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Abstract

We establish conditions on sequences of graphs which ensure that the mixing times of
the random walks on the graphs in the sequence converge. The main assumption is that the
graphs, associated measures and heat kernels converge in a suitable Gromov-Hausdorff sense.
With this result we are able to establish the convergence of the mixing times on the largest
component of the Erdős-Rényi random graph in the critical window, sharpening previous
results for this random graph model. Our results also enable us to establish convergence in
a number of other examples, such as finitely ramified fractal graphs, Galton-Watson trees
and the range of a high-dimensional random walk.

1 Introduction

The geometric and analytic properties of random graphs have been the subject of much recent
research. One strand of this development has been to examine sequences of random subgraphs
of vertex transitive graphs that are, in some sense, at or near criticality. A key example is the
percolation model and, for bond percolation above the upper critical dimension, we expect to
see mean field behaviour in the sequence of finite graphs in the critical window. That is the
natural scaling exponents for the volume and diameter of the graph and for the mixing time are
of the same order as those for the Erdős-Rényi random graph in the critical window, as given in
[35]. This mean field behaviour is seen in other natural models of sequences of critical random
graphs. For example [6] obtained general conditions for this behaviour and showed they hold
for examples such as the n-cube, while the high dimensional torus is treated in [23]. Motivated
by these results we will focus on the asymptotic behaviour of mixing times for random walks
on sequences of finite graphs. We consider general sequences of graphs but under some strong
conditions which will enable us to establish the convergence of the mixing time.

In order to demonstrate our main result we consider the Erdős-Rényi random graph. Let
G(N, p) be the random subgraph of the complete graph on N labelled vertices {1, . . . , N} in
which each edge is present with probability p independently of the other edges. It is a classical
result that if we set p = c/N , then as N →∞, if c > 1 there is a giant component containing a
positive fraction of the vertices, while for c < 1 the largest component is of size logN . However,
if p = N−1+λN−4/3 for some λ ∈ R, we are in the so-called critical window, and it is known that
the largest connected component CN , is of order N2/3. The recent work of [1] has shown that
the scaling limit of the graph, M, exists and can be constructed from the continuum random
tree.
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For the Erdős-Rényi random graph above criticality, [19] and [4] established mixing time
bounds for the simple random walk on the giant component. For the random graph in the
critical window, the following result on the mixing time t1mix(CN ) (a precise definition will be
given later in (1.8), see also Remark 1.3) was obtained by Nachmias and Peres ([35, Theorem
1.1]).

Theorem 1.1. Let CN be the largest connected component of G(N, (1 + λN−1/3)/N) for some
λ ∈ R. Then, for any ε > 0, there exists A = A(ε, λ) <∞ such that for all large N ,

P (t1mix(CN ) /∈ [A−1N,AN ]) < ε.

It is natural to ask for more refined results on the behaviour of the family of mixing times.
The purpose of this paper is to give a general criteria for the convergence of mixing times for
a sequence of random walks on finite graphs in the setting where the graphs can be embedded
nicely in a compact metric space. Due to the recent work of [1] and [9] we can apply our main
result to the case of the Erdős-Rényi random graph, to obtain the following result.

Theorem 1.2. Fix p ∈ [1,∞]. If tpmix(ρN ) is the Lp-mixing time of the random walk on CN
started from its root ρN , then

N−1tpmix(ρN )→tpmix(ρ),

in distribution, where tpmix(ρ) ∈ (0,∞) is the Lp-mixing time of the Brownian motion on M
started from ρ.

We will later illustrate our main result with a number of other examples of random walks
on sequences of finite graphs. In order to state it, though, we start by describing the general
framework in which we work. Firstly, let (F, dF ) be a compact metric space and let π be
a non-atomic Borel probability measure on F with full support. We will assume that balls
BF (x, r) := {y ∈ F : dF (x, y) < r} are π-continuity sets (i.e. π(∂BF (x, r)) = 0 for every x ∈ F ,
r > 0). Secondly, take XF = (XF

t )t≥0 to be a π-symmetric Hunt process on F . We suppose
the following:

• XF is conservative, (1.1)

• there exists a jointly continuous transition density (qt(x, y))x,y∈F,t>0 of XF , (1.2)

• for every x, y ∈ F and t > 0, qt(x, y) > 0, (1.3)

• for every x ∈ F and t > 0, qt(x, ·) is not identically equal to 1, (1.4)

where conditions (1.3) and (1.4) are assumed to exclude various trivial cases, and by transition
density we mean the kernel qt(x, y) such that

Ex[f(XF
t )] =

∫
F
qt(x, y)f(y)π(dy),

for all bounded continuous function f on F . Furthermore, we will say that the transition density
(qt(x, y))x,y∈F,t>0 converges to stationarity in an Lp sense for some p ∈ [1,∞] if it holds that

lim
t→∞

Dp(x, t) = 0, (1.5)

for every x ∈ F , where Dp(x, t) := ‖qt(x, ·)−1‖Lp(π). If this previous condition is satisfied, then
it is possible to check that the Lp-mixing time of F ,

tpmix(F ) := inf

{
t > 0 : sup

x∈F
Dp(x, t) ≤ 1/4

}
, (1.6)

2



is a finite quantity (see Section 3). Finally, note that tpmix(F ) ≤ tp
′

mix(F ) for p ≤ p′, which can
easily be shown using the Hölder inequality.

We continue by introducing some general notation for graphs and their associated random
walks. First, fix G = (V (G), E(G)) to be a finite connected graph with at least two vertices,
where V (G) denotes the vertex set and E(G) the edge set of G, and suppose dG is a metric on
V (G). In some examples, dG will be a rescaled version of the usual shortest path graph distance,
by which we mean that dG(x, y) is some multiple of the number of edges in the shortest path
from x to y in G, but this is not always the most convenient choice. Define a symmetric weight
function µG : V (G)2 → R+ that satisfies µGxy > 0 if and only if {x, y} ∈ E(G). The discrete

time random walk on the weighted graph G is then the Markov chain ((XG
m)m≥0,P

G
x , x ∈

V (G)) with transition probabilities (PG(x, y))x,y∈V (G) defined by PG(x, y) := µGxy/µ
G
x , where

µGx :=
∑

y∈V (G) µ
G
xy. If we define a measure πG on V (G) by setting, for A ⊆ V (G), πG(A) :=∑

x∈A µ
G
x /
∑

x∈V (G) µ
G
x , then πG is the invariant probability measure for XG. The transition

density of XG, with respect to πG, is given by (pGm(x, y))x,y∈V (G),m≥0, where

pGm(x, y) :=
PG
x (Xm = y)

πG({y})
.

Due to parity concerns for bipartite graphs, we will consider a smoothed version of this function
(qGm(x, y))x,y∈V (G),m≥0 obtained by setting

qGm(x, y) :=
pGm(x, y) + pGm+1(x, y)

2
, (1.7)

and define the Lp-mixing time of G by

tpmix(G) := inf

{
m > 0 : sup

x∈V (G)
DG
p (x,m) ≤ 1/4

}
, (1.8)

where DG
p (x,m) := ‖qGm(x, ·)− 1‖Lp(πG). Finally, in the case that we are considering a sequence

of graphs (GN )N≥1, we will usually abbreviate πG
N

to πN and qG
N

to qN , etc.

Remark 1.3. In [35], the mixing time of CN is defined in terms of the total variation distance,
that is

Tmix(CN ) = min{t : ‖Pt(x, ·)− π(·)‖TV ≤ 1/8, ∀x ∈ V (CN )}, (1.9)

where Pt(x,B) =
∑

y∈B q
N
t (x, y)π(y) for B ⊂ V (CN ) and ‖µ − ν‖TV = maxB⊂V (CN ) |µ(B) −

ν(B)| for probability measures µ, ν on V (CN ). (To be precise, 1/8 in (1.9) is 1/4 in [35], but
this only affects the constants in the results.) However, noting that

‖µ− ν‖TV =
1

2

∑
x∈V (CN )

|µ({x})− ν({x})|,

(see, for example [33, Proposition 4.2]), one sees that Tmix(CN ) = t1mix(CN ). Also note that [35]
considers the lazy walk on the graph to avoid parity issues, but the same techniques will apply
to the mixing time defined in terms of the smoothed heat kernel introduced at (1.7).

We are now ready to state the assumption under which we are able to prove the convergence
of mixing times for the random walks on a sequence of graphs. This explains that, when suitably
rescaled, the discrete state spaces, invariant measures and transition densities of a sequence of
graphs converge to (F, dF ), π and (qt(x, y))x,y∈F,t>0, respectively. Its formulation involves a
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spectral Gromov-Hausdorff topology, the definition of which is postponed until Section 2, and
a useful sufficient condition for it will be given in Proposition 2.4. Note that we extend the def-
inition of the discrete transition densities on graphs to all positive times by linear interpolation
of (qGm(x, y))m≥0 for each pair of vertices x, y ∈ V (G). Note also that the extended transition
densities are different from those of continuous time Markov chains.

Assumption 1. (GN )N≥1 is a sequence of finite connected graphs with at least two vertices for
which there exists a sequence (γ(N))N≥1 such that, for any compact interval I ⊂ (0,∞),((

V (GN ), dGN
)
, πN ,

(
qNγ(N)t(x, y)

)
x,y∈V (GN ),t∈I

)
→ ((F, dF ) , π, (qt(x, y))x,y∈F,t∈I)

in a spectral Gromov-Hausdorff sense.

Our main conclusion is then the following.

Theorem 1.4. Suppose that Assumption 1 is satisfied. If p ∈ [1,∞] is such that the transition
density (qt(x, y))x,y∈F,t>0 converges to stationarity in an Lp sense, then tpmix(F ) ∈ (0,∞) and

γ(N)−1tpmix(GN )→ tpmix(F ). (1.10)

In Section 3.2, we will explain how to derive a variation of Theorem 1.4 that concerns the
convergence of mixing times of processes started at a distinguished point in the state space.

We emphasize that a key part of our paper is to verify Assumption 1 and apply Theorem
1.4 in various interesting examples (including the Erdős-Rényi random graphs in the critical
window as mentioned above). Therefore, we devote considerable space to applying our results
to such.

The organization of the paper is as follows. In Section 2, we give a precise definition of
the spectral Gromov-Hausdorff convergence and give some of its basic properties. In Section 3,
we prove Theorem 1.4 and derive a variation of the theorem for distinguished starting points.
Some sufficient conditions for (1.1)-(1.5) are given in Section 4. A selection of examples where
the assumptions of Theorem 1.4 can be verified, and hence we have convergence of the mixing
time sequence, are given in Section 5. In the Appendix, we introduce some geometric conditions
on graphs for upper and lower bounds on the mixing times for the corresponding symmetric
Markov chains. Some useful conditions to derive tail estimates of mixing times on random
graphs are also given there.

2 Spectral Gromov-Hausdorff convergence

The aim of this section is to define a spectral Gromov-Hausdorff distance on triples consisting
of a metric space, a measure and a heat kernel-type function that will allow us to make precise
Assumption 1. We will also derive an equivalent characterisation of this assumption that will
be applied in the subsequent section when proving our mixing time convergence result, and
present a sufficient condition for Assumption 1 that will be useful when it comes to checking it
in examples. Note that we do not need to assume (1.3), (1.4) in this section, and only use (1.1)
to deduce Proposition 2.4 from a result of [14].

First, for a compact interval I ⊂ (0,∞), let M̃I be the collection of triples of the form
(F, π, q), where F = (F, dF ) is a non-empty compact metric space, π is a Borel probability
measure on F and q = (qt(x, y))x,y∈F,t∈I is a jointly continuous real-valued function of (t, x, y).
We say two elements, (F, π, q) and (F ′, π′, q′), of M̃I are equivalent if there exists an isometry

4



f : F → F ′ such that π ◦ f−1 = π′ and q′t ◦ f = qt for every t ∈ I, by which we mean
q′t(f(x), f(y)) = qt(x, y) for every x, y ∈ F , t ∈ I. DefineMI to be the set of equivalence classes
of M̃I under this relation. We will often abuse notation and identify an equivalence class in
MI with a particular element of it. Now, set

∆I

(
(F, π, q), (F ′, π′, q′)

)
:= inf

Z,φ,φ′,C

{
dZH(φ(F ), φ′(F ′)) + dZP (π ◦ φ−1, π′ ◦ φ′−1)

+ sup
(x,x′),(y,y′)∈C

(
dZ(φ(x), φ′(x′)) + dZ(φ(y), φ′(y′)) + sup

t∈I

∣∣qt(x, y)− q′t(x′, y′)
∣∣)} ,

where the infimum is taken over all metric spaces Z = (Z, dZ), isometric embeddings φ : F → Z,
φ′ : F ′ → Z, and correspondences C between F and F ′, dZH is the Hausdorff distance between
compact subsets of Z, and dZP is the Prohorov distance between Borel probability measures on
Z. Note that, by a correspondence C between F and F ′, we mean a subset of F ×F ′ such that
for every x ∈ F there exists at least one x′ ∈ F ′ such that (x, x′) ∈ C and conversely for every
x′ ∈ F ′ there exists at least one x ∈ F such that (x, x′) ∈ C.

Before proceeding to check the above definition gives us a metric and that the corresponding
space is separable, let us make a few remarks about the inspiration for it. In the infimum
characterising ∆I , the first term is simply that used in the standard Gromov-Hausdorff distance
(see [7, Definition 7.3.10], for example). The second term is that considered by the authors of
[22] in defining their ‘Gromov-Prohorov’ distance between metric measure spaces. The final
term is closely related to one used in [16, Section 6], when defining a distance between spatial
trees – real trees equipped with a continuous function. Indeed, the notion of a correspondence is
quite standard in the Gromov-Hausdorff setting as a way to relate two compact metric spaces.
One can, for example, alternatively define the Gromov-Hausdorff distance between compact
metric spaces as half the infimum of the distortion of the correspondences between them (see
[7, Theorem 7.3.25]).

Lemma 2.1. For any compact interval I ⊂ (0,∞), (MI ,∆I) is a separable metric space.

Proof. Fix a compact interval I ⊂ (0,∞). That ∆I is a non-negative function and is symmetric
is obvious. To prove that it is also the case that ∆I ((F, π, q), (F ′, π′, q′)) < ∞ for any choice
of (F, π, q), (F ′, π′, q′) ∈ MI , simply consider Z be the disjoint union of F and F ′, setting
dZ(x, x′) := diam(F, dF ) + diam(F ′, d′F ) for any x ∈ F, x′ ∈ F ′, and suppose C = F × F ′.

We next show that ∆I is positive definite. Suppose (F, π, q), (F ′, π′, q′) ∈MI are such that
∆I ((F, π, q), (F ′, π′, q′)) = 0. For every ε > 0, we can thus choose Z, φ, φ′, C such that the sum
of quantities in the defining infimum of ∆I is bounded above by ε. Moreover, there exists a
δ ∈ (0, ε] such that

sup
x1,x2,y1,y2∈F :

dF (x1,x2),dF (y1,y2)≤δ

sup
t∈I
|qt(x1, y1)− qt(x2, y2)| ≤ ε. (2.1)

Now, let (xi)
∞
i=1 be a dense sequence of disjoint elements of F (in the case F is finite, we suppose

that the sequence terminates after having listed the #F elements). By the compactness of F ,
there exists an integer Nε such that (BF (xi, δ))

Nε
i=1 is a cover for F . Define A1 := BF (x1, δ),

and Ai := BF (xi, δ)\ ∪i−1
j=1 BF (xi, δ) for i = 2, . . . , Nε, so that (Ai)

Nε
i=1 is a disjoint cover of F ,

and then consider a function fε : F → F ′ obtained by setting

fε(x) := x′i

5



on Ai, where x′i is chosen such that (xi, x
′
i) ∈ C for each i = 1, . . . , Nε. Clearly, by definition, fε

is a measurable function. It is further the case that it satisfies, for any x ∈ F ,

dZ(φ(x), φ′(fε(x))) ≤ dZ(φ(x), φ(xi)) + dZ(φ(xi), φ
′(x′i)) ≤ 2ε,

where we assume above that i ∈ {1, . . . , Nε} is such that x ∈ Ai. From this, it readily follows
that:

sup
x,y∈F

|dF (x, y)− dF ′(fε(x), fε(y))| ≤ 4ε (2.2)

and
dF
′

P (π ◦ f−1
ε , π′) ≤ 3ε, (2.3)

where dF
′

P is the Prohorov distance on F ′. We also have, by applying (2.1), that

sup
x,y∈F,t∈I

∣∣qt(x, y)− q′t(fε(x), fε(y))
∣∣ ≤ 2ε. (2.4)

To continue, we use a diagonalisation argument to deduce the existence of a sequence (εn)n≥1

such that fεn(xi) converges to some limit f(xi) ∈ F ′ for every i ≥ 1. From (2.2), we obtain that
dF ′(f(xi), f(xj)) = dF (xi, xj) for every i, j ≥ 1, and so we can extend the map f continuously to
the whole of F ([7, Proposition 1.5.9]). This construction immediately implies that f is distance
preserving. Moreover, reversing the roles of F and F ′, we are able to find a distance preserving
map from F ′ to F . Hence f must be an isometry. To check that (F, π, q) and (F ′, π′, q′) are
equivalent, it therefore remains to check that π ◦ f−1 = π′ and q′t ◦ f = qt for every t ∈ I. Fix
ε > 0 and recall that the definition of (xi)

Nε
i=1 means that it is an ε-net for F . Let ε′ ∈ (0, ε] be

such that dF ′(fε′(xi), f(xi)) ≤ ε for every i = 1, . . . , Nε. Then,

dF ′(fε′(x), f(x)) ≤ dF ′(fε′(x), fε′(xi)) + dF ′(fε′(xi), f(xi)) + dF ′(f(xi), f(x)) ≤ 7ε, (2.5)

where we are again assuming that i ∈ {1, . . . , Nε} is such that x ∈ Ai, and have applied (2.2)
and the distance-preserving property of f . In particular, this implies that

dF
′

P (π ◦ f−1, π′) ≤ dF ′P (π ◦ f−1, π ◦ f−1
ε′ ) + dF

′
P (π ◦ f−1

ε′ , π
′) ≤ 10ε,

where we use (2.3) to deduce the second inequality. Since ε > 0 was arbitrary, this yields that
π ◦ f−1 = π′. Finally, (2.4) and (2.5) imply that

sup
x,y∈F,t∈I

∣∣qt(x, y)− q′t(f(x), f(y))
∣∣ ≤ 2ε+ sup

x′1,x
′
2,y
′
1,y
′
2∈F ′:

dF ′ (x
′
1,x
′
2),dF ′ (y

′
1,y
′
2)≤7ε

sup
t∈I

∣∣q′t(x′1, y′1)− qt(x′2, y′2)
∣∣ ,

and so q′t ◦ f = qt for every t ∈ I follows from the continuity properties of q′.
For the triangle inequality, we closely follow the proof of [22, Lemma 5.2]. Let (F (i), π(i), q(i))

be an element of MI , i = 1, 2, 3. Suppose that ∆I((F
(1), π(1), q(1)), (F (2), π(2), q(2))) < δ1, so

that we can find a metric space Z1, isometric embeddings φ1,1 : F (1) → Z1 and φ2,1 : F (2) → Z1

and correspondence C1 between F (1) and F (2) such that the sum of quantities in the defining
infimum of ∆I is bounded above by δ1. If ∆I((F

(2), π(2), q(2)), (F (3), π(3), q(3))) < δ2, we define
Z2 ,φ2,2, φ3,2, C2 in an analogous way. Now, set Z to be the disjoint union of Z1 and Z2, and
define a distance on it by setting dZ |Zi×Zi = dZi for i = 1, 2, and for x ∈ Z1, y ∈ Z2,

dZ(x, y) := inf
z∈F (2)

(dZ1(x, φ2,1(z)) + dZ2(φ2,2(z), y)) .
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Abusing notation slightly, it is then the case that, after points separated by a 0 distance have
been identified, (Z, dZ) is a metric space into which there is a natural isometric embedding φi
of Zi, i = 1, 2. In this space, we have that

dZH(φ1(φ1,1(F (1))), φ2(φ3,2(F (3))))

≤ dZ1
H (φ1,1(F (1)), φ2,1(F (2))) + dZ2

H (φ2,2(F (2)), φ3,2(F (3))),

where we have applied the fact that φ1(φ2,1(y)) = φ2(φ2,2(y)) for every y ∈ F (2), and so
φ1(φ2,1(F (2))) = φ2(φ2,2(F (2))) as subsets of Z. A similar bound applies to the embedded
measures. Now, let

C := {(x, z) ∈ F (1) × F (3) : ∃y ∈ F (2) such that (x, y) ∈ C1, (y, z) ∈ C2},

then if (x, z) ∈ C,

dZ(φ1(φ1,1(x)), φ2(φ3,2(z))) ≤ dZ1(φ1,1(x), φ2,1(y)) + dZ2(φ2,2(y), φ3,2(z)),

where y ∈ F (2) is chosen such that (x, y) ∈ C1 and (y, z) ∈ C2, and we again note φ1(φ2,1(y)) =
φ2(φ2,2(y)). Proceeding in the same fashion, one can deduce a corresponding bound involving
q(i), i = 1, 2, 3. Putting these pieces together, it is elementary to deduce that

∆I((F
(1), π(1), q(1)), (F (3), π(3), q(3))) ≤ δ1 + δ2,

and the triangle inequality follows.
To complete the proof, we only need to show separability. This is straightforward, however,

as for any element ofMI , one can construct an approximating sequence that incorporates only:
metric spaces with a finite number of points and rational distances between them, probability
measures on these with a rational mass at each point, and functions that are defined (at each
coordinate pair) to be equal to rational values at a finite collection of rational time points and
are linear between these. �

We will say that if a sequence in MI converges to a limit in this space with respect to
the metric ∆I , then the convergence is in a spectral Gromov-Hausdorff sense. We note that
in the framework of compact Riemannian manifolds, different but related notions of spectral
distances were introduced by Bérard, Besson and Gallot ([5]) and by Kasue and Kumura ([24]).
Moreover, by applying our characterisation of spectral Gromov-Hausdorff convergence, we are
able to deduce that if Assumption 1 holds, then we can isometrically embed all the rescaled
graphs, measures and transition densities upon them in a common metric space so that they
converge to the relevant limit objects in a more standard way, as follows.

Lemma 2.2. Suppose that Assumption 1 is satisfied. For any compact interval I ⊂ (0,∞),
there exist isometric embeddings of (V (GN ), dGN ), N ≥ 1, and (F, dF ) into a common metric
space (E, dE) such that

lim
N→∞

dEH(V (GN ), F ) = 0, (2.6)

lim
N→∞

dEP (πN , π) = 0, (2.7)

and also,

lim
N→∞

sup
x,y∈F

sup
t∈I

∣∣∣qNγ(N)t(gN (x), gN (y))− qt(x, y)
∣∣∣ = 0, (2.8)

where, for brevity, we have identified the spaces (V (GN ), dGN ), N ≥ 1, and (F, dF ), and the
measures upon them with their isometric embeddings in (E, dE). For each x ∈ F , we define
gN (x) to be a vertex in V (GN ) minimising dE(x, y) over y ∈ V (GN ).
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Proof. Fix a compact interval I ⊂ (0,∞). By Assumption 1, for each N ≥ 1 it is possible
to find metric spaces (EN , dN ), isometric embeddings φN : (V (GN ), dGN ) → (EN , dN ), φ′N :
(F, dF )→ (EN , dN ) and correspondences CN between V (GN ) and F such that, identifying the
original objects and their embeddings,

dE
N

H (V (GN ), F ) + dE
N

P (πN , π)

+ sup
(x,x′),(y,y′)∈CN

(
dN (x, x′) + dN (y, y′) + sup

t∈I

∣∣∣qNγ(N)t(x, y)− qt(x′, y′)
∣∣∣) ≤ εN , (2.9)

where εN → 0. Now, proceeding similarly to the proof of the triangle inequality in Lemma
2.1, set E to be the disjoint union of EN , N ≥ 1, and define a distance on it by setting
dE |EN×EN = dN for N ≥ 1, and for x ∈ EN , x′ ∈ EN ′ , N 6= N ′, set

dE(x, x′) := inf
y∈F

(
dN (x, y) + dN ′(y, x

′)
)
.

Quotienting out points that are separated by distance 0 results in a metric space (E, dE) (again,
this is a slight abuse of notation), into which we have natural isometric embeddings of the metric
spaces (V (GN ), dGN ), N ≥ 1, and (F, dF ). Moreover, in the metric space (E, dE), it readily
follows from (2.9) that the relevant isometrically embedded objects satisfy (2.6) and (2.7). To
prove (2.8), first note that for every x ∈ V (GN ), N ≥ 1, there exists an x′ ∈ F such that
(x, x′) ∈ CN . This implies that dE(x, x′) ≤ εN , and so, for any δ > 0,

sup
x,y,z∈V (GN ):
d
GN

(y,z)≤δ

sup
t∈I

∣∣∣qNγ(N)t(x, y)− qNγ(N)t(x, z)
∣∣∣

≤ 2εN + sup
x,y,z∈F :

dF (y,z)≤δ+2εN

sup
t∈I
|qt(x, y)− qt(x, z)| . (2.10)

Now, for every x ∈ F and N ≥ 1, there exists an x′ ∈ V (GN ) such that (x′, x) ∈ CN , and so
dE(x′, x) ≤ εN . Therefore, since gN (x) is the closest vertex of V (GN ) to x,

gN (x) ∈ BE(x, 2εN ) ∩ V (GN ) ⊆ BE(x′, 3εN ) ∩ V (GN ) = BV (GN )(x
′, 3εN ).

Consequently,

sup
x,y∈F

sup
t∈I

∣∣∣qNγ(N)t(gN (x), gN (y))− qt(x, y)
∣∣∣

≤ εN + 2 sup
x,y,z∈V (GN ):
d
GN

(y,z)≤3εN

sup
t∈I

∣∣∣qNγ(N)t(x, y)− qNγ(N)t(x, z)
∣∣∣

≤ 5εN + 2 sup
x,y,z∈F :

dF (y,z)≤5εN

sup
t∈I
|qt(x, y)− qt(x, z)| ,

where the second inequality is an application of (2.10). Letting N →∞ and applying the joint
continuity of (qt(x, y))x,y∈F,t>0, we obtain the desired result. �

For our later convenience, let us note a useful tightness condition for the rescaled transition
densities that was essentially established in the proof of the previous result. Since the result
readily follows from the bound at (2.10), we will not explain its proof further.
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Lemma 2.3. Suppose that Assumption 1 holds. For any compact interval I ⊂ (0,∞),

lim
δ→0

lim sup
N→∞

sup
x,y,z∈V (GN ):
d
GN

(y,z)≤δ

sup
t∈I

∣∣∣qNγ(N)t(x, y)− qNγ(N)t(x, z)
∣∣∣ = 0. (2.11)

It is straightforward to reverse the conclusions of the previous two lemmas to check that if
(2.6), (2.7), (2.8) and (2.11) hold, then so does Assumption 1. Thus, in examples, it will suffice
to check these equivalent conditions when seeking to verify Assumption 1. In fact, it is further
possible to weaken these assumptions slightly by appealing to a local limit theorem from [14].
To be precise, because we are assuming that the transition densities of the graph satisfy the
tightness condition of (2.11), we can apply [14, Theorem 15], to replace the local convergence
statement of (2.8) with a central limit-type convergence statement. Note that, although in [14]
it was assumed that the metric on GN was a rescaled graph distance, exactly the same argument
yields the corresponding conclusion in our setting, and so we simply state the result.

Proposition 2.4 (cf. [14, Theorem 15]). Suppose that (V (GN ), dGN ), N ≥ 1, and (F, dF ) can
be isometrically embedded into a common metric space (E, dE) in such a way that (2.6) and
(2.7) are both satisfied. Moreover, assume that there exists a dense subset F ∗of F such that,
for any compact interval I ⊂ (0,∞), x ∈ F ∗, y ∈ F , r > 0,

lim
N→∞

PGN

gN (x)

(
XGN

bγ(N)tc ∈ BE(y, r)
)

= PF
x

(
XF
t ∈ BE(y, r)

)
(2.12)

uniformly for t ∈ I, and also (2.11) holds. Then Assumption 1 holds.

To complete this section, let us observe that [14] also provides two ways to check (2.11): one
involving a resistance estimate on the graphs in the sequence ([14, Proposition 17]), and one
involving the parabolic Harnack inequality ([14, Proposition 16]). Since the first of these two
methods will be applied in several of our examples later, let us recall the result here. To allow
us to state the result, we define RGN (x, y) to be the resistance between x and y in V (GN ) (see
(A.1)), when we suppose that GN is an electrical network with conductances of edges being

given by the weight function µG
N

. This defines a metric on V (GN ), for which we may check
the following.

Lemma 2.5 (cf. [14, Proposition 17]). Suppose that there exists a sequence (α(N))N≥1 and
constants κ, c1, c2, c3 ∈ (0,∞) such that

RGN (x, y) ≤ c1 (α(N)dGN (x, y))κ , ∀x, y ∈ V (GN ),

and also
c2γ(N) ≤ α(N)κβ(N) ≤ c3γ(N),

where β(N) :=
∑

x,y∈V (GN ) µ
GN
xy , then (2.11) holds.

3 Convergence of Lp-mixing times

3.1 Proof of Theorem 1.4

In this subsection we prove the mixing time convergence result of Theorem 1.4. Throughout,
we will suppose that Assumption 1 holds and that the graphs GN and limiting metric space F
have been embedded into a common metric space (E, dE) in the way described by Lemma 2.2.
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Recall from the introduction the definition of Dp(x, t) = ‖qt(x, ·)− 1‖Lp(π), the Lp-distance

from stationarity of the process XF started from x at time t. By applying the continuity of
(qt(x, y))x,y∈F,t>0, compactness of F and finiteness of π, it is easy to check that this quantity
is finite for every x ∈ F and t > 0. The next lemma collects together a number of other
basic properties of Dp(x, t) that we will apply later (the first part is a minor extension of [8,
Proposition 3.1], in our setting).

Lemma 3.1. Let p ∈ [1,∞]. For every x ∈ F , the function t 7→ Dp(x, t) is continuous and
strictly decreasing. Furthermore, we have

lim
t→0

Dp(x, t) ≥ 2. (3.1)

Proof. That the function t 7→ Dp(x, t) is continuous is clear from (1.2). We now check that
it is strictly decreasing. First, a standard argument involving an application of Jensen’s in-
equality and the invariance of π allows one to deduce that ‖Ptf‖Lp(π) ≤ ‖f‖Lp(π) for any
f ∈ Lp(F, π), where (Pt)t≥0 is the semigroup naturally associated with the transition den-
sity (qt(x, y))x,y∈F,t>0. Now, suppose f ∈ Lp(F, π) is such that ‖Ptf‖Lp(π) = ‖f‖Lp(π), and
define f1(y) := |Ptf(y)|p and f2(y) := Pt(|f |p)(y). By our assumption on f , we have that∫
F f1dπ =

∫
F f2dπ. Furthermore, Jensen’s inequality implies f1(y) ≤ f2(y). Thus, it must be

the case that f1(y) = f2(y), π-a.e. In particular, because π is a probability measure, there exists
a y ∈ F such that f1(y) = f2(y). In the case p > 1, this equality readily implies that f is constant
qt(y, z)π(dz)-a.e. Recalling the assumption that qt(y, z) > 0 everywhere, namely (1.3), it must
therefore hold that f is constant π-a.e. Observing that for s, t > 0 we can write Dp(x, s+ t) =
‖Ps(qt(x, ·)− 1)‖Lp(π), and noting the condition (1.4), it follows that Dp(x, s+ t) < Dp(x, t), as
desired. For p = 1, the result f1(y) = f2(y) implies that f is either non-negative or non-positive,
π-a.e. Consequently, for Dp(x, s+ t) = ‖Ps(qt(x, ·)− 1)‖Lp(π) = Dp(x, t), we would require that
qt(x, ·)− 1 is either non-negative or non-positive. Since

∫
F (qt(x, y)− 1)π(dy) = 0 (due to (1.1))

and (1.4) holds, this can not occur, which completes the proof of strict monotonicity.
To establish the limit at (3.1), it will suffice to prove the result in the case p = 1 (obtaining

the result for other values of p is then simply Jensen’s inequality). Let x ∈ F and r > 0, then

D1(x, t) ≥
∫
BE(x,r)

(qt(x, y)− 1)π(dy) +

∫
BE(x,r)c

(1− qt(x, y))π(dy)

= 2Px

(
XF
t ∈ BE(x, r)

)
− 2π(BE(x, r)),

where (1.1) is used in the last equality. Since XF is a Hunt process, the first term here converges
to 2 as t→ 0. Furthermore, because π is non-atomic, the second term can be made arbitrarily
small by suitable choice of r. The result follows. �

We continue by defining the Lp-mixing time at x ∈ F by setting

tpmix(x) := inf{t > 0 : Dp(x, t) ≤ 1/4}.

In fact, the previous lemma yields that tpmix(x) is the unique value of t ∈ (0,∞) such that
Dp(x, t) = 1/4 (when (1.5) holds at x). Similarly, define the Lp-mixing time of x ∈ V (GN ) by
setting

tN,pmix(x) := inf{t > 0 : DN
p (x, t) ≤ 1/4},

where DN
p (x,m) = ‖qNm(x, ·) − 1‖Lp(πN ). That the discrete mixing times at a point converge

when suitably rescaled to the continuous mixing time there is the conclusion of the following
proposition.
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Proposition 3.2. Suppose that Assumption 1 is satisfied. If p ∈ [1,∞] is such that (1.5) holds
for x ∈ F , then

lim
N→∞

γ(N)−1tN,pmix(gN (x)) = tpmix(x),

where, as in the statement of Lemma 2.2, gN (x) is a vertex in V (GN ) that minimises the
distance dE(x, y) over V (GN ).

Proof. Suppose p ∈ [1,∞] is such that (1.5) holds for x ∈ F , set t0 := tpmix(x) ∈ (0,∞), and fix
ε > 0. By (1.2) and the tightness of Lemma 2.3, there exists a δ > 0 such that

sup
t∈I

sup
y,z∈F :

dE(y,z)<2δ

||qt(x, y)− 1|p − |qt(x, z)− 1|p| < ε, (3.2)

lim sup
N→∞

sup
t∈I

sup
y,z∈V (GN ):
d
GN

(y,z)<3δ

∣∣∣|qNγ(N)t(gN (x), y)− 1|p − |qNγ(N)t(gN (x), z)− 1|p
∣∣∣ < ε, (3.3)

where I := [t0/2, 2t0]. Moreover, by the compactness of F , there exists a finite collection of
balls (BE(xi, δ))

k
i=1 covering F . Define A1 := B(x1, 2δ), and Ai := BE(xi, 2δ)\ ∪i−1

j=1 BE(xi, 2δ)

for i = 2, . . . , k, so that (Ai)
k
i=1 is a disjoint cover of the δ-enlargement of F .

We observe
|Dp(x, t)

p −DN
p (gN (x), γ(N)t)p| ≤ T1 + T2 + T3 + T4,

where

T1 :=

∣∣∣∣∣
∫
F
|qt(x, y)− 1|pπ(dy)−

k∑
i=1

|qt(x, xi)− 1|pπ(Ai)

∣∣∣∣∣ ,
T2 :=

∣∣∣∣∣
k∑
i=1

|qt(x, xi)− 1|pπ(Ai)−
k∑
i=1

|qt(x, xi)− 1|pπN (Ai)

∣∣∣∣∣ ,
T3 :=

∣∣∣∣∣
k∑
i=1

|qt(x, xi)− 1|pπN (Ai)−
k∑
i=1

|qNγ(N)t(gN (x), gN (xi))− 1|pπN (Ai)

∣∣∣∣∣ ,
T4 :=

∣∣∣∣∣
k∑
i=1

|qNγ(N)t(gN (x), gN (xi))− 1|pπN (Ai)−
∫
V (GN )

|qNγ(N)t(gN (x), y)− 1|pπN (dy)

∣∣∣∣∣ .
Now, suppose t ∈ I. From (3.2), we immediately deduce that T1 ≤ ε. For T2, we first observe
that the fact balls are π-continuity sets implies that so are the sets Ai, i = 1, . . . , k. Hence
πN (Ai)→ π(Ai) for each i = 1, . . . , k, and so T2 ≤ ε for large N . That T3 ≤ ε for large N is a
straightforward consequence of Lemma 2.2. Finally, applying the fact that dEH(F, V (GN ))→ 0,
we deduce that, for large N , (Ai)

k
i=1 is a disjoint cover for V (GN ). Since gN (xi) ∈ BE(xi, δ) for

large N , we also have that dGN (y, gN (xi)) ≤ 3δ, uniformly over y ∈ Ai, i = 1, . . . , k. Thus we
can appeal to (3.3) to deduce that it is also the case that T4 ≤ ε for large N . In fact, each of
these bounds can be assumed to hold uniformly over t ∈ I, thereby demonstrating that

lim
N→∞

sup
t∈I

∣∣Dp(x, t)−DN
p (gN (x), γ(N)t)

∣∣ = 0. (3.4)

Since t 7→ DN
p (gN (x), γ(N)t) is a decreasing function in t for every N (cf. [8, Proposition 3.1])

and t 7→ Dp(x, t) is strictly decreasing, the proposition follows. �
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Remark 3.3. In the case p = 2, the proof of the previous result greatly simplifies. In particular,
we note that

D2(x, t)2 = ‖qt(x, ·)− 1‖22 = q2t(x, x)− 1, (3.5)

and similarly
DN

2 (x, γ(N)t)2 = ‖qNγ(N)t(x, ·)− 1‖22 = qN2γ(N)t(x, x)− 1.

Hence the limit at (3.4) is an immediate consequence of the local limit result of (2.8), and we
do not have to concern ourselves with estimating the relevant integrals directly.

To extend the above proposition to the corresponding result for the mixing times of the
entire spaces, we will appeal to the following lemma, which establishes a continuity property
for the Lp-mixing times from fixed starting points in the limiting space, and a related tightness
property for the discrete approximations.

Lemma 3.4. Suppose p ∈ [1,∞] is such that (1.5) holds for x ∈ F , then the following statements
are true.
(a) The function y 7→ tpmix(y) is continuous at x.
(b) Under Assumption 1, it is the case that

lim
δ→0

lim sup
N→∞

sup
y∈V (GN ):

d
GN

(gN (x),y)<δ

γ(N)−1
∣∣∣tN,pmix(y)− tN,pmix(gN (x))

∣∣∣ = 0.

Proof. Consider p ∈ [1,∞] such that (1.5) holds for x ∈ F , so that t0 := tpmix(x) is finite, and let
ε ∈ (0, t0/2). Since the function t 7→ Dp(x, t) is strictly decreasing (by Lemma 3.1), there exists
an η > 0 such that Dp(x, t0− ε) > Dp(x, t0) + η = 1/4 + η and also Dp(x, t0 + ε) < 1/4− η. By
the continuity of (qt(x, y))x,y∈F,t>0, there also exists a δ > 0 such that

sup
t∈[t0−ε,t0+ε]

sup
y∈F :

dF (x,y)<δ

|Dp(x, t)−Dp(y, t)| < η.

Hence if y ∈ BF (x, δ), then

Dp(y, t0 − ε) > Dp(x, t0 − ε)− η >
1

4
,

Dp(y, t0 + ε) < Dp(x, t0 + ε) + η <
1

4
.

This implies that tpmix(y) ∈ [t0 − ε, t0 + ε], and (a) follows.
The proof of part (b) is similar. In particular, choose η as above and note that (3.4) implies

that DN
p (gN (x), γ(N)(t0 − ε)) > 1/4 + η/2 and DN

p (gN (x), γ(N)(t0 + ε)) < 1/4− η/2 for large
N . Furthermore, by the transition density tightness of Lemma 2.3, there exists a δ > 0 such
that

sup
t∈[t0−ε,t0+ε]

sup
y∈V (GN ):

d
GN

(gN (x),y)<δ

∣∣DN
p (gN (x), γ(N)t)−DN

p (y, γ(N)t)
∣∣ < η

2
,

for large N . Hence if N is large and y ∈ V (GN ) is such that dGN (gN (x), y) < δ, then
DN
p (y, γ(N)(t0− ε)) > 1/4, and DN

p (y, γ(N)(t0 + ε)) < 1/4. This implies that γ(N)−1tN,pmix(y) ∈
[t0 − ε, t0 + ε]. Since it is trivially true that, once N is large enough, this result can be applied
with y = gN (x), the result follows. �

12



We are now ready to give the proof of our main result.

Proof of Theorem 1.4. Observe that, under the assumptions of the theorem, Lemma 3.4(a)
implies that the function (tpmix(x))x∈F is continuous. Since F is compact, the supremum of
(tpmix(x))x∈F is therefore finite. Now, it is an elementary exercise to check that we can write the
Lp-mixing time of F , as defined at (1.6), in the following way:

tpmix(F ) = sup
x∈F

tpmix(x). (3.6)

Consequently tpmix(F ) ∈ (0,∞), as desired.
To complete the proof, we are required to demonstrate the convergence statement of (1.10).

Fix ε > 0. For every x ∈ F , Proposition 3.2 and Lemma 3.4(b) allow us to choose δ(x) > 0 and
N(x) <∞ such that

sup
N≥N(x)

∣∣∣γ(N)−1tN,pmix(gN (x))− tpmix(x)
∣∣∣ ≤ ε,

sup
N≥N(x)

sup
y∈V (GN ):

d
GN

(gN (x),y)<4δ(x)

γ(N)−1
∣∣∣tN,pmix(gN (x))− tN,pmix(y)

∣∣∣ ≤ ε.
Since (BE(x, δ(x)))x∈F is an open cover for F , by compactness it admits a finite subcover
(BE(x, δ(x)))x∈X . Moreover, because dEH(F, V (GN )) → 0, there exists an N0 > 0 such that if
N ≥ N0, then (BE(x, 2δ(x)))x∈X is a cover for V (GN ). Applying this choice of X , we have for
N ≥ N0 ∨maxx∈X N(x) that

γ(N)−1tpmix(GN ) ≤ sup
x∈X

γ(N)−1tN,pmix(gN (x)) + ε ≤ sup
x∈X

tpmix(x) + 2ε ≤ tpmix(F ) + 2ε,

where we note that, similarly to (3.6), the Lp-mixing time of the graph GN can be written as

tpmix(GN ) = sup
x∈V (GN )

tN,pmix(x).

Furthermore, if x0 ∈ F is chosen such that tpmix(x0) ≥ tpmix(F )− ε, then, for large N ,

γ(N)−1tN,pmix(GN ) ≥ γ(N)−1tN,pmix(gN (x0)) ≥ tpmix(x0)− ε ≥ tpmix(F )− 2ε,

where we have again made use of Proposition 3.2. Since ε > 0 was arbitrary, we are done. �

3.2 Distinguished starting points

In the case when convergence of transition densities is only known with respect to a single
distinguished starting point, it is only possible to prove a convergence result for the mixing
time from that point. Our goal in this subsection is to describe the topology in which we can
do this.

Consider, for a compact interval I ⊂ (0,∞), the space of triples of the form (F, π, q), where
F = (F, dF , ρ) is a non-empty compact metric space with distinguished vertex ρ, π is a Borel
probability measure on F and q = (qt(x, y))x,y∈F,t∈I is a jointly continuous real-valued function
of (t, x, y); this is the same as the collection M̃I defined in Section 2, though we have added
the supposition that the metric spaces are pointed. We say two such elements, (F, π, q) and
(F ′, π′, q′), are equivalent if there exists an isometry f : F → F ′ such that f(ρ) = ρ′, π◦f−1 = π′

and q′t ◦ f = qt for every t ∈ I. By following the proof of Lemma 2.1, one can check that it
is possible to define a metric on the equivalence classes of this relation by simply including in
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the definition of ∆I the condition that the correspondence C must contain (ρ, ρ′). We define
convergence in a spectral pointed Gromov-Hausdorff sense to be with respect to this metric.
The distinguished starting point version of Assumption 1 is then as follows.

Assumption 2. Let (GN )N≥1 be a sequence of finite connected graphs with at least two vertices
and one, ρN say, distinguished, for which there exists a sequence (γ(N))N≥1 such that, for any
compact interval I ⊂ (0,∞),((

V (GN ), dGN , ρ
N
)
, πN ,

(
qNγ(N)t(ρ

N , x)
)
x∈V (GN ),t∈I

)
converges to ((F, dF , ρ) , π, (qt(ρ, x))x∈F,t∈I) in a spectral pointed Gromov-Hausdorff sense, where
ρ is a distinguished point in F .

The following result can then be proved in an almost identical fashion to Proposition 3.2.
In doing this it is useful to note that if Assumption 1 is replaced by Assumption 2, then we are
able to include in the conclusions of Lemma 2.2 that ρN converges to ρ in E.

Theorem 3.5. Suppose that Assumption 2 is satisfied. If p ∈ [1,∞] is such that (1.5) holds
for x = ρ, then

γ(N)−1tN,pmix(ρN )→ tpmix(ρ).

4 Convergence to stationarity of the transition density

Before continuing to present example applications of the mixing time convergence results proved
so far, we describe how to check the Lp convergence to stationarity of the transition density of
XF in the case when we have a spectral decomposition for it and a spectral gap. In the same
setting, we will also explain how to check the non-triviality conditions on the transition density
that were made in the introduction.

Write the generator of the conservative Hunt process XF as −∆, and suppose that ∆ has
a compact resolvent. Then there exists a complete orthonormal basis of L2(F, π), (ϕk)k≥1 say,
such that ∆ϕk = λkϕk for all k ≥ 0, 0 ≤ λ0 ≤ λ1 ≤ . . . and limk→∞ λk =∞. By expanding as
a Fourier series, we can consequently write the transition density of XF as

qt(x, y) =
∑
k≥0

(∫
F
qt(x, z)ϕk(z)π(dz)

)
ϕk(y)

=
∑
k≥0

PFt ϕk(x)ϕk(y)

=
∑
k≥0

e−λktϕk(x)ϕk(y),

where (PFt )t≥0 is the associated semigroup, and the final equality holds as a simple consequence
of the fact that d

dt(P
F
t ϕk) = −PFt ∆ϕk = −λkPFt ϕk. Now by (1.1), it holds that 1 = PFt 1 is

in the domain of ∆. A standard argument thus yields ∆1 = ∆PFt 1 = − d
dt(P

F
t 1) = 0, and so

there is no loss of generality in presupposing that λ0 = 0 and ϕ0 ≡ 1 in this setting. The only
additional assumption we make on the transition density (qt(x, y))x,y∈F,t>0 is that it is jointly
continuous in (t, x, y) (i.e. (1.2) holds).
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Lemma 4.1. Suppose that the operator ∆ has a compact resolvent, so that the above spectral
decomposition holds. If there is a spectral gap, i.e. λ1 > 0, then (qt(x, y))x,y∈F,t>0 converges to
stationarity in an Lp sense (namely (1.5) holds) for any p ∈ [1,∞].

Proof. Recall from (3.5) that D2(x, t)2 = q2t(x, x)− 1. Under the assumptions of the lemma, it
follows that

D2(x, t)2 =
∑
k≥1

e−2λktϕk(x)2 → 0, (4.1)

as t → ∞, which completes the proof of the result for p = 2. To extend this to any p, we first
use Cauchy-Schwarz to deduce

(qt(x, y)− 1)2 =

∑
k≥1

e−λktϕk(x)ϕk(y)

2

≤
∑
k≥1

e−λktϕk(x)2
∑
k≥1

e−λktϕk(y)2

= (qt(x, x)− 1)(qt(y, y)− 1).

Consequently, we have that

D∞(x, t)2 = sup
y∈F

(qt(x, y)− 1)2

≤ (qt(x, x)− 1) sup
y∈F

(qt(y, y)− 1)

≤ D2(x, t/2)2 sup
y∈F

D∞(y, 1)

for any t ≥ 1, where the second inequality involves an application of the monotonicity property
proved as part of Lemma 3.1. Now, by (1.2), the term supy∈F D∞(y, 1) is a finite constant, and
so combining the above bound with (4.1) implies that D∞(x, t) ≤ CD2(x, t/2) → 0 as t → ∞.
The result for general p ∈ [1,∞] is an immediate consequence of this. �

We now give a lemma that explains how to check conditions (1.3) and (1.4).

Lemma 4.2. Suppose that the operator ∆ has a compact resolvent and there is a spectral gap,
then the conditions (1.3) and (1.4) are automatically satisfied.

Proof. Firstly, assume that qt(x, y) = 0 for some x, y ∈ F , t > 0. If s ∈ (0, t), then the
Chapman-Kolmogorov equations yield 0 = qt(x, y) =

∫
F qs(x, z)qt−s(z, y)π(dz). Since π has

full support, using (1.2), it follows that qs(x, z)qt−s(z, y) = 0 for every z ∈ F . In particular,
qs(x, y)qt−s(y, y) = 0. Noting that qt−s(y, y) = D2

2(y, t/2) + 1 ≥ 1, we deduce that qs(x, y) = 0.
Now, define a function f : (0,∞) → R+ by setting f(s) := qs(x, y). Letting (λ′i)i≥0 represent
the distinct eigenvalues of ∆, we can write

f(s) =
∑
i≥0

aie
−λ′is,

where ai :=
∑

j:λj=λ′i
ϕj(x)ϕj(y). In fact, since Cauchy-Schwarz implies

∑
i≥0 |aie−λ

′
is| ≤

(qs(x, x)qs(y, y))1/2 < ∞, this series converges absolutely whenever s ∈ (0,∞). Thus f(z) :=∑
i≥0 aie

−λ′iz defines an analytic function on the whole half-plane <(z) > 0. By our previous
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observation regarding qs(x, y), this analytic function is equal to 0 on the set (0, t], and therefore
it must be 0 everywhere on <(z) > 0. However, this contradicts the fact that f(t) = qt(x, y)→ 1
as t→∞, which was proved in Lemma 4.1. Hence, qt(x, y) > 0 for every x, y ∈ F , t > 0.

Secondly, suppose that qt(x, ·) ≡ 1 for some x ∈ F and t > 0. Then 1 = qt(x, x) =
1 +

∑
i≥1 ϕi(x)2e−λit, and so ϕi(x) = 0 for every i ≥ 1. This implies that qt(x, x) = 1 for every

t > 0. However, by following the proof of (3.1), one can deduce that

lim
t→0

(qt(x, x)− 1) = lim
t→0

D2
2(x, t/2) ≥ lim

t→0
D2

1(x, t/2) ≥ 2,

and so the previous conclusion can not hold. Consequently, we have shown that qt(x, ·) 6≡ 1 for
any x ∈ F , t > 0, as desired. �

To summarise, the above results demonstrate that to verify all the conditions on the tran-
sition density that are required to apply our mixing time convergence results, it will suffice to
check that the conservative Hunt process XF has a jointly continuous transition density and
the corresponding non-negative self-adjoint operator, ∆, has a compact resolvent and exhibits a
spectral gap. As the following corollary explains, this is a particularly useful observation in the
case that the Dirichlet form (E ,F) associated with XF is a resistance form (see [26, Definition
3.1]).

Corollary 4.3. Suppose that XF is a π-symmetric Hunt process on F such that the associated
Dirichlet form (E ,F) is a resistance form, then (1.1)-(1.5) are automatically satisfied.

Proof. The fact that XF is conservative is clear since for a resistance form 1 ∈ F and E(1, 1) = 0.
That (1.2) holds is proved in [26, Lemma 10.7]. Moreover, we can check that the non-negative
operator corresponding to (E ,F) has a compact resolvent (see [26, Lemma 9.7] and [28, Theorem
B.1.13]) and exhibits a spectral gap (this is an easy consequence of the fact that, for a resistance
form, E(f, f) = 0 if and only if f is constant). Thus, by Lemma 4.1 and Lemma 4.2, the
transition density of XF also satisfies (1.3)-(1.5). �

5 Examples

We now proceed to apply our mixing time convergence results to a number of examples: lattice
models in a box, self-similar graphs with fractal weights, critical Galton-Watson trees, the
critical Erdős-Rényi random graph, and the range of the random walk in high dimensions. In
the third and fourth of these, we will also describe how these can be applied to relate tail
asymptotics for mixing time distributions of the discrete and continuous models. Note that the
general techniques we apply for estimating the relevant mixing times are postponed until the
appendix.

5.1 Lattice models in a box

As a simple application of our main mixing time convergence result, we consider GN to be
a discrete box of side-length N , by which we mean that V (GN ) = {1, . . . , N}d and vertices
x, y ∈ V (GN ) are connected by an edge if and only if

∑d
i=1 |xi − yi| = 1. We write dGN to

represent the Euclidean metric on V (GN ), denote the stationary probability measure of the
simple random walk on GN by πN , and the corresponding smoothed transition density, as
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defined at (1.7), by (qNm(x, y))x,y∈V (GN ),m≥0. In this setting, standard convergence results imply
that, for any compact interval I ⊂ (0,∞),((

GN , N−1dGN
)
, πN , (qNN2t(x, y))x,y∈V (GN ),t∈I

)
converges in (MI ,∆I) to the triple consisting of: [0, 1]d equipped with the Euclidean metric,
d-dimensional Lebesgue measure on this set and the transition density of Brownian motion on
[0, 1]d reflected at the boundary. In particular, Assumption 1 holds in our setting, and because
(1.1)-(1.5) are satisfied, we are immediately able to apply Theorem 1.4 to deduce the following.

Theorem 5.1. Fix p ∈ [1,∞]. If tpmix({1, . . . , N}d) is the Lp-mixing time of the simple random
walk on {1, . . . , N}d, then

N−2tpmix({1, . . . , N}d)→tpmix([0, 1]d),

where tpmix([0, 1]d) is the Lp-mixing time of the Brownian motion on [0, 1]d reflected at the
boundary.

We note that the same result holds if {1, . . . , N}d is replaced by the discrete d-dimensional
torus (Z/NZ)d, and [0, 1]d is replaced by the continuous d-dimensional torus (R/Z)d.

5.2 Self-similar fractal graphs with random weights

Although we will also briefly comment upon Sierpinski carpet-type graphs at the end of this
section, the examples that we consider here are primarily those based on nested fractals, the
definition of which we now recall. Suppose (ψi)

K
i=1 is a family of L−1-similitudes on Rd for

some L > 1, by which we mean that, for each i, ψi is a map from Rd to Rd that satisfies
|ψi(x)−ψi(y)| = L−1|x−y|, for every x, y ∈ Rd, where | ·− · | is the usual Euclidean distance on
Rd. We assume that the collection (ψi)

K
i=1 satisfies the open set condition; this means that there

exists a non-empty bounded set O ⊆ Rd such that (ψi(O))Ki=1 are disjoint and ∪Ki=1ψi(O) ⊆ O.
Since (ψi)

K
i=1 is a family of contraction maps, there exists a unique non-empty compact set F

such that F = ∪Ki=1ψi(F ). Write the set of fixed points of (ψi)
K
i=1 as Ξ, and define the collection

of essential fixed points of (ψi)
K
i=1 by

V0 := {x ∈ Ξ : ∃i, j ∈ {1, . . . ,K}, i 6= j and y ∈ Ξ such that ψi(x) = ψj(y)} .

Throughout, we assume that #V0 ≥ 2. The compact set F is then said to be a nested fractal if
it satisfies the following connectivity, finite ramification and symmetry properties.

• For any i, j ∈ {1, . . . ,K}, there exists a sequence i = i0, i1, . . . , im = j such that

ψil−1
(V0) ∩ ψil(V0) 6= ∅,

for every l = 1, . . . ,m.

• If i1 . . . in and j1 . . . jn are distinct sequences in {1, . . . ,K}, then

ψi1...in(F ) ∩ ψj1...jn(F ) = ψi1...in(V0) ∩ ψj1...jn(V0),

where ψi1...in := ψi1 ◦ · · · ◦ ψin .

• If x, y ∈ V0, then the reflection in the hyperplane Hxy := {z ∈ Rd : |z−x| = |z−y|} maps
Vn to itself, where

Vn :=
K⋃

i1,...,in=1

ψi1...in(V0).
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We will suppose dF is the intrinsic shortest path metric on F defined in [18, Section 3] (we assume
that the size vector introduced there is simply r̃ = (1, . . . , 1)), and note that this induces the
same topology as the Euclidean metric. Moreover, we suppose π is the (lnK/ lnL)-Hausdorff
measure on F with respect to the Euclidean metric, normalised to be a probability measure.
This measure is non-atomic, has full support and satisfies π(∂B(x, r)) = 0 for every x ∈ F ,
r > 0 (see [14, Lemma 25]).

We now define a sequence of graphs (GN )N≥0 by setting

V (GN ) :=
K⋃

i1,...,iN=1

ψi1...iN (V0)

and

E(GN ) := {{ψi1...iN (x), ψi1...iN (y)} : x, y ∈ V0, x 6= y, i1, . . . , iN ∈ {1, . . . ,K}} .

We set dGN := dF |V (GN )×V (GN ), so that (V (GN ), dGN ) clearly converges to (F, dF ) with respect

to the Hausdorff distance between compact subsets of F . Weights µN on the edges of GN will be
selected randomly from a distribution that satisfies uniform boundedness and cell independence.
By uniform boundedness, we mean that there exist deterministic constants c1, c2 ∈ (0,∞) such
that, almost-surely,

c1 ≤ µNxy ≤ c2, ∀{x, y} ∈ E(GN ),

and we define cell independence to be the property that, for each N ≥ 0, the collections{(
µNψi1...iN (x)ψi1...iN (y)

)
x,y∈V0,x 6=y

}
i1,...,iN∈{1,...,K}

are independent and have the same distribution as
(
µ0
xy

)
x,y∈V0,x 6=y

. Note that we still require

µNxy = µNyx for every x, y ∈ V (GN ), and µNxy = 0 if {x, y} 6∈ E(GN ). By the procedure described

in the introduction, we define from these weights a sequence of random measures (πN )N≥0 on
the vertex sets of our graphs in the sequence (GN )N≥0. That πN weakly converges to π as
Borel probability measures on F , almost-surely, can be checked by applying the argument of
[14, Lemma 26].

To describe the scaling limit of the random walks associated with the random weights µN ,
we appeal to the homogenisation result of [29]. To describe this, we first introduce the Dirichlet

form associated with the walk on the level N graph by setting, for f ∈ RV (GN ),

EN (f, f) :=

K∑
i1,...,iN=1

∑
x,y∈V0,x 6=y

µNψi1...iN (x)ψi1...iN (y) (f(ψi1...iN (x))− f(ψi1...iN (y)))2 . (5.1)

Let ΛN = (ΛNxy)x,y∈V0,x 6=y be the collection of weights such that the associated random walk

on G0 is the trace of XGN onto V0. It is then proved in [29, Theorem 3.4], that there exists a
deterministic C = (Cxy)x,y∈V0,x 6=y and resistance scaling factor λ ∈ (0,∞) such that

lim
n→∞

λNΛN = C,

where the limit is an L1-limit in the space of non-negative weights on the complete graph with
vertex set V0. Moreover, C satisfies Cxy > 0 for every x, y ∈ V0, x 6= y, and is self-similar under
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the natural renormalisation operation. Now, suppose ENC is a quadratic form on RV (GN ) which
satisfies (5.1) with µNψi1...iN (x)ψi1...iN (y) replaced by Cxy in each summand, then define

E(f, f) = lim
N→∞

λNENC (f |V (GN ), f |V (GN ))

for f ∈ F , where F is the subset of C(F,R) such that the right-hand side above exists finitely.
It is known that (E ,F) is a local, regular Dirichlet form on L2(F, π), which is also a resistance
form (see [28], for example). Thus, by Corollary 4.3, the associated π-symmetric diffusion XF

satisfies (1.1)-(1.5).
We now explain how to verify (2.12) in this setting. First, note that if we can prove a version

of [30, Theorem 3.6] (or [29, Theorem 3.5]) with respect to XGN on our compact fractal F , then
a probabilistic version of (2.12) can be proved similarly to [14, Proposition 30(i)]. (Here, our

XGN is a discrete time Markov chain with πN as the invariant measure, whereas in [29] and [30]
the continuous-time Markov chains with normalised counting measure as the invariant measure
were considered. However, since both measures are comparable and they converge to π almost-
surely, the difference can be easily resolved.) So, we will explain how to prove a version of [30,
Theorem 3.6]. Take two distinct points a1, a2 from V0. Let σ0

a1 be the first hitting time of a1,
and for each i ∈ N, define inductively

σia2(XGN ) := inf{m ≥ σi−1
a1 (XGN ) : XGN

m = a2},

σia1(XGN ) := inf{m ≥ σia2(XGN ) : XGN

m = a1}.

Then, we can write, for continuous f : F → R,

EG
N

xN
[f(XGN

t(Kλ)N )]

= EG
N

xN
[f(XGN

t(Kλ)N ) : t(Kλ)N < σ(0)
a1 ] + EG

N

xN
[f(XGN

t(Kλ)N ) : σ(0)
a1 ≤ t(Kλ)N < σ(1)

a2 ]

+

∞∑
i=1

EG
N

xN
[f(XGN

t(Kλ)N ) : σ(i)
a2 ≤ t(Kλ)N < σ(i)

a1 ] (5.2)

+

∞∑
i=1

EG
N

xN
[f(XGN

t(Kλ)N ) : σ(i)
a1 ≤ t(Kλ)N < σ(i+1)

a2 ], (5.3)

where xN ∈ V (GN ) converges to x ∈ F , say. The first summand in the right hand side of

(5.2) can be written in terms of the process XGN killed at a1, and so by tracing the proof of
[14, Proposition 30(i)] line by line, we can check it converges to the corresponding expectation
involving XF killed on hitting a1. Similarly, the first summand in (5.3) can be written as

EG
N

xN
[f(XGN

t(Kλ)N ) : σ(0)
a1 ≤ t(Kλ)N < σ(1)

a2 ]

= EG
N

xN
[1{σ(0)

a1
≤t(Kλ)N}E

GN

a1 [f(XGN

t(Kλ)N−σ(0)
a1

)1{t(Kλ)N−σ(0)
a1
<σ

(1)
a2
◦ θ
σ
(0)
a1

}|Fσ(0)
a1

]],

where θ is the shift map. Given σ
(0)
a1 = s, EG

N

a1 [f(XGN

t(Kλ)N−s)1{t(Kλ)N−s<σ(1)
a2
}] can be written in

terms of the process started at a1 and killed on hitting a2, independently of the distribution of

σ
(0)
a1 . Thus the second term in the right hand side of (5.2) converges to EFx [f(XF

t ) : σ
(0)
a1 (XF ) ≤

t < σ
(1)
a2 (XF )]. We can prove convergence of the rest of the terms similarly. Moreover, by

applying the estimate for the exit time of the random walks from balls stated as part of [14,
Lemma 27], for example, it is straightforward to check that there exists a t0 > 0 such that

PGN
a1 ((Kλ)−Nσ

(1)
a2 ≤ t0) and PGN

a2 ((Kλ)−Nσ
(0)
a1 ≤ t0) are both bounded above by 1/2, uniformly
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in N . As a consequence of this, one can show that the terms in the sums at (5.2) and (5.3)
decay exponentially, uniformly in N , and hence that the right hand side of (5.2) converges
to EFx [f(XF

t )] as N → ∞. Convergence of the finite dimensional distributions can be shown
similarly and we obtain the desired version of [30, Theorem 3.6].

Finally, a probabilistic version of the tightness condition of (2.11) is easily checked by apply-
ing (a probabilistic version of) Lemma 2.5, using known resistance estimates for nested fractals
(cf. [14, Proposition 30(ii)]), and so Assumption 1 holds in probability due to Proposition 2.4.
Thus we are able to apply Theorem 1.4 to deduce the following.

Theorem 5.2. If tmix(GN ) is the mixing time of the random walk on the level N approximation
to the nested fractal F equipped with random weights satisfying uniform boundedness and cell
independence, then

(Kλ)−N tmix(GN )→ tmix(F )

in probability, where tmix(F ) is the mixing time of the diffusion XF .

Let us remark that, if the weights C = (Cxy)x,y∈V0,x 6=y are the unique collection of weights
that is invariant under the symmetries of the nested fractal (i.e. for every map h which is
a reflection in a hyperplane of the form Hxy, x, y ∈ V0, the collection (Ch(x)h(y))x,y∈V0,x 6=y is
identical to (Cxy)x,y∈V0,x 6=y, see [34, 37] relevant uniqueness result), then the resulting diffusion
XF is the so-called Brownian motion on the nested fractal F . This is the case if we assume that
(µ0
xy)x,y∈V0,x 6=y is invariant in distribution (so that (µ0

h(x)h(y))x,y∈V0,x 6=y is equal in distribution

to (µ0
xy)x,y∈V0,x 6=y for reflections h of the form described).

Finally, variations on the above mixing time convergence result can also be established for
examples along the lines of those appearing in [14, Sections 7.4 and 7.5]. These include: an
almost-sure statement for Vicsek set-type graphs (which complements the mixing time bounds
for deterministic versions of these graphs proved in [21]); a convergence of mixing times for
deterministic Sierpinski carpet graphs; and a subsequential limit for Sierpinski carpets with
random weights. Since many of the ideas needed for these applications are similar to those
discussed above, we omit the details.

5.3 Critical Galton-Watson trees

The connection between critical Galton-Watson processes and α-stable trees is now well-known,
and so we will be brief in introducing it. Let ξ be a mean 1 random variable whose distribution
is aperiodic (not supported on a sub-lattice of Z). Furthermore, suppose that ξ is in the domain
of attraction of a stable law with index α ∈ (1, 2), by which we mean that there exists a sequence
aN →∞ such that

ξ[N ]−N
aN

→ Ξ, (5.4)

in distribution, where ξ[N ] is the sum of N independent copies of ξ and the limit random
variable satisfies E(e−λΞ) = e−λ

α
. If TN is a Galton-Watson tree with offspring distribution ξ

conditioned to have total progeny N , then it is the case that

N−1aNTN → T (α), (5.5)

in distribution with respect to the Gromov-Hausdorff distance between compact metric spaces,
where T (α) is an α-stable tree normalised to have total mass equal to 1 (see [32, Theorem 4.3],
which is a corollary of a result originally proved in [15]). Note that the left-hand side here is
shorthand for the metric space (V (TN ), N−1aNdTN ), where V (TN ) is the vertex set of TN and
dTN is the shortest path graph distance on this set.
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The α-stable tree T (α) is almost-surely a compact metric space. Moreover, there is a natural
non-atomic probability measure upon it, π(α) say, which has full support, and appears as the
limit of the uniform measure on the approximating graph trees. Usefully, we can decompose
this measure in terms of a collection of measures of level sets of the tree. More specifically, in
the construction of the α-stable tree from an excursion we can naturally choose a root ρ ∈ T (α).
We define T (α)(r) := {x ∈ T (α) : dT (α)(ρ, x) = r} to be the collection of vertices at height r
above this vertex. For almost-every realisation of T (α), there then exists a cadlag sequence of
finite measures on T (α), (`r)r>0, such that `r is supported on T (α)(r) for each r and

π(α) =

∫ ∞
0

`rdr

(see [16, Section 4.2]). Clearly this implies that π(α)(∂BT (α)(ρ, r)) = 0 for every r > 0, for
almost-every realisation of T (α). Since α-stable trees satisfy a root-invariance property (see [16,
Theorem 4.8]), one can easily extend this result to hold for π(α)-a.e. x ∈ T (α). Although this
is not quite the assumption of the introduction that π(α)(∂BT (α)(x, r)) = 0 for every x ∈ T (α),
r > 0, by a minor tweak of the proof of Proposition 3.2, we are still able to apply our mixing
time convergence results in the same way.

Upon almost-every realisation of the metric measure space (T (α), π(α)), it is possible to
define a corresponding Brownian motion X(α) (to do this, apply [27, Theorem 5.4], in the way
described in [10, Section 2.2]). This is a conservative π(α)-symmetric Hunt process, and the
associated Dirichlet form (E(α),F (α)) is actually a resistance form. Thus we can again apply
Corollary 4.3 to confirm that (1.1)-(1.5) hold for some corresponding transition density, q(α)

say. Now, in [13], it was demonstrated that if PTN
ρN

is the law of the random walk on TN started

from its root (original ancestor) ρN and πN is its stationary probability measure, then, after
embedding all the objects into an underlying Banach space in a suitably nice way, the conclusion
of (5.5) can be extended to the distributional convergence of(

N−1aNTN , πN (Na−1
N ·),P

TN
ρN

((
N−1aNX

TN
bN2a−1

N tc

)
t∈[0,1]

∈ ·

))

to (T (α), π(α),P
(α)
ρ ), where P

(α)
ρ is the law of X(α) started from ρ. By applying the fixed starting

point version of the local limit result of Proposition 2.4 (cf. [14, Theorem 1]), similarly to the
argument of [14, Section 7.2], for the Brownian continuum random tree, which corresponds
to the case α = 2, one can obtain from this a distributional version of Assumption 2. (The
tightness condition of (2.11) is easily checked by applying Lemma 2.5.)

Lemma 5.3. For any compact interval I ⊂ (0,∞),((
V (TN ), N−1aNdT N , ρ

N
)
, πN ,

(
qN
N2a−1

N t
(ρN , x)

)
x∈V (TN ),t∈I

)
converges in distribution to ((T (α), dT (α) , ρ), π(α), (q

(α)
t (ρ, x))x∈T (α),t∈I) in a spectral pointed

Gromov-Hausdorff sense.

Consequently, since the space in which the above convergence in distribution occurs is sepa-
rable, it is straightforward to apply Theorem 3.5 to deduce from this the following mixing time
convergence result. We remark that the

√
2 that appears in the finite variance result is simply

an artefact of the particular scaling we have described here, and could alternatively have been
absorbed in the scaling of metrics.
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Theorem 5.4. Fix p ∈ [1,∞]. If tpmix(ρN ) is the Lp-mixing time of the random walk on TN
started from its root ρN , then

N−2aN t
p
mix(ρN )→tpmix(ρ),

in distribution, where tpmix(ρ) ∈ (0,∞) is the Lp-mixing time of the Brownian motion on T (α)

started from ρ. In particular, in the case when the offspring distribution has finite variance σ,
it is the case that

σ√
2
N−3/2tpmix(ρN )→tpmix(ρ),

in distribution.

Remark 5.5. We note that it was only for convenience that the convergence of the random
walks on the trees TN , N ≥ 1, to the Brownian motion on T (α) was proved from a single starting
point in [13]. We do not anticipate any significant problems in extending this result to hold for
arbitrary starting points. Indeed, the first step would be to make the obvious adaptations to
the proof of [13, Lemma 4.2] to extend the result, which demonstrates convergence of simple
random walks (and related additive functionals) on subtrees of TN consisting of a finite number
of branch segments to the corresponding continuous objects, from the case when all the random
walks start from the root to an arbitrary starting point version. An argument identical to the
remainder of [13, Section 4] could then be used to obtain the convergence of simple random
walks on the whole trees, at least in the case when the starting point of the diffusion is in one
of the finite subtrees considered. However, since the union of the finite subtrees is dense in the
limiting space, we could subsequently use the heat kernel continuity properties to obtain the
non-pointed spectral Gromov-Hausdorff version of Lemma 5.3. However we do not pursue this
approach here as it would require a substantial amount of space and new notation that is not
relevant to the main ideas of this article. Were it to be checked, though, Theorem 1.4 would
imply, for any p ∈ [1,∞], the distributional convergence of tpmix(TN ), the Lp-mixing time of the
random walk on TN , when rescaled appropriately, to tpmix(T (α)) ∈ (0,∞), the Lp-mixing time
of the Brownian motion on T (α).

Finally, we use our mixing time convergence result to establish asymptotic bounds for the
distributions of mixing times of graphs in the sequence (TN )N≥1 in the case when we have a
finite offspring distribution.

Corollary 5.6. In the case when the offspring distribution has finite variance, there exist
constants c1, c2, c3, c4 ∈ (0,∞) such that

lim sup
N→∞

P
(
N−3/2t∞mix(TN ) ≥ λ

)
≤ c1e

−c2λ2 , ∀λ ≥ 0, (5.6)

and also
lim sup
N→∞

P
(
N−3/2t1mix(ρN ) ≤ λ−1

)
≤ c3e

−c4λ1/25 , ∀λ ≥ 0. (5.7)

Proof. To prove (5.6), we apply the general mixing time upper bound of Lemma A.1 to deduce
that

P
(
N−3/2t∞mix(TN ) ≥ λ

)
≤ P

(
8N−1/2diamdTN

(TN ) ≥ λ
)
,

where diamdTN
(TN ) is the diameter of TN with respect to dTN , and we note that #E(TN ) is

equal to 2(N − 1). By (5.5), the right-hand side here converges to P(8 diamdT (2)
(T (2)) ≥ λ).

By construction, the diameter of the continuum random tree T (2) is bounded above by twice

22



the supremum of the Brownian excursion of length 1. We can thus use the known distribution
of the latter random variable (see [25], for example) to deduce the relevant bound.

For (5.7), we first apply Theorem 5.4 to deduce that

lim sup
N→∞

P
(
N−3/2t1mix(ρN ) ≤ λ−1

)
≤ P

(
t1mix(ρ) ≤ λ−1

)
.

Now, for the continuum random tree, define

J(λ) = {r > 0 : λ−1r2 ≤ π(2)(BT (2)(ρ, r)) ≤ λr2, R
(2)
T (ρ,BT (2)(ρ, r)c) ≥ λ−1r},

where RT (2) is the resistance on the continuum random tree (see [11, (20)]). Then

P(r ∈ J(λ)) ≥ 1− e−cλ, ∀r ∈ (0, 1
2 ], λ ≥ 1,

(see [11, Lemmas 4.1 and 7.1]). As a consequence of this, we can apply the continuous version
of the mixing time lower bound discussed in Remark A.6 (with H0 = 0, H1 = H2 = H3 = 1,
H ′2 = 3, αi = 1 and di = 2) to deduce the desired result. �

Remark 5.7. The above proof already gives an estimate for the lower tail of t1mix(ρ). That the
bound corresponding to (5.6) holds for the limiting tree, i.e.

P
(
t∞mix(T (2)) ≥ λ

)
≤ c1e

−c2λ2 ,

can be proved similarly to the discrete case (more details are given in Remark A.2).

5.4 Critical Erdős-Rényi random graph

Closely related to the random trees of the previous section is the Erdős-Rényi random graph at
criticality. In particular, let G(N, p) be the random graph in which every edge of the complete
graph on N labelled vertices {1, . . . , N} is present with probability p independently of the other
edges. Supposing p = N−1 + λN−4/3 for some λ ∈ R, so that we are in the so-called critical
window, it is known that the largest connected component CN , equipped with its shortest path
graph metric dCN , satisfies (

V (CN ), N−1/3dCN
)
→ (M, dM)

in distribution, again with respect to the Gromov-Hausdorff distance between compact metric
spaces, where (M, dM) is a random compact metric space [1]. (In fact, this and all the results
given in this subsection hold for a family of i-th largest connected components for all i ∈ N.
For notational simplicity, we only discuss the largest connected component CN .) Moreover, in
[9], it was shown that the associated random walks started from a root vertex ρN satisfy a
distributional convergence result of the form(

N−1/3XC
N

bNtc

)
t≥0
→
(
XMt

)
t≥0

,

where XM is a diffusion on the spaceM started from a distinguished vertex ρ ∈M. Although
the invariant probability measures of the random walks, πN say, were not considered in [9], it is
not difficult to extend this result to include them since the hard work regarding their convergence
has already been completed (see [9, Lemma 6.3], in particular). Hence, by again applying the
fixed starting point version of the local limit result of Proposition 2.4 (using Lemma 2.5 again
to deduce the relevant tightness condition), we are able to obtain the analogue of Lemma 5.3
in this setting.
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Lemma 5.8. For any compact interval I ⊂ (0,∞),((
V (CN ), N−1/3dCN , ρ

N
)
, πN ,

(
qNNt(ρ

N , x)
)
x∈V (TN ),t∈I

)
,

converges in distribution to ((M, dM, ρ), πM, (qMt (ρ, x))x∈M,t∈I), where πM is the invariant
probability measure of XM and (qMt (x, y))x,y∈M,t>0 is its transition density with respect to this
measure, in a spectral pointed Gromov-Hausdorff sense.

In order to proceed as above, we must of course check that πM and qM satisfy a number
of technical conditions. To do this, first observe that a typical realisation of M looks like a
(rescaled) typical realisation of the Brownian continuum random tree T (2) glued together at a
finite number of pairs of points [1]. Since πM can be considered as the image of the canonical
measure π(2) on T (2) under this gluing map, it is elementary to obtain from the statements of
the previous section regarding π(2) that πM is almost-surely non-atomic, has full support and
satisfies πM(∂BM(x, r)) = 0 for πM-a.e. x ∈ M and every r > 0, as desired. For qM, we
simply observe that because the Dirichlet form corresponding to XM is a resistance form ([9,
Proposition 2.1]), we can once again apply Corollary 4.3 to establish conditions (1.1)-(1.5).

Given these results, pointwise mixing time convergence follows from Theorem 3.5.

Theorem 5.9. Fix p ∈ [1,∞]. If tpmix(ρN ) is the Lp-mixing time of the random walk on CN
started from its root ρN , then

N−1tpmix(ρN )→tpmix(ρ),

in distribution, where tpmix(ρ) ∈ (0,∞) is the Lp-mixing time of the Brownian motion on M
started from ρ.

Remark 5.10. As discussed in Remark 5.5, we do not expect any major barriers in extending
the above result to arbitrary starting points. The first task in doing this would be to adapt the
convergence result proved in [9] regarding the convergence of simple random walks on subgraphs
of Cn1 formed of a finite number of line segments ([9, Lemma 6.4]) to arbitrary starting points.
One could then extend this to obtain the desired convergence result for simple random walks
on the entire space using ideas from [9, Section 7] and heat kernel continuity. It would also
be necessary to introduce a new Gromov-Hausdorff-type topology to state the result, as the
one used in [9] is only suitable for the pointed case. Again, we suspect taking these steps will
simply be a lengthy technical exercise, and choose not to follow them through here. We do
though reasonably expect that tpmix(CN ), the Lp-mixing time of the random walk on CN , when
rescaled appropriately, converges in distribution to tpmix(M) ∈ (0,∞), the Lp-mixing time of
the Brownian motion on M, for any p ∈ [1,∞].

Finally, for the largest component of the Erdős-Rényi random graph in the critical window,
one can prove that there exists constants c1, c2 ∈ (0,∞) such that

sup
N≥1

P
(
N−1t∞mix(CN ) ≥ λ

)
≤ c1e

−c2λ, ∀λ ≥ 0,

(indeed, by [35, Proposition 1.4] and [36, Theorem 1], this result is an application of Proposition

A.7 with p1(λ) = c3e
−c4λ3/2 and p2(λ) = c5e

−c6λ3), and also

sup
N≥N0

P
(
N−1t1mix(CN ) ≤ λ−1

)
≤ c7λ

−θ, ∀λ ≥ 0, (5.8)

for suitable constants c7, N0, θ ∈ (0,∞) (see Proposition A.8). It does not, however, seem
possible to apply current estimates for the graphs (CN )N≥1 and techniques for bounding mixing
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times to replace t1mix(CN ) by t1mix(ρN ) in the latter estimate (see Remark A.9), or even prove
that the sequence (N/t1mix(ρN ))N≥1 is tight, i.e.

lim
λ→∞

lim sup
N→∞

P
(
N−1t1mix(ρN ) ≤ λ−1

)
= 0.

That this final statement is nonetheless true is a simple consequence of Theorem 5.9.

5.5 Random walk on range of random walk in high dimensions

Let S = (Sn)n≥0 be the simple random walk on Zd started from 0, built on an underlying
probability space with probability measure P, and define the range of S up to time N to be the
graph GN with vertex set

V (GN ) := {Sn : 0 ≤ n ≤ N} , (5.9)

and edge set
E(GN ) := {{Sn−1, Sn} : 1 ≤ n ≤ N} . (5.10)

In this section, we will explain how to prove that if d ≥ 5, which is an assumption henceforth,
then the mixing times of the sequence of graphs (GN )N≥1 grows asymptotically as cN2, P-a.s.,
where c is a deterministic constant. Since doing this primarily depends on making relatively
simple adaptations of the high-dimensional scaling limit result of [12] for the random walk on
the entire range of S (i.e. the N = ∞ case) to the finite length setting, we will be brief with
the details.

First, suppose that S = (Sn)n∈Z is a two-sided extension of (Sn)n≥0 such that (S−n)n≥0 is
an independent copy of (Sn)n≥0. The set of cut-times for this process,

T :=
{
n : S(−∞,n] ∩ S[n+1,∞) = ∅

}
,

is known to be infinite P-a.s. ([17]). Thus we can write T = {Tn : n ∈ Z}, where . . . T−1 < T0 ≤
0 < T1 < T2 < . . . . The corresponding set of cut-points is given by C := {Cn : n ∈ Z}, where
Cn := STn . For these objects, an ergodicity argument can be applied to obtain that, P-a.s., as
|n| → ∞,

Tn
n
→ τ(d) := E(T1|0 ∈ T ) ∈ [1,∞), (5.11)

dG(0, Cn)

|n|
→ δ(d) := E(dG(0, C1)|0 ∈ T ) ∈ [1,∞),

where dG is the shortest path graph distance on the range G of the entire two-sided walk S,
which is defined analogously to (5.9) and (5.10). In particular, see [12, Lemma 2.2], for a
proof of the same convergence statements under the measure P(·|0 ∈ T ), and note that the
conditioning can be removed by using the relationship between P and P(·|0 ∈ T ) described
in [12, Lemma 2.1]. Given these results, it is an elementary exercise to check that the metric
space (V (GN ), τ(d)δ(d)−1N−1dGN ), where dGN is the shortest path graph distance on GN ,
converges P-a.s. with respect to the Gromov-Hausdorff distance to the interval [0, 1] equipped
with the Euclidean metric. Moreover, the same ideas readily yield an extension of this result
to a spectral Gromov-Hausdorff one including that πN , the invariant measure of the associated
simple random walk, converges to Lebesgue measure on [0, 1].

Now, for a fixed realisation of G, let X = (Xn)n≥0 be the simple random walk on G started
from 0. Define the hitting times by X of the set of cut-points C by H0 := min{m ≥ 0 : Xm ∈ C},
and, for n ≥ 1, Hn := min{m > Hn−1 : Xm ∈ C}. We use these times to define a useful indexing
process Z = (Zn)n≥0 taking values in Z. In particular, if n < H0, define Zn to be the unique
k ∈ Z such that XH0 = Ck. Similarly, if n ∈ [Hm−1, Hm) for some m ≥ 1, then define Zn to be
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the unique k ∈ Z such that XHm = Ck. Noting that this definition precisely coincides with the
definition of Z in [12], from Lemma 3.5 of that article we have that: for P-a.e. realisation of G,(

N−1τ(d)ZbtN2c
)
t≥0
→ (Btκ2(d))t≥0, (5.12)

in distribution, where (Bt)t≥0 is a standard Brownian motion on R started from 0, and κ2(d) ∈
(0,∞) is the deterministic constant defined in [12]. To deduce from (5.12) the following scaling
limit for XN , the simple random walk on GN , we proceed via a time-change argument that is
essentially a reworking of parts of [12, Section 3].

Lemma 5.11. For P-a.e. realisation of S, if XN is started from 0, then(
τ(d)δ(d)−1N−1dGN

(
0, XN

bκ2(d)−1N2tc

))
t≥0
→
(
B

[0,1]
t

)
t≥0

,

in distribution, where B[0,1] = (B
[0,1]
t )t≥0 is Brownian motion on [0, 1] started at 0 and reflected

at the boundary.

Proof. The following proof can be applied to any typical realisation of S. To begin with, define
a process (AZ,Nn )n≥0 by setting

AZ,Nn :=
n−1∑
m=0

1{Zm∈[0,T−1
N ]},

where T−1
N := max{n : Tn ≤ N}. From (5.11), we have that T−1

N ∼ τ(d)−1N . Combining
this observation with (5.12), one can check that, simultaneously with (5.12), (N−2ANbtN2c)t≥0

converges in distribution to (κ2(d)−1ABtκ2(d))t≥0, where

ABt :=

∫ t

0
1{Bs∈[0,1]}ds

(cf. [12, Lemma 3.5]).
We now apply the above result to establish a scaling limit for the process X observed on

the vertex set V (G̃N ) := {Sn : T1 ≤ n ≤ T−1
N }. Specifically, set

ANn :=

n−1∑
m=0

1{Xm,Xm+1∈V (G̃N )}.

Similarly to the proof of [12, Lemma 3.6], one can check that

sup
0≤m≤n

∣∣ANm −AZ,Nm ∣∣ ≤ n∑
m=0

1{Zm∈[0,1,2]∪[T−1
N −2,T−1

N −1,T−1
N ]}.

It is therefore a simple consequence of (5.12) that N−2 sup0≤m≤TN2

∣∣∣ANm −AZ,Nm ∣∣∣ converges to

0 in probability as N →∞ for any T ∈ (0,∞). Since we know from equation (16) of [12] that

N−1 sup
0≤m≤TN2

|dG (0, Xm)− δ(d)Zm|

also converges to 0 in probability, we readily obtain(
τ(d)δ(d)−1N−1dG

(
0, X̃N

bN2tc

))
t≥0
→
(
B

[0,1]
κ2(d)t

)
t≥0

, (5.13)
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in distribution, where X̃N = (X̃N
n )n≥0 is the random walk X observed on V (G̃N ) – this is

defined precisely by setting X̃N
n := XαN (n), where αN (n) := max{ANm ≤ n}. We remark that

the particular limit process B[0,1] arises as a consequence of the fact that (BαB(t))t≥0, where αB

is the right-continuous inverse of AB, has exactly the distribution of B[0,1].
Finally, since the process X̃N is identical in law to the simple random walk XN observed

on V (G̃N ), to replace X̃N by XN in (5.13) it will suffice to check that XN spends only an
asymptotically negligible amount of time in V (GN )\V (G̃N ). Since doing this requires only a
simple adaptation of the proof of [12, Lemma 3.8], we omit the details. To complete the proof,
one then needs to replace dG by dGN , but this is straightforward since

N−1 sup
0≤n≤N

|dG (0, Sn)− dGN (0, Sn)| ≤ N−1
(
T1 + TT−1

N +1 − TT−1
N

)
→ 0,

as N →∞. �

Although the previous lemma only contains a convergence statement for the random walks
started from the particular vertex 0, there is no difficulty in extending this to the case when
XN is started from a point xN0 ∈ V (GN ) such that dGN (0, xN0 ) ∼ τ(d)−1δ(d)Nx0, and B[0,1] is
started from x0 ∈ [0, 1]. Applying the local limit result of Proposition 2.4 (to establish (2.11),
we once again appeal to Lemma 2.5), we are able deduce from this that Assumption 1 holds for
P-a.e. realisation of the original random walk.

Lemma 5.12. For P-a.e. realisation of S, if I ⊂ (0,∞) is a compact interval, then((
V (GN ), τ(d)δ(d)−1N−1dGN

)
, πN ,

(
qNκ2(d)−1N2t(x, y)

)
x,y∈V (GN ),t∈I

)
,

converges in (MI ,∆I) to the triple consisting of: [0, 1] equipped with the Euclidean metric,
Lebesgue measure on this set and the transition density of Brownian motion on [0, 1] reflected
at the boundary.

Since it is clear that (1.1)-(1.5) hold in this case, we can therefore apply Theorem 1.4 to
obtain the desired convergence of mixing times.

Theorem 5.13. Fix p ∈ [1,∞]. If tpmix(S[0,N ]) is the Lp-mixing time of the simple random walk
on the range of S up to time N , then P-a.s.,

κ2(d)N−2tpmix(S[0,N ])→t
p
mix([0, 1]),

where tpmix([0, 1]) is the Lp-mixing time of the Brownian motion on [0, 1] reflected at the bound-
ary.

A Appendix: Mixing time estimates

In this appendix, we give some sufficient condition to derive upper and lower estimates for
mixing times of random walks on finite graphs, primarily using techniques adapted from [35].
We will also indicate how these can be transferred to the continuous setting (see Remarks A.2
and A.6). We start by fixing our notation. Let G = (V (G), E(G)) be a finite connected graph
and µG be a weight function, as in the introduction. Suppose here that dG is the shortest path
metric on the graph G, and denote, for a distinguished vertex ρ ∈ V (G),

B(R) = {y : dG(ρ, y) < R}, V (R) :=
∑

x∈B(R)

∑
y:y∼x

µGxy = πG(B(R))µ(G), R ∈ (0,∞),
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where we write x ∼ y if µGxy > 0 and set µ(G) :=
∑

x,y∈V (G) µ
G
xy. For the Markov chain XG, let

τR = τB(ρ,R) = min{n ≥ 0 : XG
n 6∈ B(R)}.

We define a quadratic form E by

E(f, g) = 1
2

∑
x,y∈V (G)
x∼y

µGxy(f(x)− f(y))(g(x)− g(y)),

and let H2 = {f ∈ RV (G) : E(f, f) <∞}. For disjoint subsets A,B of G, the effective resistance
between them is then given by:

Reff(A,B)−1 = inf{E(f, f) : f ∈ H2, f |A = 1, f |B = 0}. (A.1)

If we further define Reff(x, y) = Reff({x}, {y}), and Reff(x, x) = 0, then one can check that
Reff(·, ·) is a metric on V (G) (see [28, Section 2.3]). We will call this the resistance metric. The
resistance metric enjoys the following important (but easy to deduce) estimate,

|f(x)− f(y)|2 ≤ Reff(x, y)E(f, f), ∀f ∈ L2(G,µG).

Moreover, it is easy to verify that if c−1
1 := infx,y∈G:x∼y µ

G
xy > 0, then

Reff(x, y) ≤ c1dG(x, y) ∀x, y ∈ G. (A.2)

Let v, r : {0, 1, · · · ,diamdG(G) + 1} → [0,∞) be strictly increasing functions with v(0) =
r(0) = 0, v(1) = r(1) = 1, which satisfy

C−1
1

( R
R′

)d1
≤ v(R)

v(R′)
≤ C1

( R
R′

)d2
, C−1

2

( R
R′

)α1

≤ r(R)

r(R′)
≤ C2

( R
R′

)α2

for all 0 < R′ ≤ R ≤ diamdG(G) + 1, where C1, C2 ≥ 1, 1 ≤ d1 ≤ d2 and 0 < α1 ≤ α2 ≤ 1. In
what follows, v(·) will give the volume growth order and r(·) the resistance growth order. For
convenience, we extend them to functions on [0, diamdG(G) + 1] by linear interpolation.

Finally, in the appendix, we adopt the convention that if we cite elsewhere the constant c1

of Lemma A.4 (for example), we denote it as cA.4.1.

A.1 Upper bound

In this subsection, we give an upper bound of the mixing times that is a reworking of [35,

Corollary 4.2], in our setting. Note that, since tpmix(ρ) ≤ tpmix(G) and tpmix(G) ≤ tp
′

mix(G) for
p ≤ p′, it will be enough to estimate t∞mix(G).

Lemma A.1. For any weighted graph (G,µG),

t∞mix(G) ≤ 4diamR(G)µ(G),

where diamR(G) is the diameter of G with respect to the resistance metric Reff .

Proof. First, note that by [2, Proposition 3 in Chapter 2], we have that

EGx

( ∞∑
m=0

1{XG
m=x,m<S}

)
= π(x)EGx (S), (A.3)
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for any stopping time S with XG
S = x. Taking S to be the first hitting time of x after time

2m−1, and writing Π(x, 2m) to represent the law of XG
2m when XG is started from x, we obtain

that

EGΠ(x,2m)(σx) =
2m−1∑
l=0

(
pGl (x, x)− 1

)
= 2

m−1∑
l=0

(
qG2l(x, x)− 1

)
≥ 2m

(
qG2m(x, x)− 1

)
,

where σx is the first hitting time of x, and the inequality holds because qG2l(x, x) is decreasing
in l (see the proof of [14, Lemma 9], for example). Since by Cauchy-Schwarz, |qG2m(x, y)− 1| ≤
(qG2m(x, x)− 1)1/2(qG2m(y, y)− 1)1/2, it follows that

sup
x∈V (G)

DG
∞(x, 2m) = sup

x,y∈V (G)

∣∣qG2m(x, y)− 1
∣∣ ≤ sup

x∈V (G)
(qG2m(x, x)− 1) ≤ sup

x,y∈V (G)

EGx (σy)

2m
. (A.4)

By applying the commute time identity for random walks on graphs, EGx (σy) + EGy (σx) =

Reff(x, y)µ(G), this implies supx∈V (G)D
G
∞(x, 2m) ≤ diamR(G)µ(G)/2m, and the result follows.

�

Remark A.2. (1) The first inequality of (A.4) and (3.5) implies the following known fact for
mixing times of symmetric Markov chains; t∞mix(G) ≤ 2 t2mix(G; 1/2), where t2mix(G; 1/2) is the
L2-mixing time of G with 1/2 instead of 1/4 in the definition (1.8).
(2) Essentially the same argument can be applied to deduce the corresponding mixing time
upper bound in the continuous setting when we suppose that we have a process whose Dirichlet
form is a resistance form. In particular, suppose that this is the case for XF , as defined in the
introduction. Let S be the first hitting time of x ∈ F after time t, then, for any f ∈ L1(F, π),

Ex

(∫ S

0
f(Xs)ds

)
= ‖f‖L1(π)Ex(S),

which can be obtained by applying an ergodicity argument similar to that used to prove (A.3).
Writing Π(x, t) to represent the law of XF

t when XF is started from x, the expectation on the
right-hand side here satisfies Ex(S) = t + EΠ(x,t)(τx) ≤ t + supy∈F Reff(x, y), where to deduce
the upper bound, we have applied that the commute time identity Ex(τy) +Ey(τx) = Reff(x, y)
also holds for resistance forms (since we are assuming π to be a probability measure, it does not
appear explicitly in this version of the identity). Moreover, if f is positive, the left-hand side

is bounded below as follows: Ex(
∫ S

0 f(Xs)ds) ≥
∫ t

0

∫
F qs(x, y)f(y)π(dy)ds. Combining these

bounds, we have proved that, for positive f ∈ L1(F, π) such that ‖f‖L1(π) 6= 0,∫ t
0

∫
F qs(x, y)f(y)π(dy)ds

‖f‖L1(π)
≤ t+ diamR(F ).

By choosing a sequence of suitable functions whose support converges to {x}, the joint continuity
of (qt(x, y))x,y∈F,t>0 allows us to deduce from this that

tqt(x, x) ≤
∫ t

0
qs(x, x)ds ≤ t+ diamR(F ),

where the first inequality holds because qt(x, x) is decreasing in t. The remainder of the proof
is identical to the graph case.
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A.2 Lower bound

In this subsection, we give the mixing time lower bound. By the same reasoning as in the
first paragraph of the previous subsection, it will be enough to estimate t1mix(ρ). Our argument
depends on some estimates for hitting times that are modifications of results in [3, 31].

To begin with, let B = B(R) and define

gB(x, y) = µ−1
y

∞∑
k=0

PG
x (Xk = y, k < τB).

Then, it is easy to show that

EGz τB =
∑
y∈B

gB(z, y)µy, Reff(x,Bc) = gB(x, x)

(see, for example [3, (2.19),(2.20)]). Also, if A and B are disjoint subsets of G and x /∈ A ∪ B,
then (see [3, (2.14)])

PG
x (TA < TB) ≤ Reff(x,B)

Reff(x,A)
, (A.5)

where TA is the hitting time of A ⊂ G. If C3 := 2−2/α1C
−1/α2

2 and C4 := 8−1C−1
1 Cd23 , we can

then prove the following.

Lemma A.3. Let λ ≥ 1 and H0, · · · , H3 > 0.
(a) Suppose that

Reff(ρ, y) ≤ λH0r(dG(ρ, y)), ∀y ∈ B(R), and V (R) ≤ λH1v(R), (A.6)

then
EGx τR ≤ 2λH0+H1v(R)r(R) for x ∈ B(R). (A.7)

(b) Suppose (A.6) and also

Reff(ρ,B(R)c) ≥ λ−H2r(R) and V (C3λ
−(H0+H2)/α1R) ≥ λ−H3v(C3λ

−(H0+H2)/α1R), (A.8)

then

EGx τR ≥ 2C4λ
−H′2−H3v(R)r(R) for x ∈ B(C3λ

−(H0+H2)/α1R), (A.9)

where H ′2 = H2 + (H0 +H2)d2/α1.
(c) Suppose (A.6) and (A.8), and let x ∈ B(C3λ

−(H0+H2)/α1R), then

PG
x (τR > n) ≥ 2C4λ

−H′2−H3v(R)r(R)− n
2λH0+H1v(R)r(R)

for n ≥ 0. (A.10)

Proof. Using (A.6), we have Reff(z,Bc) ≤ Reff(0, z) + Reff(0, Bc) ≤ 2λH0r(R) for any z ∈ B.
So,

EGz τB =
∑
y∈B

gB(z, y)µy ≤
∑
y∈B

gB(z, z)µy = Reff(z,Bc)V (R) ≤ 2λH0+H1v(R)r(R),

which gives (A.7). In order to prove (A.9), we first establish the following: for 0 < ε ≤
1/(2C2λ

H0+H2)1/α1 = 21/α1C3λ
−(H0+H2)/α1 and y ∈ B(εR), we have

EGy (Tρ < τR) ≥ 1− C2ε
α1λH0+H2

1− C2εα1λH0+H2
≥ 1− 2C2ε

α1λH0+H2 . (A.11)

30



Indeed, by the first inequalities of (A.6) and (A.8), we have

Reff(y,B(R)c) ≥ Reff(ρ,B(R)c)−Reff(ρ, y) ≥ λ−H2r(R)− λH0r(εR) ≥ r(εR)

C2εα1λH2
− λH0r(εR).

So, by (A.5),

PG
y (τR < Tρ) ≤

Reff(y, ρ)

Reff(y,B(R)c)
≤ λH0r(εR)

r(εR)

C2εα1λH2
− λH0r(εR)

≤ C2ε
α1λH0+H2

1− C2εα1λH0+H2
,

and (A.11) is obtained. Now, if y ∈ B′ = B(C3λ
−(H0+H2)/α1R), then the bound at (A.11) gives

that PG
y (Tρ < τB) ≥ 1

2 , so

gB(ρ, y) = gB(ρ, ρ)PG
y (Tρ < τB) ≥ 1

2gB(ρ, ρ) = 1
2Reff(ρ,Bc) ≥ 1

2λ
−H2r(R).

By the second inequality of (A.8), we have

µ(B′) ≥ λ−H3v(C3λ
−(H0+H2)/α1R) ≥ C−1

1 Cd23 λ−2(H0+H2)d2/α1−H3v(R),

and therefore we obtain,

EGρ τB ≥
∑
y∈B′

gB(ρ, y)µy

≥ 1
2gB(ρ, ρ)µ(B′)

≥ 1
2C
−1
1 Cd23 λ−H2−(H0+H2)d2/α1−H3v(R)r(R)

= 4C4λ
−H′2−H3v(R)r(R).

Moreover, for x ∈ B′ we have that EGx τB ≥ PG
x (Tρ < τB)EGρ τB, which gives (A.9).

Finally, by the Markov property, (A.7) and (A.9),

2C4λ
−H′2−H3v(R)r(R) ≤ EGx τR ≤ n+ EGx [1{τR>n}E

G
Xn(τR)]

≤ n+ 2λH0+H1v(R)r(R)PG
x (τR > n).

Rearranging this gives (A.10). �

The following estimate is a modification of [31, Proposition 3.5 (a)] (see [3, (2.4)] for the
important special case v(R) = R2, r(R) = R). Note that for R > diamdG(G), it is the case that
τR =∞, and so (A.12) trivially holds.

Proposition A.4. Let 0 < ε ≤ C3λ
−(H0+H2)/α1, and suppose (A.6) and (A.8) for R and εR,

then

PG
y

(
τR ≤ C4λ

−H′2−H3v(εR)r(εR)
)
≤ c1λ

H0+
∑3
i=0Hi+H

′
2εα1 , for y ∈ B(εR). (A.12)

Proof. We take a kind of bootstrap from (A.10) and (A.11). Let t0 > 0, and set

q(y) = PG
y (τR≤Tρ), a(y) = PG

y (τR ≤ t0).
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Then

a(y) = PG
y (τR ≤ t0) = PG

y (τR ≤ t0, τR≤Tρ) + PG
y (τR ≤ t0, τR > Tρ)

≤ PG
y (τR ≤ Tρ) + PG

y (Tρ < τR, τR − Tρ ≤ t0)

≤ q(y) + (1− q(y))a(ρ) ≤ q(y) + a(ρ), (A.13)

using the strong Markov property for the second inequality. Starting the Markov chain X at ρ,
we have

a(ρ) = PG
ρ (τR ≤ t0) ≤ EGρ [1{τεR≤t0}P

G
XτεR

(τR ≤ t0)] ≤ PG
ρ (τεR ≤ t0) max

y∈∂B(εR)
a(y). (A.14)

Combining (A.13) and (A.14) gives

a(ρ) ≤
maxy∈∂B(εR) q(y)

PG
ρ (τεR > t0)

. (A.15)

Further, using (A.11) with 2ε, we have

q(y) ≤ C2(2ε)α1λH0+H2

1− C2(2ε)α1λH0+H2
≤ 2C2(2ε)α1λH0+H2 . (A.16)

Let t0 = C4λ
−H′2−H3v(εR)r(εR); then using (A.10) for the ball B(εR) (note that (A.6) and

(A.8) for εR are assumed here), we obtain

PG
ρ (τεR > t0) ≥ c0λ

−H0−H1−H′2−H3 .

combining this with (A.16), (A.15) and (A.13) completes the proof of (A.12). �

Note that, we may and will take c1 > 1/(2Cα1
3 ) in (A.12). Using Proposition A.4, we have

the following.

Proposition A.5. i) For λ,R > 1, assume that µ(G) ≥ 4V (R), and that (A.6), (A.8) hold for
R, then

t1mix(G) > C4λ
−H′2−H3v(R)r(R). (A.17)

ii) For λ,R > 1, assume that µ(G) ≥ 4V (R), and (A.6), (A.8) hold for R and ε0(λ)R, where

ε0(λ) := (2cA.4.1)−1/α1λ−(H0+
∑3
i=0Hi+H

′
2)/α1. Then

t1mix(ρ) > C4λ
−H′2−H3v(ε0(λ)R)r(ε0(λ)R).

Proof. i) We follow the argument in [35, Lemma 5.4]. Let t ∈ N. If PG
x (τB ≤ t) ≥ 1/2 for

all x ∈ B(R − 1), then τR/t is stochastically dominated by a geometric random variable with
parameter 1/2, so that EGρ [τR] ≤ 2t. By this and (A.9), we see that for t = C4λ

−H′2−H3v(R)r(R),

there exists some x ∈ B(R − 1) such that PG
x (τB ≤ t) ≤ 1/2. Further, since µ(G) ≥ 4V (R),

π(B(R)) = V (B(R))/µ(G) ≤ 1/4. Combining these observations, we obtain

D1(x, t) ≥ 2PG
x (τR ≥ t)− 2π(B(R)) ≥ 1− 1

2
>

1

4
, (A.18)

so that (A.17) follows.
ii) Take ε = ε0(λ) in Proposition A.4 and let t = C4λ

−H′2−H3v(εR)r(εR). Then, since
0 < ε ≤ C3λ

−(H0+H2)/α1 (this is because we take cA.4.1 > 1/(2Cα1
3 )), by (A.12) we have

PG
ρ

(
τR ≤ t

)
≤ cA.4.1λ

H0+
∑3
i=0Hi+H

′
2εα1 = 1/2. The rest is the same as the proof of i) except

that we take x = ρ in (A.18). �
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Remark A.6. Similarly to the remark at the end of Section A.1, an analogous argument for
proving a mixing time lower bound applies in the continuous case when we have a process XF

whose Dirichlet form is a resistance form on F . In order to avoid repetition, we omit the details
of this here.

A.3 Random graph case

We now consider a probability space (Ω,F ,P) carrying a family of random weighted graphs
GN (ω) = (V (GN (ω)), E(GN (ω)), µN(ω);ω ∈ Ω). We assume that, for each N ∈ N and ω ∈ Ω,
GN (ω) is a finite, connected graph containing a marked vertex ρN , and #V (GN (ω)) ≤MN for
some non-random constant MN <∞. Let dGN (ω)(·, ·) be a graph distance, B(R) := Bω(ρN , R),

and V (R) := Vω(ρN , R). We write X = (Xn, n ≥ 0, P xω , x ∈ GN (ω)) for the random walk
on GN (ω), and denote by pωn(x, y) its transition density with respect to πω. Furthermore,
we introduce a strictly increasing function h : N ∪ {0} → [0,∞) with h(0) = 0, which will
roughly describe the diameter of GN with respect to the graph distance. We then set γ(·) =
v(h(·)) · r(h(·)). Finally, for i = 1, 2, we suppose pi : [1,∞) → [0, 1] are functions such that
limλ→∞ pi(λ) = 0. We then have the following.

Proposition A.7. (1) Suppose that the following holds:

P(diamR(GN ) ≥ λr(h(N))) ≤ p1(λ), P(µN (GN ) ≥ λv(h(N))) ≤ p2(λ), (A.19)

then
P(t∞mix(GN ) ≥ λγ(N)) ≤ inf

θ∈[0,1]
(p1(λθ/8) + p2(λ1−θ)).

(2) Suppose there exist c1 ≤ 1 and J ≥ (1 +H1)/d2 such that the following holds:

P((A.6) ∧ (A.8) for R = c1λ
−Jh(N)) ≥ 1− p1(λ), P(µN (GN ) < λ−1v(h(N))) ≤ p2(λ),

then there exist c2, p0 > 0 such that

P(t1mix(GN ) ≤ c2λ
−p0γ(N)) ≤ 2p1(λ) + p2(λ/(4C1c

d2
1 )).

(3) Suppose there exist c1 ≤ 1 and J ≥ (1 +H1)/d2 such that the following holds:

P((A.6) ∧ (A.8) for R = c1λ
−Jh(N) and for ε0(λ)R) ≥ 1− p1(λ),

P(µN (GN ) < λ−1v(h(N))) ≤ p2(λ), (A.20)

where ε0(λ) is as in Proposition A.5 ii), then there exist c2, p0 > 0 such that

P(t1mix(ρN ) ≤ c2λ
−p0γ(N)) ≤ 2p1(λ) + p2(λ/(4C1c

d2
1 )).

Proof. By Lemma A.1, we have for any θ ∈ [0, 1] that

P
(
t∞mix(GN ) ≥ λγ(N)

)
≤ P

(
8diamR(GN )µN (GN ) ≥ λγ(N)

)
≤ P

(
8diamR(GN ) ≥ λθr(h(N))

)
+ P

(
µN (GN ) ≥ λ1−θv(h(N))

)
≤ p1(λθ/8) + p2(λ1−θ),

which implies the conclusion of (1).
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For (2), let R = c1λ
−Jh(N) and define

t := C4λ
−H′2−H3v(R)r(R) = C4λ

−H′2−H3v(c1λ
−Jh(N))r(c1λ

−Jh(N))

≥ C4λ
−H′2−H3C−1

1 C−2
2 (c1λ

−J)d2+α2v(h(N))r(h(N)) =: c2λ
−p0γ(N).

Then by Proposition A.5 i),

P(t1mix(GN ) ≤ c1λ
−p0γ(N)) ≤ P(t1mix(GN ) ≤ t)

≤ P(either (A.6) or (A.8) do not hold for R = c1λ
−Jh(N)) + P(µN (GN ) < 4V (R))

≤ p1(λ) + P(µN (GN ) < 4V (R)).

Note that

4λH1v(R) = 4λH1v(c1λ
−Jh(N)) ≤ 4λH1C1(c1λ

−J)d2v(h(N)) ≤ 4C1c
d2
1 λ
−1v(h(N)),

where we used J ≥ (1 +H1)/d2 in the last inequality. Using this, we have

P(µN (GN ) < 4V (R))

≤ P(µN (GN ) < 4λH1v(R)) + P(λH1v(R) ≤ V (R))

≤ P(µN (GN ) < 4C1c
d2
1 λ
−1v(h(N))) + p1(λ)

≤ p2(λ/(4C1c
d2
1 )) + p1(λ),

which implies the conclusion of (2). The proof of (3) is almost the same, so we omit it. �

To illustrate this result, we consider the case when the random graphs GN (ω) are obtained
as components of percolation processes on finite graphs, thereby recovering [35, Theorem 1.2(c)].
(In [35], it was actually the lazy random walk was considered to avoid parity concerns, but the
same techniques apply when we consider qGm(·, ·) as in (1.7) instead.) We note that, this setting
includes taking GN (ω) to be CN , the largest component of the Erdős-Rényi random graph in the
critical window, as introduced in Section 5.4, and hence the following proposition establishes
the estimate at (5.8).

Proposition A.8. Let GN be a graph with N vertices and with the maximum degree d ∈
[3, N − 1]. Let CN be the largest component of the percolation subgraph of GN for 0 < p < 1.

Let p ≤ 1+λn−1/3

d−1 for some fixed λ ∈ R, and assume that there exist c1, θ1 ∈ (0,∞) and K1 ∈ N
such that

P(#CN ≤ A−1N2/3) ≤ c1A
−θ1 , ∀A,N ≥ K1, (A.21)

then there exist c2, θ2 ∈ (0,∞) and K2 ∈ N such that, for all p ∈ [1,∞],

P(A−1N ≤ tpmix(CN ) ≤ AN) ≥ 1− c2A
−θ2 , ∀A,N ≥ K2. (A.22)

Proof. We only indicate how to apply previous propositions. First, the upper bound of tpmix(CN )
can be obtained by Proposition A.7 (1) with v(R) = R2, r(R) = R, h(N) = N1/3 and p1(A) =
c0A

−q0 , p2(A) = c′0A
−q′0 for some c0, c

′
0, q0, q

′
0 > 0. Indeed, (A.19) holds because of [35, Theorem

2.1 (a),(b), Theorem 6.1] and the fact diam (CN ) ≥ diamR (CN ), which is due to (A.2).
The lower bound is more complicated. Using Proposition 5.5–5.7 and (5.1) in [35] with

β = λ−1/4, L = λH2 , α = λH1 , r = R, h = C3λ
−H2R,m = λ−H3(C3λ

−H2R)2,
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and then taking R = c1λ
−JN1/3, H0 = 0 (due to (A.2)), H1 = H2 = 2, H3 = 4, J = (1+H1)/2 =

3/2, we see that for each v ∈ GN ,

P(]C(v) > λ−1/4N2/3 and A) ≤ c4λ
−1/2N−1/3,

where

A = {V (v, C3λ
−2R) ≤ λ−5(C3λ

−2R)2, Reff(v,B(v,R)c) ≤ R

8λ2
, #E(B(v,R)) ≥ λ2R2}.

This corresponds to [35, (5.3)]. Now using Proposition A.5 i) and arguing similarly to the proof
of [35, Theorem 2.1 (c.2)], we have

P(∃v ∈ GN with ]C(v) > λ−1/4N2/3 and t1mix(C(v)) ≤ C4λ
−29/2N) ≤ c4λ

−1/4.

This together with (A.21) implies the desired lower bound of tpmix(CN ). �

The proofs of this proposition and Corollary 5.6 highlight why it is useful to have a general
theory where the exponents H0, · · · , H3 can vary.

Remark A.9. As mentioned at the end of Subsection 5.4, it does not seem possible to apply
current estimates for the graphs (CN )N≥1 and techniques for bounding mixing times to replace
A−1N ≤ tpmix(CN ) by A−1N ≤ tpmix(ρN ) in (A.22). The major difficulty is to verify the first
inequality of (A.20) for ε0(λ)R. Indeed, even if we choose H0, · · · , H3 large (which increases the
chance that (A.6) and (A.8) hold for R), ε0(λ) gets small accordingly, so that the probability
P((A.6) ∧ (A.8) for ε0(λ)R) does not increase.

Finally, below is a list of exponents for each example in Section 5.

Section v(R) r(R) h(N) γ(N)

5.2 RlogK/ logL Rlog λ/ logL LN (Kλ)N

5.3 with aN = N1/α, α ∈ (1, 2] Rα/(α−1) R N1−1/α N2−1/α

5.4 R2 R N1/3 N

5.5 R R N N2

Here the Euclidean distance is used instead of the intrinsic shortest path metric for the examples
in Section 5.2. Note that when α = 2 in Section 5.3 (the finite variance case), the growth of
v(R) and r(R) is of the same order as in Section 5.4. The difference of scaling exponents of
mixing times (namely γ(N)) is due to the difference of scaling exponents for graph distances
(namely h(N)). We also observe that the convergence to a stable law at (5.4) forces the scaling
constants to be of the form aN = N1/αL(N) for some slowly varying function L (see [20, Section
35]), and hence the above table captures all the most important first order behaviour for the
examples in Section 5.3.
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