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ABSTRACT Natural mixing processes modeled by
Markov chains often show a sharp cutoff in their convergence
to long-time behavior. This paper presents problems where the
cutoff can be proved (card shuffling, the Ehrenfests' urn). It
shows that chains with polynomial growth (drunkard's walk)
do not show cutoffs. The best general understanding of such
cutoffs (high multiplicity of second eigenvalues due to sym-
metry) is explored. Examples are given where the symmetry
is broken but the cutoff phenomenon persists.

Section 1. Introduction

Markov chains are widely used as models and computational
devices in areas ranging from statistics to physics. A chain
starts at a beginning state x in some finite set of states E. At
each time, it moves from its current state (say z) to a new state
y with probability P(z, y). Thus, after two steps, the chain goes
from x to y with probability P2(x, y) = YP (x, z) P(z, y). One
feature of Markov chains is a limiting stationary distribution
I(y). Under mild conditions, no matter what the starting state,
after many steps the chance that the chain is at y is approxi-
mately i-(y). [In symbols, PJ(x, y) -> f(y).] A good example to
keep in mind is repeated shuffling of a deck of 52 cards. For
most methods of shuffling cards, the stationary distribution is
uniform, lr(y) = 1/52!, the limit result says that repeated
shuffles mix the cards up.

It is important to know how long the chain takes to reach
stationarity. As explained below, it takes about seven ordinary
riffle shuffles to adequately mix 52 cards. The familiar over-
hand shuffle (small clumps of cards dropped from one hand to
another) takes about 2500 shuffles (1). A quantitative notion
of "close to stationarity" uses the variation distance

IlPx - all1 = max IP(X, A) - mo()l
A

with Pk(x, A) = ly24 Pk(x, y) denoting the chance that the chain
started at x is in the setA after k steps. The maximum is over
all subsets A of X. Thus, if IlPx - iril is small, the stationary
probability is a good approximation, uniformly. As an example,
in shuffling cards, A might be the set of arrangements where
the ace of spades is in the top 1/3 of the deck. Then, IT(A) =
1/3 and one is asking that the chance Pkt(A) be about 1/3. With
the chain and starting state specified one has a well posed math
problem: given a tolerance E > 0, how large should k be so that
11tx - urll < E?
A surprising recent discovery is that convergence to station-

arity shows a sharp cutoff; the distance 11Px - 7rT stays close to
its maximum value at 1 for a while, then suddenly drops to a
quite small value and then tends to zero exponentially fast.
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As an example, consider the Gilbert-Shannon-Reeds model
for riffle shuffling cards. A deck of n cards is cut into two piles
according to a symmetric binomial distribution. Then the two
piles are riffled together by the following rule: if one pile has
A cards and the other has B cards, drop the next card from the
A pile with probability A/A+B (and from the B pile with
probability B/A +B). The dropping is continued until both
piles have been run through, using a new A, B at each stage.
This specifies P(x, y) for all arrangements x, y.

Following earlier work by Gilbert, Shannon, Reeds, and
Aldous, a definitive analysis of the riffle shuffle chain was
produced in joint work with David Bayer (2). Table 1 shows the
distance to stationarity for 52 cards as the number of shuffles
k varies. The distance to stationarity thus stays essentially at its
maximum value of one up to five shuffles. Then it rapidly tends
from one to zero. The final numbers decrease by a factor of
1/2, and this exponential decay continues forever.
The data in Table 1 are derived from a closed form

expression for the chance of being in any arrangement after
any number of shuffles. This formula has connections with
combinatorics, cohomology theory, Lie algebras, and other
subjects developed in refs. 2 and 3. The formula can be used
to give sharp approximations to the distance for any deck size:
THEOREM 1. Let P(x, y) result from the Gilbert-Shannon-

Reeds distribution for riffle shuffling n cards (2). Let k =
(3/2)1og2 n + 0. Then,

P - rli = 1- 2( -2- /45) + o(1/Xi)

with 1(z) = fZ (e t/2/\T)dt.
Theorem 1 shows that a graph of the distance to stationarity

versus k appears as shown in Fig. 1. There is a sharp cutoff at
(3/2)log n; the distance tends to 0 exponentially past this point.
It tends to one doubly exponentially before this point.

This cutoff phenomenon has been proved to occur in dozens
of different classes of Markov chains. Classical analysis of such
chains was content with a bound on the second eigenvalue.
This determines the exponential rate and so answers the
question: "how close is the chain to stationarity after a million
shuffles." Modern workers realize that questions of practical
relevance require determining if seven steps suffice.

Section 2 describes examples where the cutoff phenomenon
can be proved. These include Ehrenfests' urn, a variety of
shuffles, and random walks on matrix groups both finite and
compact. Section 3 gives examples where there is no cutoff.
This includes the classical drunkard's walk and random walk on
graphs with polynomial growth. Section 4 gives my best
understanding of what causes cutoff phenomena in terms of
repeated eigenvalues and symmetry. Section 5 gives some new
examples where the symmetry is broken but the phenomenon
persists. The final section describes how things change if
different notions of distance are used.
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Table 1. Distance to stationarity for repeated shuffles of 52 cards

k

1 2 3 4 5 6 7 8 9 10

IlPk- irll 1.000 1.000 1.000 1.000 0.924 0.624 0.312 0.161 0.083 0.041

To close this introduction, here is a definition of cutoffs: let
P, w,, be Markov chains on sets X,n. Let an, bn be functions
tending to infinity with bn/an tending to zero. Say the chains
satisfy an a,>, bn cutoff if for some starting states xn and all fixed
real 0, with kn = Lan + QbnJ, then

11 Pnk- nIl --C(0)

with c(o) a function tending to 0 for 6 tending to infinity and
tending to 1 for 6 tending to minus infinity. For example, in
Theorem 1 above, Xn is the set of arrangements of n cards, Pn
is the Gilbert-Shannon-Reeds distribution, in is the uniform
distribution on Xn, an = (3/2)1og2 n, bn = 1.

Section 2. Examples of the Cutoff Phenomena

A. The Ehrenfests' Urn. In a decisive discussion of a paradox
in statistical mechanics (how can entropy increase be compat-
ible with a system returning to its starting state?) P. and T.
Ehrenfest introduced a simple model for diffusion. Their
model involved two urns and d balls. To start, all the balls are
in urn 2. Each time, a ball is randomly chosen and moved to
the other urn. It is intuitively clear that after a large number
of switches any one of the balls is equally likely to be in either
urn. The state of the chain is determined by the number of balls
in urn 1. The stationary distribution is the binomial: w() =

()12 , 0 -<j < d. To state a precise result, a periodicity problem
must be ruled out. Let the chain remain in its current state with
probability 1/(d+ 1). Thus, the state space (number of balls in
urn 1) is {O, 1, . . ., d}. The transition probabilities are P(i, i -
1) = i/(d+ 1), P(i, i) = 1/(d+1), P(i, i+ 1) = (d - i)/(d + 1),
o c i c d. A cutoff for the Ehrenfest chain starting at 0 was
proved in refs. 4 and 5; the cutoff occurs at (1/4)d log d:
THEOREM 2. For the Ehrenfest chain on {0, 1, . . ., d} started

at 0, if k = 1/4(d + 1) (log d + 0) with 6> 0, then

pk ~1 -o
1/IIPO 7Th ' -Ve 1}1/2.

Conversely, ifk = (1/4)d (log d - 0), the total variation distance
tends to 1 for d and 6 large.

Returning to the Ehrenfests' story, suppose entropy is
measured by I(k) = ljf o Pt(j)log Pok(j), this is clearly increas-
ing in k [the chain tends to stationarity, Poka) -.(j)].
However, it is equally certain that the chain will return to zero
(infinitely often as time goes on). The theory described above
quantifies this: it takes about (1/4)d log d steps for the chain
to reach maximum entropy but about 2d steps to have a
reasonable chance of returning to 0. If d is large-e.g.,

FIG. 1. The cutoff phenomenon for repeated riffle shuffles of n =

52 cards.

Avogadro's number-we will not observe such returns. Kac (6)
gives a masterful development of this point.
The shape of the cutoff for the Ehrenfests' chain is deter-

mined in ref. 7. By the same methods used there, it can be
proved that for the chain started at d/2, order d steps are
necessary and suffice to achieve stationarity. Further, there is
no cutoff: for k = d

11 Pd"/2 -II -f(6)

with f a continuous function of 6 on (0, 00).
A different model of diffusion was introduced earlier by

Bernoulli and Laplace (39): There were n black balls and n red
balls distributed between two urns. Initially the colors were
segregated. At each stage, a ball was chosen randomly from
each urn and the two balls exchanged. In ref. 5 it was shown
that the associated Markov chain has a cutoff at (d/4)(log d +
0) as above. The sharp results for the Bernoulli-Laplace model
were crucial in studying a collection of related processes: the
exclusion processes. Here, one has a graph (such as an n x n
grid) and k particles with at most one per vertex. At each time,
a particle is chosen at random and then a neighboring vertex
is chosen at random. If the neighboring vertex is unoccupied,
the particle moves there. If the vertex is occupied, the system
stays as it was. Good bounds for the rate of convergence were
achieved in refs. 8 and 9 by comparison with the Bernoulli-
Laplace model. However, the available technique is too crude
to determine if there is a cutoff for the exclusion process. It is
certainly natural to conjecture such cutoffs.

B. Random Transpositions. This is perhaps the earliest prob-
lem where a sharp cutoff was demonstrated. Picture n cards
labeled 1, 2, . . ., n. Initially, they are in a row on the table. At each
time, the left and right hands randomly choose cards (so, left =
right with probability 1/n). Then the two cards are switched. This
is a Markov chain on the set of all n! permutations. It has a
uniform stationary distribution. There is a cutoff at (1/2)n log n:
THEOREM 3. For the random transposition chain and any

starting x, for k = (1/2)n (log n + 6) with 6> 0,

IIPk - TlII Ae- /2

with A a universal constant (10). Conversey, ifk = (1/2)n log n -
On, then the distance to stationarity tends to 1 for n and 6 large.
Theorem 1 was proved by using detailed knowledge of the

character theory of the permutation group. The techniques are
fairly general. They work for random walk on any finite group
provided the underlying measure is concentrated on a union of
conjugacy classes. For example, Hildebrand (11) worked with
"random transvections" in the n x n matrices with elements in
a finite field. He showed a cutoff at n + 6. The method also
works for compact groups. Rosenthal (12) and Porod (13) have
demonstrated sharp cutoffs for several natural walks on the
orthogonal and other classical groups.
The method also works for less symmetric problems: Flatto

et al. (14) showed a cutoff at n(log n + 6) for "transpose
random with top." Lulov (15) studied the following problem.
Take n even; randomly transpose a pair of cards, then a
different pair, and so on until n/2 pairs have been exchanged.
This all counts as one shuffle. Lulov showed that the variation
distance is small after three shuffles (but not after two).
The character theory method can be used to get less precise

results for complex random walks. In ref. 16 the random trans-
positions result is combined with a comparison technique to get
good results for general random walks-e.g., randomly transpose
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top two or randomly move top to bottom; this takes order n3 log
n to get random. In a remarkable piece ofwork, Gluck (18) shows
that for essentially any small generating conjugacy class of any
finite group of Lie type, order rank (G) steps are necessary and
sufficient for convergence to stationarity. None of the examples
in this paragraph have had cutoffs proved, although again it is
natural to conjecture cutoffs in all of them.

Returning to the problem of random transpositions, there is
now a different method which leads to a completely different
proof of the cutoff phenomenon. This is the method of strong
stationary times introduced in joint work with Aldous (19) and
Fill (20). Its successful application to transpositions is due to
Broder and Matthews (21).

C. Library and List Management Problems. Imagine n
folders (or computer files) are used from time to time, the ith
folder being used proportion w(i) of the time. It makes sense
to keep popular folders near the top of the pile. If the weights
are unknown, one common sense procedure is the move to the
top rule: after a folder is used it is replaced on top. This leads
to a Markov chain on the set of n! arrangements. Such chains
have been studied by computer scientists, geneticists, library
scientists, and probabilists. Fill (22) contains a good overview.

In this section, I study a generalization of this chain in which
the folders are removed in groups. Thus let [n] = {1, 2,. . ., n}.
For s C [n], there are weights w(s) - 0, E w(s) = 1. Suppose
that the weights separate points in the sense that for each i,j
there is an s with w(s) > 0, and i in s, j in Sc or vice versa. A
Markov chain proceeds on the n! arrangements (thought of as
arrangements of cards) by choosing s from w(s), removing the
cards with labels in s, keeping them in their same relative order,
and moving them to the top. This chain has a unique stationary
distribution IT. The main result is a simple bound on the distance
to stationarity. To describe this, define separation parameters

O(i, j) = E w(s).
i E s, j E s'

or
j E s, i E sc

This is the chance of items i and j being separated in a single
move. The following useful bound holds.
THEOREM 4. Let P(x, y) be the weighted set to top chain. Then

for any starting state x and all k,

IIPX l . >(1 - Oij)k.
, <,j

Example 1: Let w{i} = 1/n, 1 c i c n, w(s) = 0 otherwise.
The chain becomes the simple "random to top" chain studied
in refs. 19 and 23. Then Oij = 2/n and the bound becomes IIPx -

(2)(1 2)k. Thus, if k = n log n + cn, the bound becomes
e-2/2. Arguments in ref. 19 show that the variation distance
is essentially 1 if k = n log n - cn. Thus, there is a sharp cutoff
at n log n. In joint work with Fill and Pitman (23) the exact
shape of the cutoff is determined.
Example 2: This uses weights like Zipf s law. Again, w(s) =

0 if s has 2 or more elements. Fix a parameter t 0. Define

w(i) = Z/(n + I - i)t, 1- i n, Z-= En(n + 1-i) -'. [2.1]

Given k, define c = c(n, k) by

t=0 k=n(logn+c)
0 < t < 1 k = [n/(1 - t)](log n - log log n + c)

t=1 k=nlogn(logn-loglogn+c)
t > 1 k = (n'/I(t))(log n - log log n + c)

[2.2];(t) = , l/j'.
J = I

By using classical calculus estimates, it is straightforward to
plug into Theorem 4 to prove
COROLLARY 1. Let P(x, y) be weighted random to top with

weights (Eq. 2.1). Let c = c(n, k) be defined by Eq. 2.2. Then,
there is a positive continuous function a(t) so that

lpk -9T1Ca(t)e-c+ o(1).

The result is sharp in that given k and c as above with c <
0, there is a starting state x such that

IIJxk _ 'r|I f(X, C) + o(1)
with f(t, c) continuous and tending to 1 as c -x for each
fixed t. These results show sharp cutoffs of various esoteric
types. There are many other simple choices of weights for
which similar bounds can be obtained.
Proofof Theorem 4: The argument proceeds by coupling (see

refs. 4 or 24). Let the original chain start out in arrangement
xo. Let a second chain start off at x* chosen according to the
stationary distribution 7r. Each time, choose a subset according
to weights w(s) and move the same objects to the top in both
arrangements (they may well be in different relative orders).
Let T be the first time that every pair i ]j has been separated.
This T is a coupling time: the two arrangements are identical
at T. Indeed for each i and j, the last time they are separated
they are in the same relative order in both lists. Thus, at time
T, each pair of items is in the same relative order, so the two
arrangements are equal. The chance that items i andj have not
been separated in k steps is at most (1 - O>)k". Hence the
theorem.
We note in closing that the arguments of this section have

been extended to a variety of related problems in an elegant
and comprehensive way by Dobrow and Fill (25). One curious
note: for the chains analyzed in Theorem 4, all the eigenvalues
are known (13). It seems impossible to use these eigenvalues
to get results comparable to those given above. This shows the
power of the coupling method.

D. Further Examples. Cutoffs have been proved in several
other examples. Belsley (27) and Silver (28) have shown that
some versions of the widely used Metropolis algorithm have
cutoffs. D'Aristotle (29), Belsley (27), Greenhalgh (30), and
Hora (31) have shown that cutoffs occur for a variety of walks
on algebraic objects, such as the subspaces of a fixed dimension
over a finite field. A different line of work, so-called random-
random walks, show that cutoff phenomena are generic; for
example, Aldous and Diaconis (19) show that most Markov
chains reach stationarity in two steps! There, the notion of
">most" involves a probability distribution over all Markov
chains. In fact, Markov chains that are actually run involve
fairly sparse transition matrices. A remarkable body ofwork by
Dou, Hildebrand, and Wilson (32-34) shows that cutoffs are
generic, even when the support is restricted. The next section
provides some examples where cutoffs do not occur.

Section 3. Problems Without a Cutoff

The simplest natural chain without a cutoff is simple random
walk on the integers mod n: picture n places around a circle.
A particle hops from its current place to a neighboring place
(or stays fixed) with probability 1/3. Thus, P(i, i + 1) = P(i,
i) = P(i, i - 1) = 1/3. The stationary distribution is uniform:

r(i) = 1/n. It is easy to show (24) that for n large,

/k
||IPn vll -C 2

with C(O) a positive decreasing continuous function of 0 which
is 1 at zero and zero at infinity. Thus, the transition to
stationarity happens gradually at about n2 steps. Essentially,
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the same behavior occurs for Markov chains on low-
dimensional regular grids. Here are two examples.

Picture a convex set in the plane. Let X be the lattice points
inside the set (points with integer coordinates). A Markov
chain proceeds on YE as follows: if the chain is at z, pick one of
the four neighboring lattice points of z at random. If the new
point is in X, the chain moves there. If the new point is outside
X, the chain stays at z. Assuming that the chain is connected,
the stationary distribution is uniform in X. In joint work with
Saloff-Coste (35), it is shown that this chain takes order 92
steps to get random where y is the diameter of X (the largest
distance between two points of X). Further, it is shown that
there is no cutoff; roughly put, if the chain goes 1092 steps, it
is close to random. If it goes (1/10)92 steps, it is far from
random.
Such Markov chains arise in a variety of applied problems,

such as choosing contingency tables with fixed row and column
sums. Many examples can be found in refs. 16 and 35. These
papers also contain other approaches to analysis. The technical
tools developed in ref. 35 allow similar conclusions for chains
with state spaces that have polynomial growth: order 92 steps
are necessary and suffice for convergence; there is no cutoff.
The Markov chains on the discrete circle and repeated

shuffling of cards are examples of random walk on finite
groups. Consider a finite group G and a symmetric set of
generators S of G. Suppose that the identity is in S (to rule out
periodicity problems). A Markov chain begins at the identity
and proceeds by repeatedly picking elements of S and multi-
plying. This chain converges to the uniform stationary distri-
bution ir(x) = 1/GI.

For a specific example, consider the set of 3 x 3 matrices
which are upper triangular, have ones on the diagonal, and
have entries which are integers modulo n. This is the finite
Heisenberg group. For S, take the following set of five
matrices:

1 0 1 1 010 0
0 1 0 O 1 0O1 1
O 0 10 0 1 0 0 1

Following earlier work by Zack (36), it is shown in refs. 16
and 37 that this walk takes order n2 steps to get random, and
there is no cutoff. Here, the diameter is n. The techniques give
the same conclusion for any finite nilpotent group supposing
only that ISI and the degree of nilpotency stay bounded as the
group gets large: order (diameter)2 steps are necessary and
suffice for convergence, and there is no cutoff.

In contrast, random walks with growing number of gener-
ators on nilpotent groups with growing degree of nilpotency
are expected to show a cutoff. For example, consider the d x
d upper triangular matrices with ones on the diagonal and
integer entries modulo n. Let E(i, j) be such a matrix with a one
in position (i, j) and zeros elsewhere. Then, a generating set is
S = {ID, E(1, 2)+, E(2, 3)±, E(d - 1, d)±}. Stong (17) has
analyzed this walk with d large; the results are not quite sharp
enough to determine if cutoffs exist, but they are conjectured.
Random walk on product groups Gn with G fixed and growing
n can be proved to have cutoffs. One such example, the
hypercube, is discussed in the next section.

Section 4. What Makes It Cutoff?

This section outlines my best understanding of what causes
cutoff phenomena. The argument is an extension of the
following simple idea: cutoff phenomena occur because of high
multiplicity of the second eigenvalue. To elaborate, it is useful
to work with a special class: reversible Markov chains. These
are chains P(x, y) and stationary distributions fT(x) satisfying
'n(x)P(x, y) = 7r(y)P(y, x). When ir(x) = 1/IXI, this says the
matrix P(x, y) is symmetric. More generally, it says the chain

run forward is the same as the chain run backward. Irreducible
reversible chains have real eigenvalues P3i, 0 c i s1.61 - 1, with
10 = 1 > f1 2 /2@.> 911- 1 > -1. Each eigenvalue has a
corresponding eigenvector Vi. IfP is considered as an 1I x NIX
matrix and Vi is a column vector, then PVi = (3iVi. If the
eigenvectors are normed such that IIViIl = 1 in the inner product
(17 W) = Y:V(x)W(x)7r(x), then an easy application of the
Cauchy-Schwarz inequality shows

1'1I - 1L*TTI - 1:411P'- E V(X)2p2k
i = 1

[4.1]

This bound is both the key to our present understanding and
a main method of proof for cutoff phenomena. The bound is
reasonably sharp so that the right side serves as a useful
surrogate for the left side. It turns out that for many examples
the first term V12(x)f3i2" is all that matters; it dominates the rest
and determines the final behavior.

Let us consider two examples: the Ehrenfests' urn and
random walk on the discrete circle. For the urn (Theorem 2 in
Section 2) the eigenvalues are P3i = 1 - (2i/d+ 1), 0 ' i c d.
Thus /31 = 1 - (2/d+ 1). The eigenvectors can be identified
with a classical family of orthogonal polynomials (Krawt-
chouck polynomials). In particular, Vi(x) = 2(x - d/2)/(d)1/2
Thus, the lead term in Eq. 4.1 is [4(x - d/2)/d][1-(2/d+ 1)]2k.
Consider how large k has to be to make this small. For x = 0,
the lead term becomes d[1 - (2/d + 1)]2-. For k = (1/4)
(d + 1)(log d + 0), this is about e-0 when d is large. Thus, there
is a cutoff. The cutoff behavior occurs because of the lead-
ing d. When x = (d/2) + (d)1/2, the lead term becomes 4[1 -
(2/d +1)]2k. When k = 0(d + 1), the lead term is about e-0.
Thus, there is no cutoff.
As a second example, consider the lead example of section

3-simple random walk on the integers mod n. Now the
eigenvalues are (1/3) + (2/3)cos(2wj/n) - 1 - (4i-2j2/3n2).
Thus, n1 - 1 - (472/3n2). The eigenvector is bounded. Thus,
the lead term is essentially [1 - (4wr2/3n2)]2*. When k = On2,
this is essentially e-4 20/3. Again, there is no cutoff.
There is more to do in making these arguments rigorous, but

the lead term behavior can be shown to determine things. See
ref. 24 (chapter 3) for all details.
The random transpositions walk exhibits instructive behav-

ior: the 2nd eigenvalue is [1 - (2/n)] and the eigenfunction is
bounded. However, the 2nd eigenvalue occurs with multiplicity
(n - 1)2. Thus, in the upper bound, one must choose k large
enough to make (n - 1)2[1 - (2/n)]2k small. This leads to k =
(1/2)n(log n + 0) and a cutoff. For general random walk on
a finite group G, the eigenvalues are associated with the
various representations of the group (see, e.g., ref. 24 for
background and examples). If the second eigenvalue is asso-
ciated with a representation of dimension d, the lead term in
the bound will be of form df32k. In examples, there is a sequence
of groups G(n), say, and 1 is close to 1, say, A1l = 1 - (1/f(n)).
If d grows with n, the lead term is d(n)(1 - (1/f(n))2*. This is
small for k = (f(n)/2)(log d(n) + 0).
These heuristics thus predict a cutoff for random walks where

the size of the representations grow with the size of the group. For
example, the permutation group on n letters has its smallest
representation (other than the trivial and altemating represen-
tations) ofdimension (n - 1). The heuristics also predict no cutoff
for random walk on abelian groups where all representations have
degree d = 1. Then, the lead term is of the form (1 - llf(n))2*
and k = Of(n) steps are required to make this small.
Of course, some groups have many one-dimensional represen-

tations, as well as many higher-dimensional representations. The
Heisenberg group (mod n) discussed in Section 3 gives an
example. This group has size n3. It has n2 one-dimensional
representations and n - 1 representations of dimension n. For the
walk described, the largest eigenvalue occurs at a one-
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dimensional representation, so there is no cutoff. One can
construct walks for which the largest eigenvalue occurs at an
n-dimensional representation. Then, there would be a cutoff.
An instructive example is random walk on the group of

binary n-tuples. A natural walk picks a coordinate at random
and changes it to its opposite (mod 2). If the identity is added
to this generating set (to avoid parity problems) the walk can
be shown to get random for k = (1/4)n(log n + 0). It thus
shows a cutoff, even though the group is abelian. The apparent
contradiction to the heuristic is resolved by noting that the walk
has a large symmetry group (the symmetry group acts to
permute the generators). This forces high multiplicity of the
2nd eigenvalue {1 - [2/(n + 1)] with multiplicity n}. In the
next section the symmetry is broken, and a cutoff is still shown.
The discussion above has focused on upper bounds on the

variation distance through Eq. 4.1 with a claim that there are
matching lower bounds. Often, lower bounds are easy to
obtain. A systematic method for random walk on groups which
often seems to work is outlined in ref. 24 and developed in ref.
26. It uses the lead term to suggest useful test functions.
Some of the examples (such as the Gilbert-Shannon-Reeds

method of shuffling or the library examples of Section 3) are
not reversible yet still show sharp cutoffs. This simply empha-
sizes our lack of understanding.

I close this section with a question: let G(n) be a naturally
occurring sequence of groups and let S(n) be a sequence of
generating sets. Does the crucial eigenvalue 31 arise from a
representation close to the trivial representation? Thus, for
random walk on the integers (mod n), ,1 occurs at the
representation. Thus, for random walk on the integers (mod n),
,1 occurs at the representation e2ri/n. For random transposi-
tions, '31 occurs at the (n - 1)-dimensional representation: the
classical Riemann-Lebesgue Lemma is one version of this.
(The Fourier transform of an L1 function tends to zero.)
Gluck's (18) remarkable analysis of random walk on finite
groups of Lie type proves a version. A natural conjecture is that
for natural generating sets, the eigenvalues will decrease with
the dimension of the associated representation. It is not easy
to see how this can be made precise, but it seems to occur in
all natural examples.

Section 5. Breaking Symmetry

At present writing, proof of a cutoff is a difficult, delicate
affair, requiring detailed knowledge of the chain, such as all
eigenvalues and eigenvectors. Most of the examples where this
can be pushed through arise from random walk on groups, with
the walk having a fair amount of symmetry. It is natural to
wonder if the cutoff occurs for less symmetric chains. In this
section, I break the symmetry for the natural walk on the
hypercube and show that a cutoff persists.

Let X be the set of binary n-tuples (so 1i|I = 2n). Define a
Markov chain on X by P(x, y) = po if x = y, P(x, y) = pi if x =
y except in the ith coordinate, P(x, y) = 0 otherwise. Herepi are
positive weights summing to 1. The chain has a simple intuitive
description: pick i, 0s i <n with probabilitypi. If 0 is chosen,
the chain stays fixed. If i is chosen, the ith coordinate is changed
to its opposite. Whenpi = 1/(d + 1) this becomes the nearest
neighbor walk described above. In all cases, it has a uniform
stationary distribution 7r(x) = 1/2n. A one-parameter family of
weights modeled after Zipf's law will now be studied.

For O< a <x letpi = pa = Z/(1 + i)a, Os i-< n withZ-1
= =o 1/(1 + i)d. Let k and c = c(n, a, k) be related as follows:

a 0 k = (1/4)n(log n + c)
O <a <1 k = (n/4(1 - a))(logn - log logn +c)
a = 1 k = (n log n/4)(logn - log log n + c)

1 < a <x k= (na/4;(a))(logn -log logn +c),

;(a) = jX l1/Ia.

THEOREM 5. For nearest neighbor random walk on the binary
n-tuples with weights pa, let k be as above with C > 0. There is
a positive continuous function A(a) such that for any starting
state x

IPk - Tr A(a) (ee-c _ 1)l/2.

Conversely, with k and c as above with C > 0, there is an x such
that

IIPk w11 2- A(a, c),
with A(a, c) positive and tending to one as c tends to -X.

Remarks. The upper bound tends to zero like e-C/2 when c
is large. The lower bound shows that all of these walks have
cutoffs. When the weights tend to zero exponentially fast (as
1/2i) a similar analysis shows that the time to stationarity is
1 /min pi, and there is no cutoff. If weights are chosen at
random a similar analysis shows that the time to stationarity is
order n2, and there is no cutoff.
Proof The chain described is a random walk on the group X.

The basic upper bound Eq. 4.1 becomes

411Px --T.112 '_. -2XP)2k
x*O

n

-<f(l+ -4kPi)-1},+ e

ji=

n
4kpo (1+ e 4kPi)

i = 1

with x-p = x1p1 + * - - + x,,p,. Consider the product 7r(1 +
e-4kP) = elog(l+e 4kPi). From the definition of pi and k, we see
that in each of the cases k = S/4pi., where pi. = min pi, and S
= (log n - log log n + c}. It follows that -4kpi < S whence
e4kPi < e-C logn/n. Now log(1 +x) cx +x2/2 for 0 <x 1/2.
Thus, Elog(1 + e-4kPi) < Xe-4kPi + ((log n)2/n)(e- /2). We
next study Xe-4kPi. Using the definitions, consider -4kpn+lj
= -S/[1-jl(n + 1)]a. Now (1 -X)-a 2_ 1 + ax on [0, 1] by
convexity. So, -4kp,+1_j c -[1 + (aj/n + 1)]S. Thus,

ajs e Clog n 1 - e-ans/(n+1) e - c
Xe - 4kPi < e -se (n+1) = n + 1 1-e - ans/(n+1) a

This bound, with an easier bound on the second product, yields
the stated upper bound. For the lower bound, use a test
function of form S(x) = lwi(-1)xi with wi = +(1 -2p)kW W
- (w2 + *. + w2)1/2, and the sign chosen to make wi(1 -2p1)k
-0. Proceeding as in ref. 24, it is straightforward to compute
the mean and variance of S(x) under the distributions Px and
ir(x). Then Chebyshev's inequality shows that these two dis-
tributions are separated. Further details are omitted.

Theorem 5 shows that the cutoff phenomenon has a certain
robustness. The fact that it was discovered at all suggests that
it may be the rule rather than an exception.

Section 6. Other Distances

All of the results above have been stated for the total variation
distance. This widely used distance has the following equiva-
lent versions:

11P- T 1 max |P(4) -7T(A )|
AcX

1
2 E IP(x)-7r(x) =max P(f)- 7T(f)
2xGEv lifllcl

The first version is a direct probabilistic interpretation. The
second version is 1/2 the f1 norm which is convenient for
computation. The third version shows that IIP - r11 is the usual
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norm topology of measures as the dual of the bounded
measurable functions.

It is natural to consider the (2 norm as a measure of distance.
This has mathematical convenience but lacks a direct proba-
bilistic interpretation. Further, it needs to be normalized in
terms of the problem at hand. For example, consider a space
of 2n points. Let ir(x) = 1/2n. Let P(x) = 1/n on the first n
points and 0 on the last n points. Then lIP - X112 = {:lP(i) -
7(i)1211/2 = 1/(2n)1/2 tends to zero, but the two measures are
not close. For the uniform measure ir, the distance nlP - r 1122
is sensible, but in general it is not simple to see how to norm
the e2 distance nor compare from problem to problem. The
best available version is the X2 distance X(P, ir) = Y[[P(x) -
r(x)]2/1(x). This satisfies IIP - C X(P,X iP ) 5 sup(P(x) -
*r(x)/r(x))2. As shown in ref. 8 the X2 and maximum relative
error are essentially equivalent for Markov chains. Further, as
shown by Su (38), the entropy distance Ent(r, P) = Ex P(x) log
P(x)/l(x) satisfies Ent(,r, P) c log(1 + X(P, 'r)). We see that
many "sensible" distances are equivalent; when one is small,
they all are. See Su (38) for further study of how the choice of
distance affects the cutoff phenomena.

In practical problems, one may be interested in only one
feature of a chain. The total variation may be large because of
an unrelated different feature. For example, consider the
Gilbert-Shannon-Reeds measured in Theorem 1. It takes
(3/2)10g2 n shuffles to get random uniformly. If one is only
interested in the large cycles of a permutation then ref. 3 shows
that one shuffle is enough! No one knows how many shuffles
are enough to have the four bridge hands dealt from 52 cards
approximately equally likely (although seven shuffles suffice).
Fill (22) studies a specific feature (average search cost) of the
library problems studied in Theorem 3. They find cutoffs at
different times from the variation cutoffs.
The total variation studies reported here have been impor-

tant in pointing to a new phenomenon which is believed to be
widespread. The careful work required to prove variation
cutoffs often leads to a more or less complete understanding
of the chain such that essentially any natural question can be
answered.

The term cutoff phenomena first appeared in joint work with David
Aldous, the main developer of the modem quantitative theory of Markov
chains. Proofs of the first results in this subject were done jointly with
Mehrdad Shahshahani and R. L Graham. All ofmy recent work is ajoint
effort with Laurent Saloff-Coste. I thank them and a generation of
graduate students whose work has allowed the present survey.
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