult task for # # 0. Along these lines, consider the case where the z-chain is started at the
center of the stationary density m. For simplicity, consider ny = ny = n and p = 1/2. Then
the mean is n and Theorem 2.1 gives

1\ 1
||ki —mllrv < EJY —n| (§> , where Y ~ Bin(2n, 5)

Using deMoivres’ formula for the mean absolute deviation [12],

2n\ 1 n

This gives a slight improvement over (23).

Ezample (Hyperbolic) This example was treated analytically in [13, Section 5.6] but was left
unfinished because of the intractable nature of the eigenfunctions (Meixner - Pollaczek poly-
nomials). We treat a special case which seems less foreign than the general case. Let 7 and g
have the density of 2log|C| with C' standard Cauchy. Thus from [13, Section 2]

1

m(z) = g(v) = m

w.r.t. Lebesgue measure on R. (24)
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The marginal density is the density of 2 log|C}Cs|, that is,

m(x)

x
 2sinh(%)’ (25)
By symmetry, the mean of m(z) is zero and z is an eigenfunction. We may easily verify that
x1 < Tg, 01 < Oy imply g(x; — 0)g(xe — 01) < g(x1 — 01)g(xe — 05). Indeed this is equivalent to
(6(931*91)4_6(91*11))(6(12*92)4_6('92*12)) < (e($1*92)+6(92*w1))(6(1"2*91)_{_6(91*332))’ which is equivalent
to (e¥2 21 — em1m22) (P20 _ 01702) > () which of course is true. Thus, Corollary 5.1 yields the
following result.

Theorem 5.2 The x-chain for the location family for the hyperbolic model, with ny = ny = 1
satisfies, for any starting state x and all | > 1,

dy (KL, m) < |z]27".

6 Further probabilistic Bounds

The theorems above make crucial use of stochastic monotonicity and the availibility of an
eigenfunction. In this section, more basic forms of the stochastic techniques of coupling and
strong stationary times are used. All of the problems treated here are location models and we
use the notation of Sections 4 and 5 without further comment.

Ezample (Normal Location Model). This is a location model with

22 _(6-1)?
e 202 e 2¢2

where o, r and £ are parameters, 0,& > 0, r € R. This leads to the marginal density

_ (acfw")2
e 2002+¢2)

V2m(0? +€2)

The z-chain for the Gibbs sampler is a classical autoregressive process which may be represented
as

m(z) = (27)

52
o+ &2
Consider the Markov chain in (28) with Xy = 2. Then

2
Xn+1 = CLXn + Ent1 with a = and {5i}i21 i.i.d. N ( or 2) . (28)

o+ &2
Xi=ar+e, Xo=ad’r+ae;+e9, .., Xp=a"v+a" o1+ ... +¢,. (29)
The stationary distribution may be represented as the infinite convolution
Xoo = €y + ac, +a’ey + ... (30)
for any independent sequence {e;};>; with common distribution N(U;’—JQ:EQ, 0?). This yields the

following result.
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Theorem 6.1 For the x-chain for the Gibbs sampler location model (28), started at x,

l 2
. ; a o°r
dw(k,,m) < za —0—1_a<0+02—+£2>-

Proof To couple X, and X, let (€;) be aiid. N(=5% 2+£2, 0?) and, for a fixed [, set ¢; = ¢,_,. Then
use (€)1, (€/)5°, in (29), (30), respectively. This gives dy (kL,m) < E|X; — X|. To obtain the
desired bound, use the simple fact that

BIN| < (4 +0)
if N~ N(p,0?) with g > 0. O

Remarks 1. The theorem gives essentially the same results as the detailed calculations of [13,
Section 4.3]. Here we work in a weaker norm. The coupling inherent in the proof is not the
optimal coupling for the Wasserstein distance. For two Gaussian measures on the line the
optimal coupling for the L? Wasserstein distance (indeed, for any convex distance) is achieved
by the unique affine map determined by matching means and variances.. With Frank Barthes’
help, we computed that the L? Wasserstein distance to stationarity starting at x after n steps
equals a®"z? + (v/1 — a?" — 1)?/(1 — a?). This differs infinitesimally from the bound above. For
more on L? Wasserstein for Gaussian vectors, see [18].
2. Note that for f(z) =x —r,

E[(f(Xp41) = f(2))* | Xp = 2] = (a = 1)*f*(2) + o™
Hence by Theorem 2.3 it follows that ||kl — m|lwv > 1 — € for £ < loglx_rlJrlog_El;;Oj 8@+t
This provides a matching lower bound for the chi-square (and hence total variation) upper
bound provided in [13, Theorem 4.3].
3. The same analysis obtains if x and 6 are d-dimensional. Of course, useful bounds on the
vector norm in terms of the input parameters will be more dlfﬁcult

4. From (29), the law of X; is normal with mean a'r + i ‘;Ugigz and variance 11__‘;221 o?.
The stationary distribution is normal with mean m and variance 1322. Thus exact

total variation distance calculations are also available in terms of the distance between two
Gaussians. In a bit more detail, if X; is N(ui,0,%) and Xy is N (g, 022), the total variation
distance between X; and X, is the same as the total variation distance between a standard
normal variate Z and X, a N(u,o?) variate with y = M, o = 72. The densities of Z and

o1
put/02p2—(1—02)o2logo?
X cross at the two points zL = Ve = . Now,

1X = Zlley = [®o.1(24) = Ppo ()] + | Do (2-) = Do) (31)

with @, , the cumulative distribution function of N(u,0?). A plot of total variation distance
as a function of [ is shown in Figure 1 below when r = 0, 0% = %, €% = 4 for starting state
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= 100. The same plot shows the exact chi-squared distance for these same parameters.
The chi-squared distance is frequently used as an upper bound for the squared total variation
distance. The figure shows this is a poor bound for [ small and quite accurate for large I.

Figure 1

10
1

distv

0 50 100 150 200

1:200

4. Essentially the same analysis holds for any autoregressive process; € does not have to be
normal. Of course, these will not arise from the Gibbs sampler in any generality.

Ezample (Gamma Location Model). For 0 < z,0 < 00, 0 < ny,ng, 0 < 00, let

4
Inl—le—% 0712 ].6 o

S — 0) = 32
ole) = e 0 = T (3)
The marginal density for the x-component of the Gibbs sampler is
ni+ngz—1 —%
x e (33)

m(I) = 0n1+ngr(n1 + n2) .

The classical relations between Beta and Gamma densities yield the following representation
for the x-process.

Xnt1 = Ani1 X + g1, Aps1 ~ Beta(ng, ng), €,41 ~ Gamma(ny, o), independent. (34)
Further, the stationary distribution can be represented as
Xoo = ¢+ Ale] + AJATes + ... (35)

with A}, e/ independent and distributed as in (34). This yields an obvious coupling and gives
the following result.
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Theorem 6.2 For the x-chain (34) for the Gibbs sampler location model started at x,

ni ¢ 1 nq ! nl(nl + 77,2)
de(kx,m) <|——— r+—-
ny + No ny + No No

Proof Let A}, €; be independent i.i.d. sequences as in (35). For a fixed [, let A; = A

ni(ny + ng)
na

xr —

1) 1

and use these in (34). Then,

o J
dw(k,,m) < EBIX;— X =E[AA] Az = ([]4)e)

j=l i=1

!
< ( n, ><x+n1(n1~l—n2))'
N1+ No o

Since f(z) = x — EX is an eigenfunction with eigenvalue - it follows that

V4
ny
(n1 + n2> ‘

ni(ny + no)

ng

dy (K m) > [B(X, — Xoo)| = ]x _

_
67; — El—l

O

Remarks 1. The remarks following Theorem (6.1) hold with minor changes for this case as well.

2. Lest the reader think that all of the classical families will yield to such a probabilistic
approach, consider the case when g and 7 are geometric distributions of the form 0(1 — 6)
on {0,1,2,...}. The marginal m(j) is then negative binomial (2,6). The conditional density

f(0 | x) is uniform on {0,1,2, ..., — 1,z}. The z-chain can be represented as

X1 = | Unt1(Xn + 1) | + €ng1

with U a (continuous) uniform variate on (0,1) and ¢ a geometric () variate. Here |z | is the
largest integer smaller than x. The backward iteration does not appear simple to work with.
This problem is solved by diagonalization in [13, Section 5.3] and monotonicity in Section 5

above.

Ezample (Poisson Location Model) For 0 < r,s < oo, let

e () e s\
9(j) = # m(j) = # j=0,1,2, ..
J: !
The marginal density is
—(r+s)A Y 7
m(j) = L WEIN g

4!
The x-chain for the Gibbs sampler may be represented as

S
Xpy1 = Sx, +epe1 with S, ~ Bin (.7:,
r

24
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Lemma 6.1 For the Poisson location chain (38), started at x,
Xo ~P(rA) « P (prA) ...« P (p"'rA) x Bin (z, p")

and

Xoo ~ P(rA) « P (prA) « P (p°r)) = ...

where P(A\) stands for Poisson(\), the variates are independent, and p = s/(s+1).

Proof The z-chain may be pictured as starting with = customers. Each time, a coin with
probability of heads p = s/(s + r) is flipped for each current customer. Customers whose coin
comes up heads disappear. Then Poisson(r\) new customers are added. This is the classical
M/M /oo queue in discrete time. At stage n, the number of original customers remaining is
Bin (z, p"). The number of first stage customers remaining is Poisson(p" 7)), and so on. [

As above, these considerations yield the following result.

Theorem 6.3 For the x-chain for the Gibbs sampler location model (38) started at z,

KL — mlla < doy (KL m) < ( ) (24 (r + ).

r+ s

Proof Because the variables are integer valued, ||k} — m||+v < dw (KL, m). Letting X, and X
be as in Lemma 6.1, we get dy (k%, m) < E(|X,; — Xo|) and a simple computation yields

!
s
B~ Xul) < () @t (s,
proving the desired result. O

log ©
Hence loa(+1)

steps are sufficient for convergence. A matching lower bound can be obtained

S
s

by noting that for the eigenfunction f(z) = = — (r + s)A with eigenvalue P

E[(f(Xp1) = f@)? | X, = 2] = (Tis) () + (ﬁi)z +7A

log |x—(r+s)A|+log e—log(4++/1648(r+s)A)
log (=) ‘

Ezample (Binomial Location Model) Let r, s be positive integers and fix p, 0 < p < 1. Set

By Theorem 2.3 it follows that ||k —m||+y > 1 —€if t <

r L s .
9(x) = (x)p‘”(l —p)"", w() = (9>p9(1 —p)’ (39)
The marginal density of the z-chain is

m(z) = (T l_ S)p’”(l —p)T 0< 2z <r+s. (40)
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The z-chain proceeds as follows: From X,, choose 6,1 from the hypergeometric distribution

() (o)

flo| X, = GO (X, — 1)y <60 <min(X,, s).
Xn

Set
Xni1 = Ons1 + €nyq with e ~ Bin(r, p). (41)

Theorem 6.4 For any r,s > 1, any starting state x, and all p, the x-chain (41) satisfies,

-1
kaé —ml|ry <5 ( ) forall 1> 2.

r+S

Proof We construct a strong stationary time for the process lifted to binary vectors. See [1, 3, 9]
for background on strong stationary times. Consider the following process on binary vectors of
length r 4+ s. Let X,, be the number of ones at time n. Let 6,,1 be the number of ones in the
first s coordinates after applying a random permutation to the vector. Finally, flip a p-coin for
each of the last r coordinates and replace what was there by these outcomes. Evidently, the
process Xy = x, X1, Xo, ... is the same as (41). After one step, the last r coordinates have the
correct stationary distribution. Let 7" be the first time after time 1 that all coordinates among
the first s have been replaced by coordinates from (s + 1,5+ 2,...,s + 7). This T is clearly a
strong stationary time for the lifted process: If the coordinate process is Z, = (Z}, Z2, ..., Z"%),

P(Zy=2|T=1)=p (1 —p) Pzl = 2" + 2%+ 427

To bound T, let B;, 1 <1 < s be the event that all permutations up to and including time [,
have kept coordinate i between 1 and s. Then

-1
S
P(T>1+1) = P(U_,B,) < sP(B)) = .
(T'21+1) = P(ULBi) < sP(B) S<T+s>

The desired result follows because, for any strong stationary time T,
|kL —mlew < P(T >1+1).

See [1, 3, 9]. O

Remarks 1. Consider the case of r = 1. The first s coordinates evolve as follows: Choose a
coordinate at random and replace it by a flip of a p coin; this is Glauber dynamics for the
product measure. When p = 1/2, it becomes the Ehrenfest urn with holding 1/2. The bound
above shows that (s + 1)logs steps suffice. This is the right order of magnitude, but off by a
factor of 1/2, see [6].
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2. A similiar argument can be carried through for the multivariate analog based on the
Multinomial distributions

r S
1 T2 T 1, L2 T
( >p1 py”---Py s < )pl Py Dy -
L1, X2y -5 T L1, X2, -5 Tk

Lift to a process on vectors of length r + s with entries in {1,2,...,k}. The same argument
with X, = (X}, X2, ..., XF) for X! the number of coordinates taking value i, leads to exactly
the same bound as in Theorem 6.4, uniformly in pq, ps, ..., pr and k. An exact analytic solution
using multivariate orthogonal polynomials for the Multinomial is in [22].
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