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Abstract

It was shown in [5] that (whp), for r ≥ 3 the cover time CG of a random r-regular
graph Gr is asymptotic to θrn lnn, where θr = (r − 1)/(r − 2). In this paper we study
problems arising from multiple random walks on random regular graphs, and prove the
following (whp) results. The time for k independent walks to cover Gr is asymptotic
to CG/k. For most starting positions, the expected number of steps before any of the
walks meet is θrn/

(k
2

)
. If the walks can communicate on meeting at a vertex, we show

that (for most starting positions) the expected time for k walks to broadcast a single
piece of information is asymptotic to 2 ln k

k θrn, as k, n → ∞.
We also establish properties of walks where particles interact when they meet at a

vertex by coalescing or by exploding and destroying each other. As an example, the
expected extinction time of k explosive particles (k even) tends to (2 ln 2)θrn as k → ∞.

1 Introduction

Let G = (V,E) be a connected graph, let |V | = n, and |E| = m. For v ∈ V let Cv be the
expected time taken for a simple random walk W on G starting at v, to visit every vertex of
G. The vertex cover time CG of G is defined as CG = maxv∈V Cv. The (vertex) cover time
of connected graphs has been extensively studied. It is a classic result of Aleliunas, Karp,
Lipton, Lovász and Rackoff [3] that CG ≤ 2m(n− 1). It was shown by Feige [9], [10], that for

∗Department of Computer Science, King’s College, University of London, London WC2R 2LS, UK
(colin.cooper@kcl.ac.uk, thomas.radzik@kcl.ac.uk)

†Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213. Email:
alan@random.math.cmu.edu. Research supported in part by NSF grant ccf0502793.

1



any connected graph G, the cover time satisfies (1 − o(1))n lnn ≤ CG ≤ (1 + o(1)) 4
27
n3. The

complete graph Kn, is an example of a graph achieving the lower bound. The lollipop graph
consisting of a path of length n/3 joined to a clique of size 2n/3 has cover time asymptotic to
the upper bound.

The results in this paper are always asymptotic in n, and the notation An ∼ Bn means that
limn→∞An/Bn = 1.

Let Gr denote the set of r-regular graphs with vertex set V = {1, 2, . . . , n} and the uniform
measure. In an earlier paper [5] we studied the cover time of random regular graphs Gr, for
r ≥ 3. In particular the following theorem was proved:

Theorem 1. Let r ≥ 3 be constant. Let θr = r−1
r−2

.

If G = Gr is chosen randomly from Gr, then whp

CG ∼ θrn lnn.

In the paper [5] a technique (vertex coalescence) was used to estimate the probability that
the random walk had not visited a given set of vertices. This technique can be used to obtain
the distribution of the first meeting time of independent random walks.

Suppose there are k ≥ 1 particles, each making a simple random walk on an random reg-
ular graph G. Essentially there are two possibilities. Either the particles are Oblivious or
Interactive.

Oblivious particles act independently of each other, and do not interact on meeting. They
may however interact with vertices, possibly in a way determined by previous visits of other
particles. Interactive particles, can interact directly in some way on meeting. For example
they may exchange information, coalesce, reproduce, destroy each other. We assume that
interaction only occurs when meeting at a vertex, and that the random walks made by the
particles are otherwise independent. For such models we study various properties of the walks,
namely:

1. Multiple walks. For k particles walking independently, we establish the cover time of
G.

2. Particles with a finite life. For k particles walking independently, we study the
proportion of the graph covered at extinction.

3. Talkative particles. For k particles walking independently, which communicate on
meeting at a vertex, we study the time to broadcast a message.
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4. Predator-Prey. For k predator and ℓ prey particles walking independently, we study
the expected time to extinction of the prey particles, when predators eat prey particles
on meeting at a vertex.

5. Sticky particles. For k particles walking independently, which coalesce on meeting at
a vertex, we study time to coalesce to a single particle.

6. Explosive particles. For k = 2ℓ particles walking independently, which destroy each
other on meeting at a vertex, we study the time to extinction and the proportion of the
graph covered at extinction.

Results: Oblivious particles

Our first result concerns the speed up in cover time. Let T (k, v1, ..., vk) be the time to cover all
vertices for k independent walks starting at vertices v1, ..., vk. Define the k-particle cover time
Ck(G) in the natural way as Ck(G) = maxv1,...,vk

E(T (k, v1, ..., vk)) and define the speedup as
Sk = C(G)/Ck(G). The value of Ck(G) was studied in [4] on the assumption that all particles
start from the same vertex. They found inter alia that for expanders the speed up was Ω(k)
for k ≤ n particles.

Theorem 2. Multiple particles walking independently.
Let r ≥ 3 be constant. Let G be chosen randomly from Gr, then whp.

(i) For k = o(n/ ln2 n) the k-particle cover time CG(k) satisfies

CG(k) ∼ θr

k
n lnn,

and this result is independent of the initial positions of the particles.

(ii) For any k, and any starting position of the particles CG(k) = O
(

n
k

lnn+ lnn
)
.

Comparing to Theorem 1, we see that CG(k) ∼ CG/k, i.e. the speed up is exactly linear.

We next consider a model of search by particles with a finite life span. In this model, Break-
down, particles can stop functioning at any step. Specifically, there is a fixed probability b of
the particle stopping at each step. This can be seen as a ’faulty robots’ model.

Theorem 3. Breakdown. Let Πk be the number of unvisited vertices in a random walk by k
faulty particles. Let b/n, b = θ(1) be the breakdown probability at each step. Then whp (over
choices of Gr)
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(a)

E(Πk) ≤
(

(1 + o(1))b

b+ θr

)k

n.

(b) If k = O(1) then

E(Πk) ∼
(

b

b+ θr

)k

n.

.

Results: Interacting particles

Let M̂(u, v) denote the number of steps before two random walks, starting at vertices u and

v, first meet. Clearly if u = v then M̂(u, v) = 0, so we need some way to describe the fact
that the starting positions of the particles are not too near. We say k particles are in general
position, if the starting positions v1, ..., vk satisfy d(vi, vj) ≥ ω, where ω = ω(k, n) tends to
infinity slowly with k and n. After time Tk = kT1, where T1 is the single particle mixing time,
the probability the particles are not distance at least ω apart from each other is O(k2rω/n).
Thus a general position of

ω(k, n) = Ω(max(ln lnn, ln k)),

is feasible provided k = nǫ, where ǫ > 0 is a sufficiently small positive constant; and we choose
this value for ω(k, n).

In the paper [5] a technique (vertex coalescence) was used to estimate the probability that the
random walk had not visited a given set of vertices. This technique can be used to obtain the
distribution of the first meeting time of independent random walks. For k particles in general
position, the result is:

Theorem 4. Let r ≥ 3 be constant. Let G be chosen randomly from Gr, then the following
holds whp.
Let k ≤ nǫ, for sufficiently small positive constant ǫ. For k independent random walks starting
in a general position v = (v1, v2, ..., vk), let M̂(v) denote the number of steps before any of the
particles meet. Then

EM̂(v) ∼ 2θr

k(k − 1)
n.

For a random walk starting from u, let H(u, v) be the (expected) hitting time of vertex
v. It follows directly from [5] that (whp) all but O((lnn)A) vertices v have hitting time
H(u, v) ∼ θrn, (where A = O(1)). Moreover, this is an upper bound for the other O((lnn)A)

vertices. Thus for most pairs of vertices EM̂(u, v) ∼ H(u, v) ∼ θrn.
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In [8], Coppersmith, Tetali and Winkler investigate a related quantity M(u, v), in the context
of self-stabilizing networks. In their model, two particles starting at u, v make random walks,
but only one particle is allowed to move at each step. The particle which moves at a given
step is determined by a demon, whose aim is to delay the meeting as long as possible. They
establish that M(u, v), the (worst case) expected number of steps before meeting, satisfies

H(u, v) ≤M(u, v) ≤ H(u, v) +H(v, t) −H(t, v),

for some fixed vertex t. The vertex t, which is called hidden, is defined by the property that
H(t, v) ≤ H(v, t) for all v ∈ V .

In our study, there is no demon, and both of the particles walk randomly until they meet. As
already remarked, for a pair of particles starting at vertices u, v, in general position we find
that EM̂(u, v) ∼ θrn. In fact, for most vertex pairs (u, v) we also have thatM(u, v) ∼ θrn. We
briefly outline why this is the case. The results we claim follow from [5], and are summarized
in Lemma 13.

Say that a vertex v is tree-like if there is no cycle in the neighbourhood N(v, L0), the set of
vertices within distance L0 of v, where L0 = α ln lnn for some absolute constant α > 0. Most
vertices v of a random regular graph are tree-like whp.

If u is not in N(v, L0) then H(u, v) ∼ θrn, and moreover H(u, v) ≤ θrn(1 + o(1)) for all u, v.
Let t be hidden and pick a tree-like v, of distance at least L0 from both u and t. There are
n− O((lnn)A) such vertices for some constant A > 0. It is immediate that

H(u, v) ≤M(u, v) ≤ H(u, v)(1 + o(1)),

and thus for most choices of u and v, M(u, v) ∼ θrn.

Our next result concerns particles which can communicate on meeting at a vertex (but not
in any other manner). We refer to such particles as agents, to distinguish them from non-
communicating particles. Initially one agent has a message it wants to pass to all the others.

Theorem 5. Broadcast time.
Let A > 0, and k ≤ nǫ for a sufficiently small positive constant ǫ. Suppose k agents make
random walks starting in general position. Let Bk be the time taken for for a given agent to
broadcast to all other agents. Then the expected broadcast time E(Bk) is

E(Bk) ∼
2θr

k
Hk−1n,

where Hk is the k-th harmonic number. Thus when k → ∞, E(Bk) ∼ 2θr ln k
k

n.

Finally, we give some results for particles which interact in a less benign manner.
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One variant of interacting particles is a predator-prey model, in which both types of particles
make independent random walks. If a predator encounters prey on a vertex it eats them.

Theorem 6. Predator-prey.
Let A > 0, and k, ℓ ≤ nǫ for a sufficiently small positive constant ǫ. Suppose there are k
predator and ℓ prey particles walking randomly, starting in general position. The expected
extinction time of the prey, E(Dk,ℓ), satisfies

E(Dk,ℓ) ∼
θrHℓ

k
n.

One variant of predator-prey is interacting sticky particles, in which all particles are predato-
rial, and only one particle survives an encounter.

Theorem 7. Coalescence time: sticky particles.
Let A > 0, and k ≤ nǫ for a sufficiently small positive constant ǫ. Let Sk be the time to
coalesce, when there are originally k sticky particles walking in the graph. Then,

E(Sk) ∼ ψkn

where limk→∞ ψk = 2θr.

As a last twist on this, we consider particles which destroy each other on meeting at a vertex.

Theorem 8. Extinction time: explosive particles.
Let A > 0, and k ≤ nǫ for a sufficiently small positive constant ǫ. Let Dk be the time to
extinction, when there are originally k = 2ℓ explosive particles walking in the graph. Then

E(Dk) ∼ 2ψkn

where limk→∞ ψk = 2θr ln 2.

Methodology. For oblivious particles, we use the techniques and results of [5], [7] to establish
the probability that a vertex is unvisited by any of the walks at a given time t. For interacting
particles, we use the same techniques to derive the probability that a walk on the (suitably
defined) product graph Gk has not visited the diagonals (set of vertices v = (v1, ..., vk) with
repeated vertex entries vi) at a given time t.

2 Typical r-regular graphs

We say an r-regular graph G is typical if it has the properties P1-P4 listed below: Let ǫ1 > 0
be a sufficiently small constant, and let

L1 = ⌊ǫ1 logr n⌋. (1)

Let a cycle C be small if |C| ≤ L1.
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P1. G is connected, and not bipartite.

P2. The second eigenvalue of the adjacency matrix of G is at most 2
√
r − 1 + ǫ, where ǫ > 0

is arbitrarily small.

P3. There are at most n2ǫ1 vertices on small cycles.

P4. No pair of cycles C1, C2 with |C1|, |C2| ≤ 100L1 are within distance 100L1 of each other.

Theorem 9. Let G ′
r ⊆ Gr be the set of typical r-regular graphs. Then |G ′| ∼ |Gr|.

P2 is a very difficult result of Friedman [12]. The other properties are easy to check. Note
that P3 implies that most vertices of a typical r-regular graph are tree-like.

3 Estimating first visit probabilities

3.1 Convergence of the random walk

Let G be a connected graph with n vertices and m edges. For random walk Wu starting at
a vertex u of G, let Wu(t) be the vertex reached at step t. Let P = P (G) be the matrix

of transition probabilities of the walk and let P
(t)
u (v) = Pr(Wu(t) = v). Assuming G is

not bipartite, the random walk Wu on G is ergodic with stationary distribution π. Here
π(v) = d(v)/(2m), where d(v) the degree of vertex v. We often write π(v) as πv.

Let the eigenvalues of P (G) be λ0 = 1 ≥ λ1 ≥ · · · ≥ λn−1 ≥ −1 and let λmax = max(λ1, |λn−1|).
The rate of convergence of the walk is given by

|P (t)
u (x) − πx| ≤ (πx/πu)

1/2λt
max. (2)

For a proof of this, see for example, Lovasz [13].

In this paper we consider the joint convergence of k independent random walks on a graph
G = (VG, EG). It is convenient to use the following notation. Let Hk = (VH , EH) have vertex
set VH = V k and edge set EH = Ek. If S ⊆ VH , then Γ(S) is obtained from H by contracting
S to a single vertex γ(S). All edges, including loops are retained. Thus dΓ(γ) = dH(S), where
dF denotes vertex degree in graph F . Moreover Γ and H have the same total degree (nr)k,
and the degree of any vertex of Γ, except γ, is rk.

Let k ≥ 1 be fixed, and let H = Hk. For F = G,H,Γ let Wu,F be a random walk starting at
u ∈ VF . Thus Wu,G is a single random walk, and Wu,H corresponds to k independent walks
in G.
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Lemma 10. Let G be typical. Let F = G,H,Γ. Let S be such that dH(S) ≤ k2nk−1rk. Let
TF be such that, for graph F = (VF , EF ), and t ≥ TF , the walk Wu,F satisfies

max
x∈VF

|P (t)
u (x) − πx| ≤

1

n3
,

for any u ∈ VF . Then for k ≤ n,

TG = O(lnn), TH = O(lnn) and TΓ = O(k lnn).

Proof

Case (i): Single random walk.
We choose ǫ = 0.1 in P1 so that for r ≥ 3 we have

λmax ≤ 0.977. (3)

Let

TG =
3 lnn

− lnλmax

. (4)

Using (2) we see that for t ≥ TG,

max
x∈V

|P (t)
u,G(x) − πx| ≤ n−3.

Case (ii): k independent random walks.

Let W t
u,H be the corresponding random walk in H. As the k associated walks in G are

independent, we have P t
u(x) = P t

u1
(x1)...P

t
uk

(xk) and π(x) = π(x1)...π(xk). At step t, the
total variation distance ∆u(t,H) of the walk is

∆u(t,H) =
1

2

∑

x∈VH

|P t
u(x) − π(x)|.

To simplify notation let Pi = P t
ui

(xi), where u = (u1, ..., uk), and let πi = π(xi). Then

|P t
u(x) − π(x)| ≤|P1...Pk − P1...Pk−1πk| + |P1...Pk−1πk − P1...Pk−2πk−1πk| + · · ·

+|P1...Pℓπℓ+1...πk − P1...Pℓ−1πℓ...πk| + · · · + |P1π2...πk − π1...πk|.

It follows that

∆u(t,H) ≤ k

2
max

i=1,...,k




∑

x∈V (G)

|P t
ui

(x) − π(x)|


 ≤ k∆(t, G),

8



where ∆(t, G) = maxu∈V (G) ∆u(t, G). If we choose

TH =
ln k + 3 lnn

− lnλmax

,

then ∆(t, G) ≤ 1/(kn3) and ∆(t,H) ≤ 1/n3.

Case (iii): Random walk in Γ.
Let λH = λmax(H), and let

τ(ǫ,H) = min {t : ∆(t,H) ≤ ǫ for all t′ ≥ t} ,

then it is a result of [1] (see also [14]) that

τ(ǫ,H) ≥ 1

2

λH

1 − λH
ln

1

2ǫ
.

Let λG = λmax ≤ 0.977 from (3). On the assumption that k ≤ n and using ǫ = n−3 and
τ(ǫ,H) ≤ TH , we find that

λH ≤ 99

100
.

For a simple random walk on a graph G, the conductance Φ is given by

Φ(G) = min
X⊆V

d(X)≤m(G)

e(X : X)

d(X)
,

where d(X) is the degree of set X, and e(X : X) is the number of edges between X and V \X.
The second eigenvalue λ1 of a reversible Markov chain satisfies

1 − 2Φ ≤ λ1 ≤ 1 − Φ2

2
. (5)

On the assumption that λmax = λ1, we find that

Φ(H) ≥ 1/200. (6)

The standard way to ensure this is to make the chain lazy i.e. the walk only moves to a
neighbour with probability 1/2. Otherwise it stays where it is. If we do this until every vertex
has been covered, then this will double the cover time. It is simplest therefore to assume that
we keep the chain lazy for TH steps. At this point it is mixed, and we can stop being lazy.
All of our walks will be assumed to be lazy until the mixing time.

The quantity we need is Φ(Γ), where Γ is the contraction of H. From the construction of Γ
it follows that Φ(Γ) ≥ Φ(H); every set of vertices in VΓ corresponds to a set in VH , and edges
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are preserved on contraction. Thus for any starting starting position u of a walk Wu(Γ) we
have, from (2) and (5) that, provided t ≥ TΓ = 105k lnn,

|P (t)
u (x) − π(x)| ≤

(
d(γ)

rk

)1/2

e−tΦ2/2 ≤ 1

n3
,

where d(γ) ≤ k2nk−1rk. 2

3.2 Generating function formulation

We use the approach of [5], [7].

Let d(t) = maxu,x∈V |P (t)
u (x) − πx|, and let T be such that, for t ≥ T

max
u,x∈V

|P (t)
u (x) − πx| ≤ n−3. (7)

It follows from e.g. Aldous and Fill [2] that d(s+ t) ≤ 2d(s)d(t) and so for ℓ ≥ 1,

max
u,x∈V

|P (ℓT )
u (x) − πx| ≤

2ℓ

n3ℓ
. (8)

Fix two vertices u, v. Let ht = Pr(Wu(t) = v) be the probability that the walk Wu visits v at
step t. Let

H(z) =
∞∑

t=T

htz
t (9)

generate ht for t ≥ T . This changes the definition of H(z) from that used in [5], [6] where we
included the coefficients h0, h1, . . . , hT−1 in the definition of H(z) and gave rise to technical
problems.

Next, considering the walk Wv, starting at v, let rt = Pr(Wv(t) = v) be the probability that
this walk returns to v at step t = 0, 1, .... Let

R(z) =

∞∑

t=0

rtz
t

generate rt. Our definition of return involves r0 = 1.

For t ≥ T let ft = ft(u→v) be the probability that the first visit of the walk Wu to v in the
period [T, T + 1, . . .] occurs at step t. Let

F (z) =
∞∑

t=T

ftz
t
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generate ft. Then we have
H(z) = F (z)R(z). (10)

Finally, for R(z) let

RT (z) =

T−1∑

j=0

rjz
j. (11)

We remark that (10) is also valid for visits by Wu to a set S of vertices. By contracting
the set S of vertices of G to a single vertex, γ(S) we obtain a graph Γ and an equivalent

relationship H̃(z) = F̃ (z)R̃(z). We see next that for large enough T , if t > T then the first
visit probabilities fT (t, G, S) to S in G, and fT (t,Γ, γ(S)) to γ(S) in Γ, are asymptotically
equal. This can be seen as follows.

For a walk Wu starting at u with t-step transition probabilities Pu,t(v) to vertex v,

fT (t) =
∑

w 6∈S

Pu,T (w)φw,S(t− T ),

where φw,S(τ) is the probability that a first visit from w to S occurs at step τ > 0.

For the graphs G and Γ, and w 6∈ S, the value of φw,S(τ,G) equals φw,S(τ,Γ) as the degrees
and neighbourhood structure of G\S and Γ\{γ} are identical. Thus provided we choose T to
be a sufficiently large mixing time in both G and Γ we have that Pu,T (w,G) ∼ Pu,T (w,Γ) ∼ 1

n

and thus
fT (t, G, S) = (1 + o(1))fT (t,Γ, γ(S)).

3.3 First visit time lemma: Single vertex v

The following lemma should be viewed in the context that G is an n vertex graph which is
part of a sequence of graphs with n growing to infinity. For a proof see [7].

Lemma 11. Let T be a mixing time such that (7) holds. Let RT (z) be given by (11), let
Rv = RT (1), and let

pv =
πv

Rv(1 +O(Tπv))
. (12)

Suppose the following conditions hold.

(a) For some constant 0 < θ < 1, we have min|z|≤1+λ |RT (z)| ≥ θ, where λ = 1
KT

for some
sufficiently large constant K.

(b) T 2πv = o(1) and Tπv = Ω(n−2).
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Then for all t ≥ T ,

ft(u→v) = (1 +O(Tπv))
pv

(1 + pv)t+1
+ o(e−λt/2). (13)

Let v be a (possibly contracted) vertex, and for t ≥ T let At(v) be the event that Wu does
not visit v during steps T, T + 1, . . . , t. Then

Pr(At(v)) =
∑

s>t

ft(u→v),

and we have the following corollary.

Corollary 12.

Pr(At(v)) =
(1 +O(Tπv))

(1 + (1 +O(Tπv))πv/Rv)
t + o(e−t/KT ).

4 Oblivious particles

4.1 Cover time for k particles walking independently

The proof of the following lemma follows directly from the one given in [5] with the simplifi-
cation made in later papers (e.g. [7]), that we only consider first visits after T . It is obtained
from Corollary 12 by substituting RT ∼ θr for tree-like vertices.

Lemma 13. Let Gr denote the set of r-regular random graphs. Let TH be a mixing time given
by of Lemma 10. Let

p =
θr

n
. (14)

There exists a subset H of Gr of size (1 − o(1))|Gr| such that the following properties hold for
G ∈ H.

(i) Let At(v) be the event that a walk starting at a fixed vertex x does not visit v during
steps T, ..., t. For all v ∈ V

Pr(At(v)) ≤ (1 − p)−(t+o(t)) +O(Te−t/(2KT )),

where K > 0 is constant. Moreover, if v is tree-like then

Pr(At(v)) = (1 − p)−(t+o(t)) +O(Te−t/(2KT )).
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(ii) Let At(u, v) be the event that a walk starting at a fixed vertex x does not visit u or v
during steps T, ..., t. There exists a set S ⊆ V of size n1−o(1) such that for all u, v ∈ S

Pr(At(u, v)) = (1 + o(1))Pr(At(u))Pr(At(v)) +O(Te−t/(2KT )).

Let Ak,t(v) be the event that no agent visits vertex v in steps T, ..., t. As the particles are
independent, and T = TH is a mixing time for all k particles, we have that,

Pr(Ak,t(v)) = (Pr(Ak,t(v)))
k = e−kp(t+o(t))

and similarly for Pr(Ak,t(u, v)). The proof of Theorem 2 is a straightforward adaptation of
the proof of Theorem 1 as given in Lemma 13.

Upper bound on cover time. Let t∗k = (θrn/k) lnn, then for suitably large t, the event
Ak,t(v) that vertex v is unvisited in T, ..., t is at most e−kp(t+o(t)). Choosing t0 = (1 + ǫ)t∗

where ǫ→ 0 sufficiently slowly, and substituting this value into the upper bound proof given
in section 5.1 of [5], we find that CG(k) ≤ t0 = (1 + o(1))t∗k.

Lower bound on cover time. Choosing t1 = (1 − ǫ)t∗k where ǫ→ 0 sufficiently slowly, and
substituting this value into the lower bound proof given in section 5.2 of [5], we find that there
is a set of vertices S, given by Lemma 13 above which whp are not all covered at time t1.
The conclusion is that CG(k) ≥ t1.

This completes the proof of Theorem 2. 2

4.2 Particles with finite life span

Particles with breakdown. The first part of Theorem 3 follows directly from Lemma 13.
Let Bt(v) be the event that the particle P breaks down at t ≥ TH , and v is unvisited by P
after TH . Then

Pr(Bt(v)) ≤
b

n

(
1 − b

n

)t−1 (
1 − θr

n

)t+o(t)

. (15)

Now,
∞∑

t=T

b

n

(
1 − b

n

)t−1 (
1 − θr

n

)t+o(t)

=
(1 + o(1))b

b+ θr
.

The k particles are walking independently and part (a) follows immediately.

If v is tree-like then there is equality in (15). Part (b) follows since whp T = o(n) and almost
all vertices are tree-like. 2
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5 Probability two or more particles meet at a given step

The main task of this section is to estimate the probability two or more particles meet at a
given step.

We note the following result (see e.g. [11]), for a random walk on the line = {0, ..., a} with
absorbing states {0, a}, and transition probabilities q, p, s for moves left, right and looping
respectively. Starting at vertex z, the probability of absorption at the origin 0 is

ρ(z, a) =
(q/p)z − (q/p)a

1 − (q/p)a
≤

(
q

p

)z

, (16)

provided q ≤ p. Similarly, for a walk starting at z on the line {0, 1, ..., }, with absorbing states
{0,∞}, the probability of absorption at the origin is ρ(z) = (q/p)z.

We first consider the case of a meeting between two particles.

Lemma 14. Let G be a typical r-regular graph, and let v be a vertex of G, tree-like to depth
L1 = ⌊ǫ1 logr n⌋. Suppose that at time zero, two independent random walks (W1,W2) start
from v. Let (x, y) denote the position of the particles at any step. Let S = {(u, u) : u ∈ V }.
Let fT be the probability of a first return to S within T = TΓ steps given that the walks leave
v by different edges at time zero. Then

fT =
1

(r − 1)2
+O(n−Ω(1)).

Proof

We write fT = gT +hT where gT is the probability of a first return to S up to time L1. Assume
the walks leave v by distinct edges at time 0, let xt, yt denote the positions of the particles
after t steps and let Yt = dist(xt, yt).

To estimate gT we extend N(v, L1) to an infinite r-regular tree T rooted at v. Let Xt be the
distance between the equivalent pair of particles walking in T . Thus provided t ≤ L, we have
that Yt = Xt, and gT = Pr(∃t ∈ [1, L1] : Xt = 0). The values of Xt are as follows: Initially
X1 = 2. If Xt = 0, then Pr(Xt+1 = 0) = 1/r, Pr(Xt+1 = 2) = (r − 1)/r. If Xt > 0, then

Xt =





Xt−1 − 2 with probability q = 1
r2

Xt−1 with probability s = 2(r−1)
r2

Xt−1 + 2 with probability p =
(

r−1
r

)2
.

(17)

Finally let Zt be a walk on the even numbers {0,±2,±4, ...} of the infinite line, with Z1 = 2,
and with transition probabilities p, q, s. By coupling Zt and Xt, we have inductively that
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Xt ≥ Zt. Note that

E(Zt − Zt−1) = 2 − 4

r
. (18)

Now let g∞ denote the probability that {∃t ≥ 1 : Xt = 0}, i.e. the particles meet in T . Equa-
tion (16) implies that

g∞ =
1

(r − 1)2
. (19)

Furthermore,
g∞ = gT + g′T (20)

where g′T is the probability that {∃t > L1 : Xt = 0}, i.e. the particles meet after L1 steps.
But, using (16) once again, we see that

g′T ≤ Pr(XL1 ≤ L1/2) +

(
1

(r − 1)2

)L1/4

≤ O(n−Ω(1)) +

(
1

(r − 1)2

)L1/4

. (21)

As Pr(ZL1 ≤ L1/2) ≥ Pr(XL1 ≤ L1/2), the bound O(n−Ω(1)) follows from (18) and the
Hoeffding inequality for the sums of bounded random variables ZL1. We use Ω(1) throughout
this proof, instead of providing explicit constants, but remark that, as the right hand side of
(18) is at least 2/3 for any r, we can insert absolute constants independent of r.

It follows from (19), (20) and (21) that we can write

gT =
1

(r − 1)2
+O(n−Ω(1)). (22)

Recall that hT is the probability of a first return to S after time L1. We next prove that
hT = O(n−Ω(1)). Let hT = h′T + h′′T where

h′T = Pr (The walks meet during steps {L1, ..., T} and YL1 > L1/2) ,

and we know from (21) that

h′′T ≤ Pr(YL1 ≤ L1/2) = O(n−Ω(1)). (23)

Let σ ≤ T be the step at which the particles first meet again, and let s be the last step less
than σ at which the distance between the particles is L1/2 or more. Let x = xs, y = ys denote
the positions of the particles at time s. Let ρ1, ρ2 denote the particles at x, y respectively.

Let N = N(x, L1), the neighbourhood of depth at most L1 centered at x. It follows from
property P4 that there are most two paths xPy, xP ′y between x and y in N , both of length
at least L2.

15



Suppose there is a single path xPy. Consider the particle ρ1. Either ρ1 moves at least L1/4
down xPy, at some step s < t ≤ σ, or if not, then ρ2 must do; as we now show. Suppose
first that both particles stay within N until they meet, then ρ2 must move at least L1/4 along
xPy to meet ρ1. Suppose next that s < t ≤ σ is the first step at which the boundary of N
visited by either particle, and suppose this particle is ρ1 (or both). As the distance between
the particles is at most L1/2, then ρ2 has moved at least L1/4 along xPy by that step.

Suppose next there are two paths xPy, xP ′y not internally disjoint, and |P ′| ≥ |P | ≥ L1/2.
Let w be the mid-point of P so that xPy = xRwSy (resp. w′ of P ′ etc). Then (e.g.) each
half-path xRw, xR′w′ has a section of length at least L1/12 in common with or disjoint from
the other. Repeating the argument above, at least one of these sections must be walked by
one of the particles.

Thus there is one of at most four fixed sub-paths of length L1/12 in G which one of the
particles has to traverse, an event of probability O((1/(r − 1))L1/12), (see (16)). As there are
at most T ways of choosing s, and T starting times for traversing the sub-path, an upper
bound of O(T 2(r − 1)−L1/12) follows. 2

Using Lemma 14, we can calculate the expected number of returns to the diagonal S of Hk

for k particles. Recall the definitions of Γ(S) and γ(S), the contraction of S.

Lemma 15. Let k be the number of particles walking on the underlying graph G. Let Wγ be
a random walk in Γ starting at γ. Let f∗ denote the probability that Wγ makes a first return
to γ within TΓ steps. Then

f∗ =
1

r − 1
+O

(
k2

nΩ(1)

)
.

If k ≤ nǫ for a small constant ǫ, then f∗ ∼ 1
r−1

.

Proof Let S = {(v1, ..., vk) : at least two vi are the same}. The particles are at the
components of the vector corresponding to the vertex in question. Every vertex in S has
degree rk in Hk, and the size of of S is at most

(
k
2

)
nk−1. On the other hand, there are at least

N2(k) vertices of S with exactly two replicates, where

N2(k) ≥
(
k

2

)
nk−1 −

(
k

3

)
nk−2 −

(
k

2

)(
k − 2

2

)
nk−2 =

(
k

2

)
nk−1

(
1 − O

(
k2

n

))
.

Thus the total degree of γ(S) is

d(γ) =

(
k

2

)
nk−1rk

(
1 −O

(
k2

n

))
. (24)

Similarly the loop degree of γ(S) is

dℓ(γ) =

(
k

2

)
nk−1rk−1

(
1 +O

(
k2

n

))
,
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the correction being for where a different pair of particles coincide at the next step.

A single walk in Γ is related to k independent walks in the underlying graph G. The point
of difference being the moves into and out of γ(S). First returns to γ(S) can be of several
types. The simplest type is a loop return (type O), for example two particles move to the
same neighbour. If this does not occur, we distinguish four cases. In the first case (type A),
there were initially exactly two particles coincident at a tree-like vertex of G, which meet up
again at some vertex. In the second case (type B), the coincident particles do not meet up
again, but instead some other particles which were not initially coincident meet up. In the
third case (type C), three or more particles coincide, either initially or finally. In the fourth
case (type D), the coincident particles are initially at a non-tree-like vertex of G. Thus we
can write

f∗ = fO + fA +O(fB + fC + fD),

where fO = dℓ(γ)
d(γ)

. For type A returns,

fA =
d′(γ)

d(γ)
fTΓ

(25)

Here d′(γ) counts the non-loop edges of γ corresponding to tree-like vertices of G, and fTΓ
is

from Lemma 14. Thus d′(γ) = (d(γ) − dℓ(γ))(1 − O(k2nǫ0/n) − O(k2/n)). This follows from
P3, as G is typical, and the value of N2(k) above. Thus

fO + fA =
1

r − 1
+O(n−Ω(1)).

We can estimate fB as follows: Of the vertices of S, at most ν1 =
(

k
2

)2
rL1nk−2, have another

pair of entries within the same neighbourhood of depth L and at most ν2 =
(

k
2

)
krL1nk−2, have

an entry within the neighbourhood of a coincident pair. For particles distance at least L1

apart, the probability they coincide in TΓ steps is O(n−Ω(1)), by the analysis of Lemma 14.
Thus

fB = O

(
(ν1 + ν2)r

k

d(γ)
+

k2

nΩ(1)

)
= O

(
k2

nΩ(1)

)
.

Finally,

fC = O

(
k3nk−2rk

d(γ)
+
k3r2Lnk−2rk

d(γ)
+

k2

nΩ(1)

)
= O

(
k2

nΩ(1)

)

fD ≤ n2ǫ0rLk2nk−2

d(γ)
= O

(
k2

nΩ(1)

)
, see P3.

The expression for fC arises as follows: The term O
(

k3nk−2rk

d(γ)

)
is the probability 3 or more

particles coincident initially. The term O
(

k3r2Lnk−2rk

d(γ)

)
is the probability that two particles

are initially in the L1-neighbourhood of a third vertex. The term O
(

k2

nΩ(1)

)
is the probability

that at least two particles, initially at distant greater than L1 meet within time T . 2
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Corollary 16. For typical graphs and k particles, the expected number of returns to γ in TΓ

steps is

Rγ(S) = θr +O

(
k2

nΩ(1)

)
. (26)

If k ≤ nǫ for a small constant ǫ, then Rγ(S) ∼ θr. 2

By an occupied vertex, we mean a vertex visited by at least one particle at that time step.
The next lemma concerns what happens during the first mixing time, when the particles start
from general position, and also the separation of the occupied vertices when a meeting occurs.

Corollary 17. For typical graphs G and k ≤ nǫ particles,
(i) Suppose two (or more) particles meet at time t > TΓ. Let pL be the probability that
the minimum separation between some pair of occupied vertices is less than L. Then pL =
O(k2rL/n).
(ii) Suppose the particles start walking on G with minimum separation

ℓ = α(max {ln lnn, ln k}).

Then
Pr(Some pair of particles meet during TΓ) = o(1).

Proof (i) At most ν =
(

k
2

)2
nk−2rLrk edges incident with γ have a pair of occupied vertices

within distance L. After the mixing time TΓ, the probability the move to γ which causes the
meeting is made using such an edge is (1 + o(1))ν/d(γ).

(ii) By the analysis of Lemma 14 the probability some pair of particles meet during TΓ =
O(k log n) steps is

O

(
k2ℓTΓ

(r − 1)ℓ/4

)
= O

(
k3ℓ log n

(r − 1)ℓ/4

)
= o(1),

for suitable choice of α and small ǫ > 0, where k = O(nǫ).

2

6 Conditions of the first visit time lemma

We next check that the conditions of Lemma 11 hold with respect to the vertex γ of the graph
Γ. Thus in this section, T = TΓ, and v = γ. The conditions are:

(a) min|z|≤1+λ |RT (z)| ≥ θ, for some constant θ > 0, and λ = 1/KT for suitably large K.
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(b) T 2πv = o(1) and Tπv = Ω(n−2).

Condition (a) follows from Lemma 18 below. Condition (b) is easily disposed of. Recall from
Lemma 10, that T = O(k lnn). From Lemma 15, πγ = d(γ)/(nr)k where 1 ≤ d(γ)/nk−1rk ≤
k2. Thus T 2πγ = o(1) provided k ≤ n1/5.

Lemma 18. For |z| ≤ 1 + λ, there exists a constant θ > 0 such that |RT (z)| ≥ θ.

Proof Let rt = rt,A + rt,B where rt,A is the probability of a loop return (t = 1), or type

A return at time t ≤ L1. Thus RT (z) = RA(z) +RB(z) where RA(z) =
∑L1

t=0 rt,Az
t.

The arguments in the proof of Lemma 14 show that

φ =

TΓ∑

t=L1+1

rtz
t = O(n−Ω(1)),

and thus

|RB(z)| ≤ φ+ (1 + λ)TTΓ(fB + fC + fD) = O(n−Ω(1)) +O

(
k3 lnn

nΩ(1)

)
= o(1).

As |RT (z)| ≥ |RA(z)| − |RB(z)|, we have |RT (z)| ≥ |RA(z)| − o(1).

As in Lemma 14, let Yt be the distance between the particles during the first L1 steps. For
1 ≤ t ≤ L1 let

bt = Pr(Yt = 0, Y1, ..., Yt−1 > 0, max
i=1,...,t

Yi < L1),

be the probability that the walks first meet at step t. Let B(z) =
∑L1

t=1 btz
t, and let A(z) =∑∞

t=0 atz
t = 1/(1 − B(z)). Thus

RA(z) =
L1∑

t=0

rt,Az
t =

L1∑

t=0

atz
t =

∞∑

t=0

atz
t −

∞∑

t=L1+1

atz
t =

∞∑

t=0

atz
t − O(((1 + λ)ζ)t) =

∞∑

t=0

atz
t − o(1),

as we now explain. By coupling Yt and Zt as in Lemma 14, and again applying the Hoeffding
Lemma to Zt, there is an absolute constant 0 < ζ < 1, such that at = O(ζt).

From Lemma 15, B(1) = fA + fO = 1
r−1

+ o(1) and so for |z| ≤ 1 + λ

B(|z|) ≤ B(1 + λ) ≤ B(1)(1 + λ)T ≤ e1/K

r − 1
+ o(1) < e1/K .
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So,

|RA(z)| + o(1) =

∣∣∣∣
1

1 − B(z)

∣∣∣∣ ≥
1

1 +B(|z|) ≥ 1

1 + e1/K
.

2

7 Results for interacting particles

From Corollary 12 and Section 6 and Corollary 16 we see

Theorem 19. Let Ak(t) be the event that a first meeting among the k particles after the
mixing time TΓ, occurs after step t. Let pk =

(
k
2

)
θr

n
(1 +O(n−Ω(1))). Then

Pr(Ak(t)) = (1 + o(1))(1 − pk)
t +O(TΓe

−t/2KTΓ).

Let Bs,k(t) be the event that a first meeting between a given set of s particles and another set
of k particles after the mixing time TΓ, occurs after step t. Let qsk = sk θr

n
(1 + O(n−Ω(1))).

Then
Pr(Bs,k(t)) = (1 + o(1))(1 − qsk)

t +O(TΓe
−t/2KTΓ).

2

Corollary 20. Let Mk (resp. Ms,k) be the time at which a first meeting of the particles occurs,
then E(Mk) = (1 + o(1))/pk (resp. E(Ms,k) = (1 + o(1))/qk).

This follows from E(Mk) =
∑

t≥T Pr(Ak(t)) and pkTΓ = o(1) etc. 2

The proof of Theorem 4 follows from Theorem 19 and Corollary 17.

7.1 Expected broadcast time: Theorem 5

We allow the particles which met, time T = TG to re-mix after an encounter. This happens
k − 1 times. Recall that TΓ = O(kT ). From Corollary 17, the event that some particles meet
during one of these mixing times has probability O(k3T/nΩ(1)) = o(1) (by assumption).

Assuming this does not happen, the expected time E(Bk), for a given agent to broadcast to
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all other agents is,

E(Bk) = O(kT ) +
k−1∑

s=1

(1 + o(1))

qsk

∼ nθr

k−1∑

s=1

1

s(k − s)
,

=
2nθr

k
Hk−1,

where Hk is the k-th harmonic number. On the assumption that k is large,

E(Bk) ∼
2θr ln k

k
n.

2

7.2 Expected time to coalescence; sticky particles: Theorem 7

Let Sk be the time for all the particles to coalesce, when there are originally k sticky particles
walking in the graph. Then,

E(Sk) = O(kT ) +
k∑

s=1

(1 + o(1))

ps

∼ nθr

k∑

s=1

2

s(s− 1)
.

Noting that
∑∞

s=1 1/(s(s− 1)) = 1 we see that for large k,

E(Sk) ∼ 2θrn.

2

7.3 Expected time to extinction; explosive particles: Theorem 8

Let Dk be the time to extinction, when there are originally k = 2ℓ explosive particles walking
in the graph. Then

E(Dk) = O(kT ) +
ℓ∑

s=1

(1 + o(1))

p2s

∼ nθr

ℓ∑

s=1

2

2s(2s− 1)
.
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Noting that
∑∞

s=1 1/(2s(2s− 1)) = ln 2 we see that for large k,

E(Dk) ∼ 2θr ln 2 n.

2

8 Conclusions

We have extended the results of [5] to deal with multiple random walks. In particular we have
shown once again the usefulness of Lemma 11 in the context of random walks on expander
graphs of high girth.
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