
Mixing Times for the Branch-Rotation
Chain on Cladograms (or the Triangulation
Walk)

This concerns two problems which are similar (intuitively, at least). Con-
sider the regular n-gon. There are a finite number Cn = 2n−4)!

(n−1)!(n−2)! of
triangulations, that is ways to draw diagonals which partition the n-gon
into triangular regions (Cn is a Catalan number: see [5] pages 219–229).
One can define a discrete time Markov chain on the space of triangulations
of the n-gon as follows. In each step

pick uniformly at random a diagonal line; delete it, to leave a
quadrilateral; then insert the opposite diagonal of that quadri-
lateral to get a new triangulation.

A different combinatorial set is the set of n-cladograms. Such a clado-
gram, illustrated in figure 1, has leaves labeled 1, 2, . . . , n, an unlabeled root
(at the top) and binary splits, where we do not distinguish left and right sub-
trees. (Cladograms are one formalization of phylogenetic trees from biologi-
cal systematics, indicating evolutionary relationships between species. The
number of n-cladograms equals (2n−2)!

2n−1(n−1)!
.) One can define several Markov

chains on the set of n-cladograms (see [1, 4] for a more easily-analyzed chain),
but the following type of chain seems most interesting.
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Figure 1. A cladogram on 11 species.

A n-cladogram has 2n − 1 edges. Pick one edge (not the edge at the root)
uniformly at random; in figure 1, say we pick the edge upwards from the
common ancestor of {11, 8}. Cut this edge at its top, thus separating the
3-edge subcladogram on {11, 8} and making the two other edges at the cut-
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point merge into a single edge e from the common ancestor of {6, 1} to the
common ancestor of {7, 6, 1}. Now there are exactly 4 edges adjacent to e,
viz the edges leading upwards from

6, 1, 7, the common ancestor of {7, 6, 1}.

Pick each of these 4 edges with chance 1/4, and reattach the subcladogram
to the middle of that edge. If we picked the edge upwards from the common
ancestor of {7, 6, 1}, then we would obtain the cladogram in figure 2. (In
general e might have less than 4 adjacent edges, in which case with the
remaining probability we make no change).
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Figure 2. A step of the chain from figure 1.

Being reversible, each chain has largest eigenvalues 1 = λ1 > λ2, and the
relaxation time defined as 1/(1−λ2) has an interpretation as a mixing time
parameter. In each chain it is easy to show (by the usual technique of
applying the variational characterization of λ2 to a suitable test function)
that the relaxation is at least order n3/2 as n →∞.

PROBLEM. For each chain, show that the relaxation time is at most order
n3/2.

Discussion
There are good heuristic reasons (too lengthy to explain here) for expecting
these two chains to have similar behavior. The chain on triangulations is
discussed in [2, 3], who obtain an O(n4) upper bound. Over the last 20
years, techniques has been developed which enable one to find the correct
order of magnitude of the mixing times for natural random walks on familiar
combinatorial structures; this “triangulation walk” example is perhaps the
simplest structure for which correct order is unproved. It seems naturalk to
try the “distinguished paths” method, but it seems surprisingly hard to take
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the first step of defining a “natural” path in tree-space between an arbitrary
pair of cladograms.

The “cladograms” chain has a semi-applied story. Reconstructing phy-
logenetic trees from actual biological data is a large-scale academic activity;
it involves algorithmically hard optimization problems which in practice are
attacked via heuristic “local search” methods, exploring the space of clado-
grams to find a “best fit” to data. One class of algorithms uses MCMC
(Markov chain Monte Carlo), built over a “base chain” like ours. The data-
dependent chains which arise in practice are so complicated that rigorous
theoretical analysis seems hopeless, but understanding the base “no data”
chain is a natural first step.

History. I have posed this in talks and conversation since around 2000, origi-
nating from [1].
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